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Reverberating activity in a neural network with distributed signal transmission delays

Takahiro Omi* and Shigeru Shinomoto†

Department of Physics, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
�Received 3 August 2007; published 8 November 2007�

It is known that an identical delay in all transmission lines can destabilize the macroscopic stationarity of a
neural network, causing oscillation. We analyze the collective dynamics of a network whose transmission
delays are distributed in time. Here, a neuron is modeled as a discrete-time threshold element that responds in
an all-or-nothing manner to a linear sum of signals that arrive after delays assigned to individual transmission
lines. Even though transmission delays are distributed in time, a whole network exhibits a single collective
oscillation with a period close to the average transmission delay. The collective oscillation cannot only be a
simple alternation of the consecutive firing and resting, but also arbitrarily sequenced series of firing and
resting, reverberating in a certain period of time. Moreover, the system dynamics can be made quasiperiodic or
chaotic by changing the distribution of delays.

DOI: 10.1103/PhysRevE.76.051908 PACS number�s�: 87.18.Sn, 02.30.Ks, 87.18.Bb

I. INTRODUCTION

A number of model neural networks exhibit collective os-
cillation. Their mechanisms of oscillation can be classified
into three types: �i� Individual neurons are oscillators with
varied frequencies, and collective oscillation emerges
through phase interaction between individual oscillators; �ii�
neurons are simple relaxation elements, and oscillation
emerges as a result of interaction between excitatory and
inhibitory groups of neurons; �iii� neurons are instantaneous
integrators of incoming signals, and oscillation emerges due
to signal transmission delay between elements. The first two
scenarios have been studied in detail for many decades and
are already established as fundamental nonlinear dynamical
phenomena �1–6�. Light was shed on the third scenario
rather recently, and much is not known mathematically in
spite of the ubiquity of signal transmission delays, not only
in networks of biological neurons, but also in networks of
artificial electrocircuits �7–10�.

In biological neural networks, the transmission delay is a
sum of axonal, synaptic, and dendritic delays. It has been
reported that the delay can be comparable to or longer than
the somatic membrane time scale �11–15�. We consider here
a model network in which the transmission delays are dis-
tributed in a large interval of time. We model the neuron for
simplicity as a discrete-time threshold element that updates
its state at each time step according to the summed input
signals, each of which has arrived with a fixed transmission
delay.

In the studies of neural networks, the synchronous update
from the preceding states of other elements has often been
discussed �16–24�. This synchronous update rule can give
rise to a period-2 macroscopic oscillation as the strength of
the inhibitory connections is increased �16–19�. In the
present study, we consider the more general case in which
transmission delays are distributed widely in time. We derive
a recurrence equation of the macroscopic order parameter

representing the mean activity from the dynamics of the in-
dividual threshold elements.

The network is found to exhibit a collective oscillation
with period close to the mean transmission delay. The col-
lective dynamics cannot only be a simple alternation of the
consecutive firing and consecutive resting, but also a non-
trivially sequenced series of firing and resting, repeating in a
given period of time. For the system whose transmission
delays are distributed uniformly in a given range of time, we
obtain multiple stable periodic orbits. Due to the multistabil-
ity, one can store an arbitrary firing sequence in the network.
For the case of nonuniformly distributed delays, we solve the
recurrence equation and find that the network can exhibit not
only periodic, but also quasiperiodic or chaotic dynamics.

The present paper is organized as follows: In Sec. II a
recurrence equation of the mean activity is derived. In Sec.
III the stationary solution for the macroscopic dynamical
equation and its linear stability is examined analytically. In
Sec. IV the macroscopic state equation is solved numerically
for a variety of distributions of the delays. In Sec. V the
numerical simulation of the original microscopic equations is
carried out and compared with the solution of the macro-
scopic state equation. In Sec. VI we discuss the significance
of delayed networks.

II. DERIVATION OF A MACROSCOPIC STATE
EQUATION

In this section, we derive the dynamical equation of the
macroscopic activity from the microscopic dynamics of the
individual elements, each of which is a simple threshold neu-
ron that evokes an all-or-nothing response to an input vi�t� at
discrete times t=0,1 ,2 ,3 , . . . as

xi�t� = sgn„vi�t�… , �1�

where sgn�v� is the sign function that takes values +1, 0, and
−1, respectively, for v�0, v=0, and v�0. Here, vi�t� is a
“total input” representing a linear sum of incoming signals
from other neurons,
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vi�t� = �
j=1

n

wi,jxj�t − di,j� + si, �2�

where wi,j is the “synaptic weight” that represents excitatory
�positive� or inhibitory �negative� connection from the jth
neuron to the ith neuron. di,j �=1,2 ,3 , . . . � is the signal trans-
mission delay specified for each transmission line �Fig. 1�. si
will be called the “external stimulus” in this paper. In an
asymmetrical representation in which neuronal firing and
resting are represented as �xj +1� /2=1 or 0, the external
stimulus should be read as si−� j=1

n wi,j.
A macroscopic order parameter representing the mean ac-

tivity is defined as the average neuronal state at each time t:

X�t� �
1

n
�
i=1

n

xi�t� . �3�

In the following, we derive a dynamical equation of the mac-
roscopic state, in parallel with Amari’s derivation for the
synchronous update rule �16�, which corresponds to a par-
ticular case of the unit-time delay in the present model,
�di,j =1� for all pairs of i and j.

The macroscopic state defined above is identical to the
difference of ratios of positive and negative total inputs vi to
individual neurons �i=1,2 , . . . ,n�. Using the distribution
pt�v� of total inputs v at time t, the macroscopic state can be
represented as

X�t� = 	
0

�

pt�v�dv − 	
−�

0

pt�v�dv . �4�

The central-limit theorem holds for the summed inputs,
�� j=1

n wi,jxj�t−di,j��, in the limit of a large number of neurons,
if the individual signals �wi,jxj�t−di,j�� are independently
sampled from a given distribution of a finite variance. In the
present deterministic model, the statistical independence
holds if individual neuronal states �xj� are chosen indepen-
dently from synaptic connections �wi,j�. As the microscopic
states are updated through synaptic connections, however,
�xj� are not independent from �wi,j� anymore as time goes by.
Even with this condition, there would be room for statistical
independence if the connection weights �wi,j� themselves are
chosen independently of each other. The question of statisti-
cal independence was initially raised by Rozonoér �25�. It
was proven by Amari et al. that the statistical independence
holds under some special conditions �26�. In the present pa-
per, we further introduce the distribution of transmission de-

lays �di,j�. This raises another problem of the correlation be-
tween �xj� and �di,j�. In this paper, we do not go into this
open problem, but rather use the assumption of their statisti-
cal independence to construct a macroscopic state equation
for our proposed delayed networks. We will examine the
validity of the assumption by comparing the solutions of the
macroscopic state equation with the simulation of micro-
scopic equations.

In addition, if the “external stimuli” �si� are normally dis-
tributed, then the distribution pt�v� of total inputs v is Gauss-
ian, characterized solely by the mean �t and variance �t

2 at
each time t as

pt�v� =
1


2��t
2

exp�−
�v − �t�2

2�t
2 � .

By inserting this into Eq. �4�, the macroscopic state equation
is obtained as

X�t� = F��t

�t
� , �5�

where F�x� is the error function:

F�x� =
 2

�
	

0

x

e−x2/2dx . �6�

Under the above-mentioned assumption of statistical in-
dependence, the mean �t and variance �t

2 of input signals v
are obtained as

�t = nw̄ā�t� + s̄ , �7�

�t
2 = nw̄2�1 − ā�t�2� + n�w

2 + �s
2, �8�

where w̄, s̄, �w
2 , and �s

2 are the means and variances of �wi,j�
and �sj�. ā�t� denotes the mean past activity:

ā�t� �
1

n2�
i=1

n

�
j=1

n

xj�t − di,j� . �9�

We consider the case that delays �di,j� are randomly dis-
tributed from d=1 to m over transmission lines with the ra-
tios �d�0, ��1+�2+ ¯ +�m=1�. Assuming the statistical in-
dependence between individual states �xj� and delays �di,j�,
the mean past activity is given by the weighted average of
the past macroscopic states:

ā�t� = �
d=1

m

�dX�t − d� . �10�

The evolution equation of the macroscopic state is given
by inserting the mean �t and variance �t

2 into Eq. �5�. If the
model parameters satisfy nw̄2�n�w

2 +�s
2, the evolution

equation simplifies to

X�t� = F�W�
d=1

m

�dX�t − d� + S� , �11�

where W and S are dimensionless parameters, respectively,
representing the average synaptic weight and the external
stimulus,

time

FIG. 1. �Color online� Every neuron receives signals that arrive
after delays in the individual transmission lines. The response signal
is sent back to the other neurons with different delays and different
connection weights.
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W = nw̄/
n�w
2 + �s

2, �12�

S = s̄/
n�w
2 + �s

2. �13�

We will analyze the recurrence equation �11� in the following
sections. It should be noted that nw̄2�n�w

2 +�s
2 is not an

essential condition for a macroscopic equation �5� to hold but
is merely introduced to make the analysis simpler.

III. LINEAR STABILITY ANALYSIS OF MACROSCOPIC
STATIONARY STATES

Given a macroscopic stationary state X�t�=X0 that satis-
fies

X0 = F�WX0 + S� , �14�

we wish to analyze its stability. For this purpose, the recur-
rence equation �11� is linearized with respect to the deviation
from the stationary state, 	X�t��X�t�−X0, as

	X�t� = 
�
d=1

m

�d	X�t − d� , �15�

where


 = dF�WX + S�
dX


X=X0

. �16�

The stationary state is locally stable if all roots of the char-
acteristic equation

�m − 
��1�m−1 + �2�m−2 + ¯ + �m−1� + �m� = 0 �17�

are smaller than 1 in magnitude.

A. Synchronous update rule, or unit-time delay

We start with the synchronous update rule originally stud-
ied by Amari �16�, which corresponds to the case of unit-
time delay �di,j =1� in the present framework. The linearized
equation for this case is simply given by X�t�=
X�t−1�. The
stationary solution is stable if �
 � �1, marginal if �
 � =1, and
unstable if �
 � �1. The phase space of parameters W-S is
divided into three regions according to qualitative differ-
ences in the macroscopic state stability �Fig. 2�: Monostable
region: the system has only one stable stationary state ��
 �
�1�. Bistable region: the system has one unstable stationary

state with 
�1 and two stable stationary states ��
 � �1�.
Oscillatory region: the system has one unstable stationary
state with 
�−1 and one stable oscillatory orbit of period 2.

B. Uniformly distributed delays

Next, we consider the case that delays are uniformly dis-
tributed in a given interval of time, �d=1/m for d
=1,2 , . . . ,m. The characteristic equation for this case is

�m −



m
��m−1 + �m−2 + ¯ + � + 1� = 0. �18�

In the following, we prove that for this particular case the
stationary solution is locally stable if −m�
�1 and un-
stable otherwise.

For 
=−m, all roots of the characteristic polynomial
equation �18� align on a unit circle in a complex plane; �
=e2�ik/�m+1� �k=1,2 , . . . ,m�. As 
 passes −m from above, all
the roots simultaneously leave the unit circle �Fig. 3�a��. For

=1, the characteristic equation has one root �=1, which
has the largest length. As 
 passes 1 from below, this root
exceeds 1 along the real axis �Fig. 3�b��. In Appendix A, we
prove that the characteristic equation �18� possesses no other
roots of unit length. This means that the linearized equation
can be destabilized only at these two critical points 
=−m
and 
=1.

As in the case of the synchronous update rule or unit-time
delay �di,j =1�, the phase space can be divided into three
characteristic regions according to qualitative differences in
the linear stability. The distributed transmission delay does
not shift the boundary between monostable and bistable re-
gions. The boundary between monostable and oscillatory re-
gions is shifted to the lower direction in W as m is increased
�Fig 4�. This is in accordance with the knowledge that a
distributed delay tends to stabilize a network �27�. Note that
the phase boundary here is solely based on the �local� linear
stability and there is room for other dynamical orbits to co-
exist globally. The coexistence of multiple orbits will be dis-
cussed in the next section.

C. Nonuniformly distributed delays

Finally, we consider the general case that delays are dis-
tributed nonuniformly or unevenly in a given interval of time

-10

-5

0

5

10

-8 -4 0 4 8

S

W

Oscillatory

Monostable

Bistable

FIG. 2. Phase diagram for the synchronous update rule. W and S
are dimensionless parameters, respectively, representing the average
synaptic weight and external stimulus. See the text for details.

-1

0

1

-1 0 1

Im

Re

-1

0

1

-1 0 1

Im

Re(a) (b)

FIG. 3. Roots of the characteristic polynomial equation in a
complex plane for the case of uniformly distributed delays in an
interval of m=9. �a� All the roots leave the unit circle as 
 passes
−m from above. Solid circles, crosses, and solid squares represent
roots of characteristic equations of stable, marginal, and unstable
cases, respectively. �b� One root exceeds 1 along the real axis, as 

passes 1 from below.
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m, satisfying �1+�2+ ¯ +�m=1. Even in this general case,
the boundary between monostable and bistable regions is the
same as the case of uniformly distributed delays as well as
the unit-time delay, as proven below: At 
=0, all roots of the
characteristic equation �17� degenerate at �=0, while for
−1�
�1, the characteristic equation does not have roots of
�� � =1, implying that all roots are inside the unit circle in the
complex plane. At 
=1, one root arrives at �=1, above
which a stationary solution becomes unstable.

The critical value of 
 on the negative side of W depends
on the distribution of the delays ��d�. As depicted in Fig.
5�a�, all roots do not necessarily leave the unit circle simul-
taneously, unlike the uniformly distributed case.

IV. NUMERICAL ANALYSIS OF THE MACROSCOPIC
STATE EQUATION

In this section, we solve the recurrence equation �11� to
observe the dynamics of the macroscopic order parameter
X�t�. The dynamical state obtained for the synchronous up-
date model or the unit-time delay is a simple period-2 oscil-
lation. Special attention is paid here to nontrivial temporal
activity patterns of the network with distributed delays.

A. Uniformly distributed delays

First, we numerically solve the macroscopic state equa-
tion of the network with uniformly distributed delays, �d
=1/m for d=1,2 , . . . ,m:

X�t� = F�W

�
d=1

m

X�t − d�

m
+ S� . �19�

Oscillation occurs in the parameter region where inhibi-
tion dominates as we see in Figs. 2 and 4. Figure 6 displays
the bifurcation diagram of the macroscopic recurrence equa-
tion �19� in the case of m=6. For a given mean connection
that is negative, �a� W=−10 or �b� W=−20, we vary the
external stimulus S and observe the temporal activity pattern
generated by the recurrence equation: For each set of param-
eters of W and S, we choose 100 random initial conditions
and iterate the recurrence equation for t=10000 and plot the
last several values of X�t�.

If the external stimulus S is sufficiently small, the system
exhibits a stationary sequence of negative X close to −1. As
S is increased, a positive X close to +1 appears among X’s
close to −1, once every m+1 iterations. Note that the oscil-
lation is observed already in the parameter region in which
the stationary state is linearly stable. In other words, oscilla-
tory orbits and a stationary state coexist in the same system,
as mentioned in Sec. III. As S is increased further, a positive
X appears twice every m+1 iterations. The temporal order of
positive and negative X’s can be chosen arbitrarily, but it is
fixed once the iteration starts. The proportion of positive X’s
increases with S, and eventually the system exhibits a sta-
tionary sequence of positive X. Note that different propor-
tions of positive and negative X’s may coexist for the same
value of S.

We solved the recurrence equation from initial conditions
with X’s uniformly distributed. Within our range of numeri-
cal investigation, we obtained all possible arrangements of
positive and negative X’s of cycle length m+1. In the case of
m=6, the period of oscillation is always m+1=7, the prime
number. In the general case of m+1 that is not a prime num-
ber, the period could be shorter with the repetition of short
sequenced activity.

Figure 6�b� shows the solutions for W=−20. It is notable
that there appears a new intermediate state of X close to 0 in
addition to states of X close to +1 and −1. In comparison
with the case W=−10, the region in which different propor-
tions of positive and negative X’s coexist becomes relatively
narrower. In the limit W→−�, the proportion of positive and

-6

-3

3

6

-6

-4 -2
W

S

m=1
m=2
m=3
m=4

FIG. 4. The linear stability boundary between monostable re-
gion and oscillatory region shifts to the lower value of W as the
distribution interval of the delays m is increased.

-1

0

1

-1 0 1

Im

Re

-1

0

1

-1 0 1

Im

Re(a) (b)

FIG. 5. Roots of the characteristic polynomial equation of an
example of nonuniformly distributed delays, � j = j /45, j
=1,2 , . . . ,9. �a� Two complex-conjugate roots cross the unit circle
while others remain inside, as 
 passes some negative critical value
from above. �b� One root exceeds 1 along the real axis, as 
 passes
1 from below.

-1
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X

S(a)

-1

0

1

-20 -10 0 10 20

X

S(b)

FIG. 6. The bifurcation diagrams of the macroscopic recurrence
equation �19� displaying the order parameter X�t� for each value of
external stimulus S. �a� W=−10, m=6; �b� W=−20, m=6. For each
value of S, we take 100 random initial conditions and plot the last
seven X�t�. The linear stability boundaries for �a� and �b� are Sc

= ±6.3 and ±18.2, respectively, depicted as dashed lines.
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negative X’s are uniquely determined by the parameter S�
�mS / �W�, as is proven in Appendix B.

B. Nonuniformly distributed delays

Next, we examine the case that the delays �d are unevenly
distributed:

X�t� = F�W

�
d=1

m

�1 + �d�X�t − d�

�
d=1

m

�1 + �d�

+ S� , �20�

where �d is drawn from a Gaussian distribution with mean
zero and variance �2.

In addition to periodic oscillation, the system may exhibit
quasiperiodic dynamics �Figs. 7�a� and 7�b��. As the devia-
tion � is increased further, the system may exhibit chaos
�Figs. 7�c� and 7�d�� characterized by the positive value of
the Lyapunov exponent:

 = lim
t→�

lim
	X�0�→0

1

t
log10

�	X�t��
�	X�0��

, �21�

where 	X�t�� (	X�t+1� ,	X�t+2� , . . . ,	X�t+m�) is an
m-dimensional perturbation vector added to an original orbit.

Note that this tendency toward the quasiperiodic or cha-
otic dynamics is not necessarily due to the irregular distribu-
tion of delays. The quasiperiodicity or chaos can also arise as
the distribution of delay intervals is simply slanted from a
uniform distribution.

V. NUMERICAL SIMULATION OF MICROSCOPIC
DYNAMICS

In this section, we carry out a numerical simulation of the
original microscopic equations �1�. The dynamics of the
macroscopic order parameter representing the mean activity

of microscopic elements is compared with solutions of the
macroscopic state equation �11�.

The size of the network we examined is n=1000. Synap-
tic connections �wi,j� are drawn independently from a Gauss-
ian distribution of mean w̄ and variance �w

2 . In this simula-
tion, external stimuli �si� are taken as 0. The transmission
delays �di,j� are chosen randomly from �1,2 , . . . ,6�. This cor-
responds to the case of uniformly distributed delays, �1=�2
= ¯ =�6=1/6

The resulting macroscopic order parameter X�t� is de-
picted in Fig. 8: �a� and �b� display the mean activity in the
case of w̄=−0.08, �w

2 =0.09, s̄=0, and �s
2=0. The macro-

scopic state equation �11� with the parameters W=−8.4 and
S=0 estimated with Eqs. �12� and �13� exhibits temporal
mean activity patterns similar to the simulation results �Figs.
8�d� and 8�e��. It is interesting to observe that the temporal
activity pattern is gradually modified as time goes by �from
�a� to �b��. This would be due to the finite-size effect. The
oscillation is stabilized in the parameter region of smaller w̄,
even in a system of the same size. The simulation result with
the parameter w̄=−0.12 and a solution of the macroscopic
equation with the corresponding parameter W=−12.6 are dis-
played in Figs. 8�c� and 8�f�.

As is predicted in the preceding section, the macroscopic
order parameter exhibits a wide variety of temporal dynam-
ics depending on the initial condition. Figures 9�a�–9�d� de-
pict examples of temporal sequences realized in the same
network. Note that these sequenced firing patterns are stable,
once they arise from a given initial condition. Figures
9�e�–9�h� display similar temporal sequences exhibited by
the macroscopic state equation �11�.
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FIG. 7. Top: the bifurcation diagram of the macroscopic equa-
tion �20� with bifurcation parameter S. Bottom: the Lyapunov
exponents. �a� and �b� m=6, W=−10, �=0.05; �c� and �d� m=6,
W=−20, �=0.1. For each value of S, we take 100 random initial
conditions and plot the last seven X�t� for each.
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FIG. 8. Left: the mean activity X obtained by the simulation of
the microscopic equation: �a� and �b� w̄=−0.08, �w

2 =0.09, s̄=0, and
�s

2=0; �c� w̄=−0.12, �w
2 =0.09, s̄=0, and �s

2=0. Right: solutions of
the macroscopic equation exhibiting similar temporal patterns: �d�
and �e� W=−8.4 and S=0; �f� W=−12.6 and S=0. The dashed
squares in �c� and �f� are magnified in Figs. 9�a� and 9�e�.
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In order to see if the variety of temporal macroscopic
firing patterns are stabilized because of the discontinuity in-
herent in the microscopic equation �1�, we also carried out
numerical simulations with the sign function replaced by the
sigmoidal function

xi�t� = tanh�bvi�t�� . �22�

Nevertheless, the network can generate nontrivially se-
quenced macroscopic firing. For instance, with the param-
eters of w̄=−0.12, �w

2 =0.09, s̄=0, and �s
2=0, the firing pat-

terns demonstrated in Fig. 9 remain stable until the slope b
become as small as 0.1.

VI. DISCUSSION

In the present study, we have demonstrated collective dy-
namics exhibited by the neural network whose transmission
delays are widely distributed in time. In the case that delays
are distributed uniformly in time, the system is found to ex-
hibit collective oscillation with a period close to the average
transmission delays. The network possesses multiple stable
orbits of arbitrarily sequenced series of firing and resting,
reverberating in a certain period of time. The multistability
has also been reported for continuous time dynamical sys-
tems that are accompanied by delay �15,28–30�. In addition
to the periodic motion, we also found that the dynamics can
be made quasiperiodic or chaotic by changing the distribu-
tion of delays.

The analysis of delayed networks has mainly been con-
fined to their stability �31–35�. Recently, the dynamical as-
pects of the delayed systems are drawing attention: some
possible relevance in biology �36–38� and controlling sys-
tems by utilizing delays in engineering �39–42�. Transmis-
sion delays provide networks with potential applications. In
order to control them, it is necessary to comprehend full
aspects of their dynamical characteristics.

How the stability of dynamics is related to the transmis-
sion delay and the characteristic time scale intrinsic to indi-
vidual neurons is the question that occupies our interest. We
wish to expand the current analysis from discrete-time mod-
els to continuous-time models so that the problem of the
characteristic time scale can be discussed in a more realistic
manner.
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APPENDIX A

We prove that the characteristic polynomial equation �18�,

�m −



m
��m−1 + �m−2 + ¯ + � + 1� = 0,

has no roots of unit length other than the roots �
=e2�ik/�m+1� �k=1,2 , . . . ,m� at 
=−m and �=1 at 
=1.

It is readily seen that �=1 can be a solution of the char-
acteristic equation if 
=1. If ��1, the characteristic equa-
tion can be transformed into

�m+1 − 1 = � 


m
+ 1���m − 1� . �A1�

This equation means that 1, �m, and �m+1 are aligned on a
line in the complex plane. In addition, if � ��m, �m+1� lies on
the unit circle, at lease two of 1, �m, and �m+1 must be
identical. This is satisfied with Eq. �A1� only if �m+1=1 ��
=e2�ik/�m+1�, k=1,2 , . . . ,m� and 
=−m.

APPENDIX B

The macroscopic state equation �19� becomes simpler in
the limit of W→−� as

X�t� = sgn�− �
d=1

m

X�t − d� + S�� , �B1�

where S��mS / �W�. We obtain exact solutions of this recur-
rence equation. For simplicity’s sake, we consider here the
case of noninteger S�, with which X�t� takes the value of
either +1 or −1.
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FIG. 9. Various temporal patterns of mean activity X exhibited
by identical networks: Left: �a�–�d� numerical simulation of the
microscopic equation, with the same parameters of Fig. 8�c�. Right:
�e�–�h� solutions of the macroscopic equation, exhibiting temporal
activity patterns similar to the simulation results.
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The recurrence equation generates a stationary sequence
of +1 if S��m and a sequence of −1 if S��−m. A sequence
composed of both +1 and −1 is generated if �S� � �m. We
prove here that the recurrence equation generates a sequence
composed of +1’s and −1’s with a period of m+1, with the
number of +1’s being ��m+S�� /2�: This sequence of length
m+1 satisfies the relation

�
d=0

m

X�t − d� = − m − 1 + 2��m + S��/2� .

This can be rewritten as

X�t� = − �
d=1

m

X�t − d� − m − 1 + 2��m + S��/2� . �B2�

For X= ±1, this equation is identical to Eq. �B1�. This means
that an arbitrary sequence of a period of m+1, with the num-
ber of +1’s being ��m+S�� /2�, is a solution of the recurrence
equation �B1�.
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