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内向木による有向グラフの被覆

Covering Directed Graphs by In-trees
神山直之 1, 加藤直樹 2

Naoyuki Kamiyama, Naoki Katoh
京都大学大学院工学研究科建築学専攻

Department of Architecture and Architectural Engineering, Kyoto University

Abstract
Given a directed graph $D=(V, A)$ with a set of $d$ specified vertices $S=\{s_{1}, \ldots, s_{d}\}\subseteq V$

and a function $f:Sarrow z_{+}$ where $Z_{+}$ denotes the set of non-negative integers, we consider the
problem which ssks whether there exist $\sum_{i=1}^{d}f(s_{i})$ in-trees denoted by $T_{1,1},$ $T_{1,2},$ $\ldots,T_{i.f(*)}$:
for every $i=1,$ $\ldots,$

$d$ such that $T_{11},$
$\ldots,$ $T_{i,ft:)}$ are rooted at $s_{i}$ , each $T_{1j}$ spans vertices from

which $s_{i}$ is reachable and the union of all arc sets of $T_{l,j}$ for $i=1,$ $\ldots,$
$d$ and $j=1,$ $\ldots,$

$f(s_{i})$

covers $A$ . In this paper, we prove that such set of in-trees covering $A$ can be found in time
bounded by a polynomial in $\sum_{1=1}^{d}f(s_{i})$ and the size of $D$ .

1 Introduction
The problem for covering a graph by subgraphs with specified properties (for example, trees or
paths) is very important from practical and theoretical viewpoints and have been extensively
studied. For example, Nagamochi and Okada [6] studied the problem for covering a set of vertices
of a given undirected tree by subtrees, and Arkin et al. [1] studied the problem for covering a
set of vertices or edges of a given undirected graph by subtrees or paths. These results were
motivated by vehicle routing problems. Moreover, Even et al. [2] studied the covering problem
motivated by nurse station location problems.

This paper studies the problem for covering a directed graph by rooted trees which is mo-
tivated by the following evacuation planning problem. Given a directed graph which models
a city, vertices model intersections and buildings, and arcs model roads connecting these in-
tersections and buildings. People exist not only at vertices but also along arcs. Suppose we
have to give several evacuation instmctions for evacuating all people to some safety place. In
order to avoid disorderly confusion, it is desirable that one evacuation instmction gives a single
evacuation path for each person and these paths do not cross each other. Thus, we want each
evacuation instruction to become an in-tree rooted at some safety place. Moreover, the number
of instructions for each safety place is bounded in proportion to the size of each safety place.

The above evacuation plamung problem is formulated as the following covering problem
defined on a directed graph. We are given a directed graph $D=(V, A, S, f)$ which consists of
a vertex set $V$ , an arc set $A$ , a set of $d$ specified vertices $S=\{s_{1,\ldots,d}s\}\subseteq V$ and a function
$f:Sarrow \mathbb{Z}+$ where $\mathbb{Z}+$ denotes the set of non-negative integers. In the above evacuation planning
problem, $S$ corresponds to a set of safety places, and $f(s_{i})$ represents the upper bound of the
number of evacuation instmctions for $s_{i}\in S$ . For each $i=1,$ $\ldots,$

$d$, we define $V_{D}^{:}\subseteq V$ as the
set of vertices in $V$ from which $s_{i}$ is reachable in $D$ , and we define an in-tree rooted at $s_{i}$ which
spans $V_{D}^{i}$ as a $(D, s_{i})$ -in-tree. Here an in-tree is a subgraph $T$ of $D$ such that $T$ has no cycle
when the direction of an arc is ignored and all arcs in $T$ is directed to a root. We define a set $\mathcal{T}$

of $\sum_{\dot{|}=1}^{d}f(s_{i})$ subgraphs of $D$ as a D-feasible set of in-trees if $\mathcal{T}$ contains exactly $f(s_{i})(D, s_{i})-$

in-trees for every $i=1,$ $\ldots,$
$d$ . If every two distinct in-trees of a D-feasible set $\mathcal{T}$ of in-trees are
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arc-disjoint, we call $\mathcal{T}$ a D-feasible set of arc-dt.sjoint in-trees. Furthermore, if the union of arc
sets of all in-trees of a D-feasible set $\mathcal{T}$ of in-trees is equal to $A$ , we say that $\mathcal{T}$ covers $A$ .

We will study the problem for covering directed graphs by in-trees (in short CDGI), and
we will present characterizations for a directed graph $D=(V, A, S, f)$ for which there exists a
feasible solution of CDGI$(D)$ , and we will give a polynomial time algorithm for CDGI$(D)$ .

$\frac{Prob1em:CDGI(D)}{Input:adirectedgraphD;}$
Output: a D-feasible set of in-trees which covers the arc set of $D$ , if one

exists.

A special class of the problem CDGI$(D)$ in which $S$ consists of a single vertex was considered
by Vidyasankar [8] and Frank [4]. They showed the necessary and sufficient condition in terms
of linear inequalities that there exists a feasible solution of this problem. However, to the best
of our knowledge, an algorithm for CDGI$(D)$ was not presented.

Our Results. We first show that CDGI$(D)$ can be viewed as some type of the connectivity
augmentation problem. After this, we will prove that this connectivity augmentation problem
can be solved by using an algorithm for the weighted matroid intersection problem in time
bounded by a polynomial in $\sum_{i=1}^{d}f(s_{i})$ and the size of $D$ . Furthemore, for the case where $D$ is
acyclic, we show another characterization for $D$ that there exists a feasible solution of CDGI$(D)$ .
Moreover, we prove that in this case CDGI$(D)$ can be solved more efficiently than the general
case by finding maximum matchings in a series of bipartite graphs.

Outline. The rest of this paper is organized as follows. Section 2 gives necessary defimitions
and fundamental results. In Section 3, we give an algorithm for the problem CDGI.

2 Preliminaries

Let $D=(V, A, S, f)$ be a connected directed graph which may have multiple arcs. Let $S=$
$\{s_{1}, \ldots, s_{d}\}$ . Since we can always cover by $|A|(D, s_{i})$-in-trees the arc set of the subgraph of $D$

induced by $V_{D^{\dot{l}}}$ , we consider the problem by using at most $|A|(D, s_{i})$-in-trees. That is, without
loss of generality, we assume that $f(s_{i})\leq|A|$ . For $B\subseteq A$ , let $\partial^{-}(B)$ (resp. $\partial^{+}(B)$ ) be a set
of tails (resp. heads) of arcs in $B$ . For $e\in A$ , we write $\partial^{-}(e)$ and $\partial^{+}(e)$ instead of $\partial^{-}(\{e\})$

and $\partial^{+}(\{e\})$ , respectively. For $W\subseteq V$ , we define $\delta_{D}(W)=\{e\in A:\partial^{-}(e)\in W, \partial^{+}(e)\not\in W\}$.
For $v\in V$ , we write $\delta_{D}(v)$ instead of $\delta_{D}(\{v\})$ . For two distinct vertices $u,$ $v\in V$ , we denote
by $\lambda(u,v;D)$ the local arc-connectivity from $u$ to $v$ in $D$ , i.e., $\lambda(u, v;D)=\min\{|\delta_{D}(W)|:u\in$

$W,v\not\in W,$ $W\subseteq V\}$ . For $S’\subseteq S$, let $f(S’)= \sum_{s_{i}\in S},$ $f(s_{i})$ . For $v\in V$ , we denote by $R_{D}(v)$ a set
of vertices in $S$ which are reachable from $v$ in $D$ . For $W\subseteq V$ , let $R_{D}(W)= \bigcup_{v\in W}R_{D}(v)$ .

We call a subgraph $T$ of $D$ forest if $T$ has no cycle when we ignore the direction of arcs in
T. $R$ a forest $T$ is connected, we call $T$ tree. If every arc of an arc set $B$ is parallel to some arc
in $A$ , we say that $B$ is parallel to $A$ . We denote a directed graph obtained by adding an arc set
$B$ to Aby $D+B$, i.e., $D+B=(V, A\cup B, S, f)$ .

We define $D^{*}$ as a directed graph obtained from $D$ by adding a new vertex $s^{*}$ and connecting
$s_{i}$ to $s^{*}$ with $f(s_{i})$ parallel arcs for every $i=1,$ $\ldots,$

$d$ . We denote by $A^{*}$ the arc set of $D^{*}$ . We
say that $D$ is $(S, f)$ -admissible if $|\delta_{D:}(v)|\leq f(R_{D}(v))$ holds for any $v\in V$ .
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2.1 Rooted arc-connectivity augmentation by reinforcing arcs
Given a directed graph $D=(V, A, S, f)$ , we call an arc set $B$ with $A\cap B=\emptyset$ which is parallel to
$A$ a $D^{*}$ -rooted connector if $\lambda(v,s^{*};D^{*}+B)\geq f(R_{D}(v))$ holds for every $v\in V$ . Notice that since
a $D^{*}$-rooted connector $B$ is parallel to $A,$ $B$ does not contain an arc which is parallel to an arc
entering into $s^{*}$ in $D^{*}$ . Then, the problem rooted arc-connectivity augmentation by reinforcing
arcs (in short RAA-RA) is formally defined as follows.

$\frac{Prob1em:BAA- BA(D^{*})}{Input:D^{*}ofadirectedgraphD;}$

Output: a mimmum size $D^{*}$-rooted connector.

2.2 Matroids on arc sets of directed graphs

In this subsection, we define two matroids $M(D^{*})$ and $U(D^{*})$ on $A^{*}$ for a directed graph
$D=(V, A, S, f)$ , which will be used in the subsequent discussion. We denote by $M=(E,\mathcal{I})$ a
matroid on $E$ whose collection of independent sets is $\mathcal{I}$ .

For $i=1,$ $\ldots,$
$d$ and $j=1,$ $\ldots,$

$f(s_{i})$ , we define $M_{i,j}(D^{*})=(A^{*},X_{\dot{O}}(D^{*}))$ where $I\subseteq A^{*}$

belongs to $L_{\partial}j(D^{*})$ if and only if both of a tail and a head of every arc in $I$ are contained in
$V_{D}^{:}\cup\{s^{*}\}$ and a directed graph $(V_{D}^{i}\cup\{s^{*}\}, I)$ is a forest. $M_{i,j}(D^{*})$ is clearly a matroid (i.e. graphic
matroid). Moreover, we denote the union of $M_{i,j}(D^{*})$ for $i=1,$ $\ldots,$

$d$ and $j=1,$ $\ldots,$
$f(s_{i})$ by

$M(D^{*})=(A^{*},\mathcal{I}(D^{*}))$ in which $I\subseteq A^{*}$ belongs to $\mathcal{I}(D^{*})$ if and only if $I$ can be partitioned into
$\{I_{i,1}, \ldots, I_{i,f(\epsilon_{i})}:i=1, \ldots, d\}$ such that each $I_{1,j}$ belongs to $\mathcal{I}_{\dot{\tau},j}(D^{*})$ . $M(D^{*})$ is also a matroid
(see Chapter 12.3 in [7]. This matroid is also called matroid sum). When $I\in \mathcal{I}(D^{r})$ can be
partitioned into $\{I_{1,1}, \ldots, I_{i,f(\epsilon_{i})};i=1, \ldots, d\}$ such that a directed graph $(V_{D}^{:}\cup\{s^{*}\}, I_{i,j})$ is a
tree for every $i=1,$ $\ldots$ , $d$ and $j=1,$ $\ldots,$

$f(s_{i})$ , we call $I$ a complete independent set of $M(D^{*})$ .
Next we define another matroid. We define $U(D^{*})=(A^{*}, \mathcal{J}(D^{*}))$ where $I\subseteq A^{*}$ belongs to

$\mathcal{J}(D^{*})$ if and only if $I$ satisfies

$|\delta_{D}\cdot(v)\cap I|\leq\{\begin{array}{ll}f(R_{D}(v)), if v\in V,0, if v=s^{r}.\end{array}$ (1)

Since $U(D^{*})$ is a direct sum of uniform matroids, $U(D^{*})$ is also a matroid (see Exercise 7 of
pp.16 and Example 1.2.7 in [7] $)$ . We call $I\in \mathcal{J}(D^{*})$ a complete independent set of $U(D)$ when
(1) holds with equality.

For two matroids $M(D^{*})$ and $U(D^{*})$ , we call an arc set $I\subseteq A^{*}D^{*}$ -intersection when
$I\in \mathcal{I}(D^{*})\cap \mathcal{J}(D^{*})$ . If a D’-intersection $I$ is a complete independent set of both $M(D^{*})$ and
$U(D^{*})$ , we call I complete. When we are given a weight function $w:A^{*}arrow \mathbb{R}+$ where $\mathbb{R}$ denotes
the set of non-negative reals, we define the weight of $I\subseteq A^{*}$ (denoted by $w(I)$ ) by the sum of
weights of all arcs $I$ . The minimum weight complete intersection problem (in short MWCI) is
then defined as follows.

$\frac{Prob1em:MWCI(D^{*})}{Input:D^{*}ofadirectedyaphDand}$a $weightfunctionw:A^{*}arrow \mathbb{R}+$ ;
Output: a minimum weight complete $D^{*}$-intersection, if one exists.

Lemma 2.1 MWCI$(D^{*})$ can be solved in $O(M|A^{*}|^{6})$ time where $M= \sum_{v\in V}f(R_{D}(v))$ .
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2.3 Results from [5]

In this section, we introduce results conceming packing of in-trees given by Kamiyama et al. [5]
which plays a crucial role in this paper.

Theorem 2.2 ([5]) Given a directed graph $D=(V, A, S, f)$ , the following three statements are
equivalent: (i) For every $v\in V,$ $\lambda(v, s^{*};D^{*})\geq f(R_{D}(v))$ holds. (ii) There exists a D-feasible
set of arc-disjoint in-trees. (iii) There eststs a complete $D^{*}$ -intersection.

From Theorem 2.2, we obtain the following corollary.

Corollary 2.3 Given a directed graph $D=(V, A, S_{J}f)$ and an arc set $B$ with $A\cap B=\emptyset$ which
is parallel to $A$ , the following three statements are equivalent; (i) $B$ is a $D^{*}$ -rooted connector.
(ii) There exists a $(D+B)$ -feasible set of arc-disjoint in-trees. (iii) There erists a complete
$(D+B)^{*}$ -intersection.

Although the following theorem is not explicitly proved in [5], we can easily obtain it $hom$

the proof of Theorem 2.2 in [5].

Theorem 2.4 ([5]) Given a directed graph $D=(V, A, S, f)$ which satisfies the condition of
Theorem 2.2, we can find a D-feasible set of arc-disjoint in-trees in $O(M^{2}|A^{*}|^{2})$ time where
$M= \sum_{v\in V}f(R_{D}(v))$ .

3 An Algorithm for Covering by In-trees
Given a directed graph $D=(V, A, S, f)$ , we present in this section an algorithm for CDGI$(D)$ .
The time complexity of the proposed algorithm is bounded by a polynomial in $f(S)$ and the size
of $D$ . We first prove that CDGI$(D)$ can be reduced to RAA-RA$(D^{*})$ . After this, we show that
BAA-BA$(D^{*})$ can be reduced to the problem MWCI.

3.1 Reduction from CDGI to RAA-RA
If $D=(V, A, S, f)$ is not $(S_{1}f)$-admissible, i.e., $|\delta_{D^{r}}(v)|>f(R_{D}(v))$ for some $v\in V$ , there exists
no feasible solution of CDGI$(D)$ since there can not be a D-feasible set of in-trees that covers
$\delta_{D}(v)$ from the definition of a D-feasible set of in-trees. Thus, we assume in the subsequent
discussion that $D$ is $(S, f)$-admissible. For an $(S, f)$-admissible directed graph $D=(V, A, S, f)$ ,
we define $opt_{D}=\sum_{v\in V}f(R_{D}(v))-(|A|+f(S))$ . It is not difficult to see that the size of a
$D^{*}$-rooted connector is at least $opt_{D}$ . From Corollary 2.3, we obtain the following lemma.

Lemma 3.1 Given an $(S, f)$ -admissible directed graph $D=(V, A, S, f)$ , there exists a feasible
solution of CDGI$(D)$ if and only if there exists a $D^{*}$ -rooted connector whose size is $opt_{D}$ .

Although the details are omitted, from the proof of Lemma 3.1, if we can find a D’-rooted
connector $B$ with $|B|=opt_{D}$ , we can compute a D-feasible set of in-trees $T_{i,j}$ for $i=1,$ $\ldots,d$ and
$j=1,$ $\ldots,$

$f(s_{i})$ which covers $A$ by using the following procedure Replace from a $(D+B)$-feasible
set of arc-disjoint in-trees $T_{1,j}$ for $i=1,$ $\ldots,$

$d$ and $j=1,$ $\ldots,$
$f(s_{i})$ .

Replace: For $i=1,$ $\ldots,$
$d$ and $j=1,$ $\ldots,$

$f(s_{i})$ , set $T_{i,j}$ to be a directed graph obtained by
replacing every arc $e\in B$ which is contained in $T_{i.j}’$ by an arc in $A$ which is parallel to $e$ .
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Furthemore, we can construct a $(D+B)$-feasible set of arc-disjoint in-trees by using the
algorithm of Theorem 2.4. Since the optimal value of RAA-RA$(D^{*})$ is at least $opt_{D}$ , we can
test if there exists a $D^{*}$-rooted connector whose size is equal to opt$D$ by solving RAA-RA$(D^{*})$ .
Assuming that we can solve BAA-BA$(D^{*})$ , our algorithm for finding a D-feasible set of in-trees
which covers $A$ called Algorithm CR can be illustrated as Algorithm 1 below.

$\frac{A1gorithm1A1gorithmCR}{Input:adirectedgraphD=(V,A,S,f)}$
Output: a D-feasible set of in-trees covering $A$ , if one exists

1: if $D$ is not $(S, f)$-admissible then
2: Halt (there exists no D-feasible set of in-trees covering $A$)
3: end if
4: Find an optimal solution $B$ of RAA-RA$(D^{*})$

5: if $|B|>opt_{D}$ then
6: Halt (there exists no D-feasible set of in-trees covering $A$)
7: else
s: Constmct a $(D+B)$-feasible set $\mathcal{T}’$ of arc-disjoint in-trees
9: Construct a set $\mathcal{T}$ of in-trees from $\mathcal{T}’$ by using the procedure Replace

10: return $\mathcal{T}$

11: end if

From Theorem 2.4 and Lemma 3.1, we obtain the following lemma.

Lemma 3.2 Given a directed graph $D=(V, A, f, S)$ , Algorithm CR correctly finds a D-feasible
set of in-trees which covers $A$ in $O(\gamma_{1}+|V||A|+M^{4})$ time if one exists where $\gamma_{1}$ is the time
required to solve RAA-RA $(D^{*})$ and $M= \sum_{v\in V}f(R_{D}(v))$ .

3.2 Reduction from RAA-RA to MWCI

From the algorithm CR in Section 3.1, in order to present an algorithm for CDGI$(D)$ , what
remains is to show how we solve RAA-RA$(D^{*})$ . In this section, we will prove that we can test
whether there exists a $D^{*}$-rooted connector whose size is equal to $opt_{D}$ (i.e., Steps 4 and 5 in
the algorithm CR) by reducing it to the problem MWCI. Our proof is based on the algorithm
of [3] for BAA-BA$(D^{*})$ for $D=(V, A, S, f)$ with $|S|=1$ . We extend the idea of [3] to the
general case by using Theorem 2.2. We define a directed graph $D_{+}$ obtained from an $(S, f)-$

admissible directed graph $D=(V, A, S, f)$ by adding $opt_{D}$ parallel arcs to every $e\in A$ . Then,
we will compute a D’-rooted connector whose size is equal to opt$D$ by using an algorithm for
MWCI$(D_{+}^{*})$ as described below. Since the number of arcs in a $D^{*}$-rooted connector whose size
is equal to opt$D$ which are parallel to one arc in $A$ is at most $opt_{D}$ , it is enough to add opt$D$

parallel arcs to each arc of $A$ in $D+$ in order to find a D’-rooted connector whose size is equal
to $opt_{D}$ .

We denote by $A_{+}^{*}$ the arc sets of $D_{+}^{*}$ . We define a weight function $w:A_{+}^{*}arrow \mathbb{R}+$ by

$w(e)=\{\begin{array}{l}0, if e\in A^{*},1, otherwise.\end{array}$ (2)

We can prove the following lemma by using Corollary 2.3.
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Lemma 3.3 Given an $(S, f)$ -admissible directed graph $D=(V, A, S, f)$ and a weight function
$w:A_{+}^{*}arrow \mathbb{R}_{+}$ defined by (2), there $e$ vists a $D^{*}$ -rooted connector whose size is equal to $opt_{D}$ if
and only if there $e$ nists a complete $D_{+}^{*}$ -intersection whose weight is equal to opt$D$ .

Although the details are omitted, from the proof of Lemma 3.3, if we can find a complete
Di-intersection $I$ with $w(I)=opt_{D}$ , we can find a $D^{*}$-rooted connector $B$ with $|B|=opt_{D}$ by
setting $B=I\backslash A^{*}$ . Furthermore, we can obtain a complete $D_{+}^{*}$-intersection whose weight is
equal to $opt_{D}$ if one exists by using the algorithm for MWCI$(D_{+}^{*})$ since it is not difficult to see
that the optimal value of MWCI$(D_{+}^{*})$ is at least $opt_{D}$ . The formal description of the algorithm
called Algorithm RM for finding a $D^{*}$-rooted connector whose size is equal to $opt_{D}$ is illustrated
in Algorithm 2.

$\frac{A1gorithm2AlgorithmRM}{Input:D^{*}ofan(S,f)- admissibledirectedgraphD=(V,A,S,f)}$.

Output: a $D^{*}$-rooted connector whose size is equal to opt$D$ ’ if one exists
1: Find an optimal solution $I$ for MWCI$(D_{+}^{*})$ with a weight function $w$ defined by (2)
2: if there exists no solution of MWCI$(D_{+}^{*})$ or $w(I)>opt_{D}$ then
3: Halt (There exists no $D$“-rooted connector whose size is equal to $opt_{D}$ )
4: end if
5: retum $I\backslash A^{*}$

The lemma immediately follows from Lemma 3.3.

Lemma 3.4 Given $D^{*}$ of an $(S, f)$ -admissible directed graph $D=(V, A, f, S)$ , Algorithm RM
correctly finds a $D^{*}$ -rooted connector whose size is equal to $opt_{D}$ in $O(\gamma_{2}+M|A|)$ time if one
nists where $\gamma_{2}$ is the time required to solve MWCI$(D_{+}^{*})$ and $M= \sum_{v\in V}f(R_{D}(v))$ .

3.3 Algorithm for CDGI
We are ready to explain the formal description of our algorithm called Algorithm Covering for
CDGI$(D)$ . Algorithm Covering is the same as Algorithm CR such that Steps 4, 5 and 6 are
replaced by Algorithm RM. Then, the following theorem follows from Lemmas 2.1, 3.2 and 3.4.

Theorem 3.5 Given a directed graph $D=(V, A, S, f)f$ Algorithm Covering correctly finds a D-
feasible set of in-trees which covers $A$ in $O(M^{7}|A|^{6})$ time if one exits where $M= \sum_{v\in V}f(R_{D}(v))$ .
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