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A note on the Variance-Stabilizing
nonparametric regression estimation

Kiheiji Nishida and Yuichiro Kanazawa 1

1 Introduction

Nonparametric regression models are often used to estimate regression func-
tion that needs to incorporate local information of the data into the esti-
mation. There are many types of nonparametric regression models like the
Nadaraya-Watson estimator (henceforce NW) (Nadaraya 1964, 1965, 1970,
Watson 1963, 1964), the locally polynomial estimator (e.g. H\"ardle and M\"uller

2004 p94-), the k-Nearest-Neighbor estimator (e.g. Mack 1981) and so on.
However it has been pointed out that these kinds of nonparametric regres-
sion estimators have heteroscedastic variance. This note introduces an idea to
stabilize the variance of a nonparametric regression estimator, the NW esti-
mator with one explanatory variable. With the idea of variance-stabilization,
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we show brief summaries of the NW estimator and related topics, especially

the local and global bandwidth selection rules and its estimator.

2 Brief summaries of the past researches on

the NW estimator.

2.1 The NW estimator and its bias and variance.

We employ the following setup. Suppose that we have n-pairs of random

variables $(X_{i},Y_{i}),$ $i=1,$ $\cdots,n$ . We assume $x_{i},$ $i=1,$ $\cdots,n$ , are the realiza-

tions of i.i. $d$ . random variable $X$ whose density function is denoted as $f_{X}(x)$ .

Let $u_{i},$ $i=1,$ $\cdots,n$ , be the realizations of the disturbance random variable
$U_{i}$ . We assume that $U_{i}|X_{i}$ are i.i. $d$ . given $X_{i}$ and that $U_{i}$ are independent

with $X_{j},$ $j\neq i$ . We further assume that the conditional moments of $U|X$ as,

$E_{U|X}[U|X=x]=0$ , $E_{U|X}[U^{2}|X=x]=\sigma^{2}(x)$ . (2.1)

We assume that the response $Y$ is influenced by the explanatory variable $X$

as,

$Y_{i}=m(X_{i})+U_{i}=E_{Y|X}(Y_{i}|X_{i})+U_{i}$ , (2.2)

where $m(X_{i})=E_{Y|X}(Y_{i}|X_{i})= \int yf_{Y|X}(y|x)dy=\int y\frac{f_{X,Y}(x,y)}{f_{X}(x)}dy$ . By replac-

ing $f_{X_{2}Y}(x, y)$ and $f_{X}(x)$ with the corresponding kernel bivariate and uni-

variate estimates with the multiplicative kernel $K_{X_{l}Y}(x, y)=K_{X}(x)K_{Y}(y)$

on the numerator and the kernel $K_{X}(x)$ on the denominator with the band-
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width on $X$ as $h_{x}$ , we arrive at the NW estimator at $X=x$ as,

$\hat{m}_{h_{x}}(x)=\frac{\sum_{i=1}^{n}K_{X}(h_{x}arrow)Y_{i}}{\sum_{i=1}^{n}K_{X}(\frac{x-X}{h_{x}}i)}$ . (2.3)

With (2.3) and an additional assumption that the bandwidth is a decreasing
function of sample size $n$ written as,

$h_{x}arrow 0,$ $nh_{x}arrow\infty$ , as $n$ goes to infinity, (2.4)

bias and variance of the NW estimator were derived (see Pagan and Ullah
1991) as,

$E_{X_{2}Y}[\hat{m}_{h_{x}}(x)]-m(x)$

$= \frac{h_{x}^{2}}{2f_{X}(x)}[\int t^{2}K_{X}(t)dt][2m^{(1)}(x)f_{X}^{(1)}(x)+m^{(2)}(x)f_{X}(x)]$

$+O( \frac{1}{nh_{x}})+o(h_{x}^{2})$ , (2.5)

and,

$V_{X,Y}[ \hat{m}_{h_{x}}(x)]=\frac{1}{nh_{x}}\cdot\frac{\sigma^{2}(x)}{f_{X}(x)}[\int K_{X}^{2}(t)dt]+O(\frac{1}{n})+o(\frac{1}{nh_{x}})$ . $(2.6)$

Notice that the leading term in the variance (2.6) at a point $x$ is a fmc-

tion of a term $\sigma^{2}(x)/f_{X}(x)$ . Since both $\sigma^{2}(x)$ and $f_{X}(x)$ are unlikely to be

proportional, the variances of the NW estimator at different points $x_{1}$ and

$x_{2}$ differ in general unless properly controlled by the bandwidth $h_{x}$ .

2.2 On local NW smoothing parameter selection

Since bias and variance are obtained, we can obtain locally optimal band-

width in terms of Mean Squared Error (MSE) written as $E_{X,Y}(\hat{m}_{h_{x}}(x)-$
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$m(x))^{2}$ . Locally balancing the leading-terms of the variance in (2.6) and the

bias squared (2.5) for the NW estimator, the MSE-optimized bandwidth is

obtained as,

$h_{x}^{MSE}(x)=[ \frac{[\int}{[\int t^{2}K_{X}(t)dt]^{2}\frac{K_{X}^{2}(t)dt]\sigma^{2}(x)(2m^{(1)}(x)f_{X}^{(1)}(x)+m^{(2)}(x)f_{X}(x))^{2}}{f_{X}(x)}}]^{\frac{1}{\delta}}n^{-\frac{1}{5}}$, (2.7)

(See e.g. Chu and Marron 1991). Substituting (2.7) into $h_{x}$ in (2.6), we

obtain asymptotic variance with MSE-optimized bandwidth as,

$V_{X,Y}[\hat{m}_{h_{x}^{MSB}}(x)]$

$\approx[\frac{[\int K}{[\int t^{2}K_{X}(t)dt]^{-2}s[\frac{(2m^{(1)}(x)f_{X}^{(1)}(x)+m^{(2)}(x)f_{X}(x))^{2}X2(t)dt]^{\frac{4}{5}}5}{f_{X}^{6}(x)}]^{-\frac{1}{6}}}]n^{-\frac{4}{5}}$ . (2.8)

Notice that the variance (2.8) remains heteroscedastic.

MSE-optimized bandwidth causes more serious problem in that the esti-

mated regression with MSE-optimized bandwidth has discontinuities at some
$x$ . Let the $x^{J}$ denote the point that satisfies,

$\alpha(x^{J})\equiv 2m^{(1)}(x^{J})f_{X}^{(1)}(x^{J})+m^{(2)}(x^{J})f_{X}(x^{J})=0$ , (2.9)

where the term in (2.9) appears in the denominator of (2.7). Then, MSE-

optimized bandwidth will explode at the $x^{J}$ . It also means that, as $x$ ap-

proaches $x^{J}$ , the NW estimator at the $x^{J}$ converges weakly to the sample

average $\overline{Y}$ because as $h_{x}$ goes to infinity,

$\hat{m}_{h_{x}}(x)=\frac{\sum_{i=1}^{n}K_{X}(\frac{x-}{(}Y_{i}}{\sum_{i=1}^{n}K_{X}\frac{x-X_{i}h_{x}X_{i})}{hae})}\sim^{w}\rangle\frac{K_{X}(0)\sum_{i=1}^{n}Y_{i}}{nK_{X}(0)}=\frac{1}{n}\sum_{i=1}^{n}Y_{i}$ . (2.10)
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We observe how the NW estimator with the MSE-optimized bandwidth
jumps by the example below.

Example

$m(x)=x^{4}\{x:-1.96\leq x\leq 1.96\},$ $U_{i}|X_{i}\sim N(O, \sigma^{2}(X_{i})),$ $\sigma^{2}(x)=1$ ,
$X_{i}\sim N(0,1)$ . $x^{J}=0,$ $\pm\frac{\sqrt{6}}{2}$ . For illustration, a sample of size 1000 is gener-
ated to obtain $X_{i},$ $U_{i}$ and then $Y_{i}=X_{i}^{4}+U_{i}$ . These $(X_{i},Y_{i})i=1,$ $\cdots$ , 1000
are used to compute (2.3) with theoretically calculated $h_{x}^{MSE}(x)$ in (2.7).

The upper panel in Figure 1 plots the MSE-optimized bandwidth and the
lower panel describes how the NW estimator comes out in out of the 1000
samples with MSE-optimized bandwidth at every $x$ . Notice from Figure 1

that the NW jumps at the $x$ where the size of bandwidth is very large.

This is no coincidence. Suppose that $f_{X}(x)$ belongs to exponential family

denoted as,

$f_{X}(x)= \exp[\sum_{i=1}^{k}\eta_{i}(\theta_{1}, \ldots, \theta_{k})T_{i}(x)-B(\theta_{1}, \ldots, \theta_{k})]H(x)$, (2.11)

where $\eta_{i}(\theta_{1}, \ldots, \theta_{k})’ si=1,$
$\ldots,$

$n$ are its natural parameters. Then we obtain,

$2m^{(1)}(x)f_{X}^{(1)}(x)+m^{(2)}(x)f_{X}(x)$

$=[2m^{(1)}(x) \{\frac{H^{(1)}(x)}{H(x)}+\sum_{i=1}^{k}\eta_{i}(\theta_{1}, \ldots, \theta_{k})T_{i}^{(1)}(x)\}+m^{(2)}(x)]f_{X}(x)$.

(2.12)

If we suppose $f_{X}(x)\neq 0$ , the expression in (2.12) is zero whenever,

$\frac{H^{(1)}(x)}{H(x)}+\sum_{i=1}^{k}\eta_{i}(\theta_{1}, \ldots,\theta_{k})T_{i}^{(1)}(x)=-\frac{m^{(2)}(x)}{2m^{(1)}(x)}$ , (2.13)

or,

$m^{(1)}(x)=0$ and $m^{(2)}(x)=0$ . (2.14)
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As for the lefthand side of (2.13), if we further assume $f_{X}(x)$ is the

standard normal distribution as our example, then,

$k=1,$ $H(x)= \frac{1}{\sqrt{2\pi}},$ $\eta_{1}=-\frac{1}{2},$ $T_{1}(x)=x^{2}$ , (2.15)

and thus (2.13) is written as,

$x= \frac{m^{(2)}(x)}{2m^{(1)}(x)}$ . (2.16)

If we additionally assume $m(x)$ is a nth-polynomial in (2.16) to be written

as,

$m(x)= \sum_{i=0}^{n}a_{i}x^{i}$ , (2.17)

then $x$ must satisfy nth-order equation with constant term,

$2na_{n}x^{n}+2(n-1)a_{n-1}x^{n-1}$

$+ \sum_{i=2}^{n-1}[2(n-i)a_{n-i}-(n-(i-2))(n-(i-1))a_{n-(i-2)}]x^{n-i}$

$-2a_{2}=0$ . (2.18)

Let us exclude trivial cases where the coefficients of (2.18) are all zeroes.

Under this assumption, if $a_{2}=0$ , then $x=0$ satisfies (2.18). If $n$ is odd,

then the polynomial always extend from-oo to $\infty$ , thereby crossing $f(x)=0$

somewhere in between. The points $x^{J}=\pm\sqrt{6}/2$ in the example satisfy (2.13).

On the other hand, (2.14) is satisfied at $x=0$ of the example. Inter-

pretation of (2.14) is as follows: The fact that $m^{(1)}(x)=0$ means that the

regression function has local extremum at the $x$ : the fact that $m^{(2)}(x)=0$

holds additionally means that the curvature is zero at the $x$ . Since every

line horizontal to $x$ axis typically satisfies (2.14), the NW estimator at $x$
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with MSE-optimized bandwidth of infinite width is just the sample average
if a regression function at $x$ has tangent line horizontal to the $x$ axis as we
already see.

2.3 On global NW smoothing parameter selection

Reflecting the past experiences on density estimation, Mean Integrated Squared

Error (MISE),

MISE$(\hat{m}_{h_{x}}(x), m(x))$

$= \int_{-\infty}^{\infty}[\int_{-\infty}^{\infty}\cdots\int_{-\infty}^{\infty}f_{X_{1},\cdots,X_{n},Y_{1},\cdots,Y_{n}}(x_{1}, \cdots, x_{n},y_{1}, \cdots, y_{n})$

$\cross[\hat{m}_{h_{x}}(x)-m(x)]^{2}dx_{1}\cdots dx_{n}dy_{1}\cdots dy_{n}]f_{X}(x)dx$ , (2.19)

is often employed in the context of smoothing parameter selection of non-
parametric regression model to obtain the global theoretically optimal $h_{x}$

as,

$h_{fixed}^{MISE}=[ \frac{[\int K_{X}^{2}}{[\int t^{2}K_{X}(t)dt]^{2}\int\frac{(2m^{(1)}(x)f_{X}^{(1)}(x)+m^{(2)}(x)fx(x))^{2}(t)dt]\int\sigma^{2}(x)dx}{fx(x)}dx}]^{1}\tau_{n^{-}r.(2.20)}1$

There are many unknown quantities $f_{X}(x),$ $f_{X}^{(1)}(x),$ $m^{(1)}(x),$ $m^{(2)}(x)$ and
$\sigma^{2}(x)$ in (2.20). Especially problematic issue is the presence of $m^{(1)}(x)$ and
$m^{(2)}(x)$ to estimate $m(x)$ . As such, plug-in approaches do not seem to be

encouraging. In its stead, the following cross-validation statistics to be min-

imized with-respect to $h_{x}$ is proposed,

$CV_{MISE}(h_{x})= \frac{1}{n}\sum_{i=1}^{n}[Y_{i}-\hat{m}_{h_{x},-i}(X_{i})]^{2}\hat{f}_{h_{x}}(X_{i})$ , (2.21)
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where $\hat{m}_{h_{x},-i}(X_{i})$ is the leave-one-out NW estimator,

$\hat{m}_{h_{x},-i}(X_{i})=\frac{\sum_{j=1,j\neq i}^{n}K_{X}(\frac{X}{(}Y_{j}}{\sum_{j=1,j\neq i}^{n}K_{X}\frac{X_{i}-X_{j}i^{-X_{j)}}h_{x}}{h_{x}})}$. (2.22)

Marron and H\"ardle (1986) showed that the obtained bandwidth so as to min-

imize (2.21) is asymptotically equivalent to the MISEoptimiZed bandwidth

(2.20).

Because they employ a global measure of closeness of the estimate to

the true curve, they obtain a global smoothing paramater. The $\hat{m}_{h_{fix\epsilon d}^{Mi_{SE}(X)}}$

is heteroscedastic across $x$ as we see from (2.23) obtained by substituting

(2.20) for (2.6).

$V_{X_{2}Y}[\hat{m}_{h_{fix\epsilon d}^{MISE}}(x)]$

$=[ \frac{[\int K_{X}^{2}(t}{[\int t^{2}K_{x}(t)dt]^{-\frac{2}{6}}[\int\frac{(2m^{(1)}(x)dt]^{\frac{4}{6}}[\int\sigma^{2}(x)dx]_{(x)f_{X(x))^{2}}}^{-\frac{1}{\delta}})f_{X}^{(1)}(x)+m^{(2)}}{fx(x)}dx]^{-\frac{1}{6}}}]n^{-\frac{4}{5}}$

$\cross\frac{\sigma^{2}(x)}{f_{X}(x)}+O(\frac{1}{n})+o(\frac{1}{nh_{x}})$ . (2.23)

3 Variance-Stabilizing bandwidth

3.1 Motivation for homoscedastic NW estimator

We see the actual situation to use the NW estimator. We are in the situation

to estimate Engel curve, which is the relation between net-income and food

expense of households. The upper panel in Figure 2 is the scatter plot of the

paired observations of net-income on the horizontal axis and food expense
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on the vertical axis of U.K. households in 1983. The data is $hom$ H\"ardle and
M\"uller $($2004 $p87)$ and is normalized to show that the point (1, 1) is sample
averages and sample size is $n=6830$ . The middle panel in Figure 2 is the
strip box plots of the same data and the lower panel is the kernel density
estimate of net-income.

Strip boxplots in Figure 2 illustrates that food expense of households
increases at the gradually declining rate. In this sense, it seems to be ap-
propriate to employ nonparametric regression model like NW that suits for
incorporating local information into the estimation. However, the strip box-
plots also illustrate the variability of food expense expands as net-income of
households increases. In addition, the lower panel of Figure 2 says that dis-
tribution of net-income seems to be bell shaped. Since the functional forms
of $\sigma^{2}(x)$ are unlikely to be proportional to that of $f_{X}(x)$ , we see that the NW
estimator is heteroscedastic if applied to the data.

3.2 Theoretical Variance-Stabilizing bandwidth

We propose a method that is applicable to the data above using a new band-
width. A new bandwidth needs to be variable to correct heteroscedasticity
that is being observed across $x$ . At the same time, bandwidth must be able
to be estimated from a sample. What about the bandwidth in the form,

$h_{x}^{VS}(x)=h_{0} \cdot\frac{\sigma^{2}(x)}{f_{X}(x)}$ . (3.1)

With (3.1), $h_{0}$ can be estimated from a variation of cross-validation statis-

tics (2.21), $f_{X}(x)$ and $\sigma^{2}(x)$ can be nonparametrically estimated. At the

same time, we can avoid estimating $m^{(1)}(x)$ and/or $m^{(2)}(x)$ in order to esti-
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mate $m(x)$ . Estimating $f_{X}(x)$ nonparametrically can be done independently

of estimating $m(x)$ nonparametrically, using only $x_{i},$ $i=1,$ $\cdots,$ $n$ . Esti-

mating $\sigma^{2}(x)$ nonparametrically can be done without estimating $m(x)$ , for

instance, using difference sequences estimators of M\"uller and Stadtm\"uller

(1987), Brown (2007) and so on.

Justification to use $($3.1 $)$ are the following. First, the local information

on the variance structure $\sigma^{2}(x)$ as well as on the density $f_{X}(x)$ is only re-

flected on the term $\sigma^{2}(x)/f_{X}(x)$ , making the leading variance term in (2.6)

asymptotically uniform over the domain and is only dependent on the type

of kernel, on the over all shape of density, and on the overall variance struc-

ture. Second, in the domain where the density $f_{X}(x)$ is low, (3.1) forces

one to choose wider bandwidth. The $f_{X}(x)$ being low means that there are
relatively few data points on the region, so aggregating them to estimate the

regression function $m(x)$ makes sense. Third, in the domain where the vari-

ance $\sigma^{2}(x)$ is low, the bandwidth should be narrower because small variance

implies that the data points on that region are more trustworthy.

optimization of the constant term $h_{0}$ in (3.1) is also necessary. There

can be some measures to optimize this but we employ MISE to compare this

with the conventional MISE-optimized fixed bandwidth. Then, Variance-

Stabilizing bandwidth (henceforce VS) so optimized is,

$h^{VS}(x)=h_{0}^{MISE} \cdot\frac{\sigma^{2}(x)}{f_{X}(x)}$

$=[ \frac{}{[\int t^{2}K_{X}(t)dt]^{2}[\int\frac{\sigma^{8}[\int_{(x)}2K_{X}^{2}(t)dt]\llcorner m(1)(x)f_{X}^{(1)}(x)+m^{(2)}(x)fx(x))^{2}}{f_{x(x)}^{6}}dx]}\ovalbox{\tt\small REJECT}^{g}1$ . $n^{-1}F$ . $\frac{\sigma^{2}(x)}{f_{X}(x)}$ .
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(3.2)

For this, $\hat{m}_{h^{VS}}(x)$ is homoscedastic up to order $n^{-\frac{4}{6}}$ ,

$V_{X,Y}[\hat{m}_{h^{VS}}(x)]$

$=\{$

$+$

$\ovalbox{\tt\small REJECT}[\int t^{2}K_{X}(t)dt]^{-\frac{2}{5}[\int\frac{\sigma^{8}[\int_{(x)}K_{X}^{2}(t)dt]^{\frac{4}{5}}(m(2)(x)fx(x)+2m(1)(x)f_{X}^{(1)}(x))^{2}}{f_{X(x)}^{5}}dx]^{-\frac{1}{6}}}]n^{-\frac{4}{5}}$

$O( \frac{1}{n})+o(\frac{1}{nh_{x}})$ . (3.3)

Our VS bandwidth has another merit. As far as we assume $f_{X}(x)\neq 0$ , the
bandwidth in (3.2) does not become infinity for realistic regression situations.
As a result, the NW estimator using bandwidth $($3.2 $)$ does not jump, for
instance, even for the previous example where the MSE-optimized bandwidth
does give a discontinuities to $\hat{m}_{h_{x}^{MSE}}(x)$ .

3.3 Numerical example

In the following, we demonstrate VS bandwidth by the example in page 5.
Example revisited

The upper panel in Figure 3 plots MISE optimized, MSE-optimized and
VS theoretical bandwidths at each $x$ . The lower panel in Figure 3 plots theo-
retical variances of the NW estimator with MISE optimized, MSE-optimized
and VS bandwidths at each $x$ . The two panels show trade-off between vari-
ance and bandwidth. That is, VS bandwidth is variable across $x$ to stabilize
variance while the MISE-optimized bandwidth is fixed across $x$ .
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The upper panel in Figure 4 plots one example of the NW with VS band-

width for the first generated sample of $(X_{i}, Y_{i}),$ $i=1,$ $\cdots$ , 1000. In the panel,

we see that the NW estimator with VS bandwidth has more jagged regions

compared to the lower panel in Figure 1. This region corresponds to the area
where the bandwidths are very narrow in the example. The NW estimator
with VS bandwidth pays penalty in smoothness for stabilizing its variance.

Wider (Narrower) bandwidths are assigned to the large (small) variance re-

gions to deflate (inflate) variance relative to other regions. In examples, both

tails correspond to large variance regions.

The lower panel in Figure 4 plots the sample variances of NW estimator

of $n=1000$ with MISEoptimized, MSE-optimized and VS bandwidth at

each $x$ $($calculation is repeated $M=1000$ times$)$ . Notice that the variance

stabilization is achieved $($ failed$)$ on the middle (tails) of the domain. We

think that this is brought by the large value of $1/f_{X}(x)$ and/or $m^{(1)}(x)$ on
the tail areas of the example.

4 Estimation of VS bandwidth

To estimate VS bandwidth, we employ combination of plug-in and cross-
validation methods. With $($ 3.2 $)$ , $h_{0}^{MISE}$ can be estimated from a variation

of cross-validation statistics, $f_{X}(x)$ and $\sigma^{2}(x)$ can be nonparametrically esti-

mated. There are some candidates for estimators of $f_{X}(x)$ or $\sigma^{2}(x)$ .
Stepl : Estimation of $\hat{f}_{X}(x)$

To find sample based bandwidth for kernel density estimator of $f_{X}(x)$ , we
employ the well-known least-squares cross-validation method (Rudemo 1982
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and Bowman 1984). The bandwidth so obtained is asymptotically equivalent

to the MISE optimized bandwidth of kernel density estimator (Hall 1983).

Step2 : Estimation of $\sigma^{\hat{2}}(x)$

Possible candidate is the residual based estimators,

$\hat{\sigma_{R}^{2}}(x)=\frac{\sum_{i=1}^{n}K_{X}(\frac{x-X}{h_{x}})(Y_{i}-\hat{m}_{h_{x}}(X_{i}))^{2}}{\sum_{i=1}^{n}K_{X}(x_{h_{l}}^{-X}arrow)}$ , $($4.1 $)$

or the direct estimator, which is the NW-like kernel estimator of conditional

variance function,

$\hat{\sigma_{D}^{2}}(x)=E_{Y|X}\hat{[Y^{2}}|X]-(E_{Y|X}\overline{[Y|}X])^{2}$

$= \frac{\sum_{i=1}^{n}K_{X}(\frac{x-X_{i}}{(\underline{x_{h_{x}}^{-}h_{x}}}).Y_{i}^{2}}{\sum_{i=1}^{n}K_{X}arrow X)}-[\frac{\sum_{i=1}^{n}K_{X}(\frac{x-}{(}Y_{i}}{\sum_{i=1}^{n}K_{X}\frac{x-X_{i}h_{x}X_{i})}{h_{x}})}]^{2}$ $($4.2 $)$

Fan and Yao (1998) showed that the bias of direct estimator is larger than

that of residual estimator. However, to obtain residual based estimator,

it is necessary to estimate $\hat{m}_{h_{x}}(X_{i})$ before estimating conditional variance.

Therefore, we employ neither and instead difference sequences estimator.

Let $x_{(1)},$ $x_{(2)},$ $\ldots,$ $x_{(n)}$ be ordered observations. Difference sequences esti-

mator yields initial variance estimator $\overline{\sigma_{DF}^{2}}(x_{(i)})$ at the data point $x_{(i)}$ by,

$\overline{\sigma_{DF}^{2}}(x_{(i)})=(\sum_{=-r}^{r}d_{j}Y_{(i+j)})^{2}$ , $($4.3$)$

where,

$\sum_{j=-r}^{r}d_{j}=0$ , $($4.4$)$

$\sum_{j=-r}^{r}d_{j}^{2}=1$ , $($4.5 $)$
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and,

$d_{j}=0$ , for $j<-r$ or $r<j$ . $($4.6 $)$

The quantity $r>0$ is the order of difference sequences which depends on
sample size $n$ . M\"uller and Stadtm\"uller (1987) calculated the difference se-
quences that minimize variance of initial variance estimator of given $x_{i}$ and
order $r$ but we have not found the exact relation between $n$ and $r$ so far.
The condition (4.5) is needed to make asymptotically unbiased estimator of
$\sigma^{2}(x_{(i)})$ (see Apendix).

Interpolating so obtained initial variance estimators $\overline{\sigma_{DF}^{2}}(x_{(i)})(i=1, \ldots, n)$

by the NW estimator, we can estimate conditional variance function,

$\overline{\sigma_{h_{v}}^{2}(x)}=\frac{\sum_{i=r+1}^{n-r}K_{X}(\frac{x-x_{(i)}}{K_{X}(hae}.F(x_{(i)})}{\sum_{i=r+1}^{n-r}\frac{x-x_{(\cdot)})\overline{\sigma_{D}^{2}}}{h_{x}})}$. $($4.7$)$

The bandwidth $h_{v}$ in (4.7) can be estimated by the cross-validation method

in (2.21).

Step3 : Estimation of $\hat{h_{0}^{MISE}}$

We form the following cross-validation statistics,

$CV_{VS}(h_{0})= \frac{1}{n}\sum_{i=1}^{n}(Y_{i}-\hat{m}_{h^{VS},-i}(X_{i}))^{2}\hat{f}_{h_{f}}(X_{i})$ ,

where $h^{VS}= \frac{\sigma^{\hat{2}_{h_{v}}}(X_{i})}{\hat{f}_{h_{f}}(X_{i})}h_{0}$ given $\sigma^{\hat{2}_{h_{v}}}(x)$ and $\hat{f}_{h_{f}}(x)$ . (4.8)

and minimize this hmction with respect to $h_{0}$ to find $\overline{h_{0}^{MISE}}$ . If we conjecture

the true $f_{X}(x)$ and $\sigma^{2}(x)$ , then we know that the minimizer $\hat{h}_{0}$ of $($4.8) is

asymptotically equal to theoretically optimal $h_{0}^{MISE}$ . We probably be able

to prove this by extending the proof by Marron and H\"ardle (1986). So far,
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we have one numerical example, which is presented in Figure 5. The setting
of the example is $f_{X}(x)=(1/\sqrt{2\pi})\exp(-x^{2}/2)\{x : -1.96<x<1.96\}$ ,

$m(x)=x^{2}\{x : -1.96<x<1.96\}$ and $\sigma^{2}(x)=1\{x : -1.96<x<1.96\}$ .
When $f_{X}(x)$ and $\sigma^{2}(x)$ are estimated, we do not have simulation results.

5 Concluding remarks

We have derived theoretical VS bandwidth. We also showed that the ob-

tained bandwidth is estimable by combination of plug-in and cross-validation

methods. However, VS bandwidth does not necessarily generate smaller

MISE than MISE fixed bandwidth. In the example on page 5, theoretical

MISE with VS bandwidth is 10.2717, which is larger than that with MISE

fixed bandwidth by 128%. This is brought by the fact that VS bandwidth

achieves variance-stabilization at the cost of larger bias. In line with the

above, we are going to find conditions of $m(x),$ $f_{X}(x)$ , and/or $\sigma^{2}(x)$ under

which our VS bandwidth is superior to the conventional one at MISE.
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Figure 1: The upper panel plots the MSEoptimized bandwidth and the lower

panel describes how the NW estimator comes out in out of the 1000 samples

with MSEoptimized bandwidth at every $x$ .
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Figure 2:
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PSots of MISE-opt, MSE-opt and VS bandwidths.
Example
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Plots ot MSSE-opt, MSE-opt and VS variances.
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Figure 3:
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Figure 4: The upper panel plots the NW estimator with VS bandwidth of
the example.
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Asymptotic behavior of CV statistics minimizer of $h_{-}\{0\}$ .
$f$ and $sigma^{A}2$ are respectively set to be their true functions.

$\hat{=s^{C}\simeq 1\Omega\vee<}$

$0$ 5000 10000 15000

Sample size

$\overline{\overline{n\hat{h}_{0}n^{1/5}V[\hat{h}_{0}n^{1/5}]}}$

100 0.4396 0.1808

500 0.1956 0.0024
1000 0.1845 0.0015

5000 0.1666 0.0011
10000 0.1588 0.0017

$\overline{\overline{h_{0}^{MISE}=0.1512}}150000.15930.0018$

Figure 5: Asymptotic behavior of cross-validation statistics based on MISE

with VS bandwidth.
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Appendix

In M\"uller and Stadtm\"uller (1987), the following assumptions in addition to

(4.4) (4.5) and (4.6) are employed.

$E_{U|X}[U_{i}^{4}|X_{i}=x]=\mu_{4}(x)<\infty$ ,

$\max_{1\leq i\leq n-1}(x_{(i+1)}-x_{(i)})=O(\frac{1}{n})$ .

On $\sigma^{2}(x),$ $f_{X}(x),$ $m(x)$ and $\mu(x)$ , the following conditions are placed,

$f\in Lip_{1}([a, b])$ ,

$m(x)\in$ Lip$\alpha([a, b]),$ $0<\alpha<1$ ,

$\mu(x)\in Lip_{\beta}([a, b]),$ $0<\beta<1$ ,

$\sigma^{2}(x)\in Lip_{\gamma}([a, b]),$ $0<\gamma<1$ ,

$f$ is bounded away from $0$ ,

where $a$ and $b$ are real numbers. Let $U_{(i)}$ denote conditional random variable

$U|X=x_{(i)}$ . Then, expectation of difference sequences estimator is,

$E_{Y}[\sigma^{\hat{2}_{DF}}(x_{(i)})]$

$=E_{Y}[( \sum_{=-r}^{r}d_{j}(U_{(i+j)}+m(x_{(i+j)})))^{2}]$

$=E_{Y}[( \sum_{=-r}^{r}d_{j}U_{(i+j)}+m(x_{(i)})\sum_{j=-r}^{r}d_{j}+_{\epsilon}O(\frac{1}{n^{\alpha}}))^{2}]$

$=E_{Y}[( \sum_{=-r}^{r}d_{j}U_{(i+j)}+O(\frac{1}{n^{\alpha}}))^{2}]$
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$=E_{Y}[ \sum_{=-r}^{r}d_{j}^{2}U_{(i+j)}^{2}+\sum_{j=-r}^{r}\sum_{k=-r;k\neq j}^{r}d_{j}d_{k}U_{(i+j)}U_{(i+k)}]+O(\frac{1}{n^{2\alpha}})$

$= \sum_{j=-r}^{r}d_{j}^{2}E_{Y}[U_{(i+j)}^{2}]+O(\frac{1}{n^{2\alpha}})$

$= \sum_{j=-r}^{r}d_{j}^{2}\sigma^{2}(x_{(i+j)})+O(\frac{1}{n^{2\alpha}})$

$= \sigma^{2}(x_{(i)})\sum_{j=-r}^{r}d_{j}^{2}+O(\frac{1}{n^{\gamma}})+O(\frac{1}{n^{2\alpha}})$ .

Notice that the difference sequences estimator is asymptotically unbiased

estimator of $\sigma^{2}(x_{i})$ if (4.5) is assumed.
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