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Testing finite activity against infinite activity for jumps, for
high frequency observation: an overview

Yacine A\"it-Sahalia*and Jean Jacod\dagger

Our aim is to describe, in a somewhat informal way, a number of preliminary results:
In this presentation we use quite strong assumptions, hoping to significantly weaken them
in the near future, and we provide no proof, ne\"ither empir\"ical or simulation studies, those
being not complete by now.

The problem concerns processes having jumps, since it seems more and more clear
that models in finance should take jumps into cons\"ideration. Tkaditionally, such models
with jumps rely on Poisson or compound processes, as in [11], [3] and [4]. However, more
recently some financial models have been proposed, that allow for an infinite number of
jumps in finite time intervals, such as the variance gamma model of [10] and $[9|$ , the
hyperbolic model of [7], the pure jump model of $[5|$ and the finite moment $\log$ stable
process of [6]. These models can capture both small and frequent jumps, as well as large
and inhequent ones. Since the qual\"itat\"ive propert\"ies and the mathematical analysis of
models with finitely many jumps deeply differ from those of models with infinitely many
jumps, it seems appropriate to develop some methods wh\"ich can d\"iscriminate between the
two types of models.

In an attempt to bring forth some contr\"ibution to these questions, we aim here to
develop testing procedures to discriminate empirically between the two situat\"ions of finite
and infinite number of jumps. This is an important information, which leads to qualita-
tively very different models. We have a l-dimensional $X$ observed on a fixed time interval
$[0, T]$ , at discretely and regularly spaced times $i\Delta_{n}$ . Assuming the observed path has
jumps, we want to test whether there are a fin\"ite number of jumps or not, two properties
commonly referred to as “finite activity” and “\"infinite activ\"ity’’ for the jump component
of $X$ . These properties are in fact satisfied, respectively, on two complementary subsets
of the sample space $\Omega$ :

$\Omega_{T}^{f}=\{\omega$ : $t\mapsto X_{t}(\omega)$ has finitely many jumps in $[0,$ $T|\}$

(i)
$\Omega_{T}^{i}=\{\omega$ : $t\mapsto X_{t}(\omega)$ has \"infinitely many jumps in $[0,$ $T|.\}$

We need some assumptions on the process $X$ . However, we wish to keep the solut\"ion as
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nonparametric as possible, and in particular we do not want to specify the structure of
the volatility, and as little as possible about the structure of the jumps.

1 $)$ Description of the Model: The underlying process $X$ is a l-dimensional It\^o semi-
martingale on some filtered space, which means that its characteristics $(B, C, \nu)$ are ab-
solutely continuous with respect to Lebesgue measure. $B$ is the drift, $C$ is the quadratic
variation of the continuous martingale part, and $\nu$ is the compensator of the jump measure
$\mu$ of $X$ . In other words, we have

$B_{t}(\omega)=/0^{t_{b_{s}(\omega)ds}}$
’

$C_{t}( \omega)=\int_{0}^{t}\sigma_{s}(\omega)^{2}ds$ , $\nu(\omega, dt, dx)=dtF_{t}(\omega, dx)$ , (2)

Here $b$ and $\sigma$ are optional process, and $F=F_{t}(\omega, dx)$ is a transition measure $hom\Omega\cross \mathbb{R}+$

endowed with the predictable $\sigma- field$ into $\mathbb{R}\backslash \{0\}$ .
Equivalent to (2), one may write $X$ as

$X_{t}=X_{0}+ \int_{0}^{t}b_{s}ds+/0^{t_{\sigma_{s}dW_{s}}}+\int_{0}^{t}\int x1_{\{|x|\leq 1\}}(\mu-\nu)(ds, dx)+/0^{t}/x1_{\{|x|>1\}}\mu(ds, dx)$ .

where $W$ is a standard Wiener process. Writing $X$ in this way is more customary, but our
assumptions mainly rely upon the ingredients coming in (2), and the process $\sigma_{t}$ which is
the square-root of $c_{4}$ .

Of course, having (2) is not enough, and we need assumptions on the coefficients. The
assumptions on the “continuous part”, that is on $b$ and $\sigma$ , are as follows (for some of the
results they could substantially be weakened, but in these notes it seenus simpler to state
a single set of assuniptions):

Assumption 1. The volatility process $\sigma_{t}$ is an It\^o semimartingale, that is it can be
written (necessarily in a unique way) as

$\sigma_{t}=\sigma 0+\int_{0}^{t}\tilde{b}_{s}ds+\int_{0}^{t}\tilde{\sigma}_{\theta}dW_{s}+N_{t}+\sum_{s\leq t}\Delta\sigma_{s}1_{\{|\Delta\sigma_{\epsilon}|>1\}}$ , (3)

where $N$ is a local martingale which is orthogonal to the Brownian motion $W$ , and further
the compensator of the process $[N, N]_{t}+ \sum_{s\leq t}1_{\{|\Delta\sigma_{\iota}|>1\}}$ is of the form $\int_{0}^{t}n_{s}ds$ . We
also assume that the processes $\tilde{b}_{t}$ and $n_{t}$ are locally bounded (this means that there is
a sequence $(T_{n})$ of stopping times, increasing to infinity, and such that those processes,
stopped at any time $T_{n}$ , are bounded), and the processes $b_{t}$ and $\tilde{\sigma}_{t}$ are c\‘adl\‘ag. Furthermore
the process $\sigma$ is “non-degenerate” in the sense where $\int_{0}^{T}\sigma_{s}^{2}ds>0$ a.s. $(T$ is the horizon
of our observations).

The non-degeneracy above means that (almost) all possible paths have a non-vanishing
contribution ffom the continuous martingale (or Wiener) part of $X$ . In practice, all models
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with finite activity for jumps satisfy this property, which is thus not a genuine restriction
in the tests we are constructing here.

The assumptions on the jumps are quite restrictive, and in fact the same as in the
paper [2] which is concerned with the estimation of the so-called Blumenthal-Getoor index.
However, it is likely that these assumptions can be significantly weakened, at least for the
test for which the null hypothesis is $\Omega_{T}^{f}$ :

Assumption 2. There are two constants $0\leq\beta’<\beta<2$ such that the L\’evy measure
$F_{t}=F_{t}(\omega, dx)$ is of the form

$F_{t}(dx)= \frac{1}{|x|^{1+\beta}}(a_{t}^{(+)}1_{\{0<x\leq z_{t}^{(+)}\}}+a_{t}^{(-)}1_{\{-z_{t}^{(-)}\leq x<0\}})dx+F_{t}’(dx)$, (4)

where, for some locally bounded process $L_{t}\geq 1$ ,

(i) $a_{t}^{(+)},$ $a_{t}^{(-)},$ $z_{t}^{(+)}$ and $z_{t}^{(-)}$ are nonnegative predictable processes satisfying

$\frac{1}{L_{t}}\leq z_{t}^{(+)}\leq 1$ , $\frac{1}{L_{t}}\leq z_{t}^{(-)}\leq 1$ , $A_{t}:=a_{t}^{(+)}+a_{t}^{(-)}\leq L_{t}$ , (5)

(ii) $F_{t}’=F_{t}’(\omega, dx)$ is a signed measure, whose absolute value $|F_{t}’|$ satisfies

$/(|x|^{\beta’} A 1)$ $|F_{t}’|(dx)\leq L_{t}$ . (6)

This assumption is satisfied if the discontinuous part of $X$ is a stable process of index
$\beta\in(0,2)$ : take $z_{t}^{+}=z_{\overline{t}}=1$ , and $a_{t}^{+}$ and $a_{\overline{t}}$ are constants, and the residual measure $F_{t}^{l}$

is the restriction of the L\’evy measure to the complement of $[-1,1|$ , and (6) is satisfied
with any $a\in(0,1)$ . When the discontinuous part of $X$ is a tempered stable process
the assumption is also satisfied with the same processes as above, but now the residual
measure $F_{t}’$ is not positive in general (although it again satisfies (6) with any $\beta’\in(0, \beta)$ .

This assumption also accounts for a stable or tempered stable with time varying in-
tensity (when $z_{t}^{+}=z_{t}^{-}=1$ but $a_{t}^{+}$ and $a_{\overline{t}}$ are genuine processes). It also accounts for
any process of the form

$Y_{t}=Y_{0}+/0^{t_{w_{\theta}dX_{s}}}$
’

as soon as $X$ satisfies the same assumption and $w_{t}$ is locally bounded and predictable.

It turns out that, under Assumption 2, the set $\Omega_{T}^{i}$ of (1) contains the set

$\Omega_{T}^{i\beta}=\{\overline{A}_{T}>0\}$ , where $\overline{A}_{t}=/0^{t_{A_{\delta}ds}}$ . (7)

This is usually not equal to $\Omega_{T}^{i}$ , though, so our test will in fact test the null hypothesis
$\Omega_{T}^{f}$ against $\Omega_{T}^{i\beta}$ , or vice-versa, instead of (1).
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2 - Testing hypotheses which are subsets of the sample space: Here, we specify
the notion of testing when the null and altemative hypotheses are families of possible
outcomes. Suppose that we want to test the null hypothesis “we are in a subset $\Omega_{0}$

” of
$\Omega$ , against the alternative “we are in a subset $\Omega_{1}$ ”, with of course $\Omega_{0}\cap\Omega_{1}=\emptyset$ . We then
construct a critical (rejection) region $C_{n}$ at stage $n$ , that is when the time lag between
observations is $\Delta_{n}$ . This critical region is itself a subset of $\Omega$ , which should depend only on
the observed values of the process $X$ at stage $n$ . We are not really within the framework
of standard statistics, since the two hypotheses are themselves random.

We then take the following as our definition of the asymptotic size, for a given triple
of coefficients:

$a= \sup(\lim_{n}\sup \mathbb{P}(C_{n}|A):A\in \mathcal{F},$ $A\subset\Omega_{0})$ . (8)

Here $P(C_{n}|A)$ is the usual conditional probability knowing $A$ , with the convention that
it vanishes if $P(A)=0$ . If $P(\Omega_{0})=0$ then $a=0$ , which is a natural convention since
in this case we want to reject the assumption whatever the outcome $\omega$ is. Note that $a$

features some kind of “ uniformity” over all subsets $A\subset\Omega_{0}$ .
As for the asymptotic power, we define it as

$P= \inf(\lim_{n}\inf \mathbb{P}(C_{n}|A):A\in \mathcal{F},$ $A\subset\Omega_{1},$ $\mathbb{P}(A)>0)$ . (9)

Again, this is a number.

Before stating the results, we introduce some notation. First, the observed increments
of $X$ are $\Delta_{i}^{n}X=X_{i\Delta_{n}}-X_{(i-1)\Delta_{n}}$ . We take a sequence $u_{n}$ of positive numbers, which serve
as thresholds and always go to $0$ . There will be restrictions on this sequence, expressed
by the following:

$u_{n}/\Delta_{n}^{\rho}arrow\infty$ (10)

for some $\rho>0$ : this condition becomes weaker when $\rho$ increases. Two specific values for
$\rho$ , in connection with the power $p\geq 2$ which will be used below, are of interest for us:

$\rho 1(p)=\frac{p-2}{2p}$ , $\rho 2(p)=\frac{2p-4}{11p-10}$ . (11)

These quantities increase when $p$ increases, and $\rho 1(p)>\rho 2(p)>0$ when $p>2$ . Finally,
with any $p>0$ we associate the increasing processes

$B(p,u_{n}, \Delta_{n})_{t}=\sum_{i=1}^{[t/\Delta_{n}]}|\Delta_{i}^{n}X|^{p}1_{\{|\Delta_{*}^{n}X|\leq u_{n}\}}$ (12)

consisting of the sum of the $p^{th}$ power of the increments of $X$ , truncated at level $u_{\eta}$ .

3- The Finite Activity Null Hypothesis: We first set the null hypothesis to be finite
activity, that is $\Omega_{0}=\Omega_{T}^{f}$ , whereas the alternative is $\Omega_{1}=\Omega_{T}^{i}$ . We choose an integer $k\geq 2$
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and a real $p>2$ . We consider the test statistics, which depends on $k$ and $p$ , and also on
the sequence $u_{n}$ going to $0$ , and on the terminal time $T$ , as follows:

$S_{n}= \frac{B(p,u_{n},k\Delta_{n})_{T}}{B(p,u_{n},\Delta_{n})_{T}}$ .

Theorem 1. a) Under Assumption 1 and if the sequence $u_{n}$ satisfies (10) with some
$\rho<1/2$ , we have

$S_{n}arrow^{\mathbb{P}}k^{p/2-1}$ on the set $\Omega_{T}^{f}$ . (13)

b$)$ Under Assumptions 1 and 2, and if the sequence $u_{n}$ satisfies (10) with $\rho=\rho_{1}(p)$ ,
we have

$S_{n}arrow^{Q^{b}}1$ on the set $\Omega_{T}^{i}$ (resp. $\Omega_{T}^{i\beta}$ ). (14)

To construct a reasonable test with a given level for finite samples, we need a central
limit theorem associated with the convergence in (13), and a standardized version goes as
follows $(arrow \mathcal{L}-(s)$ denotes the stable convergence in law, see for example $[8|$ for this notion):

Theorem 2. Under Assumption 1, and if the sequence $u_{n}$ satisfies (10) with some $\rho<1/2$ ,
we have

$(S_{n}-k^{p/2-1})/\sqrt{V_{n}}\mathcal{L}-(s)arrow \mathcal{N}(0,1)$ in restriction to $\Omega_{T}^{f}$ ,
where

$V_{n}=N(p, k) \frac{B(2p,u_{n},\Delta_{n})_{T}}{(B(p,u_{n},\Delta_{n})_{T})^{2}}$ ,

and
$N(p, k)= \frac{1}{m_{2p}}(k^{p-2}(1+k)m_{2p}+k^{p-2}(k-1)m_{p}^{2}-2k^{p/2-1}m_{k,p})$ ,

and $m_{p,k}=E(|U|^{p}|U+\sqrt{k-1}V|^{p})$ and $m_{p}=E(|U|^{p})$ for $U$ and $V$ two independent
$N(O, 1)$ variables (with the notation of $[1J$ we have $N(p, k)=M(p, k)m_{p}^{2}/m_{2p})$.

We are now ready to exhibit a critical region. Denoting by $z_{a}$ the a-quantile of $N(O, 1)$ ,
that is $\mathbb{P}(U>z_{a})=a$ where $U$ is $N(O, 1)$ , we set

$C_{n}=\{S_{n}<k^{p/2-1}-z_{a}\sqrt{V_{n}}\}$ . (15)

Theorem 3. Under Assumptions 1 and 2, and if the sequence $u_{n}$ satisfies $(1\theta)$ with some
$\rho<1/2$ , the asymptotic level of the critical region defined by (15) for testing the null $\Omega_{T}^{f}$

against the altemative $\Omega_{T}^{i\beta}$ equals $a$ , and the asymptotic power is 1.

4 -The Infinite Activity Null Hypothesis: In the second case we set the null
hypothesis to be infinite activity, that is $\Omega_{0}=\Omega_{T}^{i\beta}$ , whereas the alternative is $\Omega_{1}=\Omega_{T}^{f}$ .
We choose three reals $\gamma>1$ and $p’>p>2$ . We define a family of test statistics as follows:

$S_{n}’= \frac{B(p’,\gamma u_{n},\Delta_{n})_{T}B(p,u_{n},\Delta_{n})_{T}}{B(p^{l},u_{n},\Delta_{n})_{T}B(p,\gamma u_{n},\Delta_{n})_{T}}$.
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Theorem 4. Assume Assumptions 1 and 2.
a$)$ If the sequence $u_{n}$ satisfies (10) with $\rho=\rho_{1}(p)$ , we have

$S_{n}’arrow^{\mathfrak{g}*}\gamma^{p’-p}$ on the set $\Omega_{T}^{i\beta}$ . (16)

b$)$ If the sequence $u_{\eta}$ satisfies $(1\theta)$ with some $\rho\leq 1/2$ , we have

$S_{n}’$ A 1 on the set $\Omega_{T}^{f}$ . (17)

The associated central limit theorem is:

Theorem 5. Under Assumptions 1 and 2 with $\beta^{l}<\beta/2$ and if the sequence $u_{n}$ satisfies
(10) with $\rho=\rho 2(p)$ , we have

$(S_{n}’-\gamma^{p’-p})/\sqrt{V_{n}^{l}}\mathcal{L}-(s)arrow \mathcal{N}(0,1)$ in restriction to $\Omega_{T}^{i\beta}$

where

$V_{n}’= \gamma^{2p’-2p}(\frac{B(2p,u_{n},\Delta_{n})_{T}}{(B(p,u_{n},\Delta_{n})_{T})^{2}}+(1-2\gamma^{-p})\frac{B(2p,\gamma u_{n},\Delta_{n})\tau}{(B(p,\gamma u_{n},\Delta_{n})_{T})^{2}}$

$+ \frac{B(2p’,u_{n},\Delta_{n})\tau}{(B(ff,u_{n},\Delta_{n})_{T})^{2}}+(1-2\gamma^{-p’})\frac{B(2p’,\gamma u_{n},\Delta_{n})\tau}{(B(p,\gamma u_{n_{2}}\Delta_{n})_{T})^{2}}$

$-2 \frac{B(p+p^{l},u_{n},\Delta_{n})_{T}}{B(p,u_{n},\Delta_{n})_{T}B(p,u_{\eta},\Delta_{n})_{T}}$

$-2(1- \gamma^{-p}-\gamma^{-p’})\frac{B(p+p’,\gamma u_{n},\Delta_{n})_{T}}{B(p,\gamma u_{n},\Delta_{n})_{T}B(p,\gamma u_{n},\Delta_{n})_{T}})$ .

The critical region will therefore be

$C_{n}’=\{S_{n}’<\gamma^{p’-p}-z_{a}\sqrt{V_{n}’}\}$ . (18)

Theorem 6. Under Assumptions 1 and 2 with $\beta’<\beta/2$ , and if the sequence $u_{n}$ satisfies
(10) with $\rho=\rho 2(p)$ , the asymptotic level of the critical region defined by (18) for testing

the null $\Omega_{T}^{i\beta}$ against the altemative $\Omega_{T}^{f}$ equals $a$ , and the asymptotic power is 1.

Under the null hypothesis the rate of convergence is $1/u_{n}^{\beta/2}$ (contrary to the situation
of Theorem 3, where the rate was $1/\sqrt{\Delta_{n}}$ whatever $\beta$ and $u_{n}$ were). So, although asymp-
totically $u_{n}$ does not explicitly show in the test itself, one should probably take $u_{n}$ as small
as possible (we have no choice as to $\beta$ , of course). That is, one should take $\rho$ as large as
possible, which in tum results in choosing $p$ as big as possible (recall (11)).
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