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Abstract

We tested for the days-of-the-week effect on stock retum variation using NIKKEI 225
stock index data ranging from the 4th of January in 1989 to the 29th of August in 2003.
Nonlinear time series analysis with the surrogate method suggests that there may be a
particular weekly pattem in stock return variation such that stock retum is significantly
lower on Monday.

1 Introduction

There has been a long controversial conjecture that stock return might display dependence

on the days of the week [1]. We may call this as the days-of-the-week effect, which is one of

anomalies that cannot be explained within the framework of the standard theories of economics.
In the United States, there has been an uncertain observation such that retums on investments
in stocks might be lower on Monday, which is called the Monday effect. Possible existence
of the days-of-the-week effect has been investigated using regression analysis with inconclusive

results in previous literature.
In this study, we test for the days-of-the-week effect on daily stock return in the Japanese

stock market using nonlinear time series analysis. Our approach is practical but has not been

taken in previous literature. We use a time series of NIKKEI 225 stock index, i.e., mean price

over 225 stocks at the Tokyo Stock Exchange. The index data are deficient on Saturdays,

Sundays and the national holidays when the stock market is closed. To recover the missing

data, linear interpolation is applied to the time series. As the methods for time series analysis,
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we apply the diagnostic algorithm developed by Wayland et al. [2] and the surrogate method

introduced by Theiler et al. [3, 4]. These methods have been devised to test for chaos from

complex time series. We may not expect that stock retum variation represents chaotic behavior.

Nevertheless, the days-of-week effect is supposed to be captured in terms of the degree of

complexity in stock return variation. These mathematical methods are suitable for this purpose.

This paper is organized as follows. In section 2, we describe the method for interpolating

data, i.e., linear interpolation. Linear interpolation smoothly recovers the data deficiencies,

in particular, those on between Friday and Monday. This property is very important for our
purpose, as discussed in this paper. The mathematics for the time series analysis are presented

in section 3. Results of numerical analysis are given in section 4. We discuss the results and

make conclusions in section 5.

2 Interpolating data

We used a time series of daily closing stock index ranging from the 4th (Wednesday) of January

in 1989 to the 29th (Friday) of August in 2003, issued by the Tokyo Stock Exchange. The stock

data are deficient on Saturdays, Sundays and the national holidays. Linear interpolation was
used to recover these missing data points: We synthesized $n$ successive missing data points,

denoted as $x(t+i)(i=1, \cdots, n)$ , between stock data $x(t)$ and $x(t+n+1)$ by

$x(t+i)= \frac{n-i+1}{n+1}x(t)+\frac{i}{n+1}x(t+n+1)$ (1)

We thus obtained an interpolated time series consisting of $N=5348$ data points, as shown in

Fig. 1. Daily stock return $r(t)(t=2, \cdots, N)$ was estimated from the interpolated time series

by

$r(t)= \frac{x(t)-x(t-1)}{x(t)}$ . (2)

Figure 2 shows the time series $\{r(t)\}_{t=2}^{N}$ .

3 Methods for time series analysis

Given a time series $\{x(t)\}_{t=1}^{N}$ as a set of observational data for a single observable quantity

in a system of $Q$ degrees of freedom, we can represent the dynamical behavior of the sys-

tem using embedology [5, 6]: We reconstruct trajectories as lagged sequences of data points

$x(t)=(x(t),$ $x(t+\Delta t),$ $\cdots,$ $x(t+(D-1)\Delta t)$ where $D$ is the embedding dimension and $\Delta t$ is
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Figure 1: NIKKEI stock index with interpolations on Saturdays, Sundays, and national holi-
days.

an appropriately chosen time lag. The sufficient condition for a map of the trajectories from Q-
dimensional space to D-dimensional reconstructed space to be a diffeomorphism is $D\geq 2Q+1$

[5]. In practical applications, $Q$ is usually unknown and $D$ is determined by trial-and-error.
The optimal time lag $\Delta t$ can be inferred from autocorrelation function or mutual information.
In this work, we determined $\Delta t$ on the basis of mutual information [7, 8].

3.1 Mutual information

Mutual information as a function of the time distance between data points of a time series,

introduced by Fraser and Swinney [7, 8], provides useful information for determining the optimal

time lag for embedding as well as for measuring the rate of spontaneous decay of information
from the time series. Let $U$ and $V$ be sets of realizations of the random variables $u$ and
$v$ , respectively. We approximate the probability density functions $p_{U}(u)$ and $p_{V}(v)$ and the
joint probability density function $p(u, v)$ from l-dimensional and 2-dimensional histograms

generated from sets of sample data $\{u_{i}\}_{i=1}^{N}$ and $\{v_{i}\}_{i=1}^{N}$ . Here, $N$ is the number of examples.

The information entropies $H(U)$ and $H(V)$ and the joint information entropy $H(U, V)$ are
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Figure 2: NIKKEI stock retum.

calculated by

$H(U)$ $=$ $- \sum_{1=1}^{N}p_{U}(u_{i})\log_{2}p_{U}(u_{i})$ , (3)

$H(V)$ $=$ $- \sum_{1=1}^{N}p_{V}(v_{i})\log_{2}p_{V}(v_{i})$ , (4)

$H(U, V)$ $=$ $- \sum_{i,j=1}^{N}p(u_{i}, v_{j})\log_{2}p(u_{i}, v_{j})$ . (5)

The average mutual information $I(V;U)$ is given by

$I(V;U)=H(U)+H(V)-H(U, V)$ . (6)

$I(V;U)$ represents the amount of information that one can know about $V$ given $U$ . In this
work, the time series $\{x(t)\}_{t=1}^{N-\Delta t}$ is substituted into $U$ and its time-delayed counterpart $\{x(t+$

$\Delta t)\}_{t=1}^{N-\Delta t}$ is substituted into $V$ . Then, the mutual information is a function of the time lag
$\Delta t$ , denoted by $I(\Delta t)$ , and represents the spontaneous loss of information caused by the time

evolution of the system in terms of $\Delta t$ . The optimal value for $\Delta t$ in embedding is estimated as
the first minimum of $I(\Delta t)$ or the $\Delta t$ corresponding to $I(\Delta t)/e$ .
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3.2 Wayland test

The algorithm developed by Wayland et al. captures visible determinism underlying a time
series in terms of the parallelness of neighboring trajectories reconstructed in the phase space
[2]. The central idea of the algorithm is that visible determinism achieves smooth trajectories
of time evolution in the phase space according to the definition of determinism that similar
causes give rise to similar effects. Hence, for deterministic processes, neighboring trajectories
will point in similar directions. In contrast, stochastic processes will give rise to large diversity
in the directions of the trajectories. Thus, the degree of diversity depends on how visible
determinism is in a time series. Practical procedures of this algorithm are as follows.

We randomly choose a vector $x(t_{0})$ and find its $K$ nearest neighbors $x(t_{k})$ , for instance, in
the sense of Euclidean distance. Next, we map each vector to $x(t_{k}+T)(k=0, \cdots, K)$ with
an appropriately chosen time interval $T$ . The diversity of directions of neighboring trajectories
can be measured in terms of the translation error:

$E_{trane}$ $=$ $\frac{1}{K+1}\sum_{k=0}^{K}\frac{\Vert v(t_{k})-\overline{v}\Vert}{\Vert\overline{v}\Vert}$ , (7)

$v=$ $\frac{1}{K+1}\sum_{k=0}^{K}v(t_{k})$ , (8)

$v(t_{k})$ $=$ $x(t_{k}+T)-x(t_{k})$ . (9)

The difference vectors $v(t_{k})$ approximate tangential vectors of the trajectories. The more visible
determinism is, the smaller $E_{trans}$ will be. To reduoe stochastic error in estimating $E_{trans}$ , we
use the following procedures. We seek the medians of $E_{trans}$ for $S$ sets of $M$ randomly chosen
$x(t_{0})$ and estimate the mean over the $S$ medians. The mean is taken as a representative of
$E_{tran\epsilon}$ .

The previous numerical work [9] suggested the following tentative criteria to infer the dy-
namical nature of a time series from an estimate of $E_{trans}$ as a function of embedding dimension.
$E_{tr\alpha n\epsilon}$ below 0.1 indicates the visible determinism of the underlying dynamics regardless of how
complex a time series appears. For $E_{lrans}$ exceeding 0.5, the time series represents stochas-

tic processes. In particular, white noise (temporally uncorrelated random noise) generates
$E_{tran\epsilon}\approx 1$ independently of the embedding dimension. In case $E_{tran\epsilon}$ lies between 0.1 and 0.5,

the time series may represent either temporally correlated stochastic processes or deterministic
processes contaminated with observational random noise. In this work, we utilize these criteria
to interpret estimates of $E_{trans}$ .
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3.3 Surrogate method

The surrogate method is an ingenious way of evaluating the statistical significance of an estimate

of a statistic made from a single time series [3, 4]. Given a time series as a single set of
realizations of certain dynamics, we make a null hypothesis about the dynamics. We then
synthesize surrogate time series sharing the statistical properties relevant to the null hypothesis
with the original time series. This procedure may be viewed as if we reobserved the dynamical
system under the restriction of the null hypothesis.

In this work, we made the null hypothesis that daily stock retum is subject to an independent
identically distributed $(i. i. d.)$ random process and hence displays no particular weekly pattern.

Under the null hypothesis, forty surrogate time series were synthesized by random-shuffling the
original stock prices within each week (from Monday to Friday, totally 764 weeks) using $i$ . $i$ . $d$.
random numbers followed by the interpolation of the data and the estimation of stock returns
or by random-shuMing the original stock returns within each week. Each surrogate time series
has the same statistical moments as those of the original time series.

We next ranked the stock retums within each week and gave scores 1 to 5 to the stock
return of each day of the week for both the original and the surrogate data. To test the null
hypothesis, a statistical t-test was applied to the mean rank score on each day of the week. Let
us denote the mean rank scores for the original time series as $s_{0}$ , those for the surrogate time
series as $s$ , and their mean and variance as $\overline{s}$ and $\sigma_{s}^{2}$ , respectively. Then the two-sided t-test
statistic is given as

$t= \frac{|s_{0}-\overline{s}|}{\sigma_{s}}$ (10)

In the case of forty surrogate time series, the critical value of $t$ is 2.02 at a two-sided level of
5% reliability. If $t>2.02$ , the null hypothesis is rejected, which means that the original time
series is unlikely to be realized by the dynamics of the null hypothesis.

4 Results

We estimated the statistical moments of the first (mean), second (variance), third and fourth
order for the stock returns $(N=5347)$ . Similar estimates were made for the stock returns on
each day of the week $(N=764)$ . Results are summarized in Table 1. The stock retum data
are expressed as annual rate in percentage, i.e., $r(t)x360\cross 100$ .

Mean stock return takes a negative large value with the smallest variance on Monday, and
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it is the lowest with a large variance on Friday. It turns out that this statistical tendency is
not due to interpolation, from time series analysis based on the Wayland test.

Table 1 Statistical moments of annual stock returns (in %)

We next estimated the mutual information as a function of time lag for the stock returns. The
probability density function and the joint probability density function were approximately es-
timated from a one-dimensional histogram with 32 partitions and a two-dimensional histogram
with 32 $x32$ partitions, respectively. Estimates are shown in Fig. 3. The mutual information
takes the first minimum at $\Delta t=4$ , which corresponds to the optimal time lag in embedding.
Small peaks appearing every 7 days of time lag are artifacts due to the interpolation of the
data. No such artifacts appear in autocorrelation function, as shown in Fig. 4.

The Wayland test was applied to the stock retums with $\Delta t=4,7,$ $K=4,$ $T=1,5,6,7$,

8, $M=301$ and $S=20$ . $\Delta t=4$ is the optimal time lag in terms of the mutual information
and $\Delta t=7$ corresponds to one week shift. Results are shown in Figs. 5 and 6. In the case of
$\Delta t=4$ , determinism in stock return is as invisible as that of Gaussian white noise at $T\leq 7$ .
At $T=8$ , determinism in stock return becomes as visible as those in temporally correlated
stochastic processes, unlike those at $T=1,5,6,7$ , and takes the minimum at $D=6$ . Such a
tendency is also observed for $\Delta t=7,$ $T=7$ and $D=4$ , as shown in Fig. 6.

We next applied the Wayland test to the stock returns on each day of the week. Each time

series of stock retum consists of 764 data points. Results under $K=4,$ $T=5,$ $M=51$ and
$S=10$ are presented in Fig. 7. Standard deviation in $E_{tran\epsilon}$ was estimated to be 0.04–0.14
at $D\geq 8$ . We chosen $T=5$ because of the smallest variance in $E_{trans}$ with respect to the

time translation $T$ . The results in Fig. 7 should be compared with those at $T=5$ in Fig. 6.
These results tell us that determinism is the most invisible on Monday. As discussed in the
next section, this tendency is not due to the interpolation of data.
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Figure 3: Mutual information of NIKKEI retum as a function of time lag.

Estimates of the two-sided t-test statistic for the rank scores of stock retum on each day

of the week are summarized in Table 2. The critical t-value at 5 % reliability is 2.02. The
estimated t-values exceed 2.02 on Monday and Friday. Hence, the null hypothesis can be

rejected. The weekly pattem in stock return variation is unlikely to be ascribed to an $i$ . $i$ . $d$ .
stochastic process.

kble 2 Two-sided t-test statistics on the rank scores for the original and forty surrogate data.

Upper row: Estimates for the stock returns calculated from randomly shuffled stock prices within

each week. Lower row: estimates for randomly shuffled stock returns within each week. The critical

t-value for rejecting the null hypothesis is 2.02.
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Figure 4: Autocorrelation function of NIKKEI return.

Figure 5: Wayland test for NIKKEI return. $T=1,5,6,7,8$ and $\Delta t=4$ .
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Figure 6: Wayland test for NIKKEI return. $T=1,5,6,7,8$ and $\Delta t=7$ .

Figure 7: Wayland test for NIKKEI retums on each day of the week $(T=5)$ .
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5 Discussion

The Wayland test indicates that NIKKEI stock return displays the most complex dynamical
behavior on Monday. This is not due to linear interpolation applied to the data, because linear
interpolation generates smooth sequences of data points and should lower $E_{trans}$ . These results
suggest that the significantly low stock return with a small variance on Monday is likely to
represent a particular weekly pattern in stock return variation.

This interpretation is supported by the surrogate analysis. In fact, the null hypothesis that
the stock retum variation represents an $i$ . $i$ . $d$. stochastic process has been rejected by statistical
t-test on the rank order of the stock retums on Monday and Riday. The surrogate analysis

tells us that there may be a Riday effect on stock return, as well.

In conclusion, the present analysis suggests that a particular weekly pattern in stock return
variation, i.e., the Monday effect as well as the Riday effect, is likely to exist in the Japanese
stock market. The economic origin of such an anomaly is not unclear. However, we conjecture
one possible mechanism such that the dynamics governing stock retum variation might be
altered or be different on Saturday and Sunday because of missing stock index as the benchmark
for trading. This would be investigated in our future work.
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