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New generation wavelets associated with statistical problems

KERKYACHARIAN, G\’erard and PICARD, Dominique

Abstract

In this paper, we give a strong motivation, based on new statistical problems
mostly concerned with high frequency data, for the construction of second generation
wavelets. These new wavelets basically differ from the classical ones in the fact that,
instead of being constructed on the Fourier basis, they are associated with different
orthonormal bases such as bases of polynomials. We give in the introduction three
statistical problems where these new wavelets are clearly helpful. These examples are
revisited in the core of the paper, where the use of the wavelets are enlightened. The
construction of these new wavelets is given as well as their important concentration
properties in spectral and space domains. Spaces of regularity associated with these
new wavelets are studied, as well as minimax rates of convergence for nonparametric
estimation over these spaces.

1 Introduction
The last decade has witnessed a growing interest for so-called high resolution data, i.e.
observations collected on processes observed on a domain of fixed amplitude but sam-
pled at higher and higher hequency (equivalently, at smaller and smaller seales). As
a consequence, the asymptotic point of view (where we let the number of observations
go to infinity) has a rather different status than usual large sample theory in mathe-
matical statistics. Such a strong interest has been motivated by the rich mathematical
structure that these issues involve, and at the same time by a huge variety of strong
motivations arising in applications. Concerning the latter, we mention first the analysis
of financial data ; in particular, we recall the problems linked with microstructure noise,
corresponding in fact to observations of different behaviours at different scales of time.
A second, extremely important example is provided by the cosmological and astrophys-
ical literature. Particularly relevant here are the problems related to Cosmic Microwave
Background (CMB) radiation analysis, an extraordinarily active domain which is cur-
rently at the frontier of theoretical and experimental physics and has already led to the
Nobel Prize in Physics for G. Smoot and J. Mather in 2006. As a third important area
from the applied sciences we mention medical imaging. Here, PET scan tomography
and more generally iniage analysis issued ffom the Radon transform is also a domain in
which if the technology is very active, a huge amount of mathematical and algorithmical
questions are still opened for research and many new ones are emerging here driven by
the technological progress.
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During the last decade, wavelet analysis has emerged as a major tool in various
disciplines, including most branches of pure and applied mathematics and statistics.
However, the study of high hequency phenomena by means of wavelets has only been
developed quite recently. There are important technical reasons to explain why the
use of wavelets in a high ffequency environment is considerably more challenging than
in a traditional bamework. Loosely speaking, high resolution analysis fundamentally
requires the construction of wavelet bases which are specifically adapted to the problem
at hand. For instance, \’in finance, cosmology or tomography, data are observed either
on very particular domains, not necessarily well adapted to wavelets (i.e. the sphere
in astrophysics) or they are observed after being blurred by a linear operator (Radon
transform in the case of tomography, differential operators in finance). More frequently, a
combination of these difficulties may arise in the same problem. In any of these examples,
the usual wavelet tools (based on standard Fourier transforms) are not necessarily well
adapted, so that wavelet techniques do not enjoy the optimality properties established
for instance in $[$4].

We will precise the arguments above by giving three particular examples where quite
obviously the need for the construction of a ‘basis’ with concentration properties at the
same time in frequency and in space domain arises.

Testing for Gaussiannity and/or isotropy Let us first consider the case where we
observe $(T_{\xi})_{\xi\in S}$ where $\mathbb{S}$ can be the torus or the unit sphere $@^{2}$ of $\mathbb{R}^{3}$ (the unit sphere
corresponds to the CMB case). An example of important question is: Is $\xi\mapsto T_{\xi}$ an
‘isotropic’ field ? where by isotropic, we mean stationary in the torus case and

$\forall\rho\in \mathbb{O}(3),$ $\forall\xi,$ $\eta\in S^{2}E(T_{\xi},T_{\eta})=E(T_{\rho(\xi)}, T_{\rho(\eta)})$ , $ET_{\xi}=c$

in the sphere case. If $T$ is a centered Gaussian field that is mean square continuous and
isotropic, the covariance kernel

$E[T(x)T(y)|=K(x,y)$

is only depending on the distance between $x$ and $y(K(x, y)=K(d(x,y))$ and has the
following spectral decomposition. The spaces $\mathcal{H}_{k}$ are the eigenspaces of the covariance
operator

$f(x)\in \mathbb{L}_{2}(S^{2})\mapsto Kf(x)=/S^{2}K(d(x, y))f(y)dy$

and
$\forall f\in \mathcal{H}_{k}$ , $Kf=C_{k}f$

where $\mathcal{H}_{k}$ is the space spanned by $\{e_{k},e_{-k}\}$ in the torus case and the space of spherical
harmonics of order $k$ (i.e. the restriction to $S^{2}$ of homogeneous polynomials on $\mathbb{R}^{3}$ , of
degree $k$ , which are harmonic: i.e. $\Delta P=0$ , where $\Delta$ is the Laplacian on $\mathbb{R}^{3}-$ ; this
space is of dimension $2k+1$ and spanned by the so caUed spherical harmonics basis
$Y_{k,m}\ldots,$ $m=-k,$ $\ldots)k$ .
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The sequence $C_{k}$ is generally called the angular power spectrum of the field $T_{\xi}$ . This
decomposition yields the so called Karhunen-Lo\‘eve expansion of the process, in the torus
case :

$T_{\xi}= \sum_{k\in Nm}\sum_{=-1_{l}+1}(/T_{u}e_{km}(u)du)e_{km}(u)(\xi)=\sum_{k\in Nm}\sum_{=-1,+1}Z_{m}^{k}e_{km}(\xi)$ .

in the sphere case :

$T_{\xi}= \sum_{k\in Nm=}\sum_{-k,,k}\ldots(/s^{2}T_{u}Y_{km}(u)d\sigma(u))Y_{km}(\xi)=\sum_{k\in Nm}\sum_{=-k,,k}\ldots Z_{m}^{k}Y_{km}(\xi)$.

and the variables $Z_{m}^{k}= \int_{S^{2}}T_{u}Y_{km}(u)d\sigma(u)$ are independent and with variance $C_{k}$ . Usual
tests for isotropy regularly take advantage of this independence of the $Z_{m}^{k}s$ for instance
using $\chi^{2}$ or Kolmogorov-Smirnov tests.

However, main objections occur on these tests when the field is only partially ob-
served, as it is the case for the CMB or even for financial data, when some part of the
data might be missing. As the trigonometric basis as well as the spherical harmonics
basis are very poorly concentrated in the space domain, any corruption on the data may
yield a corruption of the $Z_{m}^{k}s$ as well. We see here the need for the construction of a
basis which is at the same time concentrated in the spectral domain (here the $k$ indices)
-to build ‘atoms’ which have chances to remain asymptotically independent-, but also in
the time domain, -to avoid the spots where the data is masked-.

Estimating the density of probability of a distribution on the sphere We
consider the problem of estimating the density $f$ of an independent sample of points
$X_{1},$

$\ldots,$
$X_{n}$ observed on the d-dimensional sphere $S^{d}$ of $\mathbb{R}^{d+1}$ .

This study is especially motivated by many recent developments in the area of ob-
servationaI astrophysics. As an example, we refer to experiments measuring incom-
ing directions of Ultra High Energy Cosmic Rays, such as the AUGER Observatory
(http:$//www$.auger.org). Here, efficient estimation of the density function of these di-
rectional data may yield crucial insights into the physical mechanisms generating the
observations. More precisely, a uniform density would suggest the High Energy Cos-
mic Rays are generated by cosmological effects, such as the decay of massive particles
generated during the Big Bang; on the other hand, if these Cosmic Rays are generated
by astrophysical phenomena (such as acceleration into Active Galactic Nuclei), then we
should observe a density function which is highly non-uniform and tightly correlated
with the local distribution of nearby Galaxies. Massive amount of data in this area are
expected to be available in the next few years.
There is an abundant literature about this type of problems. $\ln$ particular, minimax
$L_{2}$ results have been obtained (see [12], [13]). These procedures are generally obtained
using either kemel methods (but in this case the manifold structure of the sphere is not
well taken into account), or using orthogonal series methods associated with spherical
harmonics (and in this case the ‘local performances of the estimator are quite poor, since
spheric harmonics are spread all over the sphere).
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Here, and precisely in view of the Auger application, we need to add the following
requirements to the standard properties: we aim at a procedure which is minimax from
$\mathbb{L}_{2}$ point of view but also performs satisfactorily from a local point of view (in infinity
norm, for instance). In addition, we require this procedure to be simple to implement, as
well as adaptive to inhomogeneous smoothness. This type of requirements is generally
well handled using thresholding estimates associated to wavelets. The problem requires
a special construction adapted to the sphere, since usual tensorized wavelets will never
reflect the manifold structure of the sphere and will necessarily create unwanted arti-
facts. We will need in this case a basis mimicking the good performances of the wavelet
basis but adapted to the sphere case: the fundamental properties of wavelets are their
concentration in the Fourier domain as well as in the space domain. Here, obviously the
‘space’ domain is the sphere itself whereas the spectral domain is now obtained by re-
placing the ‘Fourier’ basis by the basis of Spherical Harmonics which plays an analogous
role on the sphere.

Again, the problem of choosing appropriated spaces of regularity on the sphere in
a serious question, and it is important to consider the spaces which may be the closest
to our natural intuition: those which generalize to the sphere case the approximation
properties shared by standard Besov and Sobolev spaces.

Inverse problems This problem deals with recovering a function $f$ , when we receive a
blurred (by a linear operator) and noisy version : $Y_{\epsilon}=Kf+\epsilon\dot{W}$ . There is an abundant
litterature on these problems and important examples such as the deconvolution problem
(on a interval of $\mathbb{R}$ or on the sphere), the Wicksell problem, or the Radon problem. The
direct problem ($K$ is the identity) isolates the denoising operation. It can’t be solved
unless accepting to estimate a smoothed version of $f$ : for instance, if $f$ has an expansion
on a basis, this smoothing might correspond to stopping the expansion at some stage $m$ .
Then a crucial problem lies in finding an equilibrium for $m$ considering the fact that for
$m$ large, the difference between $f$ and its smoothed version is small, whereas the random
effect introduces an error which is increasing with $m$ . In the true inverse problem, in
addition to denoising we have to ‘inverse the operator’ $K$ , which operation not only
creates the usual difficulties, but also introduces the necessity to control the additional
instability due to the inversion of the random noise. Our purpose here is to emphasize
the fact that in such a problem, there generally exists a basis which is fully adapted to
the problem, where for instance the inversion remains very stable : this is the Singular
Value Decomposition basis-i.e. in fact two orthonormal bases $(e_{i})$ and $(gi)$ and a set
of coefficient $(b_{i})$ such that $Ke_{i}=b_{i}gt,$ $K^{*}gi=b_{i}e_{i}$ for all $i$ . On the other hand, the
SVD basis might not be appropriate for the accurate description of the solution with
a small number of parameters. Also in many practical situations, the signal provides
inhomogeneous regularity, and its local features are especially interesting to recover. In
such cases, other bases (in particular localised bases such as wavelet bases) may be much
more appropriate to give a good representation of the object at hand. For instance, in the
deconvolution problem (on a compact subset of R), the SVD basis is the trigonometric
basis. In the case of deconvolution on the sphere, the problem is more tedious, but one
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can prove (see see [10] and [11]) that the SVD basis also involves the spherical harmonic
basis. In the wicksell case, following $[6|$ , we have the following SVD :

$ek(x)=4(k+1)^{1/2}x^{2}P_{k}^{0,1}(2x^{2}-1)$

$gk(y)=U_{2k+1}(y)$

$P_{k}^{0,1}$ is the Jacobi polynomial of type $(0,1)$ with degree $kU_{k}$ is the second type Chebishev
polynomial with degree $k$ . In the Radon problem, the following bases form the SVD
bases:

$e_{k_{J}l,i}(x)=(2k+d)^{1/2}P_{j}^{(0,l+d/2-1)}(2|x|^{2}-1)Y_{l_{1}i}(x),$ $0\leq l\leq k,$ $k-l=2j,$ $1\leq i\leq N_{d-1}(l)$ ,

$gk_{I}l,i(\theta, s)=[h_{k}^{(d/2)}]^{-1/2}(1-s^{2})^{(d-1)/2}C_{k}^{d/2}(s)Y_{l,i}(\theta)$, $k\geq 0,$ $l\geq 0,1\leq i\leq N_{d-1}(l)$ ,

where $P_{j}^{(0,l+d/2-1)}$ and $C_{k}^{d/2}$ are respectively Jacobi and Gegenbauer polynomials.
All the examples of SVD bases listed above are poorly concentrated. To provide a

procedure with basically the same requirements as in the density estimation case (sim-
plicity and stability of the algorithm, minimax optimality with respect to various $\mathbb{I}_{p}$

norms, adaptation to signals which might present inhomogeneous smoothness...) we
again need the construction of a ‘basis’ adapted to the previous SVD bases-i.e. concen-
trated in their spectral domain- as well as concentrated in the space domain.

We will also need to define spaces of regularity and see how these spaces can be
expressed in tems of the ‘wavelet coefficients.

Rames were introduced in the $1950$ ’s by Duffin and Schaeffer [5] as a means for
studying nonharmonic Fourier series. These are redundant systems which behave like
bases and allow for a lot of flexibility. Tight frame which are very close to orthonormal
bases are particularly useful in signal and image processing.

In the sequel we discuss a general scheme for constmction of frames due to Petmshev
and his co-authors $[$17], $[$18$]$ , $[$ 19]. As will be shown this construction has the advantage
of producing easily computable hame elements which are extremely well localized in all
cases of interest. Following [17], [18], [19], we will term them ”needlets”.

2 A general framework

The following hamework can be collected from several papers of Kyriazis, Narcowich,
Petrushev, Ward, and Xu. See [16], [17], [18], [14], [19]
In a lot of mathematical situations we have $\mathcal{Y}$ , a compact metric space, $\mu$ a finite borelian
measure and the following decomposition :

$\mathbb{L}_{2}(\mathcal{Y}, \mu)=\bigoplus_{k=0}^{\infty}\mathcal{H}_{k}$, where $\mathcal{H}_{0}=\{\lambda 1, \lambda\in \mathbb{C}\}$

and each $\mathcal{H}_{k}$ is a finite dimension eigenspace associated to the spectral decomposition
of a natural operator on $(\mathcal{Y}, \mu)7$ -say a Laplacian $\Delta$ ) $-$ . Usually $f\in \mathcal{H}_{k}\Rightarrow\overline{f}\in \mathcal{H}_{k}$ . Let

123



$L_{k}$ denote the orthogonal projection on $\mathcal{H}_{k}$ :

$\forall f\in \mathbb{L}_{2}(\mathcal{Y}, \mu)$ , $L_{k}(f)(x)= \int_{\mathcal{Y}}f(y)L_{k}(x,y)d\mu(y)$

with

$L_{k}(x,y)= \sum_{i=1}^{l_{k}}e_{i}^{k}(x)\overline{e}_{i}^{k}(y)$

if $l_{k}$ is the dimension of $\mathcal{H}_{k}$ and $(e_{1}^{k})_{i=1,\ldots 1_{k}}$ any orthogonaJ basis of $\mathcal{H}_{k}$ . Obviously,

$/L_{k}(x,y)L_{m}(y, z)d\mu(y)=\delta_{k_{J}m}L_{k}(x, z)$ (1)

Remark : In the sequel, if there is no ambiguity, $\mu(A)$ , for a borel set $A$ could be
replaced by $|A|$ . As well we identify, with a slight abuse of notation and when there is
no ambiguity, operators with the associated kernels (e.g. $L_{k}$ with $L_{k}(x,y)$ ). $\star$

2.1 Examples

The following examples will be used throughout the paper.

Torus case Let $\mathcal{Y}=S^{1}$ be the torus equipped with the Lebesgue measure. The
spectral decomposition of the Laplacian operator gives rise to the classical Fourier basis,
with

$\mathcal{H}_{k}=span\{e^{ikx}, e^{-ikx}\}=span\{\sin kx, \cos kx\}$

Hence, for all $k>1,$ $dim(\mathcal{H}_{k})=2$ , and

$L_{k}(x, y)=2\cos k(x-y)$

Jacobi case Let us now take $\mathcal{Y}=[-1,1]$ equipped with the measure $\omega(x)dx$ with
$\omega(x)=(1-x)^{\alpha}(1+x)^{\beta},$ $\alpha>-\frac{1}{2},$ $\beta>-\frac{1}{2}$ .
If $\sigma(x)=(1-x)^{2}$ , then $\tau$

$:=\llcorner\sigma\omega’\perp\omega$ is a polynom of degree 1, and

$D(f)= \frac{(\sigma\omega f’)’}{\omega}=\sigma f’’+\tau f’$

is a self-adjoint $(in \mathbb{L}_{Q}(\omega(x)dx))$ second order differential operator (Here and in the
sequel, $u’$ denote the derivative of $u$).
Using Gram Schmidt orthonormalization (again, in $\mathbb{L}_{Q}(\omega(x)dx)$ ) of $x^{k}$ we get a family
of orthonormal polynomials $P_{k}$ , called Jacobi polynomials, which coincides with the
spectral decomposition of $D$ .

$DP_{k}=[k(k-1) \frac{\sigma}{2’}+k\tau’|P_{k}$

If we put for all $k\in N,$ $\mathcal{H}_{k}=span\{P_{k}\}$ we have $dim(\mathcal{H}_{k})=1,$ $L_{k}(x,y)=P_{k}(x)P_{k}(y)$ .
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Sphere case Let now $\mathcal{Y}=\mathbb{S}^{2}\subset \mathbb{R}^{3}$ . Note that this construction has obvious an
generalisation for $\mathbb{S}^{k}\subset \mathbb{R}^{k+1}$ . The geodesic distance on $\mathbb{S}^{2}$ is given by

$d(x, y)=\cos^{-1}(\langle x, y\rangle)$ , $\langle x,$ $y \rangle=\sum_{i=1}^{3}x_{i}yi$ .

There is a natural measure $\sigma$ on $\mathbb{S}^{2}$ which is rotation invariant: (i.e. $\forall\rho\in \mathbb{O}(3)$ ,
$/S^{2}f(\rho(u))d\sigma(u)=/s^{2}f(u)d\sigma(u).)$ Rirthermore if $F$ is defined on $\mathbb{R}^{3}$ ,

$/R^{3}F(x)dx=$ $/o^{\infty}r^{2}/s^{2}F(ru)d\sigma(u)dr$ .

There is a natural Laplacian on $\mathbb{S}^{2},$ $A_{S^{2}}$ , which is a self-adjoint operator with the fol-
lowing spectral decomposition:
If $\mathcal{H}_{k}$ is the restriction to $\mathbb{S}^{2}$ of polynomials of degree $k$ which are homogeneoits $(P=$
$\sum_{|\alpha|=k}a_{\alpha}x^{\alpha}$ , $\alpha=(\alpha_{1}, \alpha_{2}, \alpha_{3}),$ $| \alpha|=\sum\alpha_{i},$ $\alpha_{i}\in \mathbb{N})$ and harmonic $( \Delta P=\sum_{i=1^{\frac{\partial^{2}}{\partial x}}T,i}^{3P}=$

$0)$ , we have :
$\forall P\in \mathcal{H}_{k}$ , $\Delta_{S^{2}}P=-k(k+1)P$

$\mathcal{H}_{k}$ is called the space of spherical harmonics of order $k,$ $dim(\mathcal{H}_{k})=2k+1$ , and if
$(Y_{ki})_{-k\leq i\leq k}$ is an orthonormal basis of $\mathcal{H}_{k}$ , the projector writes

$L_{k}(x, y)= \sum_{-k\leq i\leq k}Y_{ki}(x)\overline{Y_{ki}(y)}$
.

HMrthermore, one can prove that

$L_{k}(x,y)=L_{k}(\langle x, y))$

where $L_{k}(u)$ is the Legendre polynomial of degree $k$ (a special case of Jacobi polynomial-
with a different normalisation- corresponding to $\alpha=\beta=0$) and:

$\int_{-1}^{1}L_{k}(u)L_{m}(u)du=\delta_{k,m}\frac{2k+1}{8\pi^{2}}$

Ball case, Radon transform Let $\mathcal{Y}=B^{d}$ be the unit ball of $\mathbb{R}^{d}$ equipped with the
Lebesgue measure.
For $f\in \mathbb{L}^{2}(B^{d}, dx),$ $\theta\in \mathbb{S}^{d-1}$ , (the unit sphere of $\mathbb{R}^{d}$ ), $t\in[-1,1|$ , we define the Radon
transform of $f$ :

$Rf( \theta, t)=\int_{\langle\theta.x\rangle=t}f(x)dx$

( $dx$ in the formula above denotes the Lebesgue measure on the hyperplan $\langle\theta,$ $x\rangle=t$).
If $d\mu(\theta,t)$ is the measure $d \sigma(\theta)\frac{dt}{(\sqrt{1-t})^{d-1}}$ on $\mathbb{S}^{d-1}x[-1,1]$ , the Radon transform $R$ is
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a continuous mapping from $L^{2}(B^{d}, dx)$ to $\mathbb{L}^{2}(S^{d-1}\cross[-1,1|,$ $d\mu(\theta, t))$ , with the followin$g$

adjoint: if $g(\theta, t)\in \mathbb{L}^{2}(S^{d-1}x[-1,1], d\mu(\theta,t))$

$R^{*}(g)(x)= \int_{S^{d-1}}g(\theta, \langle x, \theta\rangle)(\frac{1}{\sqrt{1-|\langle x,\theta\rangle|^{2}}})^{d-1}d\sigma(\theta)$

Let $\Pi_{k}(B^{d})$ be the space of polynomials of degree $\leq k$ on the unit ball of $\mathbb{R}^{d}$ , the following
decomposition is true:

$\Pi_{k}(B^{d})=\mathcal{V}_{k}(B^{d})\oplus\Pi_{k-1}(B^{d})$

$\mathbb{L}^{2}(B^{d})=\bigoplus_{k=0}^{\infty}\mathcal{V}_{k}(B^{d})$

and the spaces $\mathcal{V}_{k}(B^{d})$ ’s are the eigenspaces of $R^{*}R$ . This provides a Singular Value
Decomposition of $R$ , with corresponding eigenvalues,

$\mu_{k}^{2}=\frac{\pi^{d-1}.2^{d}}{(k+1)\ldots(k+d)}$ $\sim k^{-(d-1)}$

The kernel projector on $\mathcal{V}_{k}$ is given by

$L_{k}(x, y)= \frac{2k+d}{|\mathbb{S}^{d-1}|^{2}}\int_{S^{d-1}}C_{k}^{\nu+1}(\langle x,\xi\rangle)C_{k}^{\nu+1}(\langle y, \xi\rangle)d\sigma(\xi)$ ,

where $\nu=\frac{d}{2}-1$ , and $C_{k}^{\nu+1}$ is the Gegenbauer polynomial.

2.2 General construction of needlets

In the examples above as well as in many “physical” contexts, the eigenfunctions of
a ‘natural’ operator (Laplacian, $D$ , Radon,...) are of sinusoidal type and very badly
concentrated in the space $\mathcal{Y}$

The consequence is that each time we compute the coefficient of a function $f$ ,
$\int_{\mathcal{Y}}f(x)P_{n}(x)d\mu$, any local perturbation on $f$ (or lack of information) will severely cor-
rupt the coefficient. In the sequel we describe the construction of a frame which will
provide a “spectral” description of the function $f$ (in the sense that the atoms of the
frame will be reasonably spectrally concentrated), without the drawback of the bases
encountered above (since the atoms will be also well concentrated in the space domain).

The following construction is based on three fundamental steps : Littlewood-Paley de-
composition, splitting and discretization, which are summarized in the three following

subsections.

2.2.1 Littlewood-Paley decomposition

Let $0\leq a\leq 1$ , be a $C_{\infty}$ non negative function defined on $[0, \infty)$ . We impose $a$ to

be identically 1 on $[0,1/2|$ and compactly supported on $[0,1]$ . Let us now define the
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sequence of linear operators $A_{j},$ $j\geq 0$ and $B_{j},$ $j\geq 0$ , with $A_{0}(f)= \frac{1}{|\mathcal{Y}|}\int_{\mathcal{Y}}f(x)d\mu(x)$

and for $j\geq 1$

$A_{j}f(x)=/y^{A_{j}(x,y)f(y)d\mu(y))}$

$A_{j}(x,y):= \sum_{k}a(\frac{k}{2^{j}})L_{k}(x,y)=\sum_{k<2j}a(\frac{k}{2^{j}})L_{k}(x, y)$

$B_{j}:=A_{j+1}-A_{j}= \sum_{k}b(\frac{k}{2j})L_{k}$

$b(x)$ $:=a(x/2)-a(x)$

Obviously,

$\langle A_{j}f,$ $f \rangle=\sum_{k}a(\frac{k}{2j})\langle L_{k}f,$
$f\rangle\leq\Vert f\Vert^{2}$ (2)

$\lim_{jarrow\infty}\Vert A_{j}(f)-f\Vert_{2}=\lim_{jarrow\infty}\Vert(A_{0}+\sum_{m=0}^{j-1}B_{m})(f)-f\Vert_{2}=0$ (3)

2.2.2 The splitting procedure.

Let us define
$D_{j}(x,y)= \sum_{2^{j-1}<k<2j+1}\sqrt{b}(\frac{k}{2j})L_{k}(x, y)$ .

Due to (1),

$/D_{j}(x,u)D_{j}(u, y)d\mu(u)=B_{j}(x,y)$

And in the same way,

$C_{j}(x, y)= \sum_{0\leq k<2j}\sqrt{a}(\frac{k}{2j})L_{k}(x, y)$

$A_{j}(x,y)=/C_{j}(x, u)C_{j}(u,y)d\mu(u)$

2.2.3 Gauss quadrature formula

Let us now suppose, as important ingredient of this construction, that there is a quadm-
ture formula for $\oplus_{t\leq 2^{2+j}}\mathcal{H}_{l},$ $j\in N$ . This means that there exists a finite set $\mathcal{X}_{j}$ of $\mathcal{Y}$ , and
for all $\xi\in \mathcal{X}_{j}$ , there is an associated coefficient $\lambda_{j,\xi}>0$ , such that for all $f\in\oplus_{l\leq 22+j}\mathcal{H}\iota$ ,
we have the following interpolation formula:

$/\mathcal{Y}^{f(y)d\mu(y)=\sum_{\xi\in \mathcal{X}_{j}}\lambda_{j_{1}\xi}f(\xi)}$ .
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Let us suppose, in addition that $f\in\oplus_{t\leq k}\mathcal{H}\iota$ implies $\overline{f}\in\oplus_{t\leq k}\mathcal{H}_{l}$ , as well as $f\in$

$\oplus_{l\leq k}\mathcal{H}_{l},$ $g\in\oplus_{l\leq m}\mathcal{H}_{l}$ imply $fg\in\oplus_{l\leq k+m}\mathcal{H}_{l}$ .

These assumptions ensure that $u\mapsto C_{j}(x, u)C_{j}(u, y)$ is in $\oplus_{l<2^{2+j}}\mathcal{H}\iota$ as well as $u\mapsto$

$D_{j}(x, u)D_{j}(u, y)$ . As a consequence we write,

$A_{j}(x, y)=/C_{j}(x, u)C_{j}(u, y)d \mu(u)=\sum_{\xi\in \mathcal{X}_{j}}\lambda_{j},{}_{\xi}C_{j}(x,\xi)C_{j}(\xi, y)$ (4)

$B_{j}(x,y)= \int D_{j}(x, u)D_{j}(u, y)d\mu(u)=\sum_{\xi\in \mathcal{X}_{j}}\lambda_{j,\xi}D_{j}(x,\xi)D_{j}(\xi, y)$ (5)

which will directly induce the definition of the needlets.

Example of Gauss quadrature formula Let us first observe that the assumptions
above are easy to handle, at least in the examples presented above

1. $\mathcal{Y}=S^{1}$ It is easy to prove that for:

$f= \sum_{|l|<N}ale^{ilx}$
, $\frac{1}{2\pi}\int_{0}^{2\pi}f(x)dx=\frac{1}{N}\sum_{0\leq k<N}f(\frac{2k\pi}{N})$

Indeed:

$\frac{1}{2\pi}/_{0^{2\pi}}f(x)dx=\sum_{|l|<N}a_{l}\frac{1}{2\pi}/_{0^{2\pi}}f(x)dx=a_{0},$ and, $\forall|l|<N,$ $\frac{1}{N}\sum_{0\leq k<N}e^{il^{2\pi}}*=\delta_{0,l}$ .

2. Orthonormal polynomials. Let us recall that $P_{N}$ denotes the Jacobi polynomial of
degree $N$ . Let us consider $\{\xi_{1}, \xi_{2}, \ldots, \xi_{N}\}$ the set of its roots. It is well known that
this set is of cardinality $N$. Moreover, tehre exist $\lambda_{1}>0,$

$\ldots,$
$\lambda_{N}>0$ such that,

$\forall P=\sum_{l=0}^{2N-1}a_{l}x^{l},$ $/_{-1}^{1}P(x) \omega(x)dx=\sum_{k=1}^{N}\lambda_{k}P(\xi_{k})$ .

Indeed using the euclidean division we write,

$P=QP_{N}+R$ , $d^{o}(Q)<N,$ $d^{o}(R)<N$, so clearly $P(\xi_{k})=R(\xi_{k})$

and by orthogonality

$/_{-1}^{1}P(x) \omega(x)dx=\int_{-1}^{1}Q(x)P_{N}(x)\omega(x)dx+\int_{-1}^{1}R(x)\omega(x)dx=/_{-1}^{1}R(x)\omega(x)dx=\sum_{k=1}^{N}\lambda_{k}R(\xi_{k})$
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where

$\lambda_{k}=/_{-1}^{1}\frac{\prod_{i\neq k}(x-\xi_{i})}{\prod_{i\neq k}(\xi_{k}-\xi_{i})}\omega(x)dx=/_{-1}^{1}[\frac{\prod_{i\neq k}(x-\xi_{i})}{\prod_{i\neq k}(\xi_{k}-\xi_{i})}]^{2}\omega(x)dx>0$

3. For the sphere $S^{2}$ , one can prove (see $[16|$ and [17] $)$ that if $\mathcal{X}_{N}$ is an $\epsilon$ -net with
$\epsilon\sim\frac{1}{N}$ , $($hence Card$(\mathcal{X}_{N})\sim N^{2})$ , there exists a set of positive coefficients $\lambda_{\xi}$ -in
fact $\lambda_{\xi}\sim\overline{N}^{T^{-}}1$ , such that

$\forall f(x)=\sum_{|\alpha|\leq N}a_{\alpha}x^{\alpha}$
, $\int_{S^{2}}f(x)d\sigma(x)=\sum_{\mathcal{X}_{N}}f(\xi)\lambda_{\xi}$ ,

2.2.4 Needlets frame.

Rewriting (4) and (5) in the following way,

$A_{j}(x,y)= \sum_{\xi\in \mathcal{X}_{j}}\sqrt{\lambda_{j\xi}}C_{j}(x,\xi)\sqrt{\lambda_{j\xi}}$

$\overline{C_{j}(y,\xi)}$

$B_{j}(x,y)= \sum_{\xi\in \mathcal{X}_{j}}\sqrt{\lambda_{j_{l}\xi}}D_{j}(x,\xi)\sqrt{\lambda_{j_{2}\xi}}\overline{D_{j}(y,\xi)}$
,

we get

$A_{j}(f)(x)= \sum_{\xi\in \mathcal{X}_{j}}\sqrt{\lambda_{j,\xi}}C_{j}(x,\xi)/f(y)\overline{\sqrt{\lambda_{j,\xi}}C_{j}(y,\xi)}d\mu(y)$

$B_{j}(f)(x)= \sum_{\xi\in \mathcal{X}_{j}}\sqrt{\lambda_{j,\xi}}D_{j}(x,\xi)/f(y)\overline{\sqrt{\lambda_{j,\xi}}D_{j}(y,\xi)}d\mu(y)$

with as a consequence, the following definition,
Definition 1. We define the ’mother’ and ‘father’ needlet ’basis’ as follows: $for\xi\in \mathcal{X}_{j}$ ,

$\phi_{j,\xi}(x)=\sqrt{\lambda_{j,\xi}}C_{j}(x,\xi)=\sqrt{\lambda_{j_{r}\xi}}\sum_{2^{j-1}<k<2j+1}\sqrt{a(\frac{k}{2j})}L_{k}(x,\xi)$

$\psi_{j\xi}(x)=\sqrt{\lambda_{j,\xi}}D_{j}(x, \xi)=\sqrt{\lambda_{j_{2}\xi}}\sum_{2^{j-1}<k<2^{j+1}}\sqrt{b(\frac{k}{2^{j}})}L_{k}(x,\xi)$ .

We have
$f=L_{0}(f)+ \sum_{j}B_{j}f=\langle f,$ $\phi_{0})_{L_{2}(\mu)}\phi_{0}+\sum_{j\in N\xi}\sum_{\in \mathcal{X}_{j}}\langle f,\psi_{j\xi}\rangle_{L_{2}(\mu)}\psi_{j\xi}$

(6)

and
$A_{j}(f)= \sum_{\xi\in \mathcal{X}_{j}}\langle f,$

$\phi_{j_{a}\xi}\rangle_{L_{2}(\mu)}\phi_{j,\xi}$ (7)
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2.2.5 Frame property of the needlet basis.

Using (6), we get

$\Vert f\Vert_{L_{2}(\mu)}^{2}=\sum_{j\in N\xi}\sum_{\in \mathcal{X}_{j}}|\langle f,$

$\psi_{j\xi})_{L_{2}(\mu)}|^{2}$ (8)

But
$\sum_{\xi\in \mathcal{X}_{j}}\sqrt{\lambda_{j,\xi}}\psi_{j\xi}(x)=\sum_{\xi\in \mathcal{X}_{j}}\lambda_{j,\xi}B_{j}(x, \xi)=/\mathcal{X}B_{j}(x, u)d\mu(u)\equiv 0$ .

So the family $(\psi_{j\xi})_{j\in N,\xi\in \mathcal{X}_{j}}$ is a tight frame (with frame constant 1) but is not linearly
independent, so not an orthonormal basis. By construction, the spectral localisation of
$\psi_{j\xi}$ is between $2^{j-1}$ and $2^{j+1}$

Proposition 1.
$\forall j,$ $\xi\in\chi j$ , $\Vert\psi_{j\xi}\Vert_{2}^{2}\leq 1$ , $\Vert\phi_{j,\xi}\Vert_{2}^{2}\leq 1$

Proof: By (8)

$| I\psi_{j\xi}\Vert_{L_{2}(\mu)}^{2}=\sum_{j\in N}\sum_{\eta\in \mathcal{X}_{j’}}|\langle\psi_{j’,\xi},$

$\psi_{j’,\eta}\rangle_{L_{2}(\mu)}|^{2}\geq\Vert\psi_{j’,\xi}\Vert_{L_{2}(\mu)}^{4}$

By (2)

$\Vert\phi_{j,\xi}\Vert_{L_{2}(\mu)}^{4}\leq\sum_{\eta\in \mathcal{X}_{j}}|\langle\phi_{j,\xi},$

$\phi_{j,\eta})_{L_{2}(\mu)}|^{2}=\langle A_{j}(\phi_{j_{?}\xi}),$ $\phi_{j_{1}\xi})\leq\Vert\phi_{j,\xi}\Vert_{2}^{2}$ .

2.2.6 Spatial localisation of the needlet basis.

This construction has in general the beautiful property of producing a localised hame.
The localisation results can be found in [17],[16], $[18|$ . For instance, in the sphere case
the following almost exponential concentration property is proved:

$\forall M\in N,$ $\exists C_{M}$ such that I $\psi_{j\xi}(x)|\leq C_{M}\frac{2^{j}}{(1+\mathfrak{U}d(x,\xi))^{M}}$ .

The $\xi$ ’s corresponding to a level $j$ , will also be denoted by $\xi_{jk},$ $\psi_{j_{i}\eta}$ by $\psi_{j_{2}k}$ by extension.

Let us verify this property in the simple case of the torus $\mathbb{S}^{1}=\mathbb{R}/2\pi \mathbb{Z}$ , where all the
calculations are very easy.
We have :

$D_{j}(x, y)=D_{j}(x-y)= \sum_{2^{j-1}<k<23+1}\sqrt{b}(\frac{k}{2j})2\cos k(x-y)$

Indeed, using the Poisson summation formula, if $\mathcal{F}(h)$ denotes the Fourier transform of
the function $h$

$D_{j}(x)= \sum_{k\in Z}\sqrt{b}(\frac{k}{y})e^{ikx}=\sum_{m\in Z}2^{j}\mathcal{F}(\sqrt{b})(2^{j}(x-2\pi m))$
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On the other part :

$\forall M\in \mathbb{N},$ $\exists C_{M_{J}}$ $| \mathcal{F}(\sqrt{b}(x))|\leq\frac{C_{M}}{(1+|x|)^{M}}$

$|D_{j}(x)| \leq C_{M}\sum_{m\in Z}2^{j}\frac{1}{(1+|2^{j}(x-2\pi m)|)^{M}}\leq 5C_{M}\frac{2^{j}}{(1+|2j_{X|)^{M}}}$

As seen above (see subsection 2.2.3) the cubature points are forming the set $\{\xi_{l}=$

$\frac{2}{2J}\frac{\pi l}{+}z,$ $l=0,1\ldots 2^{j+2}-1\}$ and $\lambda_{\xi_{l}}=2^{-j-2}$ ,

I $\psi_{j_{r}\xi_{l}}(x)|=|\sqrt{\lambda_{\xi}}D_{j}(x-\xi_{l})|=2^{-j/2-1}|D_{j}(x-\frac{2\pi l}{2^{j+2}})|$

$\leq\frac{5}{2}C_{M}\frac{2^{j/2}}{(1+|2^{j}(x_{\overline{2}^{TZ}}^{2\pi l}-J|)^{M}}$

These localisation properties are very important in the applications. For instance, in
the case where $T(x)$ is a gaussian isotropic field defined on the sphere, it is proved in [1]
(see also[3], $[1|, [15])$ under mild regularity conditions on the angular power spectrum of
$T$ , that the random spherical needlet coefficients defined as

$\beta_{j_{l}k}:=/S^{2}T(x)\psi_{j_{1}\xi_{jk}}(x)d\sigma(x)=\sqrt{\lambda_{j,k}}\sum_{l}b(p^{l})T_{l}(\xi_{j,k})$ .

where

$T_{l}(x)$ $:= \sum_{m=-l}^{l}/T(u)Y_{lm}(u)d\sigma(u)Y_{lm}(x)$ (9)

are such that
$|Corr( \beta_{j_{1}k},\beta_{j,k’})|\leq\frac{C_{M}}{(1+2^{j}d(\xi_{j,k},\xi_{j_{2}k’}))^{M}}$ (10)

where, as hinted above, $d(\xi_{j_{1}k}, \xi_{j_{J}k’})=$ arccos $(\langle\xi_{j,k}, \xi_{j,k’}\rangle)$ , and Corr denotes the corre-
lation. This almost exponential decreasing rate is a fondamental tool to prove central
limit theorems, used in $[1|$ to provide tests for Gaussianity or isotropy.

2.3 Key inequalities

In all the examples detailed above, the following inequalities are true (and proved in
[$17|,[16],$ $[18|)$ and, as will be obvious in the sequel, quite important in particular for the
approximation and statistical properties. In the following lines, $gj,\xi$ will stand either
for $\phi_{j_{f}\xi}$ or $\psi_{j\xi}$ . There exist $c\leq C$ such that

$\forall j\in \mathbb{N},\forall x\in \mathcal{Y},\sum_{\xi\in\chi j}\forall j\in \mathbb{N},\forall\xi\in\chi_{j},\Vert gj,\xi\Vert_{1}|gj_{i}\xi(x)|\leq C<\infty$ (12)

$0<c\leq||g_{j,\xi}\Vert_{2}^{2}\leq 1$ (11)
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Let us give, as an example, a proof of the property (11), in the sphere case:
We have seen previously that we always have 1 $gj,\xi\Vert_{2}^{2}\leq 1$ .
Using Parseval equality,

$| I\phi_{j_{2}\xi}\Vert_{2}^{2}=\lambda_{\xi}\sum_{0\leq k<2j}a(\frac{k}{z\prime})L_{k}(\xi)\xi)$

$= \lambda_{\xi}\sum_{0\leq k\leq 2^{j-1}}L_{k}(\xi,\xi)+\lambda_{\xi}$ $\sum_{-,v1<k<2j}a(\frac{k}{y})L_{k}(\xi,\xi)$

$\Vert\psi_{j\xi}\Vert_{2}^{2}=\lambda_{\xi}\sum_{X^{-1}<k<\mathfrak{U}^{+1}}b(\frac{k}{y})L_{k}(\xi,\xi)$ .

But $L_{k}(\xi,\xi)=L_{k}(\langle\xi,\xi\rangle)=L_{k}(1)$ and

$L_{k}(1) \sigma(\mathbb{S}^{2})=\int_{S^{2}}L_{k}(1)d\sigma(u)=\int_{S^{2}}L_{k}(\langle u, u))d\sigma(u)$

$= \int_{S^{2}}\sum_{i=1}^{2k+1}|P_{1}^{k}(u)|^{2}d\sigma(u)=2k+1$ .

On the other hand, as $\lambda_{\xi}\sim 2^{-2j}$ for $\xi\in\chi j$ , we have,

$| I\phi_{j_{1}\xi}\Vert_{2}^{2}\sim 2^{-2j}\sum_{0\leq k<2j}a(\frac{k}{2j})(2k+1)\geq 2^{-j}\sum_{0\leq k<2j}a(\frac{k}{2j})\frac{2k}{2j}\sim/0^{1}2xa(x)dx>0$ .

With an analogous argument for $g=\psi_{j\xi}$ .

3 Besov spaces

The problem of choosing appropriated spaces of regularity on the sphere or associated
with one of the other examples presented above in a serious question, and it is important
to consider the spaces which may be the closest to our natural intuition: those which
generalize usual approximation properties. On the other hand, we are interested in
spaces which can be characterised by their needlet coefficients. This will be our concem
in this section. We will see that these ‘new Besov’ spaces share some properties with
the standard ones. On the other hand some parts are slightly different as for instance
the embeddings results (see the end of the section). For a more complete description see
[$17|,[16|,$ $[18|$ . We begin with fundamental behaviors of the $\mathbb{L}_{p}$ norms.

3.1 $\mathbb{L}_{p}$ robustness of the $\psi_{j\xi}$ frame

Theorem 1. Let us suppose that the frame $\{\psi_{j\xi}\}$ constructed above, venfies (11) and
(12), where as above, $gj_{1}\xi$ stands either for $\phi_{j,\xi}$ or $\psi_{j\xi}$ , then for all $1\leq p\leq\infty$ , (with the
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usual modification for $p=\infty$)

$\forall j\in \mathbb{N},$

$f( \sum_{\xi\in\chi j}|\langle f, g_{j_{I}\xi}\rangle|^{p}\Vert g_{j,\xi}\Vert_{p}^{p})^{1/p}\leq C\Vert f\Vert_{p}$
(13)

$\forall j\in \mathbb{N},$ $\lambda_{\zeta},$ $\xi\in\chi j$ , I $\sum_{\xi\in\chi j}\lambda_{\xi}g_{j_{1}\xi}(x)\Vert_{p}\leq(\frac{C}{c})^{2}(\sum_{\xi\in\chi j}\Vert\lambda_{\xi gj,\xi}\Vert_{p}^{p})^{1/p}$ (14)

Proof:
$\mathbb{R}om(11),$ (12), and interpolation, we have

$c\leq\Vert g_{j,\xi}\Vert_{2}^{2}\leq\Vert gj,\xi\Vert_{1}\Vert g_{j_{I}\xi}\Vert_{\infty}\leq C.$ (15)

(15) will be used all along this proof when dividing by 1 $g_{j,\xi}\Vert_{\infty}$ .

Proof of (13) Obviously,

$\xi\in\chi_{j}\sup|\langle f,$
$g_{j,\xi} \rangle|\Vert g_{j,\xi}\Vert_{\infty}\leq\sup_{\xi\in xj}/|f(x)||\phi_{j_{i}\xi}(x)|d\mu(x)\Vert gj_{1}\xi\Vert_{\infty}\leq\Vert f\Vert_{\infty}\sup\Vert gj_{?}\xi\Vert_{1}\Vert g_{j_{1}\xi}\Vert_{\infty}\leq C\Vert f\Vert_{\infty}\xi\in\chi j$

and

$\sum_{\xi\in\chi j}|\langle f,$
$g_{j_{J}\xi} \rangle|\Vert gj,\xi\Vert_{1}\leq\sum_{\xi\in\chi j}/|f|(x)|gj,\xi(x)|d\mu(x)\Vert gj_{t}\xi\Vert_{1}$

$=/|g_{j_{r}\xi}(x)|\Vert\Vert_{1}d\mu(x)\leq C\Vert f\Vert_{1}$

Let now $1<p<\infty$ and $1/p+1/q=1$ , using H\"older inequality, and interpolation :

$\sum_{\xi\in\chi j}|\langle f,g_{j_{2}\xi}\rangle|^{p}\Vert g_{j,\xi}\Vert_{p}^{p}\leq\sum_{\xi\in\chi j}(/|f(x)||gj,\xi(x)|d\mu(x))^{p}\Vert gj_{1}\xi\Vert_{p}^{p}$

$\leq\sum_{\epsilon\in xj}(/|f(x)|^{p}|g_{j,\xi}(x)|d\mu(x))(\int|gj,\xi(x)|d\mu(x))^{p/q}\Vert g_{j_{?}\xi}\Vert_{p}^{p}$

$= \sum_{\xi\in\chi j}(1^{|f(x)|^{p}gj_{2}\xi(x)|d\mu(x))\Vert g\Vert_{1}^{p-1}\Vert gj_{2}\xi}j_{2}\xi\Vert_{p}^{p}$

$\leq/|f(x)|^{p}(j,\xi d\mu(x)$

$\leq C^{p-1}/|f(x)|^{p}(\sum_{\xi\in\chi j}|gj,\xi(x)|\Vert g_{j,\xi}\Vert_{1})d\mu(x)\leq C^{p}\Vert f\Vert_{p}^{p}$ ,

using (12).
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Proof of (14) For $p=1$ and even $0<p\leq 1$ ,

$|1 \sum_{\xi\in xj}\lambda_{\xi gj,\xi}\Vert_{p}^{p}\leq\sum_{\xi}\Vert\lambda_{\xi gj,\xi}\Vert_{p}^{p}$

and

$| I\sum_{\xi\in\chi_{j}}\lambda_{\xi}g_{j,\xi}\Vert_{\infty}\leq|I$

$\sum_{\xi}|\lambda_{\xi}|\Vert g_{j_{2}\xi}\Vert_{\infty}\frac{|g_{j,\xi}|}{\Vert g_{j,\xi}\Vert_{\infty}}\Vert_{\infty}\leq\frac{C}{c}\sup\xi|\lambda_{\zeta}|\Vert g_{j,\xi}\Vert_{\infty}$

as
$\sum_{\xi}\frac{|gj,\xi(x)|}{||gj,\xi||_{\infty}}\leq\sum_{\xi}|g_{j.\xi}(x)|\frac{\Vert gj,\xi\Vert_{1}}{c}\leq\frac{C}{c}$ . (16)

Now for $1<p<\infty$ , $\frac{1}{p}+\frac{1}{q}=1$ ,

1 $\sum_{\xi\in\chi j}\lambda_{\xi}gj,\xi(x)|^{p}\leq(\sum_{\xi\in\chi j}|\lambda_{\xi}$ Ill $gj, \xi\Vert_{\infty}(\frac{|g_{j,\xi}(x)|}{||gj,\xi||_{\infty}})^{1/p}(\frac{|g_{j,\xi}(x)|}{||gj,\zeta||_{\infty}})^{1/q})^{p}$

$\leq(\sum_{\xi\in\chi j}|\lambda_{\xi}|^{p}\Vert gj,\xi(x)\Vert_{\infty}^{p}\frac{|gj)\xi(x)|}{||g_{j,\xi}||_{\infty}})(\sum_{\xi\in\chi j}\frac{|g_{j,\xi}|}{\Vert g_{j\xi}1\Vert_{\infty}})^{p/q}$

$\leq(\frac{C}{c})^{p-1}\sum_{\xi\in\chi j}|\lambda_{\xi}|^{p}\Vert g_{j_{2}\xi}\Vert_{\infty}^{p-1}|g_{j.\xi}(x)|$

So

$\int j,\xi$ I $g_{j_{2}\xi} \Vert_{1}\leq(\frac{C}{c})^{p-1}(\frac{C}{c})^{p}\sum_{\xi\in xj})$

using the following lemma : $\square$

Lemma 1. Under the $\omega$ndition (11), we have, if $1\leq p\leq\infty$ , $\frac{1}{p}+\frac{1}{q}=1$ :

$\forall j\in \mathbb{N},\xi\in\chi j$ , $\frac{c}{C}\Vert g_{j,\xi}\Vert_{1}^{1/p}\Vert g\Vert_{\infty}^{1/q}\leq||g\Vert_{p}\leq\Vert g\Vert_{1}^{1/p}$ li $g_{j,\xi}\Vert_{\infty}^{1/q}$ (17)

Proof of the lemma The right hand side inequality is always tme by interpolation,
as $\frac{1}{p}=\frac{1}{p}\frac{1}{1}+\frac{1}{\infty}\frac{1}{q}$ .
For the left hand side inequality, again by interpolation, as $\frac{1}{2}=\frac{1}{2}\frac{1}{p}+\frac{1}{2}\frac{1}{q}$ ,

$c\leq\Vert g\Vert_{2}^{2}\leq||g\Vert_{p}\Vert g_{j,\xi}\Vert_{q}$. (18)

We have, using (18), the right hand side inequality with $q$ instead of $p$ , and (18) again:

$c\Vert gj,\xi\Vert_{1}^{1/p}\Vert g\Vert_{\infty}^{1/q}\leq||g\Vert_{p}\Vert gj.\xi\Vert_{q}\Vert gj,\xi\Vert_{1}^{1/p}\Vert gj,\xi\Vert_{\infty}^{1/q}$

$\leq||gj_{2}\xi\Vert_{p}\Vert g\Vert_{1}^{1/q}\Vert g\Vert_{\infty}^{1/p}\Vert gj,\xi\Vert_{1}^{1/p}\Vert gj,\xi\Vert_{\infty}^{1/q}$

$=||gj,\xi\Vert_{p}$ I $gj_{2}\xi\Vert_{1}\Vert gj.\xi\Vert_{\infty}\leq C\Vert gj_{2}\xi\Vert_{p}$
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If we recall the following ‘projections on the multiresolution spaces’,

$A_{j}(f)= \sum_{k}a(\frac{k}{2j})L_{k}(f)=\sum_{\xi\in\chi j}\langle f,$
$\phi_{j\xi})\rangle\phi_{j_{\gamma}\xi}$ (19)

$B_{j}(f)=A_{j+1}(f)-A_{j}(f)= \sum_{\xi\in\chi j}\langle f,$
$\psi_{j\xi}\rangle\psi_{j\xi}$ , (20)

a major consequence of Theorem 1 is the following corollary

Corollary 1. For $f\in L_{p},$ $1\leq p\leq\infty$ , (with the usual modification for $p=\infty$)

$\frac{1}{C}\Vert A_{j}(f)\Vert_{p}\leq(\sum_{\xi\in\chi j}|\langle f, \phi_{j,\xi}\rangle|^{p}\Vert\phi_{j,\xi}\Vert_{p}^{p})^{1/p}\leq C\Vert A_{j+1}(f)\Vert_{p}$ (21)

$\frac{1}{C}\Vert B_{j}(f)\Vert_{p}\leq(\sum_{\xi\in\chi j}|\langle f, \psi_{j\zeta})|^{p}\Vert\psi_{j\zeta}\Vert_{p}^{p})^{1/p}\leq C(\Vert B_{j-1}(f)\Vert_{p}+\Vert B_{j}(f)\Vert_{p}+\Vert B_{j+1}(f)\Vert_{p})$

(22)

Proof of the corollary We have $\langle f,$ $\phi_{j_{1}\xi})=\langle A_{j+1}f,$ $\phi_{j_{1}\xi}\rangle;(21)$ is a direct consequence
of theorem 1.
In the same way, $\langle f,$ $\psi_{j\xi}\rangle=((B_{j-1}(f)+B_{j}(f)+B_{j+1}(f)),$ $\psi_{j\xi}\rangle;(22)$is also a direct
consequence of theorem 1.

3.2 Definition of Besov Spaces

We define the Besov spaces in this context as spaces of approximation (as usual Besov
spaces may also be defined). For a more complete description see [17],[16], [18]. Let
$\Pi_{n}=\oplus_{k=0}^{n}\mathcal{H}_{k}$ , be the space spanned by all the $\mathcal{H}_{k}$ ’s up to $n$ . We define, for a function
$f$ : $\mathcal{Y}\mapsto \mathbb{R}$ , its best $\mathbb{L}_{p}$-approximation by

$E_{n}(f,p)= \inf_{P\in\Pi_{n}}\Vert f-P\Vert_{p}$

and the associated Besov spaces by the following definition.

Definition 2. For $0<s<\infty,$ $1\leq p\leq\infty$ and $0<q\leq\infty$ , we define the space $B_{p_{r}q}^{s,0}$ as
the space of functions $f\in \mathbb{L}_{p}$ such that ;

$( \sum_{n\geq 1}(n^{s}E_{n}(f,p))^{q}\frac{1}{n})^{1/q}<\infty$

$(if q= \infty, \sup_{n\geq 1}n^{s}E_{n}(f,p)<\infty)$ . This space is equipped with the following norm,

Il $f \Vert_{B_{p_{t}q}^{\epsilon}}=\Vert f\Vert_{p}+(\sum_{n\geq 1}(n^{s}E_{n}(f,p))^{q}\frac{1}{n})^{1/q}$

(with the obvious modification for $q=\infty.$)
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For instance, if $p=q=\infty$ , the space defined above is the space of functions which
can be uniformly approximated using elements of $\Pi_{n}$ at the speed $n^{-s}$ .

Remarks As $A_{j}f= \sum_{\xi\in\chi j}\langle f,$ $\phi_{j_{7}\xi}\rangle\phi_{j_{i}\xi}\in\Pi_{y}$ ,

$E_{2^{j}}(f,p)\leq\Vert f-A_{j}(f)\Vert_{p}$

and on the other hand $P\in\Pi_{2^{j-1}}\Rightarrow A_{j}(P)=P$, hence, 1 $f-A_{j}f\Vert_{p}=\Vert f-P+P-$

$A_{j}f\Vert_{p}\leq\Vert f-P\Vert_{p}+\Vert A_{j}(P-f)\Vert_{p}\leq(1+C_{0}C_{0}’)\Vert f-P\Vert_{p}=K\Vert f-P\Vert_{p}$ . So we have

$E_{2^{j}}(f,p)\leq\Vert f-A_{j}(f)\Vert_{p}\leq KE_{2^{j-1}}(f,p)$ (23)

On the other hand, as $n\mapsto E_{n}(f,p)$ is obviously non increasing, we have, using the
condensation principle:

$\Vert f\Vert_{B_{p,q}^{*}}\sim||f\Vert_{p}+\Vert(2^{js}E_{2j}(f,p))_{j\in N}||_{l_{q}(N)}$

This leads to the following characterisation of Besov spaces.

3.2.1 Characterisation of Besov spaces

If we recall the definition of $A_{j}(f)$ and $B_{j}(f)$ , in (19), (20), we have the following
characterisation.

Theorem 2. For $f\in \mathbb{L}_{pf}$ with the follovtng decomposition

$f=\langle f,$
$1 \rangle+\sum_{j\geq 0}\sum_{\xi\in\chi j}\langle f,\psi_{j\xi}\rangle\psi_{j\xi}$

the following properties are equivalent:

1. $f\in B_{p,q}^{s}$ .

2. $\Vert f\Vert_{p}+\Vert(2^{js}\Vert f-A_{j}(f)\Vert_{p})_{j\in N}||_{l_{q}(j\in N)}<\infty$ .

3. 1 $f\Vert_{p}+\Vert(2^{js}\Vert B_{j}(f)\Vert_{p})_{j\in N}\Vert_{l_{q}(j\in N)}<\infty$ .

4. $\Vert f\Vert_{B_{p,q}^{s}}\sim||f\Vert_{p}+\Vert(2^{js}(\sum_{\xi\in\chi j}|\langle f,\psi_{j\xi})|^{p}\Vert\psi_{j\xi}\Vert_{p}^{p}))_{j\in N}\Vert_{l_{q}(j\in N)}<\infty$

.

unth equivalence of the induced norms.
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Proof of the theorem The equivalence of 1 and 2 comes from (23). As $B_{j}(f)=$

$A_{j+1}-A_{j}(f)=(A_{j+1}-f)+(A_{j}(f)-f)$ , we get easily $2\Rightarrow 3.3$ and 4 are equivalent
from (22). It remains to prove that 3 implies 2. This is clear from :

$\Vert f-A_{j}(f)\Vert_{p}=\Vert\sum_{l=j}^{\infty}B_{l}(f)\Vert_{p}\leq\sum_{l=j}^{\infty}\Vert B_{l}(f)\Vert_{p}$

But
$\Vert B_{l}(f)\Vert_{p}=\alpha_{l}2^{-ls}$ , $\alpha\in l_{q}$ .

So
$\sum_{l=j}^{\infty}$ I $B_{l(f)\Vert_{p}=\sum_{l=j}^{\infty}\alpha 2^{-ls}=2^{-js}(\sum_{l=j}^{\infty}\alpha\iota^{2^{-(l-j)s})=2^{-js}\delta_{j}}}\iota$

and by convolution inequality $\delta\in l_{q}$ .
As the needlet system is a frame and not a basis, we need additionally to prove the
following theorem concerning a decomposition where the $\lambda_{j_{i}\xi}$ are not necessarily the
‘needlet coefficients’ $\langle f,$ $\psi_{j\xi}\rangle$ .

Theorem 3. For $s>0,$ $\beta\in \mathbb{C}$ and $(\lambda_{j_{2}\xi})_{j\in N,\xi\in\chi j}\in \mathbb{C}$ , such that

$( \sum_{\xi\in\chi j}|\lambda_{j,\xi}|^{p}\Vert\psi_{j\xi}\Vert_{p}^{p})^{1/p}=\alpha_{j}2^{-js}$
, $\alpha$ . $\in l_{q}(N)$ ,

then
$f= \beta+\sum_{j\in N}(\sum_{\xi\in\chi j}\lambda_{j_{I}\xi}\psi_{j\xi})\in B_{p,q}^{s}$

and
$|1f\Vert_{B_{p,q}^{s}}\leq D(|\beta|+\Vert\alpha Il\iota_{q})$

Proof of the theorem Let $\Delta_{j}(f)=\sum_{\xi\in\chi j}\lambda_{j,\xi}\psi_{j\xi}$ . Clearly : $\Vert\Delta_{j}(f)\Vert_{p}\leq C\alpha_{j}2^{-js}$ and

$\Vert f\Vert_{p}\leq|\beta|+\sum_{j\geq 0}\Vert\Delta_{j}(f)\Vert_{p}\leq|\beta|+C\sum_{j\geq 0}\alpha_{j}2^{-js}\leq|\beta|+C’\Vert\alpha\Vert_{l_{q}}$

Moreover
$\langle f,\psi_{j\xi})=\langle\Delta_{j-1}(f),$ $\psi_{j\xi})\rangle+\langle\Delta_{j}(f),$ $\psi_{j\xi})\rangle+\langle\Delta_{j+1}(f),$ $\psi_{j\xi})\rangle$

$( \sum_{\xi\in\chi j}|\langle f,\psi_{j\xi}\rangle|^{p}\Vert\psi_{j\xi}\Vert_{p}^{p})^{1/p}\leq C(II\Delta_{j-1}(f)\Vert_{p}+\Vert\Delta_{j}(f)\Vert_{p}+\Vert\Delta_{j+1}(f)\Vert_{p})$
.

Remark: Of course it is not true that

$|1f$ Il $B_{pq}^{\epsilon\sim(|\beta|+\Vert\alpha\Vert_{t_{q}})}$

since it is possible to have $\sum_{\xi\in\chi j}\lambda_{j_{t}\xi}\psi_{j\xi}=0$ , and $\sum_{\xi\in\chi j}|\lambda_{j_{l}\xi}|^{p}\Vert\psi_{j\xi}\Vert_{p}^{p}>0$ .
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3.3 Besov embeddings

It is a key point for approximation properties as well as statistical rates of convergence
to clarify how the spaces defined above may be included in each others. As will be
seen, the embeddings will parallel the standard embeddings of usual Besov spaces, but
with important differences which yield new minimax rates of convergence for instance
as detailed in the next section.

We begin with the following proposition which provides an important tool for com-
parison of the different $\mathbb{L}_{p}$ norms of the needlets.

Proposition 2. Let $(\psi_{j\xi})_{j\in N,\xi\in\chi j}$ a tight $fl’ameve7\dot{Y}hing\omega ndition(11)$ and

$\forall j\in \mathbb{N},\xi\in xj$ , $\Vert\psi_{j\xi}\Vert_{1}\Vert\psi_{j\xi}\Vert_{\infty}\leq C<\infty$ . Then (24)

$\forall 1\leq r\leq 2,$ $c^{1/r}\Vert\psi_{j\xi}\Vert_{\infty}^{1-2/r}\leq$ II $\psi_{j\xi}\Vert_{r}\leq c^{1/r}\Vert\psi_{j\xi}\Vert_{\infty}^{1-2/r}$ (25)

$\forall 0<r\leq 2,c\forall 2\leq r\leq\infty,\frac{c}{1/fC}||\begin{array}{l}\psi_{j\xi}||\psi_{j\xi}\end{array}|\infty\leq||\psi_{j\xi}||_{1_{r}^{r}}^{\leq\Vert\psi_{j\xi}\Vert_{\infty}^{1-2/r}}$

(26)

(27)

Proof of the proposition By interpolation, if $1\leq r\leq\infty$ $( \} =\frac{\theta}{1}+\frac{\theta}{\infty}, (\theta=\frac{1}{r}))$and
using (24),

$\Vert\psi_{j\xi}\Vert_{r}\leq\Vert\psi_{j\xi}\Vert_{1}^{1/r}\Vert\psi_{j\xi}\Vert_{\infty}^{1-1/r}\leq C^{1/r}\Vert\psi_{j\xi}\Vert_{\infty}^{1-2/r}$ .

Again by interpolation, if $1\leq q\leq 2\leq p\leq\infty,$ $\frac{1}{p}+\frac{1}{q}=1(\frac{1}{2}=\frac{1}{2}\frac{1}{p}+\frac{1}{2}\frac{1}{q},)$ and using (11)
and (24),

$c\leq\Vert\psi_{j\xi}\Vert_{2}^{2}\leq\Vert\psi_{j\xi}\Vert_{p}\Vert\psi_{j\xi}\Vert_{q}\leq||\psi_{j\xi}\Vert_{1}\Vert\psi_{j\xi}\Vert_{\infty}\leq C$. (28)

If $2\leq p\leq\infty$ , $\frac{1}{p}=\frac{\theta}{2}+\frac{1-\theta}{\infty}$ , $( \theta=\frac{2}{p})$ , by (11),

$|1\psi_{j\xi}\Vert_{p}\leq||\psi_{j\xi}\Vert_{2}^{2/p}$ I $\psi_{j\xi}\Vert_{\infty}^{1-2/p}\leq||\psi_{j\xi}\Vert_{\infty}^{1-2/p}$

Moreover, if $0<q\leq 2$ , $\frac{1}{2}=\frac{\theta}{q}+\frac{1-\theta}{\infty}$ , $\theta=_{2}^{q}$

$c\leq||\psi_{j\xi}\Vert_{2}^{2}\leq||\psi_{j\xi}\Vert_{q}^{q}\Vert\psi_{j\xi}\Vert_{\infty}^{2-q}$

So
$\forall 0<q\leq 2$ , $c\Vert\psi_{j\xi}\Vert_{\infty}^{q-2}\leq\Vert\psi_{j\xi}\Vert_{q}^{q}$ . (29)

On the other side,

$\forall c2\leq p\leq\infty,\frac{qC}{C}\Vert\psi_{j\xi}\Vert_{\infty}^{1-2/p}\leq c^{1/p}\frac{c}{C}||\psi_{j\xi}\Vert_{\infty}^{1-2/p}\leq||\psi_{j\xi}||_{p}\leq||_{\psi_{j\xi}||_{\infty}^{1-2/p}}^{1_{\infty}^{-(1-2/p)}}$

.

Moreover by $\frac{1}{2}=\frac{\theta}{1}+\frac{1-\theta}{p}$ , $\theta=\frac{p-2}{2(p-1)},$ $1- \theta=\frac{p}{2(p-1)}$

$c \leq||\psi_{j\xi}\Vert_{2}^{2}\leq||\psi_{j\xi}\Vert_{1}^{2\theta}\Vert\psi_{j\xi}\Vert_{p}^{2(1-\theta)}\leq(\frac{C}{\Vert\psi_{j\zeta}\Vert_{\infty}})^{L^{-}\frac{2}{1}}p-(\Vert\psi_{j\xi}\Vert_{p}^{p})^{\iota/(p-1)}$.
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So

$C( \frac{c}{C})^{p-1}\Vert\psi_{j\xi}\Vert_{\infty}^{p-2}\leq\Vert\psi_{j\xi}\Vert_{p}^{p}$ , hence

$\forall 2\leq p\leq\infty$ , $( \frac{C}{C})^{p}\Vert\psi_{j\xi}\Vert_{\infty}^{p-2}\leq\Vert\psi_{j\xi}\Vert_{p}^{p}$

We are now able to state the embeddings results,

Theorem 4. Under the $\omega nditions$ of Proposition 2
1. $1\leq p\leq\pi\leq\infty\Rightarrow B_{\pi,r}^{s}\subseteq B_{p,r}^{s}$.

2. If $\sup_{\xi\in\chi j}\Vert\psi_{j\xi}\Vert_{\infty}^{2}\leq C2^{j\mu}$ then

$\infty\geq p\geq\pi>0$ , $s>\mu(1/\pi-1/p)$ , $\Rightarrow B_{\pi,r}^{\epsilon}\subseteq B_{p,r}^{\epsilon-\mu(1/\pi-1/p)}$

Proof of the theorem Recall that :

$f \in B_{\pi,r}^{s}\Leftrightarrow(\sum_{\xi\in\chi j}(|\beta_{j_{1}\xi}|\Vert\psi_{j\xi}\Vert_{\pi})^{\pi})^{1/\pi}\leq\delta_{j}2^{-js}$ , $\delta$ . $\in l_{r}(\mathbb{N})$ .

Writing, $( \sum_{\zeta\in\chi j}(|\beta_{j,\xi}|\Vert\psi_{j\xi}\Vert_{p})^{P})^{1/p}=(\sum_{\xi\in\chi j}(|\beta_{j_{1}\xi}|\Vert\psi_{j\xi}\Vert_{\pi})^{p}(V\psi_{j\xi}\lrcorner i^{||}||_{\pi}^{\epsilon})^{p})^{1/p}$ , we have the
following cases,

1. $1\leq p\leq\pi\leq\infty$

$( \sum_{\zeta\in\chi j}(|\beta_{j,\xi}|\Vert\psi_{j\xi}\Vert_{p})^{p})^{1/p}\leq(\sum_{\xi\in\chi j}(|\beta_{j,\xi}|\Vert\psi_{j\xi}\Vert_{\pi})^{\pi})^{1/\pi}(\sum_{\xi\in\chi j}(\frac{||\psi_{j\xi}||_{p}}{||\psi_{j\xi}||_{\pi}})^{\frac{1}{1/p-1/\pi}})^{(1/p-1/\pi)}$

Using (17),

$\frac{||\psi_{j\xi}||_{p}}{||\psi_{j\xi}||_{\pi}}\leq\frac{\Vert\phi_{j_{l}\xi}\Vert_{1}^{1/p}\Vert\phi_{j,\xi}||_{\infty}^{1-1/p}}{\frac{c}{C}\Vert\phi_{j,\xi}\Vert_{1}^{1/\pi}\Vert\phi_{j_{l}\xi}\Vert_{\infty}^{1-1/\pi}}=\frac{C}{c}(\frac{\Vert\psi_{f}\prime\xi\Vert_{1}}{\Vert\psi_{j\xi}\Vert_{\infty}})^{1/p-1/\pi}$

$( \sum_{\xi\in n}(|\beta_{j_{2}\xi}|\Vert\psi_{j\xi}\Vert_{p})^{p})^{1/p}\leq\frac{C}{c}(\sum_{\xi\in\chi j}\frac{||\psi_{j\zeta}||_{1}}{||\psi_{j\xi}||_{\infty}}I^{(1/p-1/\pi)}(\sum_{\xi\in\chi j}(|\beta_{j.\xi}|\Vert\psi_{j\xi}\Vert_{\pi})^{\pi})^{1/\pi}$

But using (16)

$( \sum_{\xi\in\chi j}(|\beta_{j,\xi}|\Vert\psi_{j\xi}\Vert_{p})^{p})^{1/p}\leq\frac{C}{c}(\frac{C}{c}\mu(\mathcal{X}))^{1/p-1/\pi}(\sum_{\xi\in\chi j}(|\beta_{j,\xi}|\Vert\psi_{j\xi}\Vert_{\pi})^{\pi})^{1/\pi}\leq C(p, \pi)\delta_{j}2^{-js}$

$($As $\mu(\mathcal{Y}))<\infty)$ .
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2. $\infty\geq p\geq\pi>0$ ; $\infty\geq p\geq 1$

$( \sum_{\xi\in\chi_{j}}(|\beta_{j,\xi}|\Vert\psi_{j\xi}\Vert_{p})^{p})^{1/p}\leq_{\xi}\sup_{\in\chi j}\frac{||\psi_{j\xi}||_{p}}{||\psi_{j\xi}||_{\pi}}(\sum_{\xi\in\chi_{j}}(|\beta_{j,\xi}|\Vert\psi_{j\xi}\Vert_{\pi})^{\pi})^{1/\pi}$

Using Proposition 2,

$\frac{||\psi_{j\xi}||_{p}}{||\psi_{j\xi}||_{\pi}}\leq K(p, \pi)\Vert\psi_{j\xi}\Vert_{\infty}^{2(1/\pi-1/p)}$

where $K(p, \pi)=\frac{C}{c}$ , if $2\leq\pi,$ $K(p, \pi)=\frac{c^{1/p}}{c^{1/\pi}}$ , if $0<\pi<2$ .

$( \sum_{\xi\in\chi j}(|\beta_{j_{2}\xi}|\Vert\psi_{j\xi}\Vert_{p})^{p})^{1/p}\leq K(p, \pi)(\sup_{\xi\in\chi j}(\Vert\psi_{j\xi}\Vert_{\infty}^{2})^{1/\pi-1/p}(\sum_{\xi\in\chi j}(|\beta_{j_{r}\xi}|\Vert\psi_{j\xi}\Vert_{\pi})^{\pi})^{1/\pi}$

$\leq K’(p, \pi)\delta_{j}2^{-js}2^{j\mu(1/\pi-1/p)}$ .
using Proposition (2), and the hypothesis.

4 Minimax rates of convergence

Density estimation on the sphere Let us come back to the statistical examples
presented in the introduction and consider the problem of estimating the density $f$ of
an independent sample of points $X_{1},$

$\ldots,$
$X_{n}$ observed on the d-dimensional sphere $S^{d}$

of $\mathbb{R}^{d+1}$ . Taking now advantage of the construction of needlets based on the spherical
harmonic basis, we can build the following needlet estimator, using a hard thresholding
of a needlet expansion as follows. We start by letting:

$\hat{\beta}_{j\xi}:=\frac{1}{n}\sum_{i=1}^{n}\psi_{j\xi}(X_{i})$ (30)

$\hat{f}=\frac{1}{|\mathbb{S}^{d}|}+\sum_{j=0}^{J}\sum_{\xi\in\chi j}\hat{\beta}_{j\xi}\psi_{j\xi}1_{\{|\hat{\beta}_{j\xi}|\geq\kappa t_{n}\}}$ (31)

The tuning parameters of the needlet estimator are the following:

$\bullet$ The range of resolution levels (frequencies) where the approximation (31) is used:

$2^{J}=( \frac{n}{\log n})^{\S}$
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$\bullet$ The threshold constant $\kappa$ which is precised in the following theorem.
$\bullet$ $t_{n}$ is a sample size-dependent scaling factor.

$t_{n}=( \frac{\log n}{n})^{1/2}$

The following theorem is proved in [2], and gives the rates of convergence of the
needlet estimator. It is ako proved in $[$2$]$ that the rates given here are optimal ffom
the minimax point of view, up to logarithmic terms. As announced in the introduction,
this procedure is minimax from $\mathbb{L}_{Q}$ point of view but also performs satisfactorily from a
local point of view (in infinity norm, for instance) and more generally for any $\mathbb{L}_{p}$ norm.
In addition, the procedure is simple to implement, as well as adaptive to the regularity
class (its construction does not involve the knowledge of the regularity) and also to
inhomogeneous smoothness (the optimality of the rate stands for a very large class of
Besov spaces). Of course, the Besov spaces used here are those defined in the previous
section.

Theorem 5. For $0<\pi\leq\infty,$ $p\geq 1,$ $s> \frac{d}{r}$ , so that $B_{\pi,q}^{s}\subset L^{\infty}$ .
a$)$ For any $z>0$ , there exist some constants $c_{\infty}=c_{\infty}(s,p, \pi, A, M)$ such that if

$\kappa>\frac{z+1}{6}$ ,

$f \in B_{\pi,q}^{\epsilon}(M)\cap||f||_{\infty}\leq ASupE\Vert\hat{f}-f\Vert_{\infty}^{z}\leq c_{\infty}(\log n)^{z-1}[\frac{n}{\log n}]\frac{-(*-4n)}{2(\epsilon-d(1\pi-i))}$ (32)

b$)$ For $1\leq p<\infty$ there exist some $\omega nstantc_{p}=c_{p}(s,\pi,p, A, M)$ such that if $\kappa>L12$ ’

$\sup$
$E\Vert f-f\Vert_{p}^{p}\leq c_{\rho}(\log n)^{p-1}(\log n)^{I\{\pi=\frac{dp}{2\epsilon+d}\}}[\frac{n}{\log n}]^{-\frac{(s-d(\frac{1}{\pi(}-\frac{1}{p}))p}{2(\epsilon-d\frac{1}{\pi}-\}))}}$

, if $\pi\leq\frac{dp}{2s+d}$

$f\in B_{\pi,q}^{s}(M)\cap||f||_{\infty}\leq A$

(33)

$\sup$ $E\Vert\hat{f}-f\Vert_{p}^{p}\leq c_{p}(\log n)^{p-1}[\frac{n}{\log n}]^{*}-\iota s+$ , if $\pi>\frac{dp}{2s+d}$ (34)
$f\in B_{\pi,q}^{s}(M)\cap||f||_{\infty}\leq A$

Denoising-deblurring in a Jacobi context This part is inspired by [9], where we
consider recovering a function $f$ , when receiving a blurred (by a linear operator) and
noisy version : $Y_{\epsilon}=Kf+\epsilon W$ . We consider the particular case where the SVD basis
is composed of Jacobi polynomials (with coefficients $\alpha\geq\beta>-\frac{1}{2}$) and the eigenvalues
have a polynomial decreasing rate $(b_{i}\sim i^{-\nu}$ , this notation meaning that there exist two
constants $c,$ $C$ such that for all $i,$ $ci^{-\nu}\leq b_{i}\leq Ci$ ’, where $\nu$ is a known constant);
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the Wicksell problem is a special example of this case. Taking agatn advantage of the
construction of needlets based on the Jacobi basis, we can also provide here a needlet
estimator, using a hard thresholding of a needlet expansion as follows. Let us denote for
simplicity by $(e_{i})$ and $(g\{)$ the SVD bases.

The needlet decomposition of any $f$ takes the form

$f= \sum_{j}\sum_{\xi\in\chi j}\langle f,$

$\psi_{j\xi}\rangle\psi_{j\xi}$ .

Using Parseval’s identity, we have $\beta_{j\xi}=\langle f,$ $\psi_{j\xi}\rangle=\sum_{i}f^{i}\psi_{j\xi}^{i}$ with $f^{i}=\langle f,$ $ei\rangle$ and
$\psi_{j\xi}^{i}=\langle\psi_{j\xi},$ $e_{i}\rangle$ . If we put $Y^{i}=\langle Y_{\epsilon},$ $gi\rangle$ , then

$Y^{i}=\langle Kf,$
$g \iota\rangle+\epsilon\eta^{i}=\langle f_{7}K_{9t}^{*})+\epsilon\eta^{i}=\langle\sum_{j}f^{j}e_{j},$

$K^{*}gi\rangle+\epsilon\eta^{i}=b_{i}f^{i}+\epsilon\eta^{i}$ ,

where the $\eta^{i}=(\dot{W}$ , $g_{i}\rangle$ form a sequence of independent centered Gaussian variables with
variance 1. Thus

$\hat{\beta}_{j\xi}=\sum_{:}\frac{Y^{i}}{b_{i}}\psi_{j\xi}^{i}$

is an unbiased estimate for $\beta_{j\xi}$ . Notice that from the needlet construction (see the
previous section) it follows that the sum above is finite. More precisely, $\psi_{j\xi}^{i}\neq 0$ only for
$2^{j-1}<i<2^{j+1}$ .

Let us consider the following estimate of $f$ :

$\hat{f}=\sum_{j=-1}^{J}\sum_{\xi\in\chi j}t(\hat{\beta}_{j\xi})\psi_{j\xi}$ ,

where $t$ is a thresholding operator defined by

$t(\hat{\beta}_{j\xi})=\hat{\beta}_{j\xi}I\{|\hat{\beta}_{j\xi}|\geq\kappa t_{\epsilon}\sigma_{j}\}$ with (35)

$t_{\epsilon}=\epsilon\sqrt{\log\frac{1}{\epsilon}}$ (36)

$\sigma_{j}^{2}=\sum_{i}[\frac{\psi_{j\xi}^{i}}{b;}]^{2}$ $\forall j\geq 0$ (37)

Theorem 6. Let us suppose that the properties above are $ver\dot{v}fied$ with fixed $\alpha\geq\beta>-\frac{1}{2}$

and that $b_{i}\sim i^{-\nu}$ , $\nu>-\frac{1}{2}$ . We put,

$2^{J}=t_{\epsilon}^{-\frac{2}{1+2\nu}}$ ,

and choose $\kappa^{2}\geq 16p[1+4\{(\frac{\alpha}{2}-\frac{\alpha+1}{p})_{+}\vee(_{2}^{g}-\frac{\beta+1}{p})_{+}\}]$ .

Then if $f\in B_{\pi,r}^{s}(M)$ , $s> \sup_{\gamma\in\{\alpha_{2}\beta\}}\{\frac{1}{2}-2(\gamma+1)(\frac{1}{2}-\frac{1}{\pi})\vee 2(\gamma+1)(\frac{1}{\pi}-\frac{1}{p})\vee 0\}$
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with :

$E\Vert\hat{f}-f\Vert_{p}^{p}\leq C[\log(1/\epsilon)]^{p-1+a}[\epsilon\sqrt{\log(1/\epsilon)}J^{\mu p}$,

$\mu=\inf\{\mu(s), \mu(s, \alpha), \mu(s,\beta)\}$ (38)

$\mu(s)=\frac{s}{s+\nu+\frac{1}{2}}$ (39)

$\mu(s, u)=\frac{s-2(1+u)(\frac{1}{)\pi}-\frac{1}{p})}{s+\nu+2(1+u(\frac{1}{2}-\frac{1}{\pi})}$ (40)

$a=\{\begin{array}{ll}I\{\delta_{p}=0\} if|p-\pi|[1-(p-2)(\alpha+1/2)]\geq 0_{Z}\frac{(\alpha+1z)(\pi-p)}{(\pi-2)(\alpha+1/2)-1}+I\{\delta_{s}=0\} if [p-\pi][1-(p-2)(\alpha+1/2)|<0,\end{array}$

with $\delta_{p}=1-(p-2)(\alpha+1/2)$ and $\delta_{s}=s[1-(p-2)(\alpha+1/2)|-p(2\nu+1)(\alpha+1)(\frac{1}{\pi}-\frac{1}{p})$ .

These results are proved in [9]. It is also proved there that the rates given here are
optimal $hom$ the minimax point of view, up to logarithmic terms. This procedure has
the same minimax and adaptation properties as the previous one. The rates obtained
here are quite new. The novelty is coming $hom$ the behavior of the needlets -varying
with the place of the needlet center (near the interval bounds or in the center- which
depends on the coefficients $\alpha$ and $\beta$ of the Jacobi polynomials, andyields contrary to the
standard Besov case different bounds for the $\mathbb{L}_{p}$ norms.

Denoising the Radon transform As before, we consider observations of the form

$dY(\theta, s)=Rf(\theta, s)d\mu(\theta, s)+\epsilon dW(\theta, s)$, (41)

where $R$ here is the Radon transform. Following [7] and [8], we can use, as in the
previous paragraph the needlets built on the SVD of the Radon tranform, to produce
linear or nonlinear procedures. Let us discuss there the nonlinear procedure ([8]) as it is
an adaptation to the Radon case of the thresholding procedure presented in the Jacobi
case in the previous paragraph. Our estimator is based on an appropriate thresholding
of a needlet expansion as before. $f$ can be decomposed using the hame above :

$f= \sum_{j\xi}\sum_{\in\chi j}\langle f,$

$\psi_{j\xi})\psi_{j\xi}$ ,
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Following $[8|$ , (recall that $gk,l_{1}i$ is defined at the end of section 1) we define in this
$case$

$\hat{\beta}_{j\xi}=\sum_{k,l,i}\sqrt{k’}^{\xi}\rangle l_{2}i^{\frac{1}{\lambda_{k}}}/gk_{2}l,t^{dY}$, (42)

$\gamma_{k_{1}^{t}l,i}^{i\xi}=\langle gk,l_{1}i,$ $\psi_{j\xi}\rangle$

$\hat{f}=\sum_{j=-1}^{J}\sum_{\xi\in\chi j}\hat{\beta}_{j\zeta}I_{\{|\hat{\beta}_{j\xi}|\geq\kappa 2^{jd}t_{e}\}}\psi_{j\xi}$ (43)

Again, the tuning parameters of this estimator are
$\bullet$ The range $J=J_{\epsilon}$ of resolution levels will be taken into account such that

$2^{Jd}=[\epsilon\sqrt{\log 1}/\epsilon]^{-i}$

$\bullet$ The threshold constant $\kappa$ .
$\bullet$ $t_{\epsilon}$ is a constant depending on the noise level. We shall see that the following choice

is appropriate
$t_{\epsilon}=\epsilon\sqrt{\log 1}/\epsilon$ .

$\bullet$ Notice that the threshold function for each coefficient contains $2^{jd}$ . This is due to
the inversion of the Radon operator, and the concentration relative to the $gk,l.i^{S}$

of the needlets.

We will consider the minimax properties of this estimator on the Besov bodies as con-
tructed above.

Theorem 7. For $0<r\leq\infty,$ $\pi\geq 1,1\leq p<\infty$ there exist some constant $c_{p}=$

$c_{p}(s,r,p,M),$ $\kappa 0=\kappa_{0}(p)$ such that if $\kappa>\kappa_{0},$ $s>(d+1)( \frac{1}{\pi}-\frac{1}{p})_{+}$ , in addition with if
$\pi<p,$ $s> \frac{d+1}{\pi}-\frac{1}{2}$

1. If $\frac{1}{p}<\frac{d}{d+1}$

$\sup_{f\in B_{\pi,r}^{\epsilon}(M)}[E\Vert\hat{f}-f\Vert_{p}^{p}]^{\frac{1}{p}}\leq c_{\rho}[\log 1/\epsilon]^{p}[\epsilon\sqrt{\log 1/\epsilon})^{\epsilon+d-d+1\pi}*-d+11\pi-1$

$\vee(\epsilon\sqrt{\log 1/\epsilon})\frac{*-2(1/\pi-1/p)}{\theta+d-2/\pi}]$

2. If $\frac{d}{d+1}\leq\frac{1}{p}<\frac{5d-1}{4d+1}$

$\sup$
$[ E\Vert\hat{f}-f\Vert_{p}^{p}]^{\frac{1}{p}}\leq q[\log 1/\epsilon]^{p}[\epsilon\sqrt{\log 1/\epsilon})\frac{*}{+d-1/2}\vee(\epsilon\sqrt{\log 1/\epsilon})^{\ovalbox{\tt\small REJECT}^{1\pi-1}}\iota+d-2/\pi]-2$

$f\in B_{\pi,r}^{*}(M)$
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3. If $\frac{5d-1}{4d+1}\leq\frac{1}{p}$

$\sup_{f\in B_{\pi,r}^{s}(M)}[E\Vert\hat{f}-f\Vert_{p}^{p}]^{\frac{1}{p}}\leq q,[\log 1/\epsilon|^{p}(\epsilon\sqrt{\log 1/\epsilon})^{\frac{s}{s+d-1/2}}$

This theorem is proved in [8]. It is also proved there that, up to logarithmic terms,
the rates observed here are minimax. A close look to these rates of convergence and to
the proof of the theorem reveals that, as in the case of Jacobi-type inverse problems,
the forms of the rates are coming &om the behavior of the needlets together with the
coefficient of ill-posedness of the problem $\nu=\frac{d}{2}-1$ .
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