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In this note we describe Tikhonov regularization in Part I and its application to
the real inverse of the Laplace transform in Part II.

Part I

Fundamentals on Tikhonov
regularization

1 Best approximation problems

Let K : E x E — C be positive definite and H be a Hilbert space. Suppose that
we are given a bounded linear operator L : Hx — H. Let us consider the following
minimizing problem

If L has an inverse, then it is easy to see that f = L™!d is a unique minimizer.
Therefore, our main concern goes to the case when L is not invertible. Let us set

k(p,q) = (L*LK(-,q), L* LK (,p)) e = (L*LL*L{Kg)) (p).

Let us set
P = Proj( H — N(L)*) = Proj( H — Ran(L*L)).
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Proposition 1.1. Under the above notation, we have

Hy={L*Lf : f € Hg)

and the inner product is given by
(L*Lf) L*Lg>Hk = <Pf1 g)H}(
for f,g € Hg.
Proof. Let us set Ho as the Hilbert space in the right-hand side. Then it is easy to see
the following.

1. Ho C F(E) in the sense of continuous embedding.

2. k(-,q) = L*L[L*LK,] € H, for all g € Hy and

{k(.q) : g€ E}

is dense in Hp. Indeed, let L*Lf € Hp be an element perpendicular to all
k(-,q), g € E. Then we have

(L*Lf, k("q»Ho = (Pj, L*LKq)HK = <L*LPfa Kq)HK’

which implies L*LPf = 0 and hence Pf € R(L*L) N N(L*L) = {0}. Thus, we
conclude that {k(:,q) : ¢ € E} spans a dense subspace in Hp.

3. If p,g € Hyp, then we have
(k(-, @), k(-,P))wo = (L*L[L*LK,], L*L [L*LK] )3,
= (L*LKg, L"LKp) iy = k(p, q).
In view of these three facts, we see that H = H} with norm coincidence. a
Theorem 1.2. (1) admits a solution if and only if L*d € Hy. If this is the case, then

we have L*d = L*Lf for some f € Hx and f is a solution to (1).

Proof. Suppose that (1) admits a solution f. Then we have

NLf = dll3; = WL(f — F)II3 +2Re((f — f, L*(Lf — d))my.) + |Lf — d]|%,.

In view of this formula, we see that f is a solution to (1) if and only if L*d = L*Lf.
From Proposition 1.1, we see that (1) has a solution if and only if L*d € Hy. ]

Theorem 1.3. Keep to the same assumption as above. Suppose further that 0 €
p(L*L). Then we have _
f=(L*L)™'L*d

1s a unique element that attains the minimum.
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Definition 1.4. Let f; € Hg be the element such that L*d = L*L f; with f; € N(L)~.

Theorem 1.5. Keep to the same assumption as above. Then we have

fa(p) = (L*d, L*LK(-, p)) Hy.-

Proof. From the definition of Hg, we have
Jfa(p) = (fa, K(,P)) H -
Since fy € N(L)1, it follows that
(fa, K(-,p)Hy = (P fa, PK (-, p))H -
In view of the definition of Hj, we see that
(P fa,PK(-,p))rx = (L*Lfa, L"LK (-, p) ) Hy,-
Since L*L fg = L*d, we conclude, together with the observations above,
fap) = (L*d, L*LK(:,p) ) Hy-
This is the desired result. O
Definition 1.6. One defines an unbounded operator Lt : H — Hg by
L'd = fq,

where fg is given in Definition 1.4.

Let {Ex}acr be a spectral family of L*L.
Definition 1.7. Let a > 0. Then define

1 *
fao = ( /R de,\) L*d.

Proposition 1.8. Let d € D(L'). Then we have
Lm(L*L + o)~ L*d = f4
«l0

in the topology of Hy.

Proof. Note that

A
* —1 rx* — * —1r=* — E .
(L*L+ o) 'L*d=(L*L+a) "L*Lfq4 (/R)\+ad )\)fd

As a consequence, we obtain

a
A+

o2
= \/73 Oraop d{Exfa, fa)

I+ ra- o il = | [ 55 d8) 1
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where it will be understood that the integral in the most right-hand side is the Stieltjes
integral. Now

/R (B> fa, fa) = (fa fa) < oo,

we are in the position of applying the Lebesgue convergence theorem to have

. a? _
lcﬂ% \//;; O tor d{Efa, fa) = 0,

which yields the desired convergence. O

Proposition 1.9. Under the same notation, we have

| Lfse @ HI| < |id : H|

Proof. Let us set

L=UVL*L,

where U is a partial isometry. Then we have

L (/ --—l——dE,\) I*=UVD'L (/ ——1——dE,\) VLU
R)\+a R

A+ a
=U / A dE, | U*<1
- R A + A =
Thus, the result is immediate. O
Proposition 1.10. | |
d:H
: < —.
” fd,a H" - 2\/&‘

Proof. We shall go through the same argument as above. We now have to consider

L(/R(—X-_S—Wd)) L.

(ko) =0T ) 0
o ([ hape)

1
4a’

Since

IA

we obtain the desired result. O
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Theorem 1.11. Let o > 0. Then the following minimizing problem admits a unique
solution

min o||f : Hg|>+ ||d - Lf : H|%
feHk

And the minimum is attaind by

1 *
fd,az (A—_/\+adEA)L d

Proof. We complete the square of the formula in question.

allf : Hg|* +ld— Lf : H|]?

= ((a+ L*L)f, f) — 2Re(L*d, f) + ||d : H|?

= ((a+ L*L)3 f,(a + L*L)3 f) — 2Re{(a + L*L)" % L*d, (e + L*L)3 f) + ||d : H|?
= [+ 2Lyt = (@ + L) A L0a HKH2 +|ld : H|? - ||(a+ L*L)~3d : HJ?.

As a result, we see that

1
= *IV I L*d = —_d L*d =
f=(a+L*L)""L*d (/Ra_*_)\ E,\) d= fia
is the unique minimizer. (]

Theorem 1.12. Suppose that o : (0,1) — (0,00) is a function of § such that

52
%i?(} (a(d) + &(_65) =0.
Let D : (0,1) — H be a function such that
I1D(6) —dlln <6
for all § € (0,1). Ifd € D(L'), then we have

léifl(} fpyae) = fi=Lld.
Proof. Now that we have established fg = lélﬁ)l fd,a(s), we have only to show that

lim (fp(@)a(0) = fa,a(9) = 0-

However, as we have seen in Proposition 1.10, the function fp(s)ai) — fa,a@) =

fD(5)-d,a(6) does not exceed in Hg-norm. Thus, we obtain the desired re-

a(d)
sult. O
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Theorem 1.13. Let L : Hx — H be a bounded linear operator. Then define an inner
product

(fus fodHi, = M{f1, f2)Hyg + (Lf1, Lf2)n

for fi,fo € Hg. Then (Hg, (.’.>HKA) is a reproducing kernel Hilbert space whose
reproducing kernel is given by

Kx(p,q) = (A + L*L) ' K (p)-

Proof. 1t is easy to check that K)(+,q) € Hg. Furthermore,
<I{)\('7 Q)v KA(7P)> = A <K/\('7 Q), K)\('ap))HK + (L*LKA(U q)v KA('vp»HK
= (()\ + L*L)K)\(', Q)’ K)\(°’p)>HK
= (Kq’ [(A+ L*L)—IKPDHK
= ([(A+ L*L) 'Ky}, Kp)
= [(A+ L*L) " Kq)(p) = Kx(p, 9).
Thus, the proof is complete. O

Corollary 1.14. Assume in addition that ||L|| < VX, then we have

Ki(p. ;) = g% (—L;L)n K(f’\’ 9

Theorem 1.15. Under the same assumption as Theorem 1.13,
f€Hgw— A|f : Hel> +||ILf —g : M|
attains minimum and the minimum is attained only at F' € Hg such that

F(p) = <gv LK/\(iP))'H
Furthermore, F(p) satisfies

P < 1Dt S22 gl @)

Proof. We calculate, keeping to the same notation as Theorem 1.13,

A ”f : HK”2 + ”Lf -9 H”2 = A (f’ f)HK + (Lf, Lf)'H - 2Re<Lf7 g)'H + <g7g)'H
= (fa f}HK,\ - 2Re<Lf’ g)'H + (g: g)'H-

By the Riesz representation theorem there exists F' € Hg, = Hy such that
(Lf, gy = (f, Fay, 3)

for all f € Hg. It is ease to see that the functional in question attains its miminum
only at F. It is easy to obtain the value of F(p) using (3):

F(p) = <Fa KA('?I’))HK)‘ = (97 LK)‘(',p))H.
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Finally let us prove (2). Note that
ILEAC,p) = HIP = |LOA+ L*L) 7 K = M
=((A+L*L)'L* LA+ L*L) 'Ky, Kp) by,
< '}{<KP’I{P>HK

K(p, p)
==

Hence by the Cauchy Schwarz inequality we have (2). O

<

Part 11

Application to the real inverse of the
Laplace transform

We shall give a numerical real inversion formula of the Laplace transform

(LF) (D) = F(p) = /0 T e Pptydt, p>0

on a certain function space. This integral transform is fundamental in mathematical
science and engineering. The inversion of the Laplace transform is, in general, given by a
complex form, however, we are interested in its real inversion, which is a problem to find
the original function f(t) from a given image function F(p),p > 0, and it is required
in various practical problems. The real inversion is unstable in usual settings, thus
the real inversion is ill-posed in the sense of Hadamard, and numerical real inversion
methods have not been established [2, 4]. In other words, the image functions of the
Laplace transform are analytic on a half complex plane, and the real inversion will be
very complicated. One is lead to thinking that its real inversion is essentially involved,
because we need to grasp “analyticity” from the real and discrete data.

In the present paper, we shall propose a new approach to the numerical real inversion
of the Laplace transform based on the compactness of the Laplace transform on a
certain reproducing kernel Hilbert space [7]. ;From the inverse analysis view point,
there have been several proposals employing stabilisation method such as Tikhonov
regularization. On the other hand, singular value decomposition is applicable not
only for reconstruction of solutions, but also for Hilbert scales and noise reduction of
'measurement data. Though the singular value decomposition has various applications,
its concrete treatments are hard both mathematically [5] and numerically [3].

The Laplace transform is not compact on usual Lebesgue or Sobolev spaces, and it
may has continuous spectrum. We shall discuss in more details the compactness of the
modified Laplace transform. In the setting some truncation is required for numerical
real inversions [4]. Onmne of our key idea is the use of the reproducing kernel Hilbert
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space, in which we have a concrete representation for the adjoint operator and this
enables us to realize an effective numerical real inversion. The proposed approach by
means of numerical singular value decomposition is straightforward, so it is applicable
to many inverse problems.

1.1 Compactness of the Laplace transform on the reproducing kernel
Hilbert space

We shall introduce a simple reproducing kernel Hilbert space Hg comprised of abso-
lutely continuous functions f on the positive real line R* with finite norms

\f : Hgll := {/Owlf,(t)lzgtf dt}l/z

and satisfying f(0) = 0. This Hilbert space admits the reproducing kernel [6]:

min(s,t)
K(s,t) = / ge~ € dg.
0
Then we see that o 1
| 1en@mk do < 515 s Hxl?. @
That is, the linear operator on Hg
frlp— (Lf)(P)p =: Lf(p)]

into L2(R*,dp) = L?(R™) is bounded [7]. We can find some general reproducing kernel
Hilbert spaces Hg satisfying (4) in [7]. Furthermore, the following theorem will play a
key role in the construction of our real inversion formula.

Theorem 1.16 (Compactness of L). Keep to the notation above. Then
fe Hg — Lf € L2(RY)

is an injective and compact linear operator.

To prove this, it suffices to show that
lim ||Lg : B(Hk,L>(R")|| =0
R—oo
where Lg, R > 0 is a truncated operator defined by
o0
Eanw)=p [ s

for f € Hyg. Indeed, the difference from L is Hg-L?(R*) compact in view of the
explicit formula

R
Lf(®) - LrH)®) =p /0 P f(t)dt, fe H.
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Therefore, once we show
im ||Lg : B(Hk, L*(R™)|| =0,
R—oo

then we can conclude that the operator in question itself is compact.

It is not so hard to see that the set of all smooth functions supported on (0, 00) is
dense in Hg. Therefore, let f € Hyg and assume that f is a smooth function supported
on (0, 00). Furthermore, as we can see from the proof below the family {Lr}r>o forms
a uniformly bounded family.

If we carry out integration by parts, then we obtain

Caf)o) = [ G-e™ sy dt= [ 0 b e p(R)
As a result,

L @)

. o - I . 2
|ILRf~L2(R+)I|S” [ emswa: pwn)|+ L2

by virtue of the Minkowski inequality.

We estimate the right-hand side by using the Hélder inequality:

oo—t / * ! 2fi % cx-J—Zt—t 2
I/R e pf(t)dtlg(/ﬂ 17 tdt) (/R e=21P tdt)

Consequently it follows that

As for the second term, we see

s [Ciroias ([Cirors @) ' ([ e at)

by virtue of the Holder inequality. Therefore we obtain

/ = e P f'(t) dt : L2(RY)
R

1
< 7_2_§l!f : Hgll.

(RN < If : Hrll-

In view of these observations, we conclude

1 1
Lp : B(Hg,L*(Rt <(1+_) R%
” R ( K ( )”— \/§

proving that L tends to 0 in the norm topology. The proof is now complete.
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A simple calculation shows

K(s,t) = —se f—e 41 s<t;
T —tet—et 41 s>t

o t 1 1
(CEC,0)p) = —e7e™ {p(p+ 0 o+ 1)2} T2

Therefore, for the compact operator L, its adjoint operator L* can be written out in
full:

(L*g)(t) = (L*g& K('a t))HK
= (9,LK(,1))L2m+)

= /000 9(5)(—.511T)5 {1 _ e~tE+D) (t(€ +1)+ 1) } de.

Our key theorem assures that the operator Lf(p) = p(Lf)(p) has the singular
system. Let {\,} be singular values of the operator L, {v,} and {u,} be complete
orthonormal systems of A'(L)* (the orthogonal compliment of the null space) and
R(L) (the closure of the range space), respectively satisfying

Lv, = Muy, L*u, = A\vog.

Using the singular systems and truncated singular value expansion [4], we obtain the
following representation.

Theorem 1.17 (Real inversion formula of the Laplace transform). We consider
the Laplace transform Lf = F. If the original function f belongs to Hy, then the real
inversion of the Laplace transform L1 is

o0

€ PO =35 ([ Founepd) e

n=1

And for any F with F(p)p € L*(R*) and a natural number M, spectral cut-off regu-
larization C,‘VII is given as

M oo
PO = & ( JREY dp) on(t).

n=1

2 Numerical Singular Value Decomposition and Exam-
ples

Now we present a discretization of the singular value decomposition of L. The singular
system A, and v, satisfies an eigenvalue problem L*Lv = A\2v. Employing a numerical
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integration scheme with a discretization parameter IV, quadrature points z; and weights

w;,0< i< N, ie.,
m N
/0 f(@)dz =Y f(x:)ws,
i=0

we discretize the eigenvalue problem and obtain a linear eigenvalue problem of a matrix
whose (i, j)-entry is

TpeTIT —z,
Z (;k P {1 — 7T @A) g () + 1) + 1}} W W

(From the compactness of L, it can be expected that for sufficiently large N the matrix
(aij) has N +1 positive eigenvalues An and their eigenvectors (ffn,o, <ov , Un, N), 1<n<
N +1 [1]. Here we suppose that @, ; corresponds to v,(z;) and that they satisfy the
following normal condition implied by |[un|lz2m+) = 1:

N
D linj? wy =1,
j=0

where 4y, ; corresponds to u,(z;) and is given as

N

- 1 - s
Up,j = /:\—:rj E Up ke Ik wy,
n k=0

Analogue to the Nystrém method, the discretized singular system {An, Un,j,Un,j} gives
approximations of singular functions as

ufM) (p) = pE Un ke PPewy,
' An k—O
1 U
M) (¢) = k] e~t@tD) ¢ 1)+1 .

And numerical real inversion formula with spectral cut-off regularization is given by

M N
(LatnF)E) =D Kl' (Z F(zp)k tin,k wk) viV(8). (5)

n=1 """ \k=0

In the rest of the present paper, we exhibit some numerical examples of the proposed
method. Figure 1 shows computed \,, 1 < n < 50. Figure 2(a) and Figure 2(b) show
computed v,(;N), 1<n <5, and u&N), 1 < n < 5, respectively. Here we use the double
exponential formula [8], in which we take a discretization parameter N € N, truncation
parameters L, U € R, and quadrature points z; as

U-L

. ™ . ,
h'—'""]v——, 7 = L + ih, :ci=exp(—2-smhm), 0<i<N,
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" Singular Values
hat n | Computed A,
3 letot 1 { 0.63385084
£ le-15 ¢ 2 | 0.26410894
g 1e-20 | 31 0.13597863
Z e} 4 | 0.07771564
< 1030 b 5 | 0.04743480
1035 } 6 | 0.030328393
Lod0 ) . . . ) . , 7 | 0.020083893
0 200 400 600 800 1000 1200 1400 8 0.013674490
Figure 1: Numerical results for singular values A\, of L
1 T T r T 1.6
14 |
0.8 1.2
g 3 1
é 06 ¢ g 0.8
g 04} g 06 E
E E 04
k! | o2 lf
5 0.2 3 ol ,1
o ¥ 0.2 it
-0.4
-0.2

0.6 x N a —_
0

Figure 2: Numerical results for singular functions of L

and weights w; = (wh/2)z; coshn;. In the actual computation, we adopt L = —4,U = 4,
and N = 800. The dense and non-symmetric eigenvalue problem is solved by LAPACK
(AMD Core Math Library) with IEEE754 double precision arithmetic, and computa-
tional time is about 90 seconds on Athlon64X2 6000+ (3.0GHz).

Next we apply the proposed method to an example in [4]:

t, 0<t<1;
f)=<350B8-1), 1<t<y;
0, 3,
whose Laplace transform is
1
= — —_ 4 -3p
Fp)= 35 (2 3¢P +e ) (6)

We remark that the original function f belongs to Hkg in the example. Figure 3
shows the numerical reconstruction with the spectral cut-off parameter M = 50. In
the figure, the solid curve shows reconstructed numerical solutions and dotted curve
shows the exact solution. ;From the figure, we can conclude that our method gives
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oo Numerical reconstruction with A = 50 ~——

08
0.7
0.6
0.5
(R 3
03 F
0.2+
Q.1+

-0.1
0

Figure 3: Numerical real inversion for (6)

Numerical reconstruction with A = 50 ——

Figure 4: Numerical real inversion for (7)

a good approximation and the computed singular systems is effective in the use of
analysis of the Laplace transform.

We show another example for the image function:
F(p) = exp(—p), Q)

which is the Laplace transform of the Dirac’s delta function §(¢t — 1) in the distribution
sense. In this example the proposed method nges the numerical results shown in
Figure 4, which proves reasonable results.

Finally we propose the following conjectures about the singular system of L from
our numerical results:

1. v, € Hi converges as t — 0o, and

tlim lun(t)] = V22X, for all n.
—00

2. un € L2(R*) is continuous at p = 0, and
lun (0)| = V2, for all n.
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