

kyoto University Hesearch Information Repository	
Title	ラプラス変換の実逆変換への再生核空間の応用 (II) (再生 核の応用についての研究)
Author(s)	Kajino, Naotaka; Sawano, Yoshihiro; Fujiwara, Hiroshi
Citation	数理解析研究所講究録 (2008), 1618: 189-191
Issue Date	2008-12
URL	http://hdl.handle.net/2433/140182
Right	
Туре	Departmental Bulletin Paper
Textversion	publisher

ラプラス変換の実逆変換への再生核空間の応用II

京都大学情報学研究科 梶野 直孝 (Naotaka Kajino)
Graduate School of Informatics,
Kyoto University, Kyoto, 606-8501, Japan,
学習院大学理学部数学科 澤野 嘉宏 (Yoshihiro Sawano)
Department of Mathematics Gakushuin University,
1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan
京都大学情報学研究科 藤原 宏志 (Hiroshi Fujiwara)
Graduate School of Informatics,
Kyoto University, Kyoto, 606-8501, Japan.

1 Introduction

The present paper contains new results on the modified Laplace transform

$$\mathcal{L}f(p) = p Lf(p) = \int_0^\infty p e^{-p t} f(t) dt.$$

The results are intended to publish elsewhere.

2 Preliminaries

Theorem 2.1. The following estimates hold.

$$\sup_{p>0} |\mathcal{L}f(p)| \le \sup_{t>0} |f(t)|$$
$$\int_0^\infty |\mathcal{L}f(p)| dp \le \int_0^\infty \frac{|f(t)|}{t^2} dt.$$

If we interpolate the results above, we obtain the following inequality.

Theorem 2.2.

$$\int_0^\infty |\mathcal{L}f(p)|^2 dp \le 4 \int_0^\infty |f(t)|^2 \frac{dt}{t^2}.$$

Proof. By using the distribution function, we have

$$\int_0^\infty |\mathcal{L}f(p)|^2 dp = 4 \int_0^\infty \lambda \left| \left\{ p > 0 \, : \, |\mathcal{L}f(p)| > 2\lambda \right\} \right| d\lambda.$$

By the L^{∞} -estimate, we obtain

$$\int_0^\infty |\mathcal{L}f(p)|^2 dp \le 4 \int_0^\infty \lambda \left| \{p > 0 : |\mathcal{L}[\chi_{\{|f| \le \lambda\}}f](p)| > \lambda \} \right| d\lambda.$$

Next, we invoke the L^1 -estimate and the Chebychev inequality. The result is

$$\int_0^\infty |\mathcal{L}f(p)|^2\,dp \leq 4\int_0^\infty \left(\int_0^\infty |\mathcal{L}[\chi_{\{|f|\leq \lambda\}}f](p)|\,dp\right)\,d\lambda.$$

Having used up our estimates which were already proved, we have only to calculate the integral elaborately.

$$\int_0^\infty |\mathcal{L}f(p)|^2\,dp \leq 4\int_0^\infty \left(\int_0^\infty \chi_{\{|f(t)|\leq \lambda\}}|f(t)|\,\frac{dt}{t^2}\right)\,d\lambda \leq 4\int_0^\infty |f(t)|^2\,\frac{dt}{t^2}.$$

The power 2 is best possible in the following sense.

Example 2.3. Let us establish that

$$\int_{\mathbf{R}} \mathcal{L}f(p)^2 dp \lesssim \int_{\mathbf{R}} |f(t)|^2 \frac{dt}{t^{1+\beta}}$$

fails for $0 < \beta < 1$. Take $\alpha \in \mathbf{R}$ so that $\frac{\beta}{2} < \alpha < \frac{1}{2}$. Then

$$f_{\alpha}(x) = (\chi_{[0,1]}(x)x)^{\alpha}$$

satisfies

$$\mathcal{L}f_{\alpha}(p) = p \int_{0}^{1} t^{\alpha} e^{-t p} dt$$

$$= p \int_{0}^{p} (p^{-1}s)^{\alpha} e^{-s} d(p^{-1}s)$$

$$\simeq p^{-\alpha}$$

as $p \to \infty$. As a result, we have $f_{\alpha} \in L^2\left((0,\infty), \frac{dt}{t^{1+\beta}}\right)$, $0 < \beta < \alpha$, while $\mathcal{L}f \notin L^2(0,\infty)$.

In the rest of this paper, we consider

 $H_K=\{f:[0,\infty)\to [0,\infty): f(0)=0, f \text{ is absolutely continuous and } ||f||_{H_K}<\infty\},$ where the norm is given by

$$||f||_{H_K} = \left(\int_0^\infty |f'(t)|^2 \, \frac{e^t \, dt}{t}\right)^{\frac{1}{2}}.$$

To prove that \mathcal{L} is compact, we have only to establish the following.

Theorem 2.4. $H_K \subset L^2\left((0,\infty),\frac{dt}{t^2}\right)$ in the sense of compact embedding.

Proof. This is because

$$H_K \subset L^\infty((0,\infty),\max(|t|^{-1},1))$$

is a continuous embedding and

$$L^{\infty}((0,\infty),\max(|t|^{-1},1))\subset L^{2}\left((0,\infty),\frac{dt}{t^{2}}\right)$$

is a compact embedding.