

# A strong convergence theorem by hybrid method for a countable family of nonexpansive mappings and an equilibrium problem 

Somyot Plubtieng＊and Kasamsuk Ungchittrakool ${ }^{\dagger}$<br>Department of Mathematics，Faculty of Science，Naresuan University， Phitsanulok 65000，Thailand


#### Abstract

In this paper，we introduce an iterative scheme by hybrid method for finding a common element of the set of fixed points of a countable family of nonexpansive mappings and the set of solutions of an equilibrium problem in a Hilbert space．We show that the iterative sequence converges strongly to a common element of the above two sets under some parameters controlling conditions．


Keywords：Fixed point theorem；Nonexpansive mappings；Equilibrium problem；Common fixed points

## 1 Introduction

Let $C$ be a closed convex subset of a real Hilbert space $H$ and let $P_{C}$ be the metric projection of $H$ onto $C$ ． Let $F$ be a bifunction from $C \times C$ into $\mathbb{R}$ ，where $\mathbb{R}$ is the set of real numbers．The equilibrium problem for $F: C \times C \rightarrow \mathbb{R}$ is to find $x \in C$ such that

$$
\begin{equation*}
F(x, y) \geqslant 0 \text { for all } y \in C \tag{1.1}
\end{equation*}
$$

The set of solution of（1．1）is denoted by $E P(F)$ ．Numerous problems in physics，optimization，and economics reduce to find a solution of（1．1）．Some methods have been proposed to solve the equilibrium problem（see；$[2,4$, 11，18］）．In 2005，Combettes and Hirstoaga［3］introduced an iterative scheme of finding the best approximation to the initial data when $E P(F)$ is nonempty and they also proved a strong convergence theorem．A mapping $S: C \rightarrow C$ is said to be nonexpansive if

$$
\|S x-S y\| \leqslant\|x-y\|
$$

for all $x, y \in C$ ．We denote by $F(S)$ the set of fixed points of $S$ ．If $C$ is bounded closed convex and $S$ is a nonexpansive mapping from $C$ into itself，then $F(S)$ is nonempty（see；［8］）．We write $x_{n} \rightarrow x$（ $x_{n} \rightharpoonup x$ ，resp．） if $\left\{x_{n}\right\}$ converges（weakly，resp．）to $x$ ．

In 1953，Mann［9］introduced the iteration as follows：a sequence $\left\{x_{n}\right\}$ defined by

$$
\begin{equation*}
x_{n+1}=\alpha_{n} x_{n}+\left(1-\alpha_{n}\right) S x_{n} \tag{1.2}
\end{equation*}
$$

[^0]
## S. Plubtieng and K. Ungchittrakool

where the initial guess element $x_{0} \in C$ is arbitrary and $\left\{\alpha_{n}\right\}$ is a real sequence in $[0,1]$. Mann iteration has been extensively investigated for nonexpansive mappings. One of the fundamental convergence results is proved by Reich [14]. In an infinite-dimensional Hilbert space, Mann iteration can conclude only weak convergence [5]. Attempts to modify the Mann iteration method (1.2) so that strong convergence is guaranteed have recently been made. Nakajo and Takahashi [12] proposed the following modification of Mann iteration method (1.2):

$$
\left\{\begin{array}{l}
x_{0} \in C \text { is arbitrary, }  \tag{1.3}\\
y_{n}=\alpha_{n} x_{n}+\left(1-\alpha_{n}\right) S x_{n} \\
C_{n}=\left\{z \in C:\left\|y_{n}-z\right\| \leq\left\|x_{n}-z\right\|\right\} \\
Q_{n}=\left\{z \in C:\left\langle x_{n}-z, x_{0}-x_{n}\right\rangle \geq 0\right\} \\
x_{n+1}=P_{C_{n} \cap Q_{n}} x_{0}, \quad n=0,1,2 \ldots
\end{array}\right.
$$

For finding an element of $E P(F) \cap F(S)$, Tada and Takahashi [20] introduced the following iterative scheme by the hybrid method in a Hilbert space: $x_{0}=x \in H$ and let

$$
\left\{\begin{array}{l}
u_{n} \in C \text { such that } F\left(u_{n}, y\right)+\frac{1}{r_{n}}\left\langle y-u_{n}, u_{n}-x_{n}\right\rangle \geq 0, \quad \forall y \in C \\
w_{n}=\left(1-\alpha_{n}\right) x_{n}+\alpha_{n} S u_{n} \\
C_{n}=\left\{z \in H:\left\|w_{n}-z\right\| \leq\left\|x_{n}-z\right\|\right\} \\
Q_{n}=\left\{z \in C:\left\langle x_{n}-z, x_{0}-x_{n}\right\rangle \geq 0\right\} \\
x_{n+1}=P_{C_{n} \cap Q_{n}} x_{0}, \quad n=0,1,2 \ldots
\end{array}\right.
$$

for every $n \in \mathbb{N}$, where $\left\{\alpha_{n}\right\}$ is a sequence in $[0,1]$ where $\left\{\alpha_{n}\right\} \subset[a, b]$ for some $a, b \in(0,1)$ and $\left\{r_{n}\right\} \subset(0, \infty)$ satisfies $\lim \inf _{n \rightarrow \infty} r_{n}>0$. Further, they proved $\left\{x_{n}\right\}$ and $\left\{u_{n}\right\}$ converge strongly to $z \in F(S) \cap E P(F)$, where $z=P_{F(S) \cap E P(F)} x_{1}$.

Recently, Takahashi et al. [17] proved a strong convergence theorem by the hybrid method for a family of nonexpansive mappings in Hilbert spaces: $x_{0} \in H, C_{1}=C$ and $x_{1}=P_{C_{1}} x_{0}$ and let

$$
\left\{\begin{array}{l}
y_{n}=\alpha_{n} x_{n}+\left(1-\alpha_{n}\right) T_{n} x_{n} \\
C_{n+1}=\left\{z \in C_{n}:\left\|y_{n}-z\right\| \leq\left\|x_{n}-z\right\|\right\} \\
x_{n+1}=P_{C_{n+1}} x_{0}, \quad n \in \mathbb{N}
\end{array}\right.
$$

where $0 \leqslant \alpha_{n} \leqslant a<1$ for all $n \in \mathbb{N}$ and $\left\{T_{n}\right\}$ a sequence of nonexpansive mappings of $C$ into itself such that $\bigcap_{n=1}^{\infty} F\left(T_{n}\right)=\varnothing$ and satisfy some appropriate conditions. Then, $\left\{x_{n}\right\}$ converges strongly to $P_{\cap_{n=1}^{\infty} F\left(T_{n}\right)} x_{0}$.

In this paper, motivated and inspired by the above results, we introduce a new following iterative scheme:

$$
\left\{\begin{array}{l}
x_{0} \in H, \text { and } C_{0}=C \\
u_{n} \in C \text { such that } \quad F\left(u_{n}, y\right)+\frac{1}{r_{n}}\left\langle y-u_{n}, u_{n}-x_{n}\right\rangle \geq 0, \quad \forall y \in C \\
y_{n}=\alpha_{n} x_{n}+\left(1-\alpha_{n}\right) S_{n} u_{n} \\
C_{n+1}=\left\{z \in C_{n}:\left\|y_{n}-z\right\| \leq\left\|x_{n}-z\right\|\right\} \\
x_{n+1}=P_{C_{n+1}} x_{0}, \quad n=0,1,2 \ldots
\end{array}\right.
$$

for finding a common element of the set of fixed points of a countable family of nonexpansive mappings and the set of solutions of an equilibrium problem. Moreover, we show that $\left\{x_{n}\right\}$ and $\left\{u_{n}\right\}$ converge strongly to $P_{\bigcap_{n=1}^{\infty} F\left(S_{n}\right) \cap E P(F)} x_{0}$ by the hybrid method in mathematical programming.

A strong convergence theorem by hybrid method for a nonexpansive mappings and an equilibrium problem

## 2 Preliminaries

Let $H$ be a real Hilbert space. Then

$$
\begin{equation*}
\|x-y\|^{2}=\|x\|^{2}-\|y\|^{2}-2\langle x-y, y\rangle \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\|\lambda x+(1-\lambda) y\|^{2}=\lambda\|x\|^{2}+(1-\lambda)\|y\|^{2}-\lambda(1-\lambda)\|x-y\|^{2} \tag{2.2}
\end{equation*}
$$

for all $x, y \in H$ and $\lambda \in[0,1]$. It is also known that $H$ satisfies the Opial's condition [13], that is, for any sequence $\left\{x_{n}\right\}$ with $x_{n} \rightharpoonup x$, the inequality

$$
\liminf _{n \rightarrow \infty}\left\|x_{n}-x\right\|<\liminf _{n \rightarrow \infty}\left\|x_{n}-y\right\|
$$

holds for every $y \in H$ with $y \neq x$. Hilbert space $H$, satisfies the Kadec-Klee property [6,19], that is, for any sequence $\left\{x_{n}\right\}$ with $x_{n} \rightharpoonup x$ and $\left\|x_{n}\right\| \rightarrow\|x\|$ together imply $\left\|x_{n}-x\right\| \rightarrow 0$.

Let $C$ be a closed convex subset of $H$. For every point $x \in H$, there exists a unique nearest point in $C$, denoted by $P_{C} x$, such that

$$
\left\|x-P_{C} x\right\| \leq\|x-y\| \quad \text { for all } y \in C
$$

$P_{C}$ is called the metric projection of $H$ onto $C$. It is well known that $P_{C}$ is a nonexpansive mapping of $H$ onto $C$ and satisfies

$$
\begin{equation*}
\left\langle x-y, P_{C} x-P_{C} y\right\rangle \geq\left\|P_{C} x-P_{C} y\right\|^{2} \tag{2.3}
\end{equation*}
$$

for every $x, y \in H$. Moreover, $P_{C} x$ is characterized by the following properties: $P_{C} x \in C$ and

$$
\begin{align*}
& \left\langle x-P_{C} x, y-P_{C} x\right\rangle \leq 0  \tag{2.4}\\
& \|x-y\|^{2} \geq\left\|x-P_{C} x\right\|^{2}+\left\|y-P_{C} x\right\|^{2} \tag{2.5}
\end{align*}
$$

for all $x \in H, y \in C$.
For solving the equilibrium problem, let us assume that the bifunction $F$ satisfies the following conditions (see [2]):
(A1) $F(x, x)=0$ for all $x \in C$;
(A2) $F$ is monotone, i.e., $F(x, y)+F(y, x) \leq 0$ for any $x, y \in C$;
(A3) $F$ is upper-hemicontinuous, i.e., for each $x, y, z \in C$,

$$
\limsup _{t \rightarrow 0^{+}} F(t z+(1-t) x, y) \leq F(x, y)
$$

(A4) $F(x, \cdot)$ is convex and lower semicontinuous for each $x \in C$.

The following lemma appears implicitly in [2]
Lemma 2.1. [2] Let $C$ be a nonempty closed convex subset of $H$ and let $F$ be a bifunction of $C \times C$ into $\mathbf{R}$ satisfying (A1)-(A4). Let $r>0$ and $x \in H$. Then, there exists $z \in C$ such that

$$
F(z, y)+\frac{1}{r}\langle y-z, z-x\rangle \geq 0 \text { for all } y \in C
$$

## S. Plubtieng and K. Ungchittrakool

The following lemma was also given in [3].
Lemma 2.2. [3] Assume that $F: C \times C \rightarrow \mathbf{R}$ satisfies (A1)-(A4). For $r>0$ and $x \in H$, define a mapping $T_{r}: H \rightarrow C$ as follows:

$$
T_{r}(x)=\left\{z \in C: F(z, y)+\frac{1}{r}\langle y-z, z-x\rangle \geq 0, \forall y \in C\right\}
$$

for all $z \in H$. Then, the following hold:

1. $T_{r}$ is single- valued;
2. $T_{r}$ is firmly nonexpansive,i.e.,for any $x, y \in H,\left\|T_{r} x-T_{r} y\right\|^{2} \leq\left\langle T_{r} x-T_{r} y, x-y\right\rangle$;
3. $F\left(T_{r}\right)=E P(F)$;
4. $E P(F)$ is closed and convex.

Let $C$ be a subset of a Banach space $E$ and let $\left\{S_{n}\right\}$ be a family of mappings from $C$ into $E$. For a subset $B$ of $C$, we say that $\left(\left\{S_{n}\right\}, B\right)$ satisfies condition $A K T T$ if

$$
\sum_{n=1}^{\infty} \sup \left\{\left\|S_{n+1} z-S_{n} z\right\|: z \in B\right\}<\infty
$$

Aoyama et al. [1, Lemma 3.2], prove the following result which is very useful in our main result.
Lemma 2.3. Let $C$ be a nonempty closed subset of a Banach space $E$ and let $\left\{S_{n}\right\}$ be a sequence of mappings from $C$ into $E$. Let $B$ be a subset of $C$ with $\left(\left\{S_{n}\right\}, B\right)$ satisfies condition AKTT, then there exists a mapping $S: B \rightarrow E$ such that

$$
\begin{aligned}
& \quad S y=\lim _{n \rightarrow \infty} S_{n} y \quad \forall y \in B \\
& \text { and } \lim _{n \rightarrow \infty} \sup \left\{\left\|S_{n} z-S z\right\|: z \in B\right\}=0
\end{aligned}
$$

## 3 Main result

In this section, we show a strong convergence theorem which solves the problem of finding a common element of the set of fixed points of a nonexpansive mapping and the set of solutions of an equilibrium problem in a Hilbert space.

Theorem 3.1. Let $C$ be a nonempty closed convex subset of a real Hilbert space $H$. Let $F$ be a bifunction from $C \times C$ into $\mathbb{R}$ satisfying (A1)-(A4). Let $\left\{S_{n}\right\}$ be a sequence of nonexpansive mappings from $C$ into $H$ such that $\bigcap_{n=0}^{\infty} F\left(S_{n}\right) \cap E P(F) \neq \varnothing$. Let $\left\{x_{n}\right\}$ and $\left\{u_{n}\right\}$ be sequences generated by

$$
\left\{\begin{array}{l}
x_{0} \in H, \quad \text { and } C_{0}=C \\
u_{n} \in C \text { such that } \quad F\left(u_{n}, y\right)+\frac{1}{r_{n}}\left\langle y-u_{n}, u_{n}-x_{n}\right\rangle \geq 0, \quad \forall y \in C \\
y_{n}=\alpha_{n} x_{n}+\left(1-\alpha_{n}\right) S_{n} u_{n} \\
C_{n+1}=\left\{z \in C_{n}:\left\|y_{n}-z\right\| \leq\left\|x_{n}-z\right\|\right\} \\
x_{n+1}=P_{C_{n+1}} x_{0}, \quad n=0,1,2 \ldots
\end{array}\right.
$$

with the following restrictions:

A strong convergence theorem by hybrid method for a nonexpansive mappings and an equilibrium problem
(i) $0 \leqslant \alpha_{n}<1$ for all $n \in \mathbb{N} \cup\{0\}$ and $\lim \sup _{n \rightarrow \infty} \alpha_{n}<1$,
(ii) $r_{n}>0$ for all $n \in \mathbb{N} \cup\{0\}$ and $\liminf _{n \rightarrow \infty} r_{n}>0$.

Let $\sum_{n=0}^{\infty} \sup \left\{\left\|S_{n+1} z-S_{n} z\right\|: z \in B\right\}<\infty$ for any bounded subset $B$ of $C$ and $S$ be a mapping from $C$ into $H$ defined by $S z=\lim _{n \rightarrow \infty} S_{n} z$ for all $z \in C$ and suppose that $F(S)=\bigcap_{n=0}^{\infty} F\left(S_{n}\right)$. Then $\left\{x_{n}\right\}$ and $\left\{u_{n}\right\}$ converge strongly to $P_{F(S) \cap E P(F)} x_{0}$.

Proof. We first show by induction that $F(S) \cap E P(F) \subset C_{n}$ for all $n \in \mathbb{N} \cup\{0\} . F(S) \cap E P(F) \subset C=C_{0}$ is obvious. Suppose that $F(S) \cap E P(F) \subset C_{k}$ for some $k \in \mathbb{N} \cup\{0\}$. Then, we have, for $p \in F(S) \cap E P(F) \subset C_{k}$

$$
\begin{aligned}
\left\|y_{k}-p\right\| & =\left\|\alpha_{k} x_{k}+\left(1-\alpha_{k}\right) S_{k} u_{k}-p\right\| \leqslant \alpha_{k}\left\|x_{k}-p\right\|+\left(1-\alpha_{k}\right)\left\|S_{k} u_{k}-p\right\| \\
& =\alpha_{k}\left\|x_{k}-p\right\|+\left(1-\alpha_{k}\right)\left\|S_{k} T_{r_{k}} x_{k}-p\right\| \leqslant\left\|x_{k}-p\right\|
\end{aligned}
$$

and hence $p \in C_{k+1}$. This implies that $F(S) \cap E P(F) \subset C_{n}$ for all $n \in \mathbb{N} \cup\{0\}$. Next, we show that $C_{n}$ is closed and convex for all $n \in \mathbb{N} \cup\{0\}$. It is obvious that $C_{0}=C$ is closed and convex. Suppose that $C_{k}$ is closed and convex for some $k \in \mathbb{N} \cup\{0\}$. For $z \in C_{k}$, we know that $\left\|y_{k}-z\right\| \leqslant\left\|x_{k}-z\right\|$ is equivalent to $\left\|y_{k}-x_{k}\right\|^{2}+2\left\langle y_{k}-x_{k}, x_{k}-z\right\rangle \geqslant 0$. So, $C_{k+1}$ is closed and convex. Then, for any $n \in \mathbb{N} \cup\{0\}, C_{n}$ is closed and convex. This implies that $\left\{x_{n}\right\}$ is well-defined. Since $x_{n}=P_{C_{n}} x_{0}$, we have $\left\langle x_{0}-x_{n}, x_{n}-y\right\rangle \geqslant 0$ for all $y \in C_{n}$. In particular, we also have

$$
\left\langle x_{0}-x_{n}, x_{n}-p\right\rangle \geqslant 0 \text { for all } p \in F(S) \cap E P(F) \text { and } n \in \mathbb{N} \cup\{0\}
$$

So, we have

$$
0 \leqslant\left\langle x_{0}-x_{n}, x_{n}-p\right\rangle=\left\langle x_{0}-x_{n}, x_{n}-x_{0}+x_{0}-p\right\rangle \leqslant-\left\|x_{0}-x_{n}\right\|^{2}+\left\|x_{0}-x_{n}\right\|\left\|x_{0}-p\right\|
$$

This implies that

$$
\begin{equation*}
\left\|x_{0}-x_{n}\right\| \leqslant\left\|x_{0}-p\right\| \text { for all } p \in F(S) \cap E P(F) \text { and } n \in \mathbb{N} \cup\{0\} \tag{3.1}
\end{equation*}
$$

Since $x_{n+1}=P_{C_{n+1}} x_{0} \in C_{n+1} \subset C_{n}$, we also have

$$
\begin{equation*}
\left\langle x_{0}-x_{n}, x_{n}-x_{n+1}\right\rangle \geqslant 0 . \tag{3.2}
\end{equation*}
$$

So, we have

$$
0 \leqslant\left\langle x_{0}-x_{n}, x_{n}-x_{n+1}\right\rangle=\left\langle x_{0}-x_{n}, x_{n}-x_{0}+x_{0}-x_{n+1}\right\rangle \leqslant-\left\|x_{0}-x_{n}\right\|^{2}+\left\|x_{0}-x_{n}\right\|\left\|x_{0}-x_{n+1}\right\| .
$$

and hence

$$
\left\|x_{0}-x_{n}\right\| \leqslant\left\|x_{0}-x_{n+1}\right\|
$$

Since $\left\{\left\|x_{n}-x_{0}\right\|\right\}$ is bounded, $\lim _{n \rightarrow \infty}\left\|x_{n}-x_{0}\right\|$ exists. Next, we show that $\left\|x_{n}-x_{n+1}\right\| \rightarrow 0$. In fact, from (3.2) we have

$$
\begin{aligned}
\left\|x_{n}-x_{n+1}\right\|^{2} & =\left\|x_{n}-x_{0}+x_{0}-x_{n+1}\right\|^{2}=\left\|x_{n}-x_{0}\right\|^{2}+2\left\langle x_{n}-x_{0}, x_{0}-x_{n+1}\right\rangle+\left\|x_{0}-x_{n+1}\right\|^{2} \\
& =\left\|x_{n}-x_{0}\right\|^{2}+2\left\langle x_{n}-x_{0}, x_{0}-x_{n}+x_{n}-x_{n+1}\right\rangle+\left\|x_{0}-x_{n+1}\right\|^{2} \\
& =-\left\|x_{n}-x_{0}\right\|^{2}+2\left\langle x_{n}-x_{0}, x_{n}-x_{n+1}\right\rangle+\left\|x_{0}-x_{n+1}\right\|^{2} \\
& \leqslant\left\|x_{0}-x_{n+1}\right\|^{2}-\left\|x_{0}-x_{n}\right\|^{2} .
\end{aligned}
$$

Since $\lim _{n \rightarrow \infty}\left\|x_{n}-x_{0}\right\|$ exists, we have that $\left\|x_{n}-x_{n+1}\right\| \rightarrow 0$. On the other hand $x_{n+1} \in C_{n+1} \subset C_{n}$ implies that $\left\|y_{n}-x_{n+1}\right\| \leqslant\left\|x_{n}-x_{n+1}\right\| \rightarrow 0$ and then

$$
\begin{equation*}
\left\|x_{n}-y_{n}\right\| \leqslant\left\|x_{n}-x_{n+1}\right\|+\left\|x_{n+1}-y_{n}\right\| \rightarrow 0 \tag{3.3}
\end{equation*}
$$

Further, since $\left\|y_{n}-x_{n}\right\|=\left(1-\alpha_{n}\right)\left\|S_{n} u_{n}-x_{n}\right\|$ and (i), we obtain

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|S_{n} u_{n}-x_{n}\right\|=0 \tag{3.4}
\end{equation*}
$$

For $p \in F(S) \cap E P(F)$, we have, from Lemma 2.2,

$$
\begin{aligned}
\left\|u_{n}-p\right\|^{2} & =\left\|T_{r_{n}} x_{n}-T_{r_{n}} p\right\|^{2} \leqslant\left\langle T_{r_{n}} x_{n}-T_{r_{n}} p, x_{n}-p\right\rangle=\left\langle u_{n}-p, x_{n}-p\right\rangle \\
& =\frac{1}{2}\left\{\left\|u_{n}-p\right\|^{2}+\left\|x_{n}-p\right\|^{2}-\left\|x_{n}-u_{n}\right\|^{2}\right\}
\end{aligned}
$$

hence $\left\|u_{n}-p\right\|^{2} \leqslant\left\|x_{n}-p\right\|^{2}-\left\|x_{n}-u_{n}\right\|^{2}$. Therefore, by the convexity of $\|\cdot\|^{2}$, we have

$$
\begin{aligned}
\left\|y_{n}-p\right\|^{2} & =\left\|\alpha_{n}\left(x_{n}-p\right)+\left(1-\alpha_{n}\right)\left(S_{n} u_{n}-p\right)\right\|^{2} \leqslant \alpha_{n}\left\|x_{n}-p\right\|^{2}+\left(1-\alpha_{n}\right)\left\|S_{n} u_{n}-p\right\|^{2} \\
& \leqslant \alpha_{n}\left\|x_{n}-p\right\|^{2}+\left(1-\alpha_{n}\right)\left\|u_{n}-p\right\|^{2} \leqslant \alpha_{n}\left\|x_{n}-p\right\|^{2}+\left(1-\alpha_{n}\right)\left\{\left\|x_{n}-p\right\|^{2}-\left\|x_{n}-u_{n}\right\|^{2}\right\} \\
& =\left\|x_{n}-p\right\|^{2}-\left(1-\alpha_{n}\right)\left\|x_{n}-u_{n}\right\|^{2}
\end{aligned}
$$

and then

$$
\left\|x_{n}-u_{n}\right\|^{2} \leqslant \frac{1}{1-\alpha_{n}}\left(\left\|x_{n}-p\right\|^{2}-\left\|y_{n}-p\right\|^{2}\right) \leqslant \frac{1}{1-\alpha_{n}}\left\|x_{n}-y_{n}\right\|\left(\left\|x_{n}-p\right\|+\left\|y_{n}-p\right\|\right)
$$

By ( $i$ ) and (3.3), we obtain

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n}-u_{n}\right\|=0 \tag{3.5}
\end{equation*}
$$

From (3.4) and (3.5), we obtain also

$$
\begin{equation*}
\left\|u_{n}-S_{n} u_{n}\right\|=\left\|u_{n}-x_{n}\right\|+\left\|x_{n}-S_{n} u_{n}\right\| \rightarrow 0 \tag{3.6}
\end{equation*}
$$

And then

$$
\left\|u_{n}-S u_{n}\right\| \leqslant\left\|u_{n}-S_{n} u_{n}\right\|+\left\|S_{n} u_{n}-S u_{n}\right\| \leqslant\left\|u_{n}-S_{n} u_{n}\right\|+\sup \left\{\left\|S_{n} z-S z\right\|: z \in\left\{u_{n}\right\}\right\} \rightarrow 0
$$

As $\left\{x_{n}\right\}$ is bounded, there exists a subsequence $\left\{x_{n_{i}}\right\}$ of $\left\{x_{n}\right\}$ such that $x_{n_{i}} \rightharpoonup w$. From (3.5), we obtain also that $u_{n_{i}} \rightharpoonup w$. Since $\left\{u_{n_{i}}\right\} \subset C$ and $C$ is closed and convex, we obtain $w \in C$. We shall show $w \in E P(F)$. By $u_{n}=T_{r_{n}} x_{n}$, we have

$$
F\left(u_{n}, y\right)+\frac{1}{r_{n}}\left\langle y-u_{n}, u_{n}-x_{n}\right\rangle \geqslant 0, \quad \text { for all } y \in C
$$

From the monotonicity of $F$, we get

$$
\frac{1}{r_{n}}\left\langle y-u_{n}, u_{n}-x_{n}\right\rangle \geqslant F\left(y, u_{n}\right), \quad \text { for all } y \in C
$$

hence,

$$
\left\langle y-u_{n_{i}}, \frac{u_{n_{i}}-x_{n_{i}}}{r_{n_{i}}}\right\rangle \geqslant F\left(y, u_{n_{i}}\right), \quad \text { for all } y \in C
$$

A strong convergence theorem by hybrid method for a nonexpansive mappings and an equilibrium problem

From (ii), (3.5) and condition (A4), we have $0 \geqslant F(y, w)$, for all $y \in C$. Let $y \in C$ and set $x_{t}=t y+(1-t) w$, for $t \in(0,1]$. Then, we have

$$
0=F\left(x_{t}, x_{t}\right) \leqslant t F\left(x_{t}, y\right)+(1-t) F\left(x_{t}, w\right) \leqslant t F\left(x_{t}, y\right)
$$

or $F\left(x_{t}, y\right) \geqslant 0$. Letting $t \downarrow 0$ and using (A3), we get

$$
F(w, y) \geqslant 0 \text { for all } y \in C
$$

and hence $w \in E P(F)$. We next show that $w \in F(S)$. Assume $w \notin F(S)$. Then, from the Opial's condition and (3.6), we have

$$
\begin{aligned}
\liminf _{i \rightarrow \infty}\left\|u_{n_{i}}-w\right\| & <\liminf _{i \rightarrow \infty}\left\|u_{n_{i}}-S w\right\| \leqslant \liminf _{i \rightarrow \infty}\left\{\left\|u_{n_{i}}-S u_{n_{i}}\right\|+\left\|S u_{n_{i}}-S w\right\|\right\} \\
& =\liminf _{i \rightarrow \infty}\left\{\left\|u_{n_{i}}-S u_{n_{i}}\right\|+\lim _{m \rightarrow \infty}\left\|S_{m} u_{n_{i}}-S_{m} w\right\|\right\} \leqslant \liminf _{i \rightarrow \infty}\left\|u_{n_{i}}-w\right\|
\end{aligned}
$$

This is a contradiction. So, we get $w \in F(S)$. Therefore, we obtain $w \in F(S) \cap E P(F)$. Let $z=P_{F(S) \cap E P(F)} x_{0}$, by (3.1) we observe that

$$
\left\|x_{0}-z\right\| \leqslant\left\|x_{0}-w\right\| \leqslant \liminf _{i \rightarrow \infty}\left\|x_{0}-x_{n_{i}}\right\| \leqslant \limsup _{i \rightarrow \infty}\left\|x_{0}-x_{n_{i}}\right\| \leqslant\left\|x_{0}-z\right\|
$$

hence, $\lim _{n \rightarrow \infty}\left\|x_{0}-x_{n_{i}}\right\|=\left\|x_{0}-w\right\|=\left\|x_{0}-z\right\|$. Since $H$ is a Hilbert space, we obtain $x_{n_{i}} \rightarrow w=z$. Since $z=P_{F(S) \cap E P(F)} x_{0}$, we can conclude that $x_{n} \rightarrow P_{F(S) \cap E P(F)} x_{0}$. Moreover, from (3.5) we also have $u_{n} \rightarrow P_{F(S) \cap E P(F)} x_{0}$.

Setting $S_{n}=S$ in Theorem 3.1, we have the following result.
Corollary 3.2. Let $C$ be a nonempty closed convex subset of a real Hilbert space $H$. Let $F$ be a bifunction from $C \times C$ into $\mathbb{R}$ satisfying $(A 1)-(A 4)$. Let $S$ be a nonexpansive mapping from $C$ into $H$ such that $F(S) \cap E P(F) \neq$ $\varnothing$. Let $\left\{x_{n}\right\}$ and $\left\{u_{n}\right\}$ be sequences generated by

$$
\left\{\begin{array}{l}
x_{0} \in H, \quad \text { and } C_{0}=C \\
u_{n} \in C \text { such that } \quad F\left(u_{n}, y\right)+\frac{1}{r_{n}}\left\langle y-u_{n}, u_{n}-x_{n}\right) \geq 0, \quad \forall y \in C, \\
y_{n}=\alpha_{n} x_{n}+\left(1-\alpha_{n}\right) S u_{n}, \\
C_{n+1}=\left\{z \in C_{n}:\left\|y_{n}-z\right\| \leq\left\|x_{n}-z\right\|\right\} \\
x_{n+1}=P_{C_{n+1}} x_{0}, \quad n=0,1,2 \ldots
\end{array}\right.
$$

with the following restrictions:
(i) $0 \leqslant \alpha_{n}<1$ for all $n \in \mathbb{N} \cup\{0\}$ and $\lim \sup _{n \rightarrow \infty} \alpha_{n}<1$,
(ii) $r_{n}>0$ for all $n \in \mathbb{N} \cup\{0\}$ and $\liminf _{n \rightarrow \infty} r_{n}>0$.

Then $\left\{x_{n}\right\}$ and $\left\{u_{n}\right\}$ converge strongly to $P_{F(S) \cap E P(F)} x_{0}$.

As direct consequences of corollary 3.2 , we can obtain two corollaries.

## S. Plubtieng and K. Ungchittrakool

Corollary 3.3. Let $C$ be a nonempty closed convex subset of $H$. Let $F$ be a bifunction from $C \times C$ to $\mathbb{R}$ satisfying $(A 1)-(A 4)$ such that $\operatorname{EP}(F) \neq \varnothing$. Let $\left\{x_{n}\right\}$ and $\left\{u_{n}\right\}$ be sequences generated by

$$
\left\{\begin{array}{l}
x_{0} \in H, \quad \text { and } C_{0}=C \\
u_{n} \in C \text { such that } \quad F\left(u_{n}, y\right)+\frac{1}{r_{n}}\left\langle y-u_{n}, u_{n}-x_{n}\right\rangle \geq 0, \quad \forall y \in C \\
C_{n+1}=\left\{z \in C_{n}:\left\|u_{n}-z\right\| \leq\left\|x_{n}-z\right\|\right\} \\
x_{n+1}=P_{C_{n+1}} x_{0}, \quad n=0,1,2 \ldots
\end{array}\right.
$$

with $r_{n}>0$ for all $n \in \mathbb{N} \cup\{0\}$ and $\liminf _{n \rightarrow \infty} r_{n}>0$. Then $\left\{x_{n}\right\}$ and $\left\{u_{n}\right\}$ converge strongly to $P_{E P(F)} x_{0}$.

Proof. Putting $S=I$ and $\alpha_{n}=0$ in Theorem 3.1.
Corollary 3.4. Let $C$ be a nonempty closed convex subset of $H$ and let $S$ be a nonexpansive mapping from $C$ into $H$ such that $F(S) \neq \varnothing$. Let $\left\{x_{n}\right\}$ and $\left\{u_{n}\right\}$ be sequences generated by

$$
\left\{\begin{array}{l}
x_{0} \in H, \quad \text { and } C_{0}=C \\
u_{n} \in C \text { such that }\left\langle y-u_{n}, u_{n}-x_{n}\right\rangle \geq 0, \quad \forall y \in C, \\
y_{n}=\alpha_{n} x_{n}+\left(1-\alpha_{n}\right) S u_{n} \\
C_{n+1}=\left\{z \in C_{n}:\left\|y_{n}-z\right\| \leq\left\|x_{n}-z\right\|\right\} \\
x_{n+1}=P_{C_{n+1}} x_{0}, \quad n=0,1,2 \ldots
\end{array}\right.
$$

with $0 \leqslant \alpha_{n}<1$ for all $n \in \mathbb{N} \cup\{0\}$ and $\lim \sup _{n \rightarrow \infty} \alpha_{n}<1$. Then $\left\{x_{n}\right\}$ and $\left\{u_{n}\right\}$ converge strongly to $P_{F(S)} x_{0}$.
Proof. Putting $F(x, y)=0$ for all $x, y \in C$ and $r_{n}=1$ in Theorem 3.1.

Acknowledgement. The authors would like to thanks The Thailand Research Fund for financial support. Moreover, K. Ungchittrakool is also supported by the Royal Golden Jubilee Program under Grant PHD/0086/2547, Thailand.

## References

[1] K. Aoyama, Y. Kimura, W. Takahashi and M. Toyoda, Approximation of common fixed points of a countable family of nonexpansive mappings in a Banach space, Nonlinear Anal. 67 (2007) 2350-2360.
[2] E. Blum and W. Oettli, From optimization and variational inequalities to equilibrium problems, Math. Student. 63 (1994) 123-145.
[3] P. L. Combettes and S.A. Hirstoaga, Equilibrium programming in Hilbert spaces, J. Nonlinear Convex Anal. 6 (2005) 117-136.
[4] S. D. Flam and A. S. Antipin, Equilibrium progamming using proximal-link algolithms, Math. Program. 78 (1997) 29-41.
[5] A. Genel and J. Lindenstrass, An example concerning fixed points, Isael. J. Math. 22 (1975) 81-86.
[6] K. Goebel and W. A. Kirk, Topics in metric fixed point theory, Cambridge University Press, Cambridge. 1990.
[7] H. Iiduka and W. Takahashi, Strong convergence theorems for nonexpansive mapping and inverse-strong monotone mappings, Nonlinear Anal. 61 (2005) 341-350.

A strong convergence theorem by hybrid method for a nonexpansive mappings and an equilibrium problem
[8] W. A. Kirk, Fixed point theorem for mappings which do not increase distance, Amer. Math. Monthly. 72 (1965) 1004-1006.
[9] W. R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc. 4 (1953) 506-510.
[10] G. Marino, H.K. Xu, A general iterative method for nonexpansive mapping in Hilbert spaces, J. Math. Anal. Appl. 318(2006) 43-52.
[11] A. Moudafi and M. Thera, Proximal and dynamical approaches to equilibrium problems. in: Lecture note in Economics and Mathematical Systems, Springer-Verlag, New York, 477 (1999) 187-201.
[12] K. Nakajo and W. Takahashi, Strong convergence theorems for nonexpansive mappings and nonexpansive semigroups, J. Math. Anal. Appl. 279 (2003) 372-379.
[13] Z. Opial, Weak convergence of successive approximations for nonexpansive mappings, Bull. Amer. Math. Soc. 73 (1967) 591-597.
[14] S. Reich, Weak convergence theorems for nonexpansive mappings, J. Math. Anal. Appl. 67 (1979) 274-276.
[15] R. T. Rockafellar, On the maximality of sums of nonlinear monotone operators, Trans. Amer. Math. Sco. 149 (1970) 75-88.
[16] R.T. Rockafellar, Monotone operators and proximal point algorithm, SIAM J. Control Optim. 14 (1976) 877-898.
[17] W. Takahashi, Y. Takeuchi and R. Kubota, Strong convergence theorems by hybrid methods for families of nonexpansive mappings in Hilbert spaces, J. Math. Anal. Appl. (to appear).
[18] S. Takahashi and W. Takahashi, Viscosity approximation methods for equilibrium problems and fixed point problems in Hilbert spaces, J. Math. Anal. Appl. 331 (2007) 506-515.
[19] W. Takahashi, Nonlinear functional analysis. Yokohama Publishers, Yokohama, 2000.
[20] A. Tada and W. Takahashi, Weak and strong convergence theorems for a nonexpansive mappings and an equilibrium problem, J. Optim. Theory Appl. 133 (2007) 359-370.
[21] W. Takahashi and M. Toyoda, Weak convergence theorems for nonexpansive mappings and monotone mappings, J. Optim. Theory Appl. 118 (2003) 417-428.
[22] J.-C. Yao, O. Chadli, Pseudomonotone complementarity problems and variational inequalities, in: J.P. Crouzeix, N. Haddjissas, S. Schaible (Eds.), Handbook of Generalized Convexity and Monotonicity, 2005, pp. 501-558.
[23] L.C. Zeng, S. Schaible, J.C. Yao, Iterative algorithm for generalized set-valued strongly nonlinear mixed variationallike inequalities, J. Optim. Theory Appl. 124 (2005) 725-738.


[^0]:    ＊Corresponding author．Tel．：＋66 55261000 ext．3102；fax：＋66 55261025.
    Email addresses：somyotp＠nu．ac．th（Somyot Plubtieng）and g47060127＠nu．ac．th（Kasamsuk Ungchittrakool）．
    ${ }^{\dagger}$ Supported by The Royal Golden Jubilee Project grant No．PHD／0086／2547，Thailand．

