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On the Hida product and QFT with interactions

Sergio ALBEVERIO * and  Minoru W. YOSHIDA !

March 31, 2008

Abstract

By making use of the Hida product we construct a new reflection positive random field with the space
time dimension d = ¢4 which surely has a correspondence to a concrete QFT with interaction.

1 Introduction

In section 2 we give a concise guide of the mathematical structure of quantum
field theory (QFT) through the arguments by means of Gaussian random fields
(cf. e.g., [Si]) and stochastic integrals with respect to the Gaussian white noise
(cf. e.g., [AFY], [AY1,2,3]). In section 3 by making use of the Hida product,
of which definition has been introduced in [AY4], we present a new reflection
positive random field with the space time dimension d = 4 that surely has a
correspondence to a concrete QFT with interaction.

2 Identification of Euclidean quantum fields on R? with S'(R%! — R)
valued Markov processes

Throughout this paper, we denote by d € N, where N is the set of natural
numbers, the space-time dimension, and we understand that d — 1 is the space
dimension and 1 is the dimension of time. Correspondingly, we use the notations

x = (¢,%) € R x R

Let S(R?) (resp. S(R1)) be the Schwartz space of rapidly decreasing test
functions on the d dimensional Euclidean space R? (resp. d — 1 dimensional
Euclidean space R%"!), equipped with the usual topology by which it is a Fréchet
nuclear space. Let S'(R?) (resp. S&'(R%!)) be the topological dual space of
S(R?) (resp. S(R?1)).

The probability measures on S’(R? — R) which are invariant with respect to

the Euclidean transformations are called as Euclidean random fields. The
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Euclidean random fields which admit an analytic continuation to the quan-
tum fields (Wightman fields) are called as Euclidean quantum (random)
fields. Where the analytic continuation, very roughly speaking, means the an-
alytic continuation of the time variable t € R of Euclidean fields to Vv/—1t, and
Wightaman fields are the fields that are invariant with respect to the trans-
formations keeping the Lorentz scalar product unchanged (i.e. the restricted
Poincré invariance).

In this section we review how the Euclidean quantum random fields on R?,
the probability measures on S’'(R? — R), are identified with the probability
measures on the space C (R — &'(R¥! - R)) which are generated by some
S'(R%-1 — R) valued Markov processes.

In order to simplify the notations, in the sequel, by the symbol D we denote
both d and d — 1. In each discussion we exactly explain the dimension (space-
time or space) of the field on which we are working.

Now, suppose that on a complete probability space (§2, F, P) we are given
an isonormal Gaussian process WP = {WP(h),h € L?*(RP;\P)}, where AP
denotes the Lebesgue measure on RP (cf., e.g., [AY1,2]). Precisely, WP is a
centered Gaussian family of random variables such that

EWP(h)W"(g)] = /RD h(x) g(x)AP(dx),  h, g€ LX(R";AP).  (2.1)

We write

w2 = [ hWPy),  weo

with WP (.) a Gaussian generalized random variable (in the general notation
of Hida calculus for the Gaussian white noise W2P(dy) should be written as
WP(y)dy).
Since, we are considering a massive scalar field, we suppose that we are given
a mass m > 0. Let Ay and resp. Agy_; be the d, resp. d — 1, dimensional
Laplace operator, and define the pseudo differential operators L_% and H _1as
follows:
L_y= (=Ag + m?)73. (2.2)

H_% = (~Ad_1 + mQ)A%, (2.3)

By the same symbols as L_ 1 and H_ 1, we also denote the integral kernels of the
corresponding pseudo differential operators, i.e., the Fourier inverse transforms
of the corresponding symbols of the pseudo differential operators.

By making use of stochastic integral expressions, we define two extremely
important random fields ¢y, the Nelson’s Euclidean free field, and ¢, the



sharp time free field, as follows:
For d > 2,

() = /R L_y(x — YW (dx), | (2.4)

o) = [ H @ - wha). (25)
These definitions of ¢ and resp. ¢y seems formal, but they are rigorously
defined as S'(R?) and resp. S'(R%!) valued random variables through a limiting

procedure (cf. [AY1,2]), more precisly it has been shown that

2
P(on(-) € Bg"b) =1, for a,b such that min(1, —25—) + 5> 1, b>d (2.6)

’
d2f1)+d11>1, b >d-1.
(2.7)

Here for each a, b, D > 0, the Hilbert spaces Bs’b, which is a linear subspace of
S'(RP), is defined by

B = {(x|* + )i(=Ap + 1)*8f: fe L*(RP;AP)}, (2.8)

where x € R? and ) denotes the Lebesgue measure on R, the scalar product
of BS’b is given by

<ule> = [ {(-Ap+Di(@+ k) tutx) }

x {(_AD+1)%((1+1x|2)-%u(x))}dx, u, v e B, (2.9)

P(gp € Bgl_’b{ =1, for d,¥ such that min(1,

The following definition of < ¢y, f > and < ¢g, ¢ > would give a good expla-
nation of (2.4) and (2.5). We denote

< ¢n, f >E/

(L,% f) (x) Wi(dx), feSR! - R), (2.10)
Rd

< ¢o,p >= /R (H_%ga) (Z)Waldz), peSRI 3R), (2.11)

It may possible to say that every idea of probabilistic treatment of Euclidean
quantum field theory are included in the Nelson’s Euclidean free field ¢y.

¢n satisfies all the requirements under which it admits an analytic contin-
uation to a quantum field that satisfies the Wightman axioms (cf.,e.g., [Si],
[AY1,2] and references therein). In particular, ¢y satisfies the following impor-
tant property:



N-1) o~ 1s Markovian with respect to time in the sense that

E[<én, fi > < on, fi > [ Flecog] = E[< On, f1 > -+ < &N, fr > |Fol,
forany keN, f;¢€ SR +R), j=1,---,k such that
supp[f;] € {(t,®)|t >0, F € R}, j=1,---,k,

F(—oop] = the o field generated by the random variables < ¢x, g > such that
supplg] C {(¢, &)t <0, £ € R4 1},

Fo = the o field generated by the random variables < ¢n, ¢ X d101(-) >, where

¢ are functions having only the space variable &, i.e., p(Z) such that ¢ €
S(R?-! — R) and &0)(t) is the Dirac point measure at time ¢ = 0, namely

supp[e X d;03(1)] C {(t, )|t =0, T € RI-1}.
Remark 1. For ¢y, the random variable < ¢n, ¢ X di03(:) > is well

defined (cf. [AY1,2]), precisely for any ¢, € R and the Dirac point measure
8111 (+) at time t = 2o

< on, @ X 5{t0}(') >€ ﬂquLq(Q; P)

Let 6 be the time reflection operator:

(ef)(ta f) = f(_t’i:)v

then by N-1), forany k€N, f;¢€ S(R* - R), j=1,---,k, such that
supp[f;] C {(t,Z)|t >0, € R}, j=1,--- k, we easily see that (cf. e.g.
[AY2])

El<¢n,fr> - <oén, fr > F) = E[< ¢N,9f1'> oo < @N, Ofk > | Fol
P —a.s., (2.12)

hence,
2
E[(El<on fi> < on.fu>F]) | 20
Consequently, we see that ¢y satifies the following :
El(<on,fr> - <on, fr >) (< ¢n,0f1 > - < on,0fc >)] 20 (2.13)

The property (2.13) is refered as the reflection positivity, and Nelson’s Eu-
clidean free field ¢ is a reflection positive random field. But from the above



discussion (cf. (2.12)) we see that the property of reflection positivity is a
property of symmetric Markov processes.

Remark 2. By N-1) and (2.12), {¢n (¢, ) }ter can be understood as a
symmetric ”Markov process”, moreover since it satisfies the property of Eu-
clidean invariance, ¢y (x), x € R? is a Markov field (cf. more precisely, e.g.,
[Si], [AY1,2] and references therein).

O

Let po be the probability measure on S&'(R¢~! — R) which is the probability
law of the sharp time free field ¢y on (2, F, P) (cf. (2.7)), and pn be the
probability measure on &'(R? — R) which is the probability law of the Nelson’s
Euclidean free field on R? (cf. (2.6)).

We denote

tole) =< dow>= [ (H o) @W(ad),

Re-1

and

t o(p1) - do(en) :
= /RW_U H—%Qol(fl) e H-§901(fk)Wd_1(da":'1) e Wd_l(d:i'k) € Ng>1L% (o)

for ¢, p; € «S(Rd'1 —R), j=1,---,k, k€N, (2.14)

where (2.14) is the k-th multiple stochastic integral with respect to the isonor-
mal Gaussian process W< 1 on Ri-1.

Since, : ¢o(¢1) - - - do(pn) : is nothing more than an element of the n-th Wiener
chaos of L%(ug), it also adomits an expression by means of the Hermite poly-
nomial of ¢g(p;), 7 =1,---,k (cf., e.g., [AY1,2] and references therein).

Remark 3. From the view point of the notational rigorousness, ¢g
and ¢y are the distribution valued random variables on the probability space
(Q, F, P), hence the notation such as

: o(p1) - -+ do(en) € () L ko)
g21
is incorrect. However in the above and in the sequel, since there is no ambiguity,
for the simplicity of the notations we use the notations ¢ and ¢ (with an obvi-
ous interpretation) to indicate the measurable functions X and resp. Y on the



measure spaces (S'(R?™1), yo, B(S'(R*1))) and resp. (S'(RY), uy, B(S'(R)))
such that

P({w: dolw) € 4}) = m({o : X(#) € 4}), A€ BES R,

P({w: onw) e 4}) =un({¢: Y(9) € 4}), 4 e B(S'(RY),
respectively, where B(S) denotes the Borel o-field of the topological space S.
a

Let 1
Hi = (-A41 +m?)z, (2.15)

and define the operator dI'(H1) on L?(uo) such that (for the notations cf. Re-
mark 3.)

dI‘( ) o) -+~ doln) 1) =t do(Hyp1)do(w2) - - dolion) : + - -
“+ 2 @o(e1) - Pol@n-1)¢0(Hipr) : (2.16)

Only for the next two propositions, suppose that d = 2. For each p € N,
T > 0 and r € N we define the random variables v?(r) and V% (r, T'), which
are potential terms on the sharp time free field and Nelson’s Euclidean free field
respectively, as follows:

v (r) =<: ¢F

SRV IR | CRCEEAPH VAT R

oo k=1

1
2

= [ M@ i @ de € () L), (2.17)

q>1

T
V®(r,T) =/ <: qﬁ’,’ (¢, ), Ay > dt

E/ /Rz {/ Ar m)HL 1(t,2) = (tr, 2x)) d }Wz(d(tl,:m))

X---x W (d(tgp, fltzp)) dt
T fols)
- /_T /_Oo Ar(@): 6% : (t,7) dzdt € () L9(uw), (2.18)

g1



where for r € N, A, € C°(R — R,) is a given function such that 0 < A.(z) <
1(xeR),Ar=1(lz] <7r), A, =0 (J]z] > r+1) (for the notations cf. Remark
3.). -

We have the following important estimates (cf. eg., [Si]).

Proposition 2.1  The operator dI'(Hy) given by (2.16) defines a positive self

adjoint operator on L*(ug). For each p € N there exists some S(R) norm ||| - |||
and the following holds:

W (r)| < (dT(Hy) + DIIAl,  VreN. (2.19)

For eachp € N, A > 0 and r € N the operator dI'(Hy) + Av?P(r) on L?(uo) is
essentially self adjoint on the natural domain and bounded bellow:

There exists the smallest Eigenvalue o = agpry > —00 and the corresponding
Eigenfunction p = pyp .\ such that

(dI"(H%) +*#(r))p=a-p, (2.20)
p(9) >0, poae. ¢eS(R); dU(H:) + v’ (r) 2 . (2.21)
Foreachpe N, A>0,rcNandT >0
e V7)€ () LY uy)- (2.22)
921

Here, all the way of using notations follow the rule given by Remark 3.

Because v?(r) is defined through H_y (cf. (2.17)), (2.19) holds for dI'(H})
with Hj. (2.21) can be shown by crucially use of the hypercontractivity of

e "I and (2.19). (2.22) is also a consequence of the Nelson’s hypercontrac-
tive bound on LY(uy), ¢ > 1.

Proposition 2.2 Let oy, and pap,r > 0 be the Eigenvalue and function
in Prop.2.1 respectively, and suppose that pap, » is normalized in order that

E*° [p2p,r,)\('))2] =1
Let vopr» be the probability measure on S'(R) such that

Vzpﬂ',/\ = (p?p,r,)\)2ﬂ0,
and define a mapping U : L*(uo) — L*(vap,rn) as follows:
X

UX = . X e L¥ ).
P2p,r X




Then the operator Ty, t > 0, on Li(vapra), g > 0, defined by

T,=U exp{—t(dF(H;) + AP(r) — agp,,.,,\)}U‘l, t >0, (2.23)

2

18 Markovian contraction semigroup. By taking vep, x the initial distribution,

Ty, t € R, generats a random field on 8'(R?) of which probability law is identical

to
d = 1 e VD gy
Hv2p(r,00) = Tl—ra»lgo Enn[e-AV#(NT))

(2.24)

more precisely, for any ¢y, p3 € S(R - R), and any ty, to > 0

/ T, ((sz < -, P9 >S',S) (1) < -1 >S',S> (¢) vapra(de)
S'(R—-R)
= E"reo[< ¢, 01 X 8y (1) >< 6,02 X b1y () >], (2.25)

where EFVreeo[ . ] denots the expaectation taken with respect to the measure
Hv2p(r.00), and all the way of using notations follow the rule given by Remark 3.

3 The Hida product on 4-space time dimensions and the correspond-
ing results to Prop. 2.2 and 2.3

Firstly, we remark that if we substitute the potentials in (2.17) resp. (2.18) by
the finite linear combinations of : ¢(2)p . resp. : qb%’ :, then Propositions 2.1 and
2.2 also true. In particular these Proposisions hold for (: ¢3 : — : ¢32 :) together
with (: @3 : — : % 2).

Secondly, for such a substitution in the definition of 7} given by (2.23) we

have the term such that
e—/\(v4(r)+v2(r))’ (31)

Thirdly, e~ M (M+* (M) ig in L2(Q, P) when d = 2, but we have to stress that
by performing the formal Taylor expansion to (3.1) and then applying the Hida
product argument (cf. [AY3]), even for the space time dimension d = 4, we can
find several integrable random variables in it, in particular we are able to find
the following random variable included in (3.1) with d = 4:



< / AT H_y(7 = F4) H_y (7 — 5)dd ) d
R3 4 4

xW3(dZy)- - W3(d&s) € ()L (o). (3.2)

q>1

Correspondingly we can define

ven=[ [ {[ Ar<f>§L_%<<t, 7) - (t,7))

« (/R A@)L_y(8,3) = (6, 50) Ly (5, 75) — (s, 5))d's ) d )
xWH(d(t1, 21)) - WH(d(ts, &) dt € [) L (). (3.3)

The main result of the present paper is the following:

Theorem 3.1 By substituting the terms v?P(r) resp. V2P(r, T) in Propsitions
2.1 and 2.2 ford = 2 by v(r) resp. V(r,T) given by (5.2) resp. (3.3), then all
the corresponding statements of Propsitions 2.1 and 2.2 hold for the case d = 4
with such changes.
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