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Quantum Painlevé equations

Hajime Nagoya
School of Fundamental Science and Technology,
Keio University

1 Introduction

In this note, we present a quantization of the Painlevé equations with the
affine Weyl group actions. Constructing a generalization of Knizhnik - Zamolod-
chikov equations for sl,, we obtain the quantization of the Painlevé equations
from the generalization of the Knizhnik-Zamolodchikov equations, in a formal
way.

In the ninetieth century, one of the important problems of analysis was
to find “a new special functions” defined by nonlinear algebraic differential
equations. Under this consideration, P. Painlevé classified the second order
nonlinear ordinary differential equations without movable singular points in
their solutions, which are now called the Painlevé equations Py (J=I,...,VI)
[6].

Soon after the discovery of the Painlevé equations the sixth Painlevé
equation was derived from the monodromy preserving deformation by R.
Fuchs [1]. Much later, the Painlevé equations were formulated in the general
theory of monodromy preserving deformation [3]. As for the quantization
of monodromy preserving deformation, it was noticed by N. Reshetikhin [7]
that a quantization of the Schlesinger equations which are deformation equa-
tions that preserve the monodromy of the rational connection with regular
singularities can be viewed as the Knizhnik-Zamolodchikov equations in the
conformal field theory. We hope that we would obtain “a quantum sixth
Painlevé equation” from the Knizhnik-Zamolodchikov equation in the spe-
cial case and no one succeeds to obtain it so far.

We attack the problem of quantization of Painlevé equation from another
aspect. Since the Painlevé equations are Hamiltonian systems and admit
the affine Weyl group actions as Béacklund transformations, we quantize the
Painlevé equations as quantization has the affine Weyl group action. We call
them quantum Painlevé equations.

Moreover, generalizing the Knizhnik-Zamolodchikov equations for irreg-
ular singular type in the case of sl;, we obtain quantum Painlevé equations
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QP,, QP QPyyy, QP and QPy,. This part is a joint work with M. Jimbo
and J. Sun.

In the following, we write down all quantum Painlevé equations and
explain the relation between the Schlesinger equations and the Knizhnik-
Zamolodchikov equations and generalize the Knizhnik-Zamolodchikov equa-
tions. Finally we compute QPy, case as examnple.

2 Quantum Painlevé equations

In this section, we write down quantized Hamiltonians and the affine Weyl
group actions.

2.1 The case of QP+

Let Ky be a skew field over C with generators §, p, o1, o9, o3, o4, t and the
commutation relations defined by

p.gl=h (heC), [pa]=[fa]=[pt=[gt=[tau]=0 (lS.iS(Z;)-
1

Let an element flv ; in Ky be defined by
Hy; =5 [Gp(Gd — 1)p(g—t) + (§— 1)p(¢d — t)pG + (§ — t)pgp(¢d — 1)+
(G —)p(G—1)pg+ (¢ — 1)pgp(d — t) + §p(G — t)p(§g — 1)]
-3 [(eo — 1)(gD(¢G — 1) + (§ — 1)Pg) + a3(Gp(g — t) + (§ — t)pd)
aa((@—1)p(g—1t) + (G—)p(¢d — 1))] + ao(as + a2)(§ — 1), (2)

where o = 1 — a3 — 29— a3 — oy Let a C-derivation dy; on Ky be defined
by Heisenberg equation

6\/1(&) = %[ﬁvl’ a] + t(t — 1)%3— (a € IC), (3)

where 9/0t is a C-derivation which takes ¢ to 1 and other generators to 0.
We write down Heisenberg equation for ¢, p.

R 1.~ . . o n . s
Ov1(4) :E{H\’I, ¢l = q(@—1)p(g —t) + (g —t)pg(g — 1)
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—{oa(@—-1)(G—t) + a3G(§—t) + (0 — 1)G(§ — 1)},  (4)
o 1o~ nnn  AAD A nn .
Ov1(p) =E[Hvz, p) = — (P4pq + 4p°G + apap) + 2(1 + £)pGp — tp?
+ (oo + a3 + g — 1)(PG + gp)
+P{—au(l + 1) — ast — ao + 1} — az(ay + a2). (5)

We define transformations s; (0 < ¢ < 4) for the generators of Ky as follows:

) 831 7] %] Oy
So —Qp Qq Q9 + Q3 (o788
S Qg —Q oo+ o O3 oy
S2 | o +o2 1+ o — Qg a3+ a2 g+ oo
83 (73] 1 oo + Q3 —Qg3 Y
S4 (8 7}) (03] Qg + gy Qg — QY
g p
50 q p—ao(g—1t)~
S q p
so | ¢+ agp™! D
S3 q p—aa(g—1)71
54 g p—oug™!

Proposition 1 Transformations s; preserve the commutation relations, that
s, $; become automorphisms on Kyj.

Theorem 2 The derivation Oy; commutes with automorphisms s; (0 < ¢ <
4) and s; (0 < i < 4) give a representation of the affine Weyl group of type
Dil), namely, s; satisfy the following relations:

si=1, (sis))*=1 (3,5#2), (sis2)®=1. (6)

2.2 The case of QPy,

Let Ky be a skew field over C with generators o, f, (i € Z/4Z) and the
commutation relations

[fi, fiml=h (R€C), [fioy)=loi,05]=0, (i,j€Z/4Z). (7)
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Let an element A v in Ky be defined by
—~ A A A A NN 1 ) ]. A A
Hy =fofifaofs + hfifa+ Z(a’l + 2a2 — as) fof1 + 1(061 + 200 + 3a3) f1 fo
1 21 .1
— 1(3681 + 202 + a3) fafs + :1(01 — 200 — a3) fafo + 1(041 + as)?.

Let a C-derivation Jy on Ky be defined by

A 1.~ 4 N ‘
ovfi= E[HV, fil— (“1)1§fz’ + d; 0k, (8)
Ova; = %[ﬁv, ] (0<i<4), (9)

where kA= oot o tar+azand z = fo + fg. We write down the derivation
oy for f;.

Ovfi = fifirfira — firafirafi + (g — ai) fir+oifia (i € 2/47). (10)

If we introduce p, § by

A . D, .
= - , =(@—1)=(Gg—-1), 11
=55 Ai=@-nEG-1 (11)
then (p, g) is a canonical coordinate, namely it holds [p, §] = A.

We define transformations s; (0 < 7 < 3) for the generators of Ky as
follows:

Qo 67] Q2 Q3
S0 —Qp a1 + o Qg a3 + Qo
S1 | oo+ a1 —Q 09 + o Q3
S92 o a1 + Qg — Qg o3 +
S3 | g+ &g 1 9 + Q3 — O3
Jo _fh 2 ) fa ]
sol fo fitoafst f2 fa—aoft
si|fo—aafit A ftafit s A
sz fo h—oeafs fo fitaafi!
s3 | fo+ aafs? f1 fa—asfi? f3
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Proposition 3 Transformations s; preserve the commutation relations, that
18, s; become automorphisms on Ky .

Theorem 4 The derwation Oy commutes with automorphisms s; (0 < ¢ <
3) and s; (0 < i < 3) give a representation of the affine Weyl group of type
Ag), namely, s; satisfy the following relations:

s2=1, (sis)?’=1 (i#j%x1), (sisip1)®=1. (12)

2.3 The case of QP

Let Kjv be a skew field over C with generators o, ﬁ- (i € Z/3Z) and the
commutation relations

[fia fi+1] =h (h € C)? [fh aj] = [041', a/j] = 07 (17.7 € Z/SZ) (13)
Let an element H 7v in Ky be defined by
~ PPN A 1 ~ 1 A 1 o
Hry = fofifoe+hfi+ g(al — az) fo+ §(a1 + 202) f1 — 5(2041 + ag) f2. (14)

Let a C-derivation dry on Ky be defined by
1

Orv fi = ']'_L’[ﬁIV, fil + 8iok, (15)
Orva; = %[ﬁw, @] (0<i<3), | (16)
where kK = ap + a1 + a2. We write down the derivation 85y for f:
aIV.fi = fifi-i-l — fi—lfz’ +o; (v € Z/AZ). (17)
If we introduce p, ¢ by
h=p fi=4 (18)

then (p, ) is a canonical coordinate, namely it holds [p, §] = h.
We define transformations s; (0 < ¢ < 2) for the generators of Ky as
follows:

| ) a1 2
S0 —Q o+ o o+ o
S1 | g + g —Q 0o+ Q1

So | g+ xe o1+ Qo — Q9
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T
so| fo  htoofe fo—aofs!
51 Jio—a'uifl ) f1A f2+9'1f1_1
sz | ot aafst fi—onfs! f2

Proposition 5 Transformations s; preserve the commutation relations, that
1s, 8; become automorphisms on Kry.

Theorem 6 The derwation Ory commutes with automorphisms s; (0 < 1 <
2) and s; (0 < i< 2) give a representation of the affine Weyl group of type
Aél), namely, s; satisfy the following relations:

s2=1, (sisiz1)® =1 (19)

2.4 The case of QP

Let Krrr be a skew field over C with generators ¢, p, a1, ag, t and the
commutation relations defined by

B.dl=h (heC), [Pal=[Gal=pHtl=[¢tl=Fa=0 1<i<?2).
. R (20)
Let an element Hyrr in Ky be defined by

Hir =1 PG —-1)g+ (p—1)gpg + ¢pg(p— 1) + §(p — 1)Gp) (21)
1 U . .
+-2—(ao+a2)(qp+pq)—aoq+tp (22)

where o9 = 1 — 2a1 — a3. Let a C-derivation 0r;; on Kjj; be defined by
Heisenberg equation

1 - da
8]1]((1) = —[HI”, a] + t— (a € ’C) (23)
h ot
We write down Heisenberg equation for ¢, p.
Orir(§) =3 [Hiu, 4 = 244 — §° + (a0 + 02)d + ¢, (24)
~ 1 5 A A AN AN A A A
Or11(P) =E[Hm, Pl = —2p3gp+ @b+ PG — (o + a2)P + cxo. (25)

We define transformations s; (0 < ¢ < 2) on Ky as follows:
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Qo o Q2 i q 3]
S0 —Qp a1 + Qo t q+ Cl{oﬁ_l p
s1]ao+200  —ar et 20 | —t q P— 2017t + G2
S92 o%y) a1 + o — Qg t d + CBQ(ﬁ — 1)—1 13

Proposition 7 Transformations s; preserve the commutation relations, that
18, s; become automorphisms on Kyy;.

Theorem 8 The derivation ;1 commutes with automorphisms s; (0 < 1 <
2) and s; (0 < i< 2) give a representation of the affine Weyl group of type
Cél), namely, s; satisfy the following relations:

si=1 (sos1)*=1, (s180)*=1. (26)

2.5 The case of QP

Let Krr be a skew field over C with generators oy, oy, ﬁ (0 < i< 2) and the
commutation relations

[f1, fol = 2hfa,  [fo, fll = [fo, il =h (h € C), (27)
[fia aj] = 0. (28)
Let an element H 11 in K1 be defined by
~ 1 ~ « ~ A ~
Hip = §(fof1 + fifo) + a1 fa (29)
Let a C-derivation 0;; on Ky be defined by
n 1 ~ ~
Oifi = E[HII, fil+ 6ok (¢=0,1,2), (30)
1.~ .
ana’,' = E[HII’ Oéi] ('L = 0, 1), (31)

where k = a9 + ;. We write down the derivation 9y for ﬁ

5'11fo = f0f2+f2fo+ao, aIIfl = *f1f2—f2f1+0«'1, aufz = .fl—fo, (32)
If we introduce p, § by X X

| fi=4q, f2=p, (33)
then (p, §) is a canonical coordinate, namely it holds [, §] = h.

We define transformations s; (0 < ¢ < 2) for the generators of K;; as
follows:
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‘ Qg Qq
S0 — Q0 8% +2C¥o
s1 | ag+ 20 —0q
| o A
so | o fo . fr—oo(fefs + fo f2) — (e fo)?
s1| fot+ an(fofit + filf2) — (a0 fi)? S
| f2
So Ji2+040]io_1
s1| fo—oafi?

Proposition 9 Transformations s; preserve the commutation relations, that
is, s; become automorphisms on Kjj.

Theorem 10 The derivation 0;; commutes with automorphisms sy, s, and
s, 51 give a representation of the affine Weyl group of type Agl), namely, s;

satisfy the following relations:

si=1. (34)

3 Schlesinger equation

In this section, we review the Schlesinger equations and their Hamiltonian
structure.
The Schlesinger equations are the following:

0A;  [AL 4] ., . ..
= , ¢ , 4L,i=1....n
82j Zi— Zj 7& J J
04~ [4,4)]
N v PR
where A; are r x r matrices whose entries are functions of z; (4,7 =1,...,n)

over C. The Schlesinger equations are derived from isomonodromy defor-
mation for rational connections of regular singular type. Accordingly, the
Schlesinger equations are equivalent to the following relations:

[vz’ vl] = 07
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where

8 I~ A 8 A
vzﬁé—;_;z——zi’ v‘i—azi—"z—z,-'

We define Hamiltonians H; by

Hi= i tI(AiAj),

z.__.z.
j=tg# 7

and Poisson bracket by

{(Ai)aba (Aj)cd} = 513 (6bc(A1')ad - 6da(A'i)cb) .

Then, it holds 5

A,

62j { P }
Remark 11 The Poisson bracket above is induced from the corresponding
Lie algebra gl.. We can induce the Poisson bracket to the dual of a Lie
algebra from the Lie bracket of the Lie algebra.

Remark 12 In order to derive the sixth Painlevé equation from the Schlesinger
equation, we consider the case of four singular points and r = 2. At this mo-
ment, we have a nonlinear third order differential equation. Moreover, we
take a reduction by SL(2) action to introduce a Poisson bracket appropri-
ately. Then we obtain a nonlinear second order differential equation, and
that equation is the sizth Painlevé equation.

4 Knizhnik-Zamolodchikov equation

In this section, we construct the Knizhnik-Zamolodchikov equations by Lie
algebra and we see that the Knizhnik-Zamolodchikov equations are quanti-
zation of the Schlesinger equations.

Let (p;, V;) be representations of a simple Lie algebra g and let

d
V=N@Whe -8V, Q=3 n(JpL),

a=1

where {J°} is a basis of g and {J,} is the dual basis.
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The Knizhnik-Zamolodchikov equations are the following:

Kaziw—<z T:-;;)d), z-—l,...,n,

j=lj#i "t

’l/)(Z]_, ceey zn)E V.

To obtain quantum Schlesinger equations, we move from Schlesinger pic-
ture to Heisenberg picture. As usual, introducing the invertible element U

satisfying
oU [~ o
mazi—(z ~__z')U, (i=1,...,n)

j=lgi 1

and U € Vo®@ Vi ® - -- ® V, satisfying

we have for Y = U~U,
V.Y =0, V.Y =0 | (35)

where

|
3
Y| @
=

If we take Vj as a matrix representation, A; is a matrix whose entries are
elements in U(g) and the compatibility condition of (35) can be regarded as
a quantization of the Schlesinger equations.

5 Generalized Knizhnik-Zamolodchikov equa-
tions

In this section, we give generalized Knizhnik-Zamolodchikov equations. This
is a joint work with M. Jimbo and J. Sun.
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Let g be sly = (e, f,h) and M; (i = 1,...,n) Verma modules of g with
highest weights m,; and with highest weight vectors v;, and M,, a module
U(Ag[A\]/ XN tg[A\] @ doo)veo such that

(e[p])voo = 07 (h[pbvoo = YpVoo, P= l, sy Ty :v[p} = Q )‘pa

dooVoo =0, [doo, Alpl] = 0, [doo,e[p]] = e[p], [deo, flpl] = —fIp].
We define differential operators for u(z;,v,) € M1 ® - ® M,, ® My:

0
Dz:z Plp+im - (0<i<r-1),
p=1 ’YP

V= n;; —( }E Zz’” 19,00[;9) (1<i<n),

j=1,j #i Zi p=1
n .r-l
O = nDy - (zzz;mm[p . amm) ,
j=1 p=0

where

Qij = %h-;hj + e'i,fj -+ iji, ono[p] = %hth[p} + eif[p] + f'ie[p]’

0uall] = 5 3 (ALl + elul ] + Slulel))

ptv=l
Proposition 13 we have the following for1 < i, <nand0 <l m<r—1.
[v'ia Vg;?] = 07
VO, V&) = (l = m)VE™.
Generalized KZ equations are the following;:

(l)u = ( Z YuYv + ( — 1 d) 'Yl) U,
pv=l
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1 n
:-2-2111;—{—6100, 1<i1<r-1),

fc(zn:ziai —Do)u=

i=

(duﬂ)_z% (21 + gzypimﬂgﬂ) "

i=1 p=1 =1

Solution to generalized Knizhnik-Zamolodchikov equations are given by
a straightforward generalization of the known integral formula for the KZ
equation.

We set

u=/<1>wkv, V=11Q " - QVUn® Vso

@ =Jexo[-2267z)| [I (-2
j=1

1<j<i<n
k n
NG ) )2
xH{exp[;ﬁ (ta)} [1¢ - ta)" } [T ta—t)%,
a=1 j=1 1<a<b<k

Wk “~W1(t1) FANEIRIVAY wl(tk) a)l(t) = (Z .._..']:1___ + Z f[p tp 1)

¢(¢) = Z 7 —

p=1

Proposition 14 The element u is a solution to the generalized KZ equa-
teons.

Now, we compute an example corresponding to QP case. For n = 2,
z1=2,22=0,r=2and M = M, ® My® M, we have

0 ~ QaO ry

—U = — Q4 ool2]z2 — Qg 00|l ,

ol = (2~ Rl ~ elt]) T
0

- 1 1 ~
12 = (~ml2lz = Oacell] = Qo] + G+ S+ 00 ) T,
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and form=1, 21 =0,r=2and M' = M, ® M., we have

0
Iﬁ‘,’)/zba‘:y—lU = (_QOoo[l] -+ ’Yld) U

Choosing parameters,

1
Y1 = _'2ﬁ3t9 Y2 = _2’{7 = -
K

Zpl =R U z[plU (p=1,2), Zo=h Uz,

)

and setting
hll] =1, e[2] = f2]=0, R[2] =1,

we have Lax equations for Y = U~1U:

g—):Y:(Az+B—-Cz_1)Y, -gin(Az-i—B’)Y,

(1 0 o , (0 fl] _(ho/2  fo
a=() O)m=mrean=(8 MW)om(Br Y
From the Lax equations, we obtain the deformation equations

9 fl1) = —2f(1] - 2o, —elt] = 2tel1] + 2¢
%t hl “J0 at - ’6 €0,
aﬁo = 2(f[1]e0 — foe[l]),

0 - -~ 0 -

ngo = —f[].]h(), ‘a'zéo = 6[1]h0

Since first integrals are the following

_ ho (R - _
Co= Juto+ 7 (1), Gy = Fltlelt] - o,

we set h h
Co = (6o — -2‘)(90 + “2‘), C1=—200 — h.

In order to obtain a non-commutative Painlevé equation, we introduce new
variables u, ¢, n by

Fl=w,  FlUel) = 2(C — 0o~ boo — 3)
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fo= ';"U»"?, & = —2(un) ™ (C + g) (C + g — 290> ,
ho = 2(C — 6p).

Commutation relations for u, {,n, 6o, 0. are the following:

[GOOv 77] = 0: [0007 C] = O’ [900’ ’LL] =-h u,
[u,n] =0, [v,{] =0, [n,{] = hn, 6 is central.

Then we have the following non commutative differential equations

2= —A(C— 00) + (n+20)n

0 h
Gi¢= o () (cr5-20) —n¢—bo— 6= D)

-%u = —u(n + 2t).

Taking

. 1 - o . o
n = —fo, C=“Z(f1f2+f2f1), fo+ fi+ fo =2t
. 201 + oo A h 0

o=—7" 0Ow

4 ) - '2—7 ot 6IV)
we obtain QP

A

Orv(fi) = fifirr — fiafi+ o, [fs, fira] = R, (€ Z/3Z).
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