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Some remark on weak dividing

前園久智 (Hisatomo MAESONO)
早稲田大学メディアネットワークセンター

(Media Network Center, Waseda University)

Abstract

Weak dividing has been characterized variously in simple theory.
We try to argue about the restricted notions of it.

1. Weak dividing

We recall some definitions.

Definition 1 Let $\varphi(x_{0}, x_{1}, \cdots\cdots, x_{n-1})$ be a formula and $p(x)$ be a type.
We denote the type $\{\varphi(x_{0}, x_{1}, \cdots\cdots, x_{n-1})\}\cup p(x_{0})\cup p(x_{1})\cup\cdots\cdots\cup p(x_{n-1})$

by $[\rho]^{\varphi}$ .
Let $A\subset B$ and $p(x)\in S(B)$ .
$p(x)$ divides overA if there are a formula $\varphi(x, b)\in p(x)$ and an infinite

sequence $\{b_{i} : i<\omega\}$ with $b\equiv b_{i}(A)$ such that $\{\varphi(x, b_{i}) : i<\omega\}$ is
$k$ -inconsistent for some $k<\omega$ .

$p(x)$ weakly divides over $A$ if there is a formula $\varphi(\overline{x})\in L_{n}(A)$ such that
[$p\lceil A|^{\varphi}$ is consistent, while $[p|^{\varphi}$ is inconsistent,

In this note, we call such formula” $\varphi(\overline{x})$
” in the definition the witness fo-

rmula of weak dividing for the sake of convenience.
I introduce examples from $[$2], $[3|$ .

Example 2 Let $T$ be the theory of dense linear order and $p(x)=”$ $a<x<$
$b$”. Then $p(x)$ does not weakly divdie over $\emptyset$ . And let $q(x, y)=x<c<y$”.
Then $q(x, y)$ weakly divides over $\emptyset$ by the formula $\varphi(x_{1}, y_{1};x_{2}, y2)=y1<$

$x_{2}$”.

Example 3 Let $T$ be the theory of an equivalence relation with two infinite
classes of the language $L=$ {a binary relation $E(x,$ $y)$ }. And let $\models\neg E(a, b)$ .
Then the type tp$(a/b)$ does not divide over $\emptyset$ , while tp $(a/b)$ weakly divides
over $\emptyset$ by the formula $\neg E(x, y)$ .
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Example 4 Let $(V, <, >)$ be a vector space $V$ over a finite field equipped
with an inner product giving orthogonality between two independent vec-
tors. Let $a,$ $b,$ $c$ be independent vectors in $V$ such that $a\perp b$ , while $bfc$ and
a $Zc$ . Then tp$(a/bc)$ does not weakly divide over $\emptyset$ . But tp$(a/bc)$ weakly
$cdivides$

over $c$ by the formula $\varphi(x, y)=x$ is a linear combination of $y$ and

In various characterizations, one of the most important results is the
next theorem.

Theorem 5 (Kim [3])
$T$ is stable if and only if weak dividing is symmetnc in $T$ .

2. Restricted notions of weak dividing

In examples above, we can see that witness formulas have different
properties in the sense of stability theory. So I considered that we can
divides witness formulas into some classes according to the properties.

Definition 6 Let $A\subset B$ and $p(x)\in S(B)$ .
$p(x)\mathcal{M}$ -weakly divides over $A$ if there are a formula $\varphi(\overline{x})\in L_{n}(A)$ and a

Morley sequence $I=\{a_{i} : i<n+1\}$ of $p\lceil A$ such that $\models\varphi(a_{0}, a_{1}, \cdots\cdots, a_{n-1})$ ,
while the type $[p]^{\varphi}$ is inconsistent.

$p(x)$ M-weakly divides over $A$ if there are a formula $\varphi(\overline{x})\in L_{n}(A)$ and a
Morley sequence $I=\{a_{i} : i<n+1\}$ of $p\lceil A$ such that $\models\varphi(a_{0}, a_{1}, \cdots\cdots, a_{n-1})$ ,
while there is no Morley sequence $J=\{b_{i} : i<n+1\}$ of $p$ over $A$ such that
$\models\varphi(b_{0}, b_{1}, \cdots\cdots, b_{n-1})$ .

If we set the sequence $I$ indiscernible over $A$ in the definition above, we
can define $\mathcal{I}$-weak dividing and $I$-weak dividing in the same way.

I proved the next result.

Theorem 7 Let $T$ be simple.
Then $T$ is stable if and only if $\mathcal{M}$ -weak dividing is symmetntc in $T$ .

Example 3 is easy. But some of examples of $\mathcal{M}$ -weak dividing may be
variants of it.

Fact 8 Let $T$ be simple. And let $A\subset B$ and $p(x)\in S(B)$ .
$p(x)$ does not divide over $A_{f}$ while $p(x)\mathcal{M}-$-weakly divides over $A$ by

a formula $\varphi(x, y)\in L_{2}(A)$ . Then for any realization ab of $\varphi$ with $aiL_{A}b$ ,
Lstp$(a/A)\neq Lstp(b/A)$ .
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I showed Fact 8 for 2-variable witness formulas. But the same Fact
holds for $n$ -variable witness formulas under the assumption that $T$ has
$n$ -amalgamation property. (see $[4],[5|)$ Once I told about some weak divid-
ing for $n$ -dividing in $n$ -simple theory.

In recent years another variant of dividing, “ thor $n$
” -dividing has been

characterized in rosy theory. (see e.g. [6]) I tried to define weak notion of
$\mathfrak{p}$ -dividing (thorn-dividing). We recall some definitions first.

Definition 9 Let $A\subset B$ and $p(x)\in S(B)$ .
$p(x)$ strongly divides over $A$ if there is a formula $\varphi(x, b)\in p(x)$ such that

$b\not\in acl(A)$ and $\{\varphi(x, b_{i}) : b_{i}\models tp(b/A)\}$ is $k$ -inconsistent for some $k<\omega$ .
$p(x)\mathfrak{p}$ -divides over $A$ if $p(x)$ strongly divides over $Ac$ for some parameter

$c$ .

Weak notions of $\mathfrak{p}$ -dividing could be defined in many ways. By the
definition, $\mathfrak{p}$ -dividing implies dividing. So we expect that weak $\mathfrak{p}$ -dividing
implies weak dividing.

Definition 10 Let $A\subset B$ and $p(x)\in S(B)$ .
$p(x)$ weakly $\mathfrak{p}$ -divides over $A$ if there is a formula $\varphi(\overline{x})=\exists y\bigwedge_{i<n}\psi(x_{i}, y)\in$

$L_{n}(A)$ such that $[p\lceil A]^{\varphi}$ is consistent, while $[\rho]^{\varphi}$ is inconsistent.
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