-

View metadata, citation and similar papers at core.ac.uk brought to you byj‘: CORE

provided by Kyoto University Research Information Repository

Bl
oo o e/,
&
Kyoto University Research Information Repository > KYOTO UNIVERSITY

Commutativity of localized self-homotopy groups of

Title symplectic groups

Author(s) | Kishimoto, Daisuke; Kono, Akira; Nagao, Tomoaki

Citation Topology and its Applications (2011), 158(8): 1025-1032

Issue Date | 2011-05

URL http://hdl.handle.net/2433/139768

Right © 2011 Elsevier B.V.

Type Journal Article

Textversion | author

Kyoto University


https://core.ac.uk/display/39268203?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Commutativity of localized self-homotopy groups of
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May 13, 2011

Abstract

The self-homotopy group of a topological group G is the set of homotopy classes of self-
maps of G equipped with the group structure inherited from G. We determine the set of
primes p such that the p-localization of the self-homotopy group of Sp(n) is commutative.
As a consequence, we see that this group detects the homotopy commutativity of p-
localized Sp(n) by its commutativity almost all cases.

1 Introduction

For a group-like space G, the pointed homotopy set [ X, G| has a natural group structure inher-
ited from G. We will always assume [X, G| as a group with this group structure. This group has
been studied for a long time, and there are many applications especially to the H-structure of
G. See [1] and [9], for example. Put X = G. Then the group [G, G] is called the self-homotopy
group of G and denoted by H(G). The self homotopy group H(G) has also been studied exten-
sively, especially, in connection with the H-structure of G, see [2], [12] and [11]. In particular,
it is shown in [12] the following.

Theorem 1.1 (Kono and Oshima [12]). Let G be a compact, connected Lie group. Then H(G)
is commutative if and only if G is isomorphic with T™ (n > 0), T™ x Sp(1) (0 < n < 2) or

SO(3), where T™ denotes the n-dimensional torus.

Then we can say that for a connected Lie group G, H(G) reflects the homotopy commuta-
tivity of G to its commutativity effectively, since we have Hubbuck’s torus theorem [8].

Localize at the prime p in the sense of [7]. Then it is an interesting problem to consider for a
fixed G, how the H-structure of G,y changes when we vary p. Kaji and the first named author
obtained a result for a Lie group G when p is relatively large [9], [10]. Let us turn to the self
homotopy group H(G). Let X be a finite complex, and let G be a path-connected group-like
space. Then the group [X, G] is known to be nilpotent, and then we can consider its localization

[X, G](p at the prime p in the sense of [7]. Moreover, there is a natural isomorphism of groups:

(X, Gl & [ Xy, Gp)



See [7]. Then if G is a connected Lie group, it is also an interesting problem to consider how the
group structure of H(G),) changes if we vary p as is considered for G(;). Recently, Hamanaka

and the second named author obtained:

Theorem 1.2 (Hamanaka and Kono [5]). H(SU(n))q,) is commutative if and only if p > 2n
except forn =2 and (p,n) = (5,3),(7,4),(11,6), (13,7).

As is shown in [13], SU(n),) is homotopy commutative if and only if p > 2n. Then we can
say that H(SU(n)),) detects the homotopy commutativity of SU(n),) very well.
The aim of this paper is to consider the above problem for G = Sp(n), and we will prove:

Theorem 1.3. The group H(Sp(n))y) s commutative if and only if p > 4n except for n =1
and (p,n) = (3,2),(5,3),(7,2),(11,3), (19,5), (23, 6).

Since Sp(n) ) is homotopy commutative if and only if p > 4n except for (p,n) = (3,2) by
[13], we get:
Corollary 1.1. Sp(n)) is homotopy commutative if and only if H(Sp(n))y) is commutative
except forn =1 and (p,n) = (5,3),(7,2),(11,3),(19,5), (23,6).

Remark 1.1. Let p be an odd prime. As is well known [4], there is a homotopy equivalence
BSp(n)(p) ~ BSpin(2n+1) ), and then, in particular, we have H(Sp(n))y = H(Spin(2n+1)) ).
Thus the above results for H(Sp(n))(,) implies those for H(Spin(2n + 1)),). We also have a
similar result for H(Spin(2n)),) when p is an odd prime [6].

2 Calculating commutators in the group [ X, Sp(n)]

Throughout this section, all spaces will be localized at the prime p.
Put G, = Sp(n) and X,, = Goo/G,. Let g, € H*(BG,;Z,)) be the k-th universal sym-
plectic Pontrjagin class. Then the cohomology of G, is given by

H*(Gn; Zyy) = Mg, 7, ..., Tan—1), Tap—1 = 0(qr),
where o is the cohomology suspension. We also have
H*(Xn; Ziy)) = Myanss, Yans7, - ), 7 (21) = ys

for the projection 7 : Goo — X, Put bypyo = 0(yarys) € H*(QX,; Zy) for k> n. We write a
map X — K (Zy), k) corresponding to the cohomology class x € H*(X; Z,)) by z, ambiguously.
Then, in particular, since by is a loop map, the map by : [X,QX,,] —» H*2(X;Z,)) is a
homomorphism.

Now we recall from [15] how to determine the (non)triviality of commutators in the group
(X, G,]. Apply the functor [ X, —] to the fibre sequence

oG, ¥ ax, 5 G, — G
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in which all arrows are loop maps. Then we get an exact sequence of groups:

—~—2 Qn). . —-1
KSp (X)p 225 [X,9X,] 25 [X,G,] = KSp (X)) (2.1)

—~1
Since KSp (X)) is abelian, commutators in [X, G,] are in the image of ¢,. We determine the
(non)triviality of commutators in [X, G,] by the following proposition which is easily deduced
by (2.1).

Proposition 2.1. Let a, 3 € [X, Gy, and put ® = @, (ban,12)+ : [X, QX,] — @, H™+2(X,; Z).
1. If there ezists A € [X,QX,] such that §.(\) = [a, B] and ®(N) is not in the image of
® o (7)., then [a, B] is not trivial.

2. Suppose that ® is injective. Then [, (5] is not trivial if and only if there exists the above
A

In order to use Proposition 2.1, we need to describe A*(byy,42) explicitly, where A is as in
Proposition 2.1. In [15], it is shown that we can choose A as:
Lemma 2.1. For o, (3 € [X,G,)], there exists A € [X,QX,] such that 6.(\) = [a, 5] and for
k>n,
)\*<b4k+2> = Z Oé*(mi—l)@*(%j—l)-
i+j=k+1
1<i,5<n

We next describe (Qn),(€) through the map bais : [X,QX,] — H*(X;Z,) for £ €

—~ 2
KSp (X)@) to use Proposition 2.1. Let ¢’ : G,, — U(2n) denote the complexification map.
We also denote the complexification KSp (X)) — K*(X)) by ¢’. Let chy denote the 2k-

dimensional part of the Chern character.
Lemma 2.2. For ¢ € I/(\Sgo_z(X)(p), we have
(bak+2 0 Q7)o(€) = (=1)"* (2k + 1)leharsa (' (6)).
Proof. Let ¢, be the k-th universal Chern class. Then we have c’(co) = (—1)¥gx, and thus
(barr2 0 Q7). (€) = 0*(grr1)(§) = (=1)"'c/ (0% (cars2))(€) = (=1)" (2K + 1)lchag (< (€))-

]

3 Proof of Theorem 1.3 for p odd

Throughout this section, we localize all spaces at the odd prime p unless otherwise is specified.
For a given positive integer n, let m be an arbitrary integer satisfying m < n < 2m. Let
€sp—1 be a generator of my,_1(G,) = Zy,) for K < n. Then we have

(2k — Dlugr—1 kK is odd

3.1
2(2k — 1)lugp—1 K is even (3:-1)

(€4k—1)*($4k—1) = {
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where v is a generator of H'(S'; Z,)). Define a map 6 : S*™~1x $4m+3 — @&, by the composition
S4m71 « S4m+3 €4m—1X€4m+3 G x G LN G
where g is the multiplication of G,,. Then by (3.1), we have for k < I

2(2m — 1)'(2771 + 1)!U4m_1 X Ugm+1 (1{3, l) = (m, m + 1)

0 otherwise

0" (Tap—1Ta1-1) = { (3.2)
Let j: G,, — G, be the inclusion, and let ¥ : BG,, — BG,, be the unstable Adams operation
of degree 2 [18]. We consider the commutator [j o Q% j] in [G,,, Ga,] by pulling back to
Sam=1 5 §4m+3 through §. By Lemma 2.1, there exists A € [G,, 2Xs,,] such that §,(\) =
[j o Qp?, 5] and

N(bgmiz) = Y (W) (wai-1)wgja.

i+j=n+1
1<4,j<n

By definition of 1%, we have (Q?)*(z4,_1) = 2%*24%_1. Then we get

and thus by (3.2),
0* o )\*(bgm+2) = 22m(_3) (2m - 1)'(2m + 1)!U4m_1 X Ugm+1-

2
On the other hand, we have KSp —(S*™~! x §4m+3) ) = 7, and its generator { can be chosen
to satisfy

Ch4m+1(C,(§)) = (4m =+ 1)!U4m_1 X Ugm+3-

If we see that 6* o X*(bgy+2) is not in the Z,)-module generated by (4m 4 1)!tapm—1 ® Uam+3, by
Proposition 2.1, we can conclude that 0*([j o Q¢?, j]) = j o [Q)? 15,] o 0 is non-trivial which
implies H(G,,) is not commutative. Put m as in the following table. Then we can easily see
that m satisfies m < n < 2m and % = (4m +1)(,2™,) = 0 (p) by Lucas’ formula,
and thus H(G,,) is not commutative in these cases.

p<n m=0(p),0<n—m<p
p=n m=p—1
n<p<n+3(p>13) m=p—3
n+3<p<2n mzp%?’
n<p<idn-—-1(p=-1(4) m:l%l
n<p<dn—-1(p=1(4),p>5) m:1%3
(p,n) = (5,2) m=1
(p,n) = (7,6) m=5
(p,n) = (11,9), (11, 10) m— 8




Recall from [13] that G, is homotopy commutative if p > 4n or (p,n) = (3, 2) which implies
H(G,,) is commutative for p > 4n or (p,n) = (3,2) . Then the remaining cases are:

l.p=4n—-1
2. (p,n) =(7,5)
3. (p,n) = (5,4)

4. (p,n) = (5,3)

3.1 Casel

In this case we have a homotopy equivalence [14] G, ~ [;_, S*~'. Assume n > 14. We define
a € H(G,,) by the composite

_ — €4n—1
Gn£83xs7xsllxsl5xs4n 37&)84711 Gn7

where p is the projection and ¢ is the pinch map onto the top cell. We also define 5 € H(G,,)
by
G p_’) S4n71 €4n—1 G

where p is the projection. Then we have

[Oéaﬁ] =70 (€4n—1 X 6471—1) o ((C] © P) X P/) © A?

where v : G, x G,, — G, and A : G,, — G, x G, denote the commutator map of G,, and
the diagonal map, respectively. Now one can easily see ((q o p) x p’) o A induces an injection
[Sin—lx §4n=1 @] — H(G,,). On the other hand, we have Yo (€4,_1 X €4n-1) = {€4n_1, €an_1)0¢,
where ¢/ : S4"71x §4n=1 — G872 ig the pinch map onto the top cell and (—, —) means a Samelson
product. Then since ¢’ induces an injection 7g, _2(G,) — [S*"~! x §4~1 @G,,] and the Samelson
product (€4, 1, €1n_1) € Tgn_2(Gy) is non-trivial by [3], we obtain that the commutator [«, f]
is non-trivial. Thus H(G,,) is not commutative.

We next assume 8 < n < 13. By looking at the homotopy groups of spheres [16], the above
Samelson product (€4,_1, €4,—1) factors as (€4n_1, €4n_1) = i 0 a1(3), where i : S — G,, is the
inclusion and a;(2k — 1) is a generator of mogy9,-4(S?*™1) =2 Z/p. Put X = 5% x §7 x S x
SiAn=13 5 §An=9 » §4n=5 We define «, 8 € H(G,,) by

G, 2 x 4 g3 ) gp o

and

4 €n
G, — S?P = G,

respectively, where p and p’ are the projections and ¢ is the pinch map onto the top cell. Then
we get
[, B] =i0a1(3)oai(2p)oq o((qgop) x p')o A,
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where ¢ : §3773 x SP — S§%73 is the pinch map. As is seen above, the maps i and ¢’ o ((qo p) X
p') o A induce injections g, 3(S?) — m4y_3(Gp) and m4y_3(G,) — H(G,,), respectively. Since
a1(3) o a1(2p) # 0 as in [16], we obtain that the commutator [«, ] is non-trivial. Thus H(G,,)
is not commutative.

For n < 7, the case 1 occurs only when n = 1,2,3,5,6. We only prove the case n = 6
since the remaining cases are quite similarly proved. Note that for n = 6 in the case 1, we
have p = 23. One can easily see that the dimension of cells of G/ \/s_, S*~1 is in the set
I ={0yUulUp_y{4(ny +---4+mn) —k|1<n <--- <m <6} On the other hand, Since
Gs =~ [Ty S* !, we see that the homotopy groups of G in dimension k € I for all k € I are
trivial by looking at the homotopy groups of spheres [16]. Then the inclusion \/2:1 SH=1 G
induces an injection H(Gg) — @5_, max_1(Gs), and so H(Gy) is commutative.

3.2 Case 2

In this case, we have G5 ~ B; x By x S, where By, is an S*~1-bundle over S*+1! for k = 1,2,
see [14]. We first calculate K*(Gs)(r). Note that K*(By) for k = 1,2 and K*(S')() are free

Z7-module, we have
K*(Gs)r) = K*(B1)r) @ K*(Ba) 1) @ K*(S™) 7).

Let Ay be the (4k + 11)-skeleton of By, for k = 1,2. Then we have Ay ~ ¥1A;.

Let « be the composite of the inclusions ¥A; — XG5 — BG5 — BU(o0o). Since A; is a
retract of YCP7, we get ch(u') = Stz + %Ztlg) where t3, 115 are generators of I;T*(Al; Z7)) with
|tr]| = k and ¥ stands for the suspension isomorphism. Let v' be the composite of the pinch
map Y A; — S% and a generator of m6(BU(00)) = Z(7). Then we see ch(v') = Xt;5 by choosing
a suitable generator of m4(BU(c0)). Consider the exact sequence

0— K1(S™) 7 — K (A) @) — K1(S%) ) — 0

induced from the cofibre sequence S3 — A; — S¥. Then we get K “1(A1)(7) is generated by
u' and v’. Since the inclusion A, — B; induces an isomorphism l?*l(Bk)m — [N(*l(Ak)m, we
get

K*(G5) 7y = Muy, ug, v1, v2,w), |ug| = |vg| = |w| = —1

such that for k =1, 2,

1
ch(ug) = Xzgp_1 + ﬁ2m4k+11, ch(v) = Xxgpi11, ch(w) = Xxqg.

Since q o ¢’ = 2 for the quaternionization q : K*(G5)7) — KSp*(Gs)r), we obtain:

2
Lemma 3.1. KSp (Gs)7) is a free Zeyy-module with a basis {ai, ..., a0} such that

1 _
7%11%19 k=1

Ch15(C,<(lk)) = L1119 k=2
0 k#1,2.



Let a be the composite of the projection G5 — Bs and the inclusion B, — G5. We consider
the commutator [1g,,a]. By Lemma 2.1, there exists A € [G5, QX;] such that 6,(\) = [1g,, ]
and \*(bgg) = x11719. On the other hand, it follows from Lemma 2.2 and Lemma 3.1 that
the image of the map bsg o (Qm), : [?579_2(G5)(7) — H*(G5;Zr)) is generated by Txy121g.
Then by Proposition 2.1, we conclude that [1g,, «] is non-trivial which implies H(G5) is not

commutative.

3.3 Case 3

In this case, we have a homotopy equivalence G4 = B, x By where By, is an S*~!-bundle over
SH*+T for k= 1,2 [14]. As in the previous case, we have

K*(G4)(5) = A(uy, ug, v1,v2), ug| = [v| = —1

such that for k = 1,2,

1
ch(ug) = Xrgp—1 + 523:4“7, ch(vy) = X7,
and thus we obtain:
—_— 2
Lemma 3.2. KSp (Gy4)5) is a free Zy-module with a basis {ai,...,as} such that

%.T7.§L’15 k=1
Chu(cl(ak)) = § T7X15 k=2
0 k#1,2.

Let 92 : BG4 — BG, be the unstable Adams operation of degree 2 as above. We consider
()2 1¢,]. By Lemma 2.1, there exists A € [G4, 2X4] such that 6,(\) = [Q¢?, 1¢,] and

)\*(bzg) = 241’7.1'15 + 28$15$7 = 24 -3 51’71‘15.

Then by Lemma 2.2 and Lemma 3.2, we see that A\*(by2) is not in the image of byg o (27),. Then
by Proposition 2.1, we obtain [Q¢?, 15,] is not trivial, and thus H(G4) is not commutative.

3.4 Case 4

This case is very special. We first show:
Lemma 3.3. The map (bia X big). : [G3, QX3] — H'™(Gs;Zz)) ® H'®(Gs; Zs)) is injective.

Proof. Note that the 23-skeleton of X3 is A = S U e!® U e?3. Then since G5 is of dimension

21, the inclusion A — X3 induces an isomorphism of groups [G4, QA] = [G4, QX3]. Since for
k <23, mg(A) is in the stable range. Then one can easily see that

Zi k=15,19,23

me(A) =
0 k+#£1519,23 and k < 23,

Thus we can easily deduce that [Gs,Q2X3] is a free Zz)-module. On the other hand, the
rationalization of the map (by4 X big). is injective. Then the proof is completed. O
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As in the case 2, we have
K*(G3)5) = Mu,v,w), |u| = |v| =|w| = -1

such that .
ch(u) = Xx3 + 521‘11, ch(v) = Xx11, ch(w) = Xz7.

—~ 2
Then we get KSp (Gs)(5) is a free Zz)-module with a basis {ai, as, ag} such that

1
ch(c'(al)) = I3T11, Ch(C,(ag)) = g$7$11, Ch(C/(ag)) = X721
Thus we obtain:

—~ 2
Lemma 3.4. The image of (bia X big).o (7). : KSp (G3)5) — H'(G3;Zs)) ® H'®(Gs; Zs))
15 generated by Sxrszxi, and Tr7xqq.

Let ar, 6 € H(G4). Then for a degree reason, we have a*(x4,_1) = Qup_174x—1 and §*(zgp_1) =
Bak—1Zax—1, where a;, 5; € Zz). Moreover, since Plzs = 11, we have ag = aq1, 3 = O (5).
Let us consider the commutator [«, 5]. By Lemma 2.1, there exists A € [G3, 2X;3] such that
3.(N\) = [«, ] and

)\*(514) = (043511 - 061153)$3I11, )\*(518) = (047511 - 041157)$7$11'

Since 063611 — 061153 =0 (5)7 we obtain that <b14 X blg)*<>\) is in the image of (b14 X b18>* o] (Qﬂ')*
by Lemma 3.4. Thus by Proposition 2.1, H(G3) is commutative.

4 Proof of Theorem 1.3 for p =2

Throughout this section, spaces will be localized at the prime 2. We only consider H(G,,) for
n > 2 since H(G,) is obviously commutative.

For m > 2, put N = 2™72. Let A = S3Ue” be the 7-skeleton of G, and let i : ¥A — BG
be the composite of inclusions YA — Y G, — BG.. We write generators of H*(A; Z5)) by
ts, t7 where |tx| = k. Then by [17], we can deduce

ch(c/(7)) = Suz — %Eur (4.1)

For a generator g of KO(S®) ), let a : 3V=54 — G, be the adjoint of i A BY " : £5V =74 —
BG . Then by (4.1), we get

1
& (zsn_1) = (AN — 1)ISN"Tch(c/ (1)) = —(4N — 1)!628N—8t7.

Since the inclusion Gyy — Gy is an (16N + 2)-equivalence and X3V =8A4 is of dimension
8N — 1, the map & : X8V=84 — (G factors as the composite of the map o : B3V 84 — Guy

and the inclusion G4y — G. In particular, we have

1
Oé*<£ll'8N,1) = —(4N — 1)!628N78t7.



Let € be a generator of mgy3(G4n). Then we get
€ (zgny3) = (AN + 1)lw,

where w denotes a generator of H8N+3(S8N+3; Z()). Define a map 0 : YON=8 A x S8NH3  Gun
by the composite
EsN_SA X SBN+3 oz_><e> G4N X G4N i) G4N,

where p is the multiplication of G4y. Then by definition, we have:
—(AN —1)IE238, ®1 k=2N
O (z4p—1) = UN+ DT @w k=2N+1 (4.2)
0 k #2N,2N + 1
Consider the commutator Q¢ 1¢,,] in H(Gan) for the unstable Adams operation ¢ :
BG4y — BGyy of degree 3. Then by Lemma 2.1, there exists A € [Gyy, Q2X4n] such that

)\*(b16N+2): Z (Q¢3)*($4i—1)$4j—1= Z 32i$4i—1$4j—1~

i+j=4N+1 i+j=4N+1
1<i,j<4N 1<i,j<4N
Hence by (4.2), we get
0" o N (bigny2) = 31 4(AN — DIAN + )13V 8 @ w, (4.3)

here 6, (X o 0) equals to the commutator [(Q2¢3) 0 ,0] in [V =84 x S8N+3 G n].
——2
In order to apply Proposition 2.1, we next calculate the free part of KSp (X8V=84 x
S8NH3) 5. We know that the pinch map ¢ : X3V 784 x S¥V+3 — F16N=54 induces an iso-

2 —~ 2
morphism between the free parts in KSp). Then we calculate K.Sp (ZIGN*E’A)@). Con-

sider the following commutative diagram of exact sequences induced from the cofibre sequence
GI6N—2 _, y2I6N—5 4 _, GI6N+2

———2 ——2 2
0 HKS]? (316N+2)(2) HKSp (216N75A)(2) HKS}? (816N72)(2) —(

c/zll i Ml

0 S [}—2(516N+2)(2) N [?—2(216N—5A)(2) [?—2(5161\/—2)(2) -0

Put o/ = BV"2 A c'(i) and v to be the complexification of the composite of the pinch map
SIN=3 4 — SN and a generator of migy14(BSp(00)), where ¢ is a generator of K°(S5?)(s).
Then by (4.1), one sees that K~2(X'%V=54),) is generated by u’ and v’ such that

1
Ch(ul) — ZIGN—5t3 . 8216N_5t7, Ch(vl) _ EIGN_5t7.

Put u = A A4 and v to be the composite of the pinch map L1V =34 — S16N¥+4 and a generator
— 0
of Tign+4(BSp(00)), where X is a generator of KO (S*V%)4). Then by the above diagram,

2
we obtain that KSp (Z'N75A) ) is a free Z(9)-module generated by u, v such that
1
ch(c/(u)) = 251N 2ty — 5216N75t7, ch(c'(v)) = BN ¢,

Summarizing, we get:



—~2
Lemma 4.1. The free part of KSp (X3V78A x S8N*3) ) is generated by @ and v such that

1
ch(c'(z)) = 283"V 8ty @ w — §28N_8t7 ® w, ch(c'(v)) = 8, @ w.

For an integer k, we put vo(k) = m if k = 2™(2l — 1). Then in general, we have

ot = 5] &[]+ »

where |z] = max{n € Z | n < z}.

Note that H'ON (N84 x S8NT3) ig a free Zz)-module. Then it follows from the above
lemma, we obtain that the image of bigy20(Qm), 1 [N BAX SN QX n] — HIONT2(38N-8 Ax
S8NTS: Z2)) is generated by (8N + 1)IZ3V =8¢, ® w. It follows from (4.4) that v5((8N + 1)!) =
272 — 1 and v(4(4N — 1)!(4N +1)!) = 272 —m. Then by Lemma 2.1, (4.3) and Lemma 4.1,
we get that the commutator [(Qi?) 06, 6] is non-trivial. If N < n < 2N, the map « and e factors
through the inclusion j : G,, — G4y, and so there exists a map 6 : SEN-8 4 x §8N+3 _, 7 such
that # = jo0. Then we obtain that [(Q¢3) 06, 0] = jo [Qu?, 14, ] 00 is non-trivial which implies

that H(G,,) is not commutative.
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