Title	Commutativity of localized self-homotopy groups of symplectic groups
Author(s)	Kishimoto, Daisuke; Kono, A kira; Nagao, Tomoaki
Citation	Topology and its A pplications (2011), 158(8): 1025-1032
Issue Date	2011-05
URL	http:/hdl.handle.net/2433/139768
Right	© 2011 Elsevier B.V.
Type	Journal A rticle
Textversion	author

Commutativity of localized self-homotopy groups of symplectic groups

Daisuke Kishimoto, Akira Kono, and Tomoaki Nagao

May 13, 2011

Abstract

The self-homotopy group of a topological group G is the set of homotopy classes of selfmaps of G equipped with the group structure inherited from G. We determine the set of primes p such that the p-localization of the self-homotopy group of $\operatorname{Sp}(n)$ is commutative. As a consequence, we see that this group detects the homotopy commutativity of p localized $\mathrm{Sp}(n)$ by its commutativity almost all cases.

1 Introduction

For a group-like space G, the pointed homotopy set $[X, G]$ has a natural group structure inherited from G. We will always assume $[X, G]$ as a group with this group structure. This group has been studied for a long time, and there are many applications especially to the H -structure of G. See [1] and [9], for example. Put $X=G$. Then the group $[G, G]$ is called the self-homotopy group of G and denoted by $\mathcal{H}(G)$. The self homotopy group $\mathcal{H}(G)$ has also been studied extensively, especially, in connection with the H -structure of G, see [2], [12] and [11]. In particular, it is shown in [12] the following.

Theorem 1.1 (Kono and Ōshima [12]). Let G be a compact, connected Lie group. Then $\mathcal{H}(G)$ is commutative if and only if G is isomorphic with $T^{n}(n \geq 0), T^{n} \times \operatorname{Sp}(1)(0 \leq n \leq 2)$ or $\mathrm{SO}(3)$, where T^{n} denotes the n-dimensional torus.

Then we can say that for a connected Lie group $G, \mathcal{H}(G)$ reflects the homotopy commutativity of G to its commutativity effectively, since we have Hubbuck's torus theorem [8].

Localize at the prime p in the sense of [7]. Then it is an interesting problem to consider for a fixed G, how the H-structure of $G_{(p)}$ changes when we vary p. Kaji and the first named author obtained a result for a Lie group G when p is relatively large [9], [10]. Let us turn to the self homotopy group $\mathcal{H}(G)$. Let X be a finite complex, and let G be a path-connected group-like space. Then the group $[X, G]$ is known to be nilpotent, and then we can consider its localization $[X, G]_{(p)}$ at the prime p in the sense of [7]. Moreover, there is a natural isomorphism of groups:

$$
[X, G]_{(p)} \cong\left[X_{(p)}, G_{(p)}\right]
$$

See [7]. Then if G is a connected Lie group, it is also an interesting problem to consider how the group structure of $\mathcal{H}(G)_{(p)}$ changes if we vary p as is considered for $G_{(p)}$. Recently, Hamanaka and the second named author obtained:

Theorem 1.2 (Hamanaka and Kono [5]). $\mathcal{H}(\mathrm{SU}(n))_{(p)}$ is commutative if and only if $p>2 n$ except for $n=2$ and $(p, n)=(5,3),(7,4),(11,6),(13,7)$.

As is shown in [13], $\mathrm{SU}(n)_{(p)}$ is homotopy commutative if and only if $p>2 n$. Then we can say that $\mathcal{H}(\mathrm{SU}(n))_{(p)}$ detects the homotopy commutativity of $\mathrm{SU}(n)_{(p)}$ very well.

The aim of this paper is to consider the above problem for $G=\operatorname{Sp}(n)$, and we will prove:
Theorem 1.3. The group $\mathcal{H}(\operatorname{Sp}(n))_{(p)}$ is commutative if and only if $p>4 n$ except for $n=1$ and $(p, n)=(3,2),(5,3),(7,2),(11,3),(19,5),(23,6)$.

Since $\operatorname{Sp}(n)_{(p)}$ is homotopy commutative if and only if $p>4 n$ except for $(p, n)=(3,2)$ by [13], we get:

Corollary 1.1. $\operatorname{Sp}(n)_{(p)}$ is homotopy commutative if and only if $\mathcal{H}(\operatorname{Sp}(n))_{(p)}$ is commutative except for $n=1$ and $(p, n)=(5,3),(7,2),(11,3),(19,5),(23,6)$.

Remark 1.1. Let p be an odd prime. As is well known [4], there is a homotopy equivalence $B \operatorname{Sp}(n)_{(p)} \simeq B \operatorname{Spin}(2 n+1)_{(p)}$, and then, in particular, we have $\mathcal{H}(\operatorname{Sp}(n))_{(p)} \cong \mathcal{H}(\operatorname{Spin}(2 n+1))_{(p)}$. Thus the above results for $\mathcal{H}(\operatorname{Sp}(n))_{(p)}$ implies those for $\mathcal{H}(\operatorname{Spin}(2 n+1))_{(p)}$. We also have a similar result for $\mathcal{H}(\operatorname{Spin}(2 n))_{(p)}$ when p is an odd prime [6].

2 Calculating commutators in the group [$X, \operatorname{Sp}(n)$]

Throughout this section, all spaces will be localized at the prime p.
Put $G_{n}=\operatorname{Sp}(n)$ and $X_{n}=G_{\infty} / G_{n}$. Let $q_{k} \in H^{4 k}\left(B G_{n} ; \mathbf{Z}_{(p)}\right)$ be the k-th universal symplectic Pontrjagin class. Then the cohomology of G_{n} is given by

$$
H^{*}\left(G_{n} ; \mathbf{Z}_{(p)}\right)=\Lambda\left(x_{3}, x_{7}, \ldots, x_{4 n-1}\right), x_{4 k-1}=\sigma\left(q_{k}\right)
$$

where σ is the cohomology suspension. We also have

$$
H^{*}\left(X_{n} ; \mathbf{Z}_{(p)}\right)=\Lambda\left(y_{4 n+3}, y_{4 n+7}, \ldots\right), \pi^{*}\left(x_{i}\right)=y_{i}
$$

for the projection $\pi: G_{\infty} \rightarrow X_{n}$. Put $b_{4 k+2}=\sigma\left(y_{4 k+3}\right) \in H^{*}\left(\Omega X_{n} ; \mathbf{Z}_{(p)}\right)$ for $k \geq n$. We write a map $X \rightarrow K\left(\mathbf{Z}_{(p)}, k\right)$ corresponding to the cohomology class $x \in H^{k}\left(X ; \mathbf{Z}_{(p)}\right)$ by x, ambiguously. Then, in particular, since $b_{4 k+2}$ is a loop map, the map $b_{4 k+2}:\left[X, \Omega X_{n}\right] \rightarrow H^{4 k+2}\left(X ; \mathbf{Z}_{(p)}\right)$ is a homomorphism.

Now we recall from [15] how to determine the (non)triviality of commutators in the group [X, G_{n}]. Apply the functor $[X,-]$ to the fibre sequence

$$
\Omega G_{\infty} \xrightarrow{\Omega \pi} \Omega X_{n} \xrightarrow{\delta} G_{n} \rightarrow G_{\infty}
$$

in which all arrows are loop maps. Then we get an exact sequence of groups:

$$
\begin{equation*}
\widetilde{K S p}^{-2}(X)_{(p)} \xrightarrow{(\Omega \pi)_{*}}\left[X, \Omega X_{n}\right] \xrightarrow{\delta_{*}}\left[X, G_{n}\right] \rightarrow \widetilde{K S p}^{-1}(X)_{(p)} \tag{2.1}
\end{equation*}
$$

Since $\widetilde{K S p}^{-1}(X)_{(p)}$ is abelian, commutators in $\left[X, G_{n}\right]$ are in the image of δ_{*}. We determine the (non)triviality of commutators in $\left[X, G_{n}\right]$ by the following proposition which is easily deduced by (2.1).

Proposition 2.1. Let $\alpha, \beta \in\left[X, G_{n}\right]$, and put $\Phi=\bigoplus_{i=1}^{k}\left(b_{4 n_{i}+2}\right)_{*}:\left[X, \Omega X_{n}\right] \rightarrow \bigoplus_{i=1}^{k} H^{4 n_{i}+2}\left(X ; \mathbf{Z}_{(p)}\right)$.

1. If there exists $\lambda \in\left[X, \Omega X_{n}\right]$ such that $\delta_{*}(\lambda)=[\alpha, \beta]$ and $\Phi(\lambda)$ is not in the image of $\Phi \circ(\Omega \pi)_{*}$, then $[\alpha, \beta]$ is not trivial.
2. Suppose that Φ is injective. Then $[\alpha, \beta]$ is not trivial if and only if there exists the above λ.

In order to use Proposition 2.1, we need to describe $\lambda^{*}\left(b_{4 m+2}\right)$ explicitly, where λ is as in Proposition 2.1. In [15], it is shown that we can choose λ as:

Lemma 2.1. For $\alpha, \beta \in\left[X, G_{n}\right]$, there exists $\lambda \in\left[X, \Omega X_{n}\right]$ such that $\delta_{*}(\lambda)=[\alpha, \beta]$ and for $k \geq n$,

$$
\lambda^{*}\left(b_{4 k+2}\right)=\sum_{\substack{i+j=k+1 \\ 1 \leq i, j \leq n}} \alpha^{*}\left(x_{4 i-1}\right) \beta^{*}\left(x_{4 j-1}\right) .
$$

We next describe $(\Omega \pi)_{*}(\xi)$ through the map $b_{4 k+2}:\left[X, \Omega X_{n}\right] \rightarrow H^{4 k+2}\left(X ; \mathbf{Z}_{(p)}\right)$ for $\xi \in$ $\widetilde{K S p}^{-2}(X)_{(p)}$ to use Proposition 2.1. Let $\mathbf{c}^{\prime}: G_{n} \rightarrow \mathrm{U}(2 n)$ denote the complexification map. We also denote the complexification $\widetilde{K S p}^{*}(X)_{(p)} \rightarrow \widetilde{K}^{*}(X)_{(p)}$ by c \mathbf{c}^{\prime}. Let ch_{k} denote the $2 k$ dimensional part of the Chern character.
Lemma 2.2. For $\xi \in \widetilde{K S p}^{-2}(X)_{(p)}$, we have

$$
\left(b_{4 k+2} \circ \Omega \pi\right)_{*}(\xi)=(-1)^{k+1}(2 k+1)!\operatorname{ch}_{2 k+1}\left(\mathbf{c}^{\prime}(\xi)\right)
$$

Proof. Let c_{k} be the k-th universal Chern class. Then we have $\mathbf{c}^{\prime}\left(c_{2 k}\right)=(-1)^{k} q_{k}$, and thus

$$
\left(b_{4 k+2} \circ \Omega \pi\right)_{*}(\xi)=\sigma^{2}\left(q_{k+1}\right)(\xi)=(-1)^{k+1} \mathbf{c}^{\prime}\left(\sigma^{2}\left(c_{2 k+2}\right)\right)(\xi)=(-1)^{k+1}(2 k+1)!\operatorname{ch}_{2 k+1}\left(\mathbf{c}^{\prime}(\xi)\right) .
$$

3 Proof of Theorem 1.3 for p odd

Throughout this section, we localize all spaces at the odd prime p unless otherwise is specified.
For a given positive integer n, let m be an arbitrary integer satisfying $m<n \leq 2 m$. Let $\epsilon_{4 k-1}$ be a generator of $\pi_{4 k-1}\left(G_{n}\right) \cong \mathbf{Z}_{(p)}$ for $k \leq n$. Then we have

$$
\left(\epsilon_{4 k-1}\right)^{*}\left(x_{4 k-1}\right)= \begin{cases}(2 k-1)!u_{4 k-1} & k \text { is odd } \tag{3.1}\\ 2(2 k-1)!u_{4 k-1} & k \text { is even }\end{cases}
$$

where u_{l} is a generator of $H^{l}\left(S^{l} ; \mathbf{Z}_{(p)}\right)$. Define a map $\theta: S^{4 m-1} \times S^{4 m+3} \rightarrow G_{n}$ by the composition

$$
S^{4 m-1} \times S^{4 m+3} \xrightarrow{\epsilon_{4 m-1} \times \epsilon_{4 m+3}} G_{n} \times G_{n} \xrightarrow{\mu} G_{n},
$$

where μ is the multiplication of G_{n}. Then by (3.1), we have for $k<l$:

$$
\theta^{*}\left(x_{4 k-1} x_{4 l-1}\right)= \begin{cases}2(2 m-1)!(2 m+1)!u_{4 m-1} \otimes u_{4 m+1} & (k, l)=(m, m+1) \tag{3.2}\\ 0 & \text { otherwise }\end{cases}
$$

Let $j: G_{n} \rightarrow G_{2 m}$ be the inclusion, and let $\psi^{2}: B G_{n} \rightarrow B G_{n}$ be the unstable Adams operation of degree 2 [18]. We consider the commutator $\left[j \circ \Omega \psi^{2}, j\right]$ in $\left[G_{n}, G_{2 m}\right]$ by pulling back to $S^{4 m-1} \times S^{4 m+3}$ through θ. By Lemma 2.1, there exists $\lambda \in\left[G_{n}, \Omega X_{2 m}\right]$ such that $\delta_{*}(\lambda)=$ $\left[j \circ \Omega \psi^{2}, j\right]$ and

$$
\lambda^{*}\left(b_{8 m+2}\right)=\sum_{\substack{i+j=n+1 \\ 1 \leq i, j \leq n}}\left(\Omega \psi^{2}\right)^{*}\left(x_{4 i-1}\right) x_{4 j-1} .
$$

By definition of ψ^{2}, we have $\left(\Omega \psi^{2}\right)^{*}\left(x_{4 k-1}\right)=2^{2 k} x_{4 k-1}$. Then we get

$$
\lambda^{*}\left(b_{8 m+2}\right)=\sum_{\substack{i+j=n+1 \\ 1 \leq i, j \leq n}} 2^{2 i} x_{4 i-1} x_{4 j-1}
$$

and thus by (3.2),

$$
\theta^{*} \circ \lambda^{*}\left(b_{8 m+2}\right)=2^{2 m}(-3)(2 m-1)!(2 m+1)!u_{4 m-1} \otimes u_{4 m+1} .
$$

On the other hand, we have $\widetilde{K S p}^{-2}\left(S^{4 m-1} \times S^{4 m+3}\right)_{(p)} \cong \mathbf{Z}_{(p)}$ and its generator ξ can be chosen to satisfy

$$
\operatorname{ch}_{4 m+1}\left(\mathbf{c}^{\prime}(\xi)\right)=(4 m+1)!u_{4 m-1} \otimes u_{4 m+3}
$$

If we see that $\theta^{*} \circ \lambda^{*}\left(b_{8 m+2}\right)$ is not in the $\mathbf{Z}_{(p)}$-module generated by $(4 m+1)!u_{4 m-1} \otimes u_{4 m+3}$, by Proposition 2.1, we can conclude that $\theta^{*}\left(\left[j \circ \Omega \psi^{2}, j\right]\right)=j \circ\left[\Omega \psi^{2}, 1_{G_{n}}\right] \circ \theta$ is non-trivial which implies $\mathcal{H}\left(G_{n}\right)$ is not commutative. Put m as in the following table. Then we can easily see that m satisfies $m<n \leq 2 m$ and $\frac{(4 m+1)!}{(2 m-1)!(2 m+1)!}=(4 m+1)\left({ }_{2 m-1}^{4 m}\right) \equiv 0(p)$ by Lucas' formula, and thus $\mathcal{H}\left(G_{n}\right)$ is not commutative in these cases.

$p<n$	$m \equiv 0(p), 0<n-m \leq p$
$p=n$	$m=p-1$
$n<p<n+3(p \geq 13)$	$m=p-3$
$n+3 \leq p<2 n$	$m=\frac{p-3}{2}$
$2 n<p<4 n-1(p \equiv-1(4))$	$m=\frac{p+1}{4}$
$2 n<p<4 n-1(p \equiv 1(4), p>5)$	$m=\frac{p+3}{4}$
$(p, n)=(5,2)$	$m=1$
$(p, n)=(7,6)$	$m=5$
$(p, n)=(11,9),(11,10)$	$m=8$

Recall from [13] that G_{n} is homotopy commutative if $p>4 n$ or $(p, n)=(3,2)$ which implies $\mathcal{H}\left(G_{n}\right)$ is commutative for $p>4 n$ or $(p, n)=(3,2)$. Then the remaining cases are:

1. $p=4 n-1$
2. $(p, n)=(7,5)$
3. $(p, n)=(5,4)$
4. $(p, n)=(5,3)$

3.1 Case 1

In this case we have a homotopy equivalence [14] $G_{n} \simeq \prod_{k=1}^{n} S^{4 k-1}$. Assume $n \geq 14$. We define $\alpha \in \mathcal{H}\left(G_{n}\right)$ by the composite

$$
G_{n} \xrightarrow{\rho} S^{3} \times S^{7} \times S^{11} \times S^{15} \times S^{4 n-37} \xrightarrow{q} S^{4 n-1} \xrightarrow{\epsilon_{4 n-1}} G_{n},
$$

where ρ is the projection and q is the pinch map onto the top cell. We also define $\beta \in \mathcal{H}\left(G_{n}\right)$ by

$$
G_{n} \xrightarrow{\rho^{\prime}} S^{4 n-1} \xrightarrow{\epsilon_{4 n-1}} G_{n},
$$

where ρ^{\prime} is the projection. Then we have

$$
[\alpha, \beta]=\gamma \circ\left(\epsilon_{4 n-1} \times \epsilon_{4 n-1}\right) \circ\left((q \circ \rho) \times \rho^{\prime}\right) \circ \Delta,
$$

where $\gamma: G_{n} \times G_{n} \rightarrow G_{n}$ and $\Delta: G_{n} \rightarrow G_{n} \times G_{n}$ denote the commutator map of G_{n} and the diagonal map, respectively. Now one can easily see $\left((q \circ \rho) \times \rho^{\prime}\right) \circ \Delta$ induces an injection $\left[S^{4 n-1} \times S^{4 n-1}, G_{n}\right] \rightarrow \mathcal{H}\left(G_{n}\right)$. On the other hand, we have $\gamma \circ\left(\epsilon_{4 n-1} \times \epsilon_{4 n-1}\right)=\left\langle\epsilon_{4 n-1}, \epsilon_{4 n-1}\right\rangle \circ q^{\prime}$, where $q^{\prime}: S^{4 n-1} \times S^{4 n-1} \rightarrow S^{8 n-2}$ is the pinch map onto the top cell and $\langle-,-\rangle$ means a Samelson product. Then since q^{\prime} induces an injection $\pi_{8 n-2}\left(G_{n}\right) \rightarrow\left[S^{4 n-1} \times S^{4 n-1}, G_{n}\right]$ and the Samelson product $\left\langle\epsilon_{4 n-1}, \epsilon_{4 n-1}\right\rangle \in \pi_{8 n-2}\left(G_{n}\right)$ is non-trivial by [3], we obtain that the commutator $[\alpha, \beta]$ is non-trivial. Thus $\mathcal{H}\left(G_{n}\right)$ is not commutative.

We next assume $8 \leq n \leq 13$. By looking at the homotopy groups of spheres [16], the above Samelson product $\left\langle\epsilon_{4 n-1}, \epsilon_{4 n-1}\right\rangle$ factors as $\left\langle\epsilon_{4 n-1}, \epsilon_{4 n-1}\right\rangle=i \circ \alpha_{1}(3)$, where $i: S^{3} \rightarrow G_{n}$ is the inclusion and $\alpha_{1}(2 k-1)$ is a generator of $\pi_{2 k+2 p-4}\left(S^{2 k-1}\right) \cong \mathbf{Z} / p$. Put $X=S^{3} \times S^{7} \times S^{11} \times$ $S^{4 n-13} \times S^{4 n-9} \times S^{4 n-5}$. We define $\alpha, \beta \in \mathcal{H}\left(G_{n}\right)$ by

$$
G_{n} \xrightarrow{\rho} X \xrightarrow{q} S^{3 p-3} \xrightarrow{\alpha_{1}(p)} S^{p} \xrightarrow{\epsilon_{p}} G_{n}
$$

and

$$
G_{n} \xrightarrow{\rho^{\prime}} S^{p} \xrightarrow{\epsilon_{n}} G_{n},
$$

respectively, where ρ and ρ^{\prime} are the projections and q is the pinch map onto the top cell. Then we get

$$
[\alpha, \beta]=i \circ \alpha_{1}(3) \circ \alpha_{1}(2 p) \circ q^{\prime} \circ\left((q \circ \rho) \times \rho^{\prime}\right) \circ \Delta,
$$

where $q^{\prime}: S^{3 p-3} \times S^{p} \rightarrow S^{4 p-3}$ is the pinch map. As is seen above, the maps i and $q^{\prime} \circ((q \circ \rho) \times$ $\left.\rho^{\prime}\right) \circ \Delta$ induce injections $\pi_{4 p-3}\left(S^{3}\right) \rightarrow \pi_{4 p-3}\left(G_{n}\right)$ and $\pi_{4 p-3}\left(G_{n}\right) \rightarrow \mathcal{H}\left(G_{n}\right)$, respectively. Since $\alpha_{1}(3) \circ \alpha_{1}(2 p) \neq 0$ as in [16], we obtain that the commutator $[\alpha, \beta]$ is non-trivial. Thus $\mathcal{H}\left(G_{n}\right)$ is not commutative.

For $n \leq 7$, the case 1 occurs only when $n=1,2,3,5,6$. We only prove the case $n=6$ since the remaining cases are quite similarly proved. Note that for $n=6$ in the case 1 , we have $p=23$. One can easily see that the dimension of cells of $G_{6} / \bigvee_{k=1}^{6} S^{4 k-1}$ is in the set $I=\{0\} \cup \bigcup_{k=2}^{6}\left\{4\left(n_{1}+\cdots+n_{k}\right)-k \mid 1 \leq n_{1}<\cdots<n_{k} \leq 6\right\}$. On the other hand, Since $G_{6} \simeq \prod_{k=1}^{6} S^{4 k-1}$, we see that the homotopy groups of G_{6} in dimension $k \in I$ for all $k \in I$ are trivial by looking at the homotopy groups of spheres [16]. Then the inclusion $\bigvee_{k=1}^{6} S^{4 k-1} \rightarrow G_{6}$ induces an injection $\mathcal{H}\left(G_{6}\right) \rightarrow \bigoplus_{k=1}^{6} \pi_{4 k-1}\left(G_{6}\right)$, and so $\mathcal{H}\left(G_{6}\right)$ is commutative.

3.2 Case 2

In this case, we have $G_{5} \simeq B_{1} \times B_{2} \times S^{11}$, where B_{k} is an $S^{4 k-1}$-bundle over $S^{4 k+11}$ for $k=1,2$, see [14]. We first calculate $K^{*}\left(G_{5}\right)_{(7)}$. Note that $K^{*}\left(B_{k}\right)$ for $k=1,2$ and $K^{*}\left(S^{11}\right)_{(7)}$ are free $\mathbf{Z}_{(7)}$-module, we have

$$
K^{*}\left(G_{5}\right)_{(7)} \cong K^{*}\left(B_{1}\right)_{(7)} \otimes K^{*}\left(B_{2}\right)_{(7)} \otimes K^{*}\left(S^{11}\right)_{(7)}
$$

Let A_{k} be the $(4 k+11)$-skeleton of B_{k} for $k=1,2$. Then we have $A_{2} \simeq \Sigma^{4} A_{1}$.
Let u^{\prime} be the composite of the inclusions $\Sigma A_{1} \rightarrow \Sigma G_{5} \rightarrow B G_{5} \rightarrow B \mathrm{U}(\infty)$. Since A_{1} is a retract of $\Sigma \mathbf{C} P^{7}$, we get $\operatorname{ch}\left(u^{\prime}\right)=\Sigma t_{3}+\frac{1}{7!} \Sigma t_{15}$ where t_{3}, t_{15} are generators of $\widetilde{H}^{*}\left(A_{1} ; \mathbf{Z}_{(7)}\right)$ with $\left|t_{k}\right|=k$ and Σ stands for the suspension isomorphism. Let v^{\prime} be the composite of the pinch map $\Sigma A_{1} \rightarrow S^{16}$ and a generator of $\pi_{16}(B \mathrm{U}(\infty)) \cong \mathbf{Z}_{(7)}$. Then we see $\operatorname{ch}\left(v^{\prime}\right)=\Sigma t_{15}$ by choosing a suitable generator of $\pi_{16}(B \mathrm{U}(\infty))$. Consider the exact sequence

$$
0 \rightarrow \widetilde{K}^{-1}\left(S^{15}\right)_{(7)} \rightarrow \widetilde{K}^{-1}\left(A_{1}\right)_{(7)} \rightarrow \widetilde{K}^{-1}\left(S^{3}\right)_{(7)} \rightarrow 0
$$

induced from the cofibre sequence $S^{3} \rightarrow A_{1} \rightarrow S^{15}$. Then we get $\widetilde{K}^{-1}\left(A_{1}\right)_{(7)}$ is generated by u^{\prime} and v^{\prime}. Since the inclusion $A_{k} \rightarrow B_{k}$ induces an isomorphism $\widetilde{K}^{-1}\left(B_{k}\right)_{(7)} \rightarrow \widetilde{K}^{-1}\left(A_{k}\right)_{(7)}$, we get

$$
K^{*}\left(G_{5}\right)_{(7)}=\Lambda\left(u_{1}, u_{2}, v_{1}, v_{2}, w\right),\left|u_{k}\right|=\left|v_{k}\right|=|w|=-1
$$

such that for $k=1,2$,

$$
\operatorname{ch}\left(u_{k}\right)=\Sigma x_{4 k-1}+\frac{1}{7!} \Sigma x_{4 k+11}, \operatorname{ch}\left(v_{k}\right)=\Sigma x_{4 k+11}, \operatorname{ch}(w)=\Sigma x_{11} .
$$

Since $\mathbf{q} \circ \mathbf{c}^{\prime}=2$ for the quaternionization $\mathbf{q}: K^{*}\left(G_{5}\right)_{(7)} \rightarrow K S p^{*}\left(G_{5}\right)_{(7)}$, we obtain:
Lemma 3.1. $\widetilde{K S p}^{-2}\left(G_{5}\right)_{(7)}$ is a free $\mathbf{Z}_{(7)}$-module with a basis $\left\{a_{1}, \ldots, a_{10}\right\}$ such that

$$
\operatorname{ch}_{15}\left(\mathbf{c}^{\prime}\left(a_{k}\right)\right)= \begin{cases}\frac{1}{7} x_{11} x_{19} & k=1 \\ x_{11} x_{19} & k=2 \\ 0 & k \neq 1,2\end{cases}
$$

Let α be the composite of the projection $G_{5} \rightarrow B_{2}$ and the inclusion $B_{2} \rightarrow G_{5}$. We consider the commutator $\left[1_{G_{5}}, \alpha\right]$. By Lemma 2.1, there exists $\lambda \in\left[G_{5}, \Omega X_{5}\right]$ such that $\delta_{*}(\lambda)=\left[1_{G_{5}}, \alpha\right]$ and $\lambda^{*}\left(b_{30}\right)=x_{11} x_{19}$. On the other hand, it follows from Lemma 2.2 and Lemma 3.1 that the image of the map $b_{30} \circ(\Omega \pi)_{*}: \widetilde{K S p}^{-2}\left(G_{5}\right)_{(7)} \rightarrow H^{30}\left(G_{5} ; \mathbf{Z}_{(7)}\right)$ is generated by $7 x_{11} x_{19}$. Then by Proposition 2.1, we conclude that $\left[1_{G_{5}}, \alpha\right]$ is non-trivial which implies $\mathcal{H}\left(G_{5}\right)$ is not commutative.

3.3 Case 3

In this case, we have a homotopy equivalence $G_{4} \cong B_{1} \times B_{2}$ where B_{k} is an $S^{4 k-1}$-bundle over $S^{4 k+7}$ for $k=1,2$ [14]. As in the previous case, we have

$$
K^{*}\left(G_{4}\right)_{(5)}=\Lambda\left(u_{1}, u_{2}, v_{1}, v_{2}\right),\left|u_{k}\right|=\left|v_{k}\right|=-1
$$

such that for $k=1,2$,

$$
\operatorname{ch}\left(u_{k}\right)=\Sigma x_{4 k-1}+\frac{1}{5!} \Sigma x_{4 k+7}, \operatorname{ch}\left(v_{k}\right)=\Sigma x_{4 k+7}
$$

and thus we obtain:
Lemma 3.2. $\widetilde{K S p}^{-2}\left(G_{4}\right)_{(5)}$ is a free $\mathbf{Z}_{(5)}$-module with a basis $\left\{a_{1}, \ldots, a_{6}\right\}$ such that

$$
\operatorname{ch}_{11}\left(\mathbf{c}^{\prime}\left(a_{k}\right)\right)= \begin{cases}\frac{1}{5} x_{7} x_{15} & k=1 \\ x_{7} x_{15} & k=2 \\ 0 & k \neq 1,2\end{cases}
$$

Let $\psi^{2}: B G_{4} \rightarrow B G_{4}$ be the unstable Adams operation of degree 2 as above. We consider $\left[\Omega \psi^{2}, 1_{G_{4}}\right]$. By Lemma 2.1, there exists $\lambda \in\left[G_{4}, \Omega X_{4}\right]$ such that $\delta_{*}(\lambda)=\left[\Omega \psi^{2}, 1_{G_{4}}\right]$ and

$$
\lambda^{*}\left(b_{22}\right)=2^{4} x_{7} x_{15}+2^{8} x_{15} x_{7}=2^{4} \cdot 3 \cdot 5 x_{7} x_{15}
$$

Then by Lemma 2.2 and Lemma 3.2, we see that $\lambda^{*}\left(b_{22}\right)$ is not in the image of $b_{22} \circ(\Omega \pi)_{*}$. Then by Proposition 2.1, we obtain $\left[\Omega \psi^{2}, 1_{G_{4}}\right]$ is not trivial, and thus $\mathcal{H}\left(G_{4}\right)$ is not commutative.

3.4 Case 4

This case is very special. We first show:
Lemma 3.3. The map $\left(b_{14} \times b_{18}\right)_{*}:\left[G_{3}, \Omega X_{3}\right] \rightarrow H^{14}\left(G_{3} ; \mathbf{Z}_{(5)}\right) \oplus H^{18}\left(G_{3} ; \mathbf{Z}_{(5)}\right)$ is injective.
Proof. Note that the 23-skeleton of X_{3} is $A=S^{15} \cup e^{19} \cup e^{23}$. Then since G_{3} is of dimension 21, the inclusion $A \rightarrow X_{3}$ induces an isomorphism of groups $\left[G_{4}, \Omega A\right] \stackrel{\cong}{\rightrightarrows}\left[G_{4}, \Omega X_{3}\right]$. Since for $k \leq 23, \pi_{k}(A)$ is in the stable range. Then one can easily see that

$$
\pi_{k}(A) \cong \begin{cases}\mathbf{Z}_{(5)} & k=15,19,23 \\ 0 & k \neq 15,19,23 \text { and } k \leq 23\end{cases}
$$

Thus we can easily deduce that $\left[G_{3}, \Omega X_{3}\right]$ is a free $\mathbf{Z}_{(5)}$-module. On the other hand, the rationalization of the map $\left(b_{14} \times b_{18}\right)_{*}$ is injective. Then the proof is completed.

As in the case 2, we have

$$
K^{*}\left(G_{3}\right)_{(5)}=\Lambda(u, v, w),|u|=|v|=|w|=-1
$$

such that

$$
\operatorname{ch}(u)=\Sigma x_{3}+\frac{1}{5!} \Sigma x_{11}, \operatorname{ch}(v)=\Sigma x_{11}, \operatorname{ch}(w)=\Sigma x_{7}
$$

Then we get $\widetilde{K S p}^{-2}\left(G_{3}\right)_{(5)}$ is a free $\mathbf{Z}_{(5)}$-module with a basis $\left\{a_{1}, a_{2}, a_{3}\right\}$ such that

$$
\operatorname{ch}\left(\mathbf{c}^{\prime}\left(a_{1}\right)\right)=x_{3} x_{11}, \operatorname{ch}\left(\mathbf{c}^{\prime}\left(a_{2}\right)\right)=\frac{1}{5} x_{7} x_{11}, \operatorname{ch}\left(\mathbf{c}^{\prime}\left(a_{3}\right)\right)=x_{7} x_{11} .
$$

Thus we obtain:
Lemma 3.4. The image of $\left(b_{14} \times b_{18}\right)_{*} \circ(\Omega \pi)_{*}: \widetilde{K S p}^{-2}\left(G_{3}\right)_{(5)} \rightarrow H^{14}\left(G_{3} ; \mathbf{Z}_{(5)}\right) \oplus H^{18}\left(G_{3} ; \mathbf{Z}_{(5)}\right)$ is generated by $5 x_{3} x_{11}$ and $x_{7} x_{11}$.

Let $\alpha, \beta \in \mathcal{H}\left(G_{4}\right)$. Then for a degree reason, we have $\alpha^{*}\left(x_{4 k-1}\right)=\alpha_{4 k-1} x_{4 k-1}$ and $\beta^{*}\left(x_{4 k-1}\right)=$ $\beta_{4 k-1} x_{4 k-1}$, where $\alpha_{i}, \beta_{i} \in \mathbf{Z}_{(5)}$. Moreover, since $\mathcal{P}^{1} x_{3}=x_{11}$, we have $\alpha_{3} \equiv \alpha_{11}, \beta_{3} \equiv \beta_{11}$ (5). Let us consider the commutator $[\alpha, \beta]$. By Lemma 2.1, there exists $\lambda \in\left[G_{3}, \Omega X_{3}\right]$ such that $\delta_{*}(\lambda)=[\alpha, \beta]$ and

$$
\lambda^{*}\left(b_{14}\right)=\left(\alpha_{3} \beta_{11}-\alpha_{11} \beta_{3}\right) x_{3} x_{11}, \lambda^{*}\left(b_{18}\right)=\left(\alpha_{7} \beta_{11}-\alpha_{11} \beta_{7}\right) x_{7} x_{11} .
$$

Since $\alpha_{3} \beta_{11}-\alpha_{11} \beta_{3} \equiv 0(5)$, we obtain that $\left(b_{14} \times b_{18}\right)_{*}(\lambda)$ is in the image of $\left(b_{14} \times b_{18}\right)_{*} \circ(\Omega \pi)_{*}$ by Lemma 3.4. Thus by Proposition 2.1, $\mathcal{H}\left(G_{3}\right)$ is commutative.

4 Proof of Theorem 1.3 for $p=2$

Throughout this section, spaces will be localized at the prime 2 . We only consider $\mathcal{H}\left(G_{n}\right)$ for $n \geq 2$ since $\mathcal{H}\left(G_{1}\right)$ is obviously commutative.

For $m \geq 2$, put $N=2^{m-2}$. Let $A=S^{3} \cup e^{7}$ be the 7 -skeleton of G_{∞}, and let $i: \Sigma A \rightarrow B G_{\infty}$ be the composite of inclusions $\Sigma A \rightarrow \Sigma G_{\infty} \rightarrow B G_{\infty}$. We write generators of $\widetilde{H}^{*}\left(A ; \mathbf{Z}_{(2)}\right)$ by t_{3}, t_{7} where $\left|t_{k}\right|=k$. Then by [17], we can deduce

$$
\begin{equation*}
\operatorname{ch}\left(\mathbf{c}^{\prime}(i)\right)=\Sigma u_{3}-\frac{1}{6} \Sigma u_{7} . \tag{4.1}
\end{equation*}
$$

For a generator $\beta_{\mathbf{R}}$ of $\widetilde{K O}\left(S^{8}\right)_{(2)}$, let $\bar{\alpha}: \Sigma^{8 N-8} A \rightarrow G_{\infty}$ be the adjoint of $i \wedge \beta_{\mathbf{R}}^{N-1}: \Sigma^{8 N-7} A \rightarrow$ $B G_{\infty}$. Then by (4.1), we get

$$
\bar{\alpha}^{*}\left(x_{8 N-1}\right)=(4 N-1)!\Sigma^{8 N-7} \operatorname{ch}\left(\mathbf{c}^{\prime}(i)\right)=-(4 N-1)!\frac{1}{6} \Sigma^{8 N-8} t_{7} .
$$

Since the inclusion $G_{4 N} \rightarrow G_{\infty}$ is an $(16 N+2)$-equivalence and $\Sigma^{8 N-8} A$ is of dimension $8 N-1$, the map $\bar{\alpha}: \Sigma^{8 N-8} A \rightarrow G_{\infty}$ factors as the composite of the map $\alpha: \Sigma^{8 N-8} A \rightarrow G_{4 N}$ and the inclusion $G_{4 N} \rightarrow G_{\infty}$. In particular, we have

$$
\alpha^{*}\left(x_{8 N-1}\right)=-(4 N-1)!\frac{1}{6} \Sigma^{8 N-8} t_{7} .
$$

Let ϵ be a generator of $\pi_{8 N+3}\left(G_{4 N}\right)$. Then we get

$$
\epsilon^{*}\left(x_{8 N+3}\right)=(4 N+1)!w,
$$

where w denotes a generator of $H^{8 N+3}\left(S^{8 N+3} ; \mathbf{Z}_{(2)}\right)$. Define a map $\theta: \Sigma^{8 N-8} A \times S^{8 N+3} \rightarrow G_{4 N}$ by the composite

$$
\Sigma^{8 N-8} A \times S^{8 N+3} \xrightarrow{\alpha \times \epsilon} G_{4 N} \times G_{4 N} \xrightarrow{\mu} G_{4 N},
$$

where μ is the multiplication of $G_{4 N}$. Then by definition, we have:

$$
\theta^{*}\left(x_{4 k-1}\right)= \begin{cases}-(4 N-1)!\frac{1}{6} \Sigma^{8 N-8} t_{7} \otimes 1 & k=2 N \tag{4.2}\\ (4 N+1)!1 \otimes w & k=2 N+1 \\ 0 & k \neq 2 N, 2 N+1\end{cases}
$$

Consider the commutator $\left[\Omega \psi^{3}, 1_{G_{4 N}}\right]$ in $\mathcal{H}\left(G_{4 N}\right)$ for the unstable Adams operation ψ^{3} : $B G_{4 N} \rightarrow B G_{4 N}$ of degree 3. Then by Lemma 2.1, there exists $\lambda \in\left[G_{4 N}, \Omega X_{4 N}\right]$ such that

$$
\lambda^{*}\left(b_{16 N+2}\right)=\sum_{\substack{i+j=4 N+1 \\ 1 \leq i, j \leq 4 N}}\left(\Omega \psi^{3}\right)^{*}\left(x_{4 i-1}\right) x_{4 j-1}=\sum_{\substack{i+j=4 N+1 \\ 1 \leq i, j \leq 4 N}} 3^{2 i} x_{4 i-1} x_{4 j-1}
$$

Hence by (4.2), we get

$$
\begin{equation*}
\theta^{*} \circ \lambda^{*}\left(b_{16 N+2}\right)=3^{4 N-1} \cdot 4(4 N-1)!(4 N+1)!\Sigma^{8 N-8} t_{7} \otimes w \tag{4.3}
\end{equation*}
$$

here $\delta_{*}(\lambda \circ \theta)$ equals to the commutator $\left[\left(\Omega \psi^{3}\right) \circ \theta, \theta\right]$ in $\left[\Sigma^{8 N-8} A \times S^{8 N+3}, G_{4 N}\right]$.
In order to apply Proposition 2.1, we next calculate the free part of $\widetilde{K S p}^{-2}\left(\Sigma^{8 N-8} A \times\right.$ $\left.S^{8 N+3}\right)_{(2)}$. We know that the pinch map $q: \Sigma^{8 N-8} A \times S^{8 N+3} \rightarrow \Sigma^{16 N-5} A$ induces an isomorphism between the free parts in $\widetilde{K S p}_{(2)}^{-2}$. Then we calculate $\widetilde{K S p}^{-2}\left(\Sigma^{16 N-5} A\right)_{(2)}$. Consider the following commutative diagram of exact sequences induced from the cofibre sequence $S^{16 N-2} \rightarrow \Sigma^{16 N-5} A \rightarrow S^{16 N+2}$.

$$
\begin{aligned}
& 0 \longrightarrow \widetilde{K S p}^{-2}\left(S^{16 N+2}\right)_{(2)} \longrightarrow \widetilde{K S p}^{-2}\left(\Sigma^{16 N-5} A\right)_{(2)} \longrightarrow \widetilde{K S p}^{-2}\left(S^{16 N-2}\right)_{(2)} \longrightarrow 0 \\
& \mathbf{c}^{\prime}=1 \\
& \downarrow \\
& \downarrow \\
& 0 \longrightarrow \widetilde{K}^{\prime}\left(S^{16 N+2}\right)_{(2)} \longrightarrow \widetilde{K}^{-2}\left(\Sigma^{16 N-5} A\right)_{(2)} \longrightarrow \widetilde{K}^{-2}\left(S^{16 N-2}\right)_{(2)} \longrightarrow 0
\end{aligned}
$$

Put $u^{\prime}=\beta_{c}^{8 N-2} \wedge \mathbf{c}^{\prime}(i)$ and v^{\prime} to be the complexification of the composite of the pinch map $\Sigma^{16 N-3} A \rightarrow S^{16 N+4}$ and a generator of $\pi_{16 N+4}(B \mathrm{Sp}(\infty))$, where $\beta_{\mathbf{C}}$ is a generator of $\widetilde{K}^{0}\left(S^{2}\right)_{(2)}$. Then by (4.1), one sees that $\widetilde{K}^{-2}\left(\Sigma^{16 N-5} A\right)_{(2)}$ is generated by u^{\prime} and v^{\prime} such that

$$
\operatorname{ch}\left(u^{\prime}\right)=\Sigma^{16 N-5} t_{3}-\frac{1}{6} \Sigma^{16 N-5} t_{7}, \operatorname{ch}\left(v^{\prime}\right)=\Sigma^{16 N-5} t_{7}
$$

Put $u=\lambda \wedge i$ and v to be the composite of the pinch map $\Sigma^{16 N-3} A \rightarrow S^{16 N+4}$ and a generator of $\pi_{16 N+4}(B \mathrm{Sp}(\infty))$, where λ is a generator of $\widetilde{K O}^{0}\left(S^{16 N-4}\right)_{(2)}$. Then by the above diagram, we obtain that $\widetilde{K S p}^{-2}\left(\Sigma^{16 N-5} A\right)_{(2)}$ is a free $\mathbf{Z}_{(2)}$-module generated by u, v such that

$$
\operatorname{ch}\left(\mathbf{c}^{\prime}(u)\right)=2 \Sigma^{16 N-5} t_{3}-\frac{1}{3} \Sigma^{16 N-5} t_{7}, \operatorname{ch}\left(\mathbf{c}^{\prime}(v)\right)=\Sigma^{16 N-5} t_{7} .
$$

Summarizing, we get:

Lemma 4.1. The free part of $\widetilde{K S p}^{-2}\left(\Sigma^{8 N-8} A \times S^{8 N+3}\right)_{(2)}$ is generated by \bar{u} and \bar{v} such that

$$
\operatorname{ch}\left(\mathbf{c}^{\prime}(\bar{u})\right)=2 \Sigma^{8 N-8} t_{3} \otimes w-\frac{1}{3} \Sigma^{8 N-8} t_{7} \otimes w, \operatorname{ch}\left(\mathbf{c}^{\prime}(\bar{v})\right)=\Sigma^{8 N-8} t_{7} \otimes w
$$

For an integer k, we put $\nu_{2}(k)=m$ if $k=2^{m}(2 l-1)$. Then in general, we have

$$
\begin{equation*}
\nu_{2}(k!)=\left\lfloor\frac{k}{2}\right\rfloor+\left\lfloor\frac{k}{2^{2}}\right\rfloor+\left\lfloor\frac{k}{2^{3}}\right\rfloor+\cdots, \tag{4.4}
\end{equation*}
$$

where $\lfloor x\rfloor=\max \{n \in \mathbf{Z} \mid n \leq x\}$.
Note that $H^{16 N+2}\left(\Sigma^{8 N-8} A \times S^{8 N+3}\right)$ is a free $\mathbf{Z}_{(2)}$-module. Then it follows from the above lemma, we obtain that the image of $b_{16 N+2} \circ(\Omega \pi)_{*}:\left[\Sigma^{8 N-8} A \times S^{8 N+3}, \Omega X_{4 N}\right] \rightarrow H^{16 N+2}\left(\Sigma^{8 N-8} A \times\right.$ $\left.S^{8 N+3} ; \mathbf{Z}_{(2)}\right)$ is generated by $(8 N+1)!\Sigma^{8 N-8} t_{7} \otimes w$. It follows from (4.4) that $\nu_{2}((8 N+1)!)=$ $2^{m+2}-1$ and $\nu_{2}(4(4 N-1)!(4 N+1)!)=2^{m+2}-m$. Then by Lemma 2.1, (4.3) and Lemma 4.1, we get that the commutator $\left[\left(\Omega \psi^{3}\right) \circ \theta, \theta\right]$ is non-trivial. If $N<n \leq 2 N$, the map α and ϵ factors through the inclusion $j: G_{n} \rightarrow G_{4 N}$, and so there exists a map $\hat{\theta}: \Sigma^{8 N-8} A \times S^{8 N+3} \rightarrow G_{n}$ such that $\theta=j \circ \hat{\theta}$. Then we obtain that $\left[\left(\Omega \phi^{3}\right) \circ \theta, \theta\right]=j \circ\left[\Omega \psi^{3}, 1_{G_{n}}\right] \circ \hat{\theta}$ is non-trivial which implies that $\mathcal{H}\left(G_{n}\right)$ is not commutative.

References

[1] M. Arkowitz and C.R. Crujel, On maps of H-spaces, Topology 6 (1967) 137-148.
[2] M. Arkowitz, H. Ōshima, and J. Strom, Noncommutativity of the group of self homotopy classes of Lie groups, Topology Appl. 125 (2002), no. 1, 87-96.
[3] R. Bott, A note on the Samelson products in the classical groups, Comment. Math. Helv. 34 (1960), 249-256.
[4] E.M. Friedlander, Exceptional isogenies and the classifying spaces of simple Lie groups, Ann. Math. (2) 101 (1975), 510-520.
[5] H. Hamanaka and A. Kono, On the commutativity of the localized self homotopy groups of $S U(n)$, to appear in Topology Appl.
[6] H. Hamanaka and A. Kono, A note on the Samelson products in $\pi_{*}(\mathrm{SO}(2 n))$ and the group [SO(2n), SO(2n)], Topology Appl. 154 (2007), no. 3, 567-572.
[7] P. Hilton, G. Mislin and J. Roitberg, Localization of nilpotent groups and spaces, NorthHolland Mathematics Studies, No. 15. Notas de Matemática, No. 55. [Notes on Mathematics, No. 55] North-Holland Publishing Co., Amsterdam-Oxford; American Elsevier Publishing Co., Inc., New York, 1975.
[8] J. Hubbuck, On homotopy commutative H-spaces, Topology 8 (1969), 119-126.
[9] S. Kaji and D. Kishimoto, Homotopy nilpotency in p-regular loop spaces, Math. Z. 264 (2010), no. 1, 209-224.
[10] D. Kishimoto, Homotopy nilpotency in localized SU(n), Homology, Homotopy Appl. 11 (2009), no. 1, 61-79.
[11] D. Kishimoto and A. Kono, On a conjecture of Ōhima, Topology Appl. 156 (2009), no. 13, 2189-2192.
[12] A. Kono and H. Ōshima, Commutativity of the group of self-homotopy classes of Lie groups, Bull. London Math. Soc. 36 (2004), no. 1, 37-52.
[13] C.A. McGibbon, Homotopy commutativity in localized groups, Amer. J. Math. 106 (1984), no. 3, 665-687.
[14] M. Mimura, G. Nishida and H. Toda, Mod p decomposition of compact Lie groups, Publ. Res. Inst. Math. Sci. 13 (1977/78), no. 3, 627-680.
[15] T. Nagao, On the groups $[X, \operatorname{Sp}(n)]$ with $\operatorname{dim} X \leq 4 n+2$, J. Math. Kyoto Univ. 48 (2008), no. 1, 149-165.
[16] H. Toda, Composition Methods in Homotopy Groups of Spheres, Ann. of Math. Studies 49, Princeton Univ. Press, Princeton N.J., 1962.
[17] T. Watanabe, Chern characters on compact Lie groups of low rank, Osaka J. Math. 22 (1985), no. 3, 463-488.
[18] C. Wilkerson, Self-maps of classifying spaces, Lecture Notes in Math. 418, Springer, Berlin, 1974.

