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Abstract

Nonredundant and exhaustive generation of stereoisomers of a chemical compound with
a specified constitution is one of the important tools for molecular structure elucidation and
molecular design. In this paper, we deal with chemical compounds composed of carbon, hy-
drogen, oxygen and nitrogen atoms whose graphical structures are tree-like graphs because
these compounds are most fundamental, and consider stereoisomers that can be generated
by asymmetric carbon atoms and double bonds between two adjacent carbon atoms. Based
on dynamic programming, we propose an algorithm of generating all stereoisomers without
duplication. We treat a given tree-like graph as a tree rooted at its structural center. Our
algorithm first computes recursively the numbers of stereoisomers of the subgraphs induced
by the descendants of each vertex, and then constructs each stereoisomer by backtracking the
process of computing the numbers of stereoisomers. Our algorithm correctly counts the num-
ber of stereoisomers in O(n) time and space, and correctly enumerates all the stereoisomers
in O(n) space and in O(n) time per stereoisomer, where n is the number of atoms in a given
structure. The source code of the program implementing the proposed algorithm is freely
available for academic use upon request.

1 Introduction

One of the most fundamental and important problems in chemoinformatics is nonredundant and
exhaustive enumeration of isomers/stereoisomers because it plays core roles in structure elucida-
tion and molecular design [5]. Since Cayley studied enumeration of alkanes in the 19th century [2],
extensive studies have been done, which include Pólya’s seminal work on counting the number of
isomers using group theory [8, 9]. Two chemical compounds with the same isomer may have dif-
ferent three-dimensional configurations due to asymmetry around carbon atoms and many other
structural asymmetries. Stereoisomers often exhibit different chemical properties, and synthe-
sis of a specific stereoisomer remains a challenging issue in chemistry. Hence, enumeration of
stereoisomers is important as well as enumeration of isomers.

In this paper, we consider stereoisomers caused only by asymmetry around carbon atoms.
Such stereoisomers might be further divided into more detailed classes according to their three-
dimensional conformations and stabilities. However, if the combinatorial structures based on
asymmetry around carbon atoms are different, then the stereoisomers are considered different in
any definition. Then stereoisomers caused only by asymmetry around carbon atoms are funda-
mental and practically important. As to enumeration of such stereoisomers, several methods have
been proposed [1,3,12], which mostly follow the work by Nourse [7]. Given a chemical compound
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with m stereocenters, these methods first create a list of all 2m combinations of the two choices
of asymmetries around each carbon atom, and remove each set S of combinations that represent
the same stereoisomer leaving one of them as their representative. Although such a set S of
combinations can be constructed in O(|S|m) time by a method on permutation groups called the
configuration groups, the time and space complexity of the entire algorithm is Ω(2m), which is
always exponential even if the number of stereoisomers is any small. Furthermore, mathematical
proofs for the correctness of some of these methods are not fully provided, where the correctness
means that an algorithm does not miss any of the stereoisomers and does not output (or count)
any of identical structures multiple times. Therefore, in order to provide examples for checking
the validity of existing programs, Rücker et al. manually counted the number of stereoisomers of
several chemical compounds [11].

In this paper, we focus on tree structured molecules (i.e., acyclic molecules) and develop algo-
rithms for enumerating stereoisomers with guaranteed computational complexity. Differently from
the existing approaches based on configuration groups, we use dynamic programming. For this, we
treat a given tree structured molecule as a tree rooted at its structural center, and derive recursive
formulas for the numbers of stereoisomers of rooted subtrees. However, it is nontrivial to repre-
sent stereoisomers with a mathematically consistent form, without which such recursive formulas
cannot be derived. The main contribution of this paper is to give a mathematical representation
for stereoisomers by introducing a new notion, “orientation of carbon circuits,” and to design
a dynamic programming algorithm that counts the total number K of stereoisomers of a given
tree based on the derived recursive formulas and a traceback algorithm that constructs the k-th
stereoisomer of the tree for each k = 1, 2, . . . ,K, by identifying the stereoisomer of each subtree cor-
responding to the k-th stereoisomer. Assuming that each of the four arithmetic operations can be
done in constant time, our algorithm correctly counts the number K of stereoisomers in O(n) time
and space, and correctly enumerates all K stereoisomers without duplication in O(n) space and in
O(n) time per stereoisomer, where n is the number of atoms in a given tree. The time complexity
for counting is optimal. The time complexity for enumerating all stereoisomers is O(nK), and this
is also optimal provided that each stereoisomer needs to be output explicitly in O(n) time. The
computational key property to achieve the latter result is an efficient bijection algorithm, which
is required as a subroutine of our enumeration algorithm. More specifically we show that, given
integers p ∈ {1, 2, 3, 4} and n ≥ p, there is an O(1) time algorithm that delivers the k-th set from
the

(

n
p

)

sets of p distinct integers {k1 ∈ {1, 2, . . . , n}, k2 ∈ {1, 2, . . . , n}, . . . , kp ∈ {1, 2, . . . , n}}

for a specified integer k ∈ {1, 2, . . . ,
(

n
p

)

}. We conducted computational experiments to evaluate
the practical computation time of the proposed algorithm. The results confirm that our proposed
algorithm is very fast in practice for both counting and enumeration.

2 Preliminary and problem formulation

2.1 Problem definition

In this paper, we deal with the problem defined as follows.

Input A tree-like chemical graph whose vertex set V consists of carbon, hydrogen, oxygen and
nitrogen atoms. A vertex-number n : V → {1, 2, . . . , |V |}, by which each vertex is numbered
from 1 to |V |.

Output All the stereoisomers that can be generated by asymmetry around carbon atoms (the
exact definition of stereoisomers in this paper is given in Section 2.4).

We denote a given chemical graph by G = (V,E) with a vertex set V and an edge set E. The
vertex set V is partitioned into VC = {v | v is a carbon atom}, VH = {v | v is a hydrogen atom},
VO = {v | v is an oxygen atom} and VN = {v | v is a nitrogen atom}. We denote |V | = n. Multiple
edges are treated as one single edges and the edge set E is partitioned into E1 = {e | e is a single
bond}, E2 = {e | e is a double bond} and E3 = {e | e is a triple bond}.
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Figure 1: (a) The four directions d0, d1, d2 and d3 around a carbon atom in the three-dimensional
space. (b) Configurations around the asymmetric carbon atom in lactic acid. There are two
different configurations around the asymmetric carbon atoms (the carbon atom at the center of
the tetrahedron).

Fig. 1(a) illustrates that the three-dimensional structure around a carbon atom forms a regular
tetrahedron, where d0, d1, d2 and d3 represent the directions along the four edges incident to the
carbon atom. We define the configuration around a carbon atom v as a correspondence between
the edges incident to v and di (i = 0, 1, 2, 3), where we do not distinguish two correspondences
which result in the same stereoisomorphic (stereochemically isomorphic) compounds. For example,
we consider that there is only one configuration around v if it is adjacent to an atom by a triple
bound. Informally, we consider that there are two different configuration around v only when one
of the following cases occurs:
(i) v is adjacent to four different substructures;
(ii) v is adjacent to a substructure T1 by a double bond and two different substructures T2 and T3

by single bonds, and T1 is not symmetric along the double bound; and
(iii) v is adjacent to two substructures T1 and T2 by double bonds, and each Ti, i = 1, 2 is not
symmetric along the double bound.
The exact relationship between configurations and stereoisomers will be given in Section 2.5. For
example, there are two different configurations around the asymmetric carbon atom in lactic acid
(see Fig. 1(b)).

We here show our assumption on the three-dimensional structure of a chain of double bonds
between two carbon atoms u and v such that u is adjacent to two atoms x and y by single bonds
and v is adjacent to two atoms w and z by single bonds, as shown in Fig. 2. For the number k of
double bonds between u and v, we assume that
• x, y, w and z are on the same plane when k is odd; and
• x, y, w and z are not on the same plane when k is even.
For example, Fig. 2(a) and (b) illustrate the chain of double bonds of ethylene (k = 1) and allene
(k = 2), respectively.

2.2 Isomorphism of tree-like graphs

Our algorithm first detects the centroid of a given tree-like graphG. For any tree, the next theorem
specifies a structurally unique vertex or edge.

Theorem 1 (Jordan’s theorem [6]). For any tree of n ≥ 1 vertices, exactly one of the next two
statements holds.
1. There exists a unique vertex v∗ such that each of the subtrees obtained by removing v∗ contains
at most ⌈(n− 1)/2⌉ vertices.
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Figure 2: Configurations around a chain of double bonds between two carbon atoms u and v. The
rectangle shows the plane that contains the left two hydrogen atoms x and y. Thick lines indicate
edges on the front side of the plane and dashed lines indicate edges on the back side of the plane.

2. There exists a unique edge e∗ such that each of the two subtrees obtained by removing e∗ contains
n/2 vertices.

Such a vertex v∗ and an edge e∗ are called the unicentroid and bicentroid of the tree, respec-
tively. We call the unicentroid and bicentroid the centroid of the tree. The root of the tree is
defined by the vertex/vertices in its centroid. For every vertex v ∈ V except for the root, we
define the parent of v as the vertex adjacent to v which is nearer to the root than v. For each
vertex v ∈ V , Ch(v) denotes the set of the children of vertex v, and the rooted tree Tv is defined
to be the tree induced by v and all descendants of v.

The set of vertices and the set of edges of a graph G are also denoted by V (G) and E(G),
respectively. Two chemical graphs G1 and G2 are called isomorphic if there is a bijection ψ :
V (G1) → V (G2) such that (u, v) ∈ E(G1) if and only if (ψ(u), ψ(v)) ∈ E(G2), where the types
of atoms of u (resp., v) and ψ(u) (resp., ψ(v)) are identical, and the types of bonds of (u, v) and
(ψ(u), ψ(v)) are identical. Such a bijection is called an isomorphism of G1 and G2. For two rooted
subtrees Tu and Tv, we say that Tu and Tv are rooted-isomorphic if there is an isomorphism ψ
between Tu and Tv such that ψ(u) = v. If Tu and Tv are rooted-isomorphic, then we write this as
Tu ≈

r
Tv.

For each subtree Tv, we write σ(v, Tv) to refer to the signature of the subtree Tv, that is a
non-negative integer satisfying a property that

σ(v, Tv) = σ(u, Tu)⇔ Tv ≈
r
Tu.

It is known that there is a choice of signature such that signatures of all rooted subtrees of a
given non-colored rooted tree can be computed in linear time [4]. In this paper, we consider a
tree-like chemical graph composed of only four types of atoms. Then, by converting a given rooted
chemical tree G into a non-colored rooted tree, we can compute signatures of all rooted subtrees
of G in linear time. Note that signature σ(v, Tv) is independent of the given number of vertices.
In the rest of this paper, we write σ(v, Tv) as σ(v) if Tv is clear from the context.

2.3 Sketch of our algorithm

Before giving the definition of stereoisomers, we show a sketch of our counting algorithm. Here, we
consider an example given in Fig. 3. Our counting algorithm computes the number of stereoisomers
from bottom to the root along tree G. At vertex v1, the number of combinations of stereoisomers
of children of v1 such that v1 is (resp., is not) an asymmetric carbon atom is computed as h(v1)
(resp., g(v1)), and the number of stereoisomers of Tv1

is computed as f(v1). Obviously, we have
g(v1) = 0, h(v1) = 1 and f(v1) = g(v1)+2h(v1) = 2 because there exist two different configurations
around v1 when v1 is an asymmetric carbon atom. We represent these two configurations by two
labels “ + ” and “− .”

Similarly, we have g(v2) = 0, h(v2) = 1 and f(v2) = g(v2) + 2h(v2) = 2. After that, at vertex
v3, we compute g(v3), h(v3) and f(v3). Let T+

v1
and T−

v1
(resp., T+

v2
and T−

v2
) be two possible
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Figure 3: An example of rooted subgraphs for showing a sketch of our algorithm

configurations of Tv1
(resp., Tv2

), where T+
v1

and T+
v2

(resp., T−
v1

and T−
v2

) are stereoisomorphic.
Then, g(v3) corresponds to two combinations (T+

v1
, T+

v2
) and (T−

v1
, T−

v2
), and h(v3) corresponds to

one combination (T+
v1
, T−

v2
). Since Tv1

and Tv2
are rooted-isomorphic, it is enough to consider

one combination (T+
v1
, T−

v2
) though we need to consider two configurations (T+

v1
, T−

v2
) and (T−

v1
, T+

v2
)

for this combination. Then we have g(v3) = f(v1) = 2, h(v3) =
(

f(v1)
2

)

= 1 and f(v3) =
g(v3) + 2h(v3) = 4.

In Sections 2.4 and 2.5, we give a formal definition of labels (such as “+” and “−”), isomorphism
considering difference of configurations, functions g, h and f , and configurations corresponding to
labels.

2.4 Definition of stereoisomer

This subsection gives a formal definition of stereoisomers considered in this paper.

2.4.1 Definition of representations and stereoisomorphism

To define stereoisomers of G, we first introduce a label l(v) for each carbon atom v ∈ VC, where
l(v) takes one of +, −, cis, trans and nil (nil means that v has a unique configuration around v).
As will be shown, labels cis and trans do not always correspond to chemical terms cis and trans.
The definition of each label is given in Section 2.4.2. We define the total order among these labels
by

“ + ” > “− ” > “cis” > “trans” > “nil.”

For every vertex v ∈ VO ∪ VN ∪ VH, define l(v) = nil.
We next introduce a representation I of G as a set of pairs of vertex-number n(v) and label

l(v) over all vertices v ∈ V . That is,

I = {(n(v), l(v)) | v ∈ V }.

Let R(G) denote the set of all representations I of G, where |R(G)| = 5|VC| holds. Similarly, for
each vertex v ∈ V , we define a representation Iv of the rooted subtree Tv as

Iv = {(n(u), l(u)) | u ∈ V (Tv)}.

Let R(Tv) denote the set of all representations Iv of Tv. As will be shown in Section 2.4.2,
only representations which satisfy a certain condition, called “proper representations,” define
stereoisomers.

For each vertex v ∈ V such that V (Tv) = {v, v1, . . . , vp} holds, the signature σs(Iv) of a
representation Iv ∈ R(Tv) is given as the sequence

σs(Iv) = [(σ(v), l(v)), (σ(v1), l(v1)), . . . , (σ(vp), l(vp))],
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where the order that v1, v2, . . . , vp appear in the sequence is determined by the next recursive
formula.
(i) For a leaf v ∈ V , it holds that p = |V (Tv) \ {v}| = 0. We define σs(Iv) = [(σ(v), l(v))].
(ii) For a representation Iv of the subtree Tv rooted at a non-leaf vertex v ∈ V with Ch(v) =
{x1, x2, . . . , xk}, denote Iv = {(n(v), l(v))} ∪ Ix1

∪ Ix2
∪ · · · ∪ Ixk

, Ixi
∈ R(Txi

) (i = 1, 2, . . . .k).
We assume without loss of generality that σs(Ix1

), σs(Ix2
), . . . σs(Ixk

) are sorted in a lexico-
graphically non-decreasing order and that it holds σs(Ixi

) = [(σ(xi1), l(xi1)), (σ(xi2), l(xi2)), . . . ,
(σ(xini

), l(xini
))], ni = |V (Txi

)| (i = 1, 2, . . . , k). Then we define [v1, v2, . . . , vp] = [x11, x12, . . . ,
x1n1

, x21, x22, . . . , x2n2
, . . . , xknk

].

Note that the σs(Iv) is independent of the given numbering of vertices.

Definition 2. For two subtrees Tu and Tv, representations Iu ∈ R(Tu) and Iv ∈ R(Tv) are rooted-
stereoisomorphic if and only if σs(Iu) = σs(Iv) holds. If Iu and Iv are rooted-stereoisomorphic,
we write this as Iu ≈

I
Iv.

The signature σs(I) of a representation I ∈ R(G) is defined as follows.
(i) If G has the unicentroid v, then we define σs(I) = σs(Iv).
(ii) If G has the bicentroid {v1, v2}, where σs(Iv1

) ≥ σs(Iv2
) and

σs(Ivi
) = [(σ(vi1), l(vi1), (σ(vi2), l(vi2)), . . . , (σ(vini

), l(vini
))], ni = |V (Txi

)| (i = 1, 2),

then we define

σs(I) = [(σ(v11), l(v11)), . . . , (σ(v1n1
), l(v1n1

)), (σ(v21), l(v21)), . . . , (σ(v2n2
), l(v2n2

))].

Definition 3. Two representations I, I ′ ∈ R(G) are stereoisomorphic if and only if σs(I) = σs(I
′)

holds.

We remark that a representation I ∈ R(G) may not correspond to any possible set of configu-
rations around carbon atoms. Section 2.4.2 defines “proper representations” to denote those which
give recursive structures of configurations around carbon atoms. Also two distinct representations
I and I ′ may be stereoisomorphic. Section 2.4.3 shows how to uniquely choose one of them as the
“canonical form.”

2.4.2 Definition of proper representations

This subsection defines “proper representations.” In the rest of this section, we regard only the
vertex v1 with n(v1) < n(v2) in the bicentroid {v1, v2} of G as the centroid of G, and treat the
edge corresponding to a double bond between two adjacent carbon atoms as two distinct edges.
We consider that these two edges and two carbon atoms form a circuit, which we call a carbon
circuit.

First we introduce an orientation of a carbon circuit. We define an orientation of a carbon
circuit between two adjacent carbon atoms u, v ∈ VC only if one of the following cases holds.
Otherwise, no orientation is defined for carbon circuits. We suppose that v is closer to the root
than u. Orientation of carbon circuit is the new key notion to lead us to a mathematically
consistent representation for stereoisomers.

Case-1. u has two children x and y such that σs(Ix) > σs(Iy) (see Fig. 4(a)): For the four
directions d0, d1, d2 and d3 of carbon atom u (see Fig. 1(a)), x and y are assumed to be in
directions d2 and d3, respectively. Then we define the orientation of the carbon circuit between u
and v as

d0 → u→ d1

(see Fig. 5(a)).

Case-2. u and its child u′ ∈ VC are connected by a double bond (see Fig. 4(b)): For the four
directions d0, d1, d2 and d3 of carbon atom u (see Fig. 1(a)), v is assumed to be in directions d0

6



root

x

y

u v

(a)

rootu′ u v

(b)

Figure 4: Graph structure around a carbon circuit between u and v.
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Figure 5: The orientation of a carbon circuit, where d0, d1, d2 and d3 are the directions from u.

and d1 and the orientation of the carbon circuit between u and u′ is already given as d2 → u→ d3.
Then we define the orientation of the carbon circuit between u and v is given as

d0 → u→ d1

(see Fig. 5(b)).

Definition 4. A representation I ∈ R(G) (or I ∈ R(Tv), v ∈ V ) is called proper if the label l(v)
of each carbon atom v ∈ VC in I (or Iv) satisfies the following condition.

Case-1. v is connected with four atoms: l(v) ∈ {+,−} if σs(Iu) of every child u of v is different
from each other, and l(v) = nil otherwise.

Case-2. v and one of its children u ∈ VC are connected by a double bond:
(i) the carbon circuit between v and u has no orientation: l(v) = nil.
(ii) the carbon circuit between v and u has an orientation, and v is not the centroid of G: l(v) ∈
{cis , trans} if v has other child x than u, and l(v) = nil otherwise.
(iii) the carbon circuit between v and u has an orientation, and v is the centroid of G:
(iii-1) v and its child u′(6= u) are connected by a double bond: l(v) ∈ {cis , trans} if the carbon
circuit between u and u′ has orientation, and l(v) = nil otherwise.
(iii-2) v and its children x, y(6= u) are connected by single bonds: l(v) ∈ {cis , trans} if σs(Ix) 6=
σs(Iy), and l(v) = nil otherwise.

Case-3. The other case: l(v) = nil.

As will be discussed in Section 2.5, a proper representation Iv ∈ R(Tv) realizes a set of config-
urations around carbon atoms in Tv, and is considered as a rooted-stereoisomer of Tv. Similarly
we consider a proper representation I ∈ R(G) as a stereoisomer of G. However, two proper rep-
resentations Iu ∈ R(Tu) and Iv ∈ R(Tv) may be rooted-stereoisomorphic. In the next section, we
determine one of all rooted-stereoisomorphic (resp., stereoisomorphic) proper representations as
the “canonical form” of the corresponding rooted-stereoisomer (resp., stereoisomer).
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Figure 6: An example of the compounds that have distinct proper representations which are
stereoisomorphic.

2.4.3 Canonical form of proper representations

Here we consider an example given in Fig. 6, where COOH and OH are regarded as single vertices
for simplicity and we write the vertex whose vertex-number is i as vi (i.e., n(vi) = i). For the
graph G in Fig. 6, v1 and v2 are the bicentroid of G, and there are representations Ia, Ib ∈ R(G)
with

Ia = {(1,+), (2,−), (3, nil), (4, nil), (5, nil), (6, nil), (7, nil), (8, nil)},

Ib = {(1,−), (2,+), (3, nil), (4, nil), (5, nil), (6, nil), (7, nil), (8, nil)}

(see Fig. 6(a) and (b), respectively). Fig. 6 shows T (v1) ≈
r
T (v2), T (v3) ≈

r
T (v4), T (v5) ≈

r
T (v6),

T (v7) ≈
r
T (v8) and no two of Tv1

, Tv3
, Tv5

and Tv7
are rooted-isomorphic. Then we assume that

s1 = σ(v1) = σ(v2) > s2 = σ(v3) = σ(v4) > s3 = σ(v5) = σ(v6) > s4 = σ(v7) = σ(v8) for integers
si, i = 1, 2, 3, 4. Note that Ia and Ib are distinct as sets. However, Ia and Ib are stereoisomorphic
because they have the identical signature

σs(Ia) = σs(Ib) = [(s1,+), (s2, nil), (s3, nil), (s4, nil), (s1,−), (s2, nil), (s3, nil), (s4, nil)].

Then we define the canonical form of proper representations I ∈ R(G) as follows.

Definition 5. Let L(I) be a non-decreasing sequence of the elements (n(v), l(v)) in a set I ac-
cording to the given numbering of the vertices in V .
(i) The proper representation I ∈ R(G) with the lexicographically maximum L(I) among all proper
representations in R(G) which are stereoisomorphic is defined as the canonical form of these
representations.
(ii) For each vertex v ∈ V , the canonical form of representations in R(Tv) which are rooted-
stereoisomorphic is defined by the representation Iv ∈ R(Tv) with the lexicographically maximum
L(Iv) among them.

Note that L(I) now reflects the given numbering on the vertex set V (recall that the signature σs

does not reflect the vertex numbering). For the example in Fig. 6, we have

L(Ia) = [(1,+), (2,−), (3, nil), (4, nil), (5, nil), (6, nil), (7, nil), (8, nil)].

L(Ib) = [(1,−), (2,+), (3, nil), (4, nil), (5, nil), (6, nil), (7, nil), (8, nil)].

and we define Ia to be the canonical form of these stereoisomorphic representations.

Definition 6. For a tree-like chemical graph G = (V,E), we define the number f∗(G) of stereoiso-
mers of G by the number of all canonical forms of proper representations in R(G). Similarly, for
each vertex v ∈ V , we define the number f(G, v) of stereoisomers of G by the number of all
canonical forms of proper representations in R(Tv).
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Definition 7. For a tree-like chemical graph G = (V,E), let I(G) denote a set of proper represen-
tations in R(G) such that |I(G)| = f∗(G) and no two representations in I(G) are stereoisomor-
phic. Similarly, for each vertex v ∈ V , let I(v) denote a set of proper representations in R(Tv)
such that |I(v)| = f(G, v) and no two representations in I(v) are stereoisomorphic.

In Section 3, we give an algorithm that outputs each element I of I(G) without duplication.
The choice of I(G) and I(v), v ∈ V is determined by an order of choosing backtracking processes
in our algorithm (see Section 3.2.1). The algorithm is based on the following relationship between
canonical forms of subtrees Tv, v ∈ V .

We call a vertex v ∈ VC with l(v) ∈ {+,−} an asymmetric carbon atom. If l(v) ∈ {cis , trans}
then we say that a cis-trans isomer arises around v. By definition, a cis-trans isomer cannot arise
around an asymmetric carbon atom v.

To compute f(G, v), we define the following.

g(G, v): the number of combinations of stereoisomers of Tx over all children x of v such that
(i) v is not an asymmetric carbon atom (i.e., v receives label l(v) 6∈ {+,−}
due to the combination); and
(ii) no cis-trans isomer arises around any vertex u with u = v or an ancestor u
connected to v by a chain of double bonds between carbon atoms (i.e., none of
such a vertex u receives label l(u) 6∈ {cis , trans} due to the combination),

h(G, v): the number of combinations of stereoisomers of Tx over all children x of v such that
(i) v is an asymmetric carbon atom; or
(ii) a cis-trans isomer arises around any vertex u with u = v or an ancestor u
connected to v by a chain of double bonds between carbon atoms.

In the rest of this paper, we write f(G, v), g(G, v) and h(G, v) as f(v), g(v) and h(v), respectively.
First we consider the case when v becomes an asymmetric carbon.

Lemma 8. Let v ∈ VC be a carbon atom which is not the centroid.
(i) v is an asymmetric carbon atom for a combination of stereoisomers of its children if and only
if v has exactly three children x, y and w connected with v by single bonds (see Fig. 7(a)) and
Ix 6≈

I

Iy 6≈
I

Iw 6≈
I

Ix holds for the rooted-stereoisomers Ix ∈ I(x), Iy ∈ I(y) and Iw ∈ I(w).

(ii) If v has exactly three children x, y and w, then for two sets

Ih(v) = {Ix ∪ Iy ∪ Iw | Ix ∈ I(x), Iy ∈ I(y), Iw ∈ I(w), Ix 6≈
I

Iy 6≈
I

Iw 6≈
I

Ix}

and
Ig(v) = {Ix ∪ Iy ∪ Iw | Ix ∈ I(x), Iy ∈ I(y), Iw ∈ I(w)} \ Ih(v),

I(v) is given by

I(v) = {I ∪ {(n(v), nil)} | I ∈ Ig(v)} ∪ {I ∪ {(n(v),+)}, I ∪ {(n(v),−)} | I ∈ Ih(v)},

and we have g(v) = |Ig(v)|, h(v) = |Ih(v)| and f(v) = |I(v)| = g(v) + 2h(v).

Proof of Lemma 8 is given in S1.1.
Next we consider the case when a cis-trans isomer arises.

Lemma 9. Let v ∈ VC be a carbon atom which is not the centroid, and let v′ ∈ VC − {v} be a
descendent of v connected to v by a chain of double bonds between carbon atoms.
(i) A cis-trans isomer arises around v for a combination of stereoisomers of children of v′ if and
only if v has a child adjacent to v by a single bond and v′ has exactly two children x and y adjacent
to v′ by single bonds (see Fig. 7(b)) and Ix 6≈

I

Iy holds for the rooted-stereoisomers Ix ∈ I(x) and

Iy ∈ I(y).
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Figure 7: Graph structures around a non-root vertex (in Lemmas 8 and 9).

(ii) If v′ has exactly two children x and y, then for two sets

Ig(v
′) = {Ix ∪ Iy | Ix ∈ I(x), Iy ∈ I(y), Ix ≈

I
Iy}

and
Ih(v′) = {Ix ∪ Iy | Ix ∈ I(x), Iy ∈ I(y), Ix 6≈

I

Iy},

I(v′) is given by
I(v′) = {I ∪ {(n(v′), nil)} | I ∈ Ig(v

′) ∪ Ih(v′)},

and we have g(v′) = |Ig(v
′)|, h(v′) = |Ih(v′)| and f(v′) = |I(v′)| = g(v′) + h(v′).

(iii) Let u be a carbon atom u ∈ VC − {v, v
′} in the v-v′ chain of double bonds between carbon

atoms, and u′ be the child of u (see Fig. 7(b) and (c)). For two sets

Ig(u) = Ig(u
′) and Ih(u) = Ih(u′),

I(u) is given
I(u) = {I ∪ {(n(v′), nil)} | I ∈ Ig(u) ∪ Ih(u)},

and we have g(u) = |Ig(u)|, h(u) = |Ih(u)| and f(v) = |I(u)| = g(u) + h(u).

(iv) If v has a child x adjacent to v by a double bond and a child y adjacent to v by a single bond
(see Fig. 7(d)), then for two sets

Ig(v) = {Ix ∪ Iy | Ix ∈ Ig(x), Iy ∈ I(y)}

and
Ih(v) = {Ix ∪ Iy | Ix ∈ Ih(x), Iy ∈ I(y)},

I(v) is given by

I(v) = {I ∪ {(n(v), nil)} | I ∈ Ig(v)} ∪ {I ∪ {(n(v), cis)}, I ∪ {(n(v), trans)} | I ∈ Ih(v)},

and we have g(v) = |Ig(v)|, h(v) = |Ih(v)| and f(v) = |I(v)| = g(v) + 2h(v).

Proof of Lemma 9 is given in S1.2.
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Figure 8: Configurations around a carbon atom v ∈ VC which is adjacent to four atoms. (a) The
case where v has the parent. It holds σs(Iu) > σs(Ix) > σs(Iy) if and only if l(v) = +. It holds
σs(Iu) > σs(Iy) > σs(Ix) if and only if l(v) = −. (b) The case where v has no parent (i.e., v is
the unicentroid). It holds σs(Iw) > σs(Iu) > σs(Ix) > σs(Iy) if and only if l(v) = +. It holds
σs(Iw) > σs(Iu) > σs(Iy) > σs(Ix) if and only if l(v) = −.

2.5 Configuration around each carbon atom corresponding to label

This subsection describes how the configuration around each carbon atom v is determined based
on its label l(v). By the definition of labels, the configuration around v is unique if a carbon atom
v receives label l(v) = nil. In what follows, we consider a carbon atom v with l(v) 6= nil. There
are two such cases.

Case-1. v is adjacent to four atoms, and l(v) ∈ {+,−}: Such a case occurs only when signature
σs of every child of v is different each other. If v is one of the bicentroid of G, then we treat the
other vertex in the bicentroid as the parent of v.

(i) v has the parent: For the four directions di, i = 0, 1, 2, 3 from v, as in Fig. 1(a), we assume
without loss of generality that the parent of v appears in direction d0 and the child u of v with the
maximum σs appears in direction d1. Then each of the two configurations around v is determined
by placing the rest of adjacent vertices x and y in directions d2 and d3 so that either

σs(Ix) > σs(Iy)⇔ l(v) = +

or
σs(Ix) < σs(Iy)⇔ l(v) = −

holds (see Fig. 8(a)).

(ii) v has no parent (i.e. v is the unicentroid of G): For the four directions di, i = 0, 1, 2, 3 from
v, as in Fig. 1(a), we assume without loss of generality that the child w of v with the maximum
σs appears in direction d0 and the child u of v with the second maximum σs appears in direction
d1. Then each of the two configurations around v is determined by placing the rest of adjacent
vertices x and y in directions d2 and d3 so that either

σs(Ix) > σs(Iy)⇔ l(v) = +

or
σs(Ix) < σs(Iy)⇔ l(v) = −

holds (see Fig. 8(b)).
Case-2. v is adjacent to one of its children u ∈ VC by a double bond and l(v) ∈ {cis , trans}:
Such a case occurs only when the carbon circuit between v and u has an orientation. For the four
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Figure 9: Configurations around a carbon circuit between v ∈ VC and a child u ∈ VC of v, where
v is not the centroid of G. (a) l(v) = cis , (b) l(v) = trans.
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Figure 10: Configurations around carbon circuits between v ∈ VC and children u, u′ ∈ VC of v,
where v is the centroid of G. (a) l(v) = cis , (b) l(v) = trans.

directions di, i = 0, 1, 2, 3 from v, as in Fig. 1(a), we assume without loss of generality that the
orientation of the carbon circuit between v and u is given by d0 → v → d1.

(i) v is not the centroid of G: Since l(v) ∈ {cis , trans}, v has exactly two children. Let x be the
other child than u. Then each of the two configurations around v is determined by placing x so
that either

x appears in direction d3 ⇔ l(v) = cis

or
x appears in direction d2 ⇔ l(v) = trans

holds (see Fig. 9).

(ii) v is the centroid of G:

(1) v is adjacent to a child u′(6= u) by a double bond: The carbon circuit between u and u′

has an orientation because l(v) ∈ {cis , trans}. Then each of the two configurations around v is
determined by placing u′ so that either

l(v) = cis ⇔ the orientation of the carbon circuit between u and u′ is d2 → v → d3

or

l(v) = trans ⇔ the orientation of the carbon circuit between u and u′ is d2 ← v ← d3

holds (see Fig. 10).

(2) v is adjacent to its children x, y (6= u) by single bonds: It holds σs(Ix) 6= σs(Iy) because
I(v) ∈ {cis , trans}. Assume without loss of generality that x and y appear in directions d2 and
d3, respectively. Then each of the two configurations around v is determined by placing x and y
so that either

σs(Ix) > σs(Iy)⇔ l(v) = cis
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Figure 11: A Configuration around a carbon circuit between v ∈ VC and a child u ∈ VC of v,
where v is the centroid of G. l(v) = cis if and only if σs(Ix) > σs(Iy). l(v) = trans if and only if
σs(Ix) < σs(Iy).

or
σs(Ix) < σs(Iy)⇔ l(v) = trans

holds (see Fig. 11).
Given a proper representation I ∈ I(G), we can determine the set of configurations around all

carbon atoms represented by I, which are determined from bottom to the root along the rooted
tree G. Conversely, given a set of configurations of all carbon atoms of a stereoisomer of G, we
can construct the proper representation I corresponding to the structure from bottom to the root
along the rooted tree G.

3 Algorithm

In this section we propose an algorithm for enumerating all stereoisomers of a tree-like chemical
graph G. The first phase, called Counting phase, compute f∗(G) by dynamic programming. Using
the information calculated by Counting phase, the second phase, called Output phase, constructs
each stereoisomer one by one. Sections 3.1 and 3.2 explain Counting phase and Output phase
respectively.

3.1 Counting phase

Counting phase computes f(v), g(v) and h(v) for every vertex v ∈ V from bottom to the root
along tree G. When we reach the centroid, we are ready to compute f∗(G). All the recursive
formulas for f(v), g(v), h(v) and f∗(G) are given in S2. An entire description of the algorithm is
given as follows.

Algorithm Counting phase
Input: A tree-like chemical graph G = (V,E) whose vertex set consists of carbon, hydrogen,
oxygen and nitrogen atoms along with vertex-numbers.
Output: The number of stereoisomers f∗(G) and f(v), g(v), h(v) for every vertex v ∈ V which is
not the unicentroid.

Find the centroid of G;
Let the centroid be the root of the tree;
Compute signatures of all rooted subtrees Tv, v ∈ V ;
Initialize the scanning queue Q← φ;
for each leaf v ∈ V do

g(v) := 1; h(v) := 0; f(v) := 1;
Let v be ”scanned”;
/* Let u be the parent of v. */

13



if all the children of u are “scanned” and u is not the unicentroid then

ENQUE(Q, u)
end if

end for;
while Q 6= φ do

v = DEQUE(Q);
Compute f(v), g(v) and h(v) as described in Section B.1;
Let v be ”scanned”;
/* Let u be the parent of v. */
if all the children of u are “scanned” and u is not the unicentroid then

ENQUE(Q, u)
end if

end while;
if G has the unicentroid then

Compute f∗(G) as described in Section B.2 Case-1.
else /* G has the bicentroid. */

Compute f∗(G) as described in Section B.2 Case-2.
end if.

In general, the number of stereoisomers increases exponentially as the number of atoms in-
creases. In the following, we assume that each of addition, subtraction, multiplication, and division
over integers can be executed in a unit time. We get the following theorem.

Theorem 10. For a tree-like chemical graph G = (V,E) with |V | = n, Counting phase computes
the number of stereoisomers f∗(G) in O(n) time and space.

Proof of theorem 10 is given in S1.3.

3.2 Output phase

Output phase constructs proper representations for stereoisomers by using f∗(G), f(v), g(v) and
h(v) for all non-unicentroid vertices v. For i = 1, 2, . . . , f∗(G), we output the proper representation
for the i-th stereoisomer of G by backtracking the computation process of Counting phase. When
we compute the k-th rooted-stereoisomer of Tv, we detect the corresponding l(v) and calculate ku

for every child u of v, and we trace the computation process recursively to the leaves of G. When
this backtrack process completes, we get one proper representation generated by the settled labels
l(v) for all v ∈ V .

Here we consider an example given in Fig. 3. When Output phase processes v3, we have
received an instruction from the parent of v3 “we choose the kv3

-th rooted-stereoisomer of Tv3
.”

It holds 1 ≤ kv3
≤ 4 because Counting phase computed f(v3) = 4. We order rooted-stereoisomers

of Tv3
as follows.

• If kv3
= 1 holds, then we have l(v3) = nil, and the rooted-stereoisomers of Tv3

is composed of
the first stereoisomer of Tv1

and the first stereoisomer of Tv2
(i.e., kv1

= kv2
= 1 holds).

• If kv3
= 2 holds, then we have l(v3) = nil, and the rooted-stereoisomers of Tv3

is composed of
the second stereoisomer of Tv1

and the second stereoisomer of Tv2
(i.e., kv1

= kv2
= 2 holds).

• If kv3
= 3 holds, then we have l(v3) = +, and the rooted-stereoisomers of Tv3

is composed of the
first stereoisomer of Tv1

and the second stereoisomer of Tv2
(i.e., kv1

= 1 and kv2
= 2 hold).

• If kv3
= 4 holds, then we have l(v3) = −, and the rooted-stereoisomers of Tv3

is composed of the
first stereoisomer of Tv1

and the second stereoisomer of Tv2
(i.e., kv1

= 1 and kv2
= 2 hold).

We compute kv1
, kv2

and l(v3) from given kv3
, using information of g(v3), h(v3) and f(v3) computed

in Counting phase.
The rest of this section is organized as follows. After Section 3.2.1 defines bijections between a

set of tuples and combinations of the elements in tuples, Section 3.2.2 gives an entire description
of the algorithm and analyzes the time complexity of Output phase.
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3.2.1 Bijections for fast generation

Recall that we do not generate any table of (rooted) stereoisomers during Counting phase. How-
ever, Output phase needs to find for a given k the k-th combination of numbers ku of all children
of u. To design an O(1) time algorithm for finding a desired combination of such numbers ku, this
subsection defines bijections between a set of tuples and combinations of the elements in tuples.

Definition 11. For positive integers M1,M2, . . . ,Mp, define the set D(M1,M2, . . . ,Mp) of tuples
by

D(M1,M2, . . . ,Mp) := {[k1, k2, . . . , kp] | ki ∈ {1, 2, . . . ,Mi}, i = 1, 2, . . . , p}.

Let D(;M1,M2, . . . ,Mp) denote a bijection between the set {1, 2, . . . ,M1M2 · · · Mp} of integers and
D(M1,M2, . . . ,Mp). Let D(k;M1,M2, . . . ,Mp) denote the tuple [k1, k2, . . . , kp] ∈ D(M1,M2, . . . ,Mp)
corresponding to k ∈ {1, 2, . . . ,M1M2 · · ·Mp}.

Note that choice of such a bijection D(;M1,M2, . . . ,Mp) is not unique. It is not difficult to see
that there exists a bijection D(;M1,M2, . . . ,Mp) such that we can compute D(k;M1,M2, . . . ,Mp)
in O(p) time and space for any integer k ∈ {1, 2, . . . ,M1M2 · · ·Mp} (see S3 for the detail).

Definition 12. For positive integers n and p, define the set Cn,p of tuples by

Cn,p := {[k1, k2, . . . , kp] | ki ∈ {1, 2, . . . , n}, i = 1, 2, . . . , p, kj 6= kj′ , 1 ≤ j < j′ ≤ p}.

Let Cn,p() denote a bijection between the set {1, 2, . . . ,
(

n

p

)

} of integers and Cn,p. Let Cn,p(k)

denote the tuple [k1, k2, . . . , kp] ∈ Cn,p corresponding to k ∈ {1, 2, . . . ,
(

n
p

)

}.

Again choice of such a bijection Cn,p() is not unique. For p ≤ 4, we have shown that there
exists a bijection Cn,p() such that we can compute Cn,p(k) in O(1) time and space for any integer
k ∈ {1, 2, . . . ,

(

n

p

)

} (see S3 for the detail).

3.2.2 Description of Output phase

This subsection gives an entire description of Output phase and analyzes its time complexity.
Computation precesses for all the cases are given in S4.

Algorithm Output phase
Input: A tree-like chemical graph G = (V,E) whose vertex set consists of carbon, hydrogen,
oxygen and nitrogen atoms along with vertex-numbers, the root of G, f(v), g(v) and h(v) for all
non-unicentroid vertices v, signatures of all rooted-subtrees Tv, v ∈ V , and f∗(G).
Output: All the elements of I ∈ I(G) without duplication.

for each k = 1, 2, . . . , f∗(G) do

for each v ∈ V do

l(v) := nil
end for;
if G has the unicentroid v then

/* Let v1, . . . , vi be the children of v */
Compute l(vj) and kj (j = 1, . . . , i) as described in Section D.1;
for each vj (j = 1, . . . , i) do

Reverse(vj,Tvj
,kj)

end for

else

/* Let {v1, v2} be the bicentroid of G, where n(v1) < n(v2) holds*/
Compute l(v1), l(v2), k1 and k2 as described in Section D.1;
for each vj (j = 1, 2) do

Reverse(vj,Tvj
,kj)

end for
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end if ;
Output I = {(i, l(vi) | i ∈ {1, 2, . . . , n}} as the k-th stereoisomer

end for.

Procedure Reverse(v,Tv,k)
Input: v ∈ V , a rooted-subtree Tv and positive integer k.
Output: l(u) for all the vertices u ∈ Tv.

if v is not a leaf then

/* Let v1, . . . , vi be children of v */
Compute l(v) and kj (i = 1, . . . , i) as described in Section D.2;
for each vj (j = 1, . . . , i) do

Reverse(vj,Tvj
,kj)

end for

else

Return
end if.

Similarly to the time complexity of Counting phase, in the following, we assume that each of
addition, subtraction, multiplication, and division over integers can be executed in a unit time.
We get the following theorem.

Theorem 13. For a tree-like chemical graph G = (V,E) with |V | = n, Output phase enumerates
all the stereoisomers I ∈ I(G) without duplication in O(n) space and in O(n) time per isomer.

Proof of theorem 13 is given in S1.4.

4 Experimental results

We implemented our algorithms and conducted some experiments to evaluate the practical per-
formance. This section shows the experimental results.

In general, the number of vertices in chemical graphs is not so large. Hence computation times
of Counting phase are very short. Computation times of Output phase per one stereoisomer are
also very short. Then we experimented in order to see that computation times of Output phase
increase linearly to the number of stereoisomers. In addition to that, we experimented in order
to see that our algorithms run correctly by comparing with the results of Razinger et al.. They
constructed the program for exhaustive, nonredundant stereoisomers generation using the idea of
Nourse [7], and tested the program with various compounds [10]. We report experimental results
performed on a PC with a Dual-Core AMD Opteron(tm) Processor 1212 1.00GHz CPU.
Experiment 1

Using KegDraw obtained from KEGG website (http://www.genome.jp/kegg/download/keg
tools.html), we created structural isomers of C25O24H52 as instances such that a number of
stereoisomers are generated. Fig. 12 shows graph structures of instances. Table 1 and Fig.
13 show the experimental results of our algorithms. From the graph in Fig. 13, we see that the
computation time of Output phase increases linearly to the number of stereoisomers.
Experiment 2

We chose some of instances used in [10], which are composed of carbon, hydrogen, oxygen,
fluorine, chlorine, and bromine atoms. The current versions of our algorithms can treat only the
compounds which are composed of carbon, hydrogen, oxygen, and nitrogen atoms. Then, using
KegDraw, we created instances by replacing fluorine, chlorine and bromine atoms in the instances
of [10] with substructures −NH2, −CH2 − NH2 and −CH2 − CH2 − NH2, respectively. Graph
structures of these instances are shown in Fig. 14. Experimental results are shown in Table. 2.
For each compounds, CPU times for Counting phase and Output phase are 0.00, and the number
of stereoisomers f∗(G) is the same as that of [10].
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Figure 12: Graph structures of C25O24H52
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Table 1: Computation time for the chemical graphs shown in Fig. 12.

Input: time (s)
C25O24H52 f∗(G) Counting phase Output phase

(a) 88,320 0.00 0.60
(b) 131,072 0.00 0.65
(c) 131,328 0.00 0.69
(d) 524,800 0.00 2.64
(e) 699,136 0.00 3.74
(f) 1,048,576 0.00 4.88
(g) 2,097,152 0.00 9.74
(h) 4,194,304 0.00 19.71
(i) 8,388,608 0.00 39.39
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Figure 14: Graph structures of instances for Experiment 2
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Table 2: Experimental results for the chemical graphs shown in Fig. 14. f∗(G) is the number of
stereoisomers which our algorithms output. N is the number of stereoisomers shown in [10].

Input: The number of The number of
Graphs shown in stereoisomers stereoisomers

Fig. 14 f∗(G) N f∗(G) N
(a) 2 2 (m) 2 2
(b) 16 16 (n) 2 2
(c) 8 8 (o) 2 2
(d) 4 4 (p) 2 2
(e) 5 5 (q) 4 4
(f) 8 8 (r) 3 3
(g) 10 10 (s) 6 6
(h) 16 16 (t) 6 6
(i) 32 32 (u) 7 7
(j) 10 10 (v) 7 7
(k) 32 32 (w) 7 7
(l) 10 10

5 Conclusion

In this paper, we designed an algorithm for generating stereoisomers of tree-like chemical graphs
based on dynamic program. For this, we defined representations of stereoisomers, by attaching
a suitable label to each vertex. For a graph with n vertices, our algorithm correctly counts the
number of stereoisomers in O(n) time and space and correctly outputs all possible stereoisomers
in O(n) space and in O(n) time per stereoisomer. To our knowledge, it is the first algorithm for
counting and enumerating stereoisomers with guaranteed computational complexity. Furthermore,
the algorithm is optimal provided that each stereoisomer needs to be output explicitly in O(n)
time. We also conducted computational experiments to evaluate the practical performance of the
algorithm. The results showed that it is very fast also in practice.

We considered in this paper stereoisomers caused only by asymmetry around carbon atoms.
However, the proposed techniques might be extended for other types of stereoisomers for which
stereochemical configurations depend only on local substructures. Molecules considered in this
paper were also limited to those with tree-like structures. Therefore, it is left as future work to
extend our algorithms to a wider class of graphs, such as outerplanar graphs, as well as to extend
to other types of stereoisomers. Another future work includes visualization and classification of
output representations of stereoisomers.
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S1 Proof of Lemmas and Theorems

S1.1 Proof of Lemma 8

Proof: (i) From definition of proper representations, l(v) ∈ {+,−} if and only if v is adjacent
to four atoms and the signatures σs(Iu) of all children u of v are different each other. Since v
is not the centroid, v has exactly three children x, y and w adjacent to v by single bonds and
Ix 6≈

I

Iy 6≈
I

Iw 6≈
I

Ix holds for the rooted-stereoisomers Ix ∈ I(x), Iy ∈ I(y) and Iw ∈ I(w).

(ii) If a non-root carbon atom v has exactly three children x, y and w, then v is adjacent to
x, y, w and its parent by single bonds. Then h(v) (resp., g(v)) is the number of combinations of
stereoisomers of Tx′ over all children x′ of v such that v is (resp., is not) an asymmetric carbon
atom. By (i), v is an asymmetric carbon atom if and only if Ix 6≈

I

Iy 6≈
I

Iw 6≈
I

Ix holds. Then

Lemma 8(ii) holds obviously.

S1.2 Proof of Lemma 9

Proof: (i) From definition of proper representations, for v ∈ VC which is not the centroid,
l(v) ∈ {cis , trans} if and only if v and one of its children w is connected by a double bond and the
other by a single bond, and the carbon circuit between v and w has an orientation. From definition
of an orientation of a carbon circuit, the carbon circuit between v and w has an orientation if and
only if there exists a descendent v′ ∈ VC of v connected to v by a chain of double bonds between
carbon atoms, v′ has exactly two children x and y connected with v′ by single bonds, and Ix 6≈

I

Iy

holds for rooted-stereoisomers Ix ∈ I(x) and Iy ∈ I(y).

(ii) From lemmas 8(i) and 9 (i), v′ is not an asymmetric carbon atom and a cis-trans isomer does
not arise around v′. Then h(v′) (resp., g(v′)) is the number of combinations of stereoisomers of
Tx′ over all children x′ of v′ such that a cis-trans isomer arises around any ancestor connected to
v′ by a chain of double bonds between carbon atoms (resp., no cis-trans isomer arises around any
ancestor connected to v′ by a chain of double bonds between carbon atoms). From Lemma 9(i),
a cis-trans isomer arises around any ancestor connected to v′ by a chain of double bonds between
carbon atoms if and only if Tx 6≈

I

Ty holds. Then Lemma 9(ii) holds obviously.
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(iii) From lemmas 8(i) and 9(i), u is not an asymmetric carbon atom and a cis-trans isomer do
not arise around u. Then h(u) (resp., g(u)) is the number of combinations of stereoisomers of Tx′

over all children x′ of u such that a cis-trans isomer arises around any ancestor connected to u
by a chain of double bonds between carbon atoms (resp., no cis-trans isomer arises around any
ancestor connected to u by a chain of double bonds between carbon atoms). From Lemma 9(i)
and (ii), a cis-trans isomer arises around any ancestor connected to u by a chain of double bonds
between carbon atoms if and only if Iu′ ∈ Ih(u′) holds. Then Lemma (iii) holds obviously.

(iv) v is adjacent to its parent by a single bond. From Lemma 8(i), v is not an asymmetric
carbon atom. Then h(v) (resp., g(v)) is the number of combinations of stereoisomers of Tx′ over
all children x′ of v such that a cis-trans isomer arises around v (resp., a cis-trans isomer do not
arise around v). From Lemma 9(i), (ii) and (iii), a cis-trans isomer arises around v if and only if
Ix ∈ Ih(x) holds. Then Lemma 9(iv) holds obviously.

S1.3 Proof of Theorem 10

Proof: We can find the centroid of G in O(n) time and space by Jordan’s Theorem [6], and we
can compute signatures of all rooted-subtrees Tv, v ∈ V in O(n) time and space [4]. In Counting
phase, every vertex v ∈ V is visited exactly once and f(v), g(v) and h(v) can be calculated in O(1)
time and space as described in Section S2.1, and at the root of G, f∗(G) can be calculated in O(1)
time and space as described in Section S2.2. Hence Counting phase runs in O(n) time and space.

Sections S2.1 and S2.2 take all the cases into consideration, and hence Counting phase computes
the number of stereoisomers f∗(G) correctly.

S1.4 Proof of Theorem 13

Proof: For outputting one stereoisomer, every vertex v ∈ V is visited exactly once and l(v) and
ku for every child u of v can be calculated in O(1) time and space as described in Sections S4.1
and S4.2. Hence Output phase takes O(n) space and O(n) time per stereoisomer.

Sections S4.1 and S4.2 takes all the cases into consideration, and hence Output phase outputs
all the stereoisomers I ∈ I(G) without duplication.

S2 Recursive formulas for Counting phase

This section is organized as follows. Section S2.1 shows how to compute f(v), g(v) and h(v).
Section S2.2 shows how to compute f∗(G).

S2.1 How to compute f(v), g(v) and h(v)

We compute f(v), g(v) and h(v) using Lemmas 8 and 9. We consider the following five cases.
Case-1. v ∈ V is a leaf: l(v) must be nil and we have

g(v) = 1, h(v) = 0, f(v) = 1.

Case-2. v ∈ VC and v has three children. Let x, y and w be three children of v (see Fig. S1 (a)):
We consider the following three subcases.
(i) No two of Tx, Ty and Tw are rooted-isomorphic each other: Hence Ix 6≈

I

Iy 6≈
I

Iw 6≈
I

Ix holds.

Then

Ig(v) = φ,

Ih(v) = {Ix ∪ Iy ∪ Iw | Ix ∈ I(x), Iy ∈ I(y), Iw ∈ I(w)},

I(v) = {I ∪ {(n(v), nil)} | I ∈ Ig(v)} ∪ {I ∪ {(n(v), +)}, I ∪ {(n(v),−)} | I ∈ Ih(v)},
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and we have
g(v) = 0, h(v) = f(x)f(y)f(w), f(v) = g(v) + 2h(v).

(ii) Tx ≈
r

Ty and Tx 6≈
r

Tw hold: Hence Ix 6≈
I

Iw and Iy 6≈
I

Iw hold. Then

Ig(v) = {Ix ∪ Iy ∪ Iw | Ix ∈ I(x), Iy ∈ I(y), Iw ∈ I(w), Ix ≈
I

Iy},

Ih(v) = {Ix ∪ Iy ∪ Iw | Ix ∈ I(x), Iy ∈ I(y), Iw ∈ I(w), Ix 6≈
I

Iy},

I(v) = {I ∪ {(n(v), nil)} | I ∈ Ig(v)} ∪ {I ∪ {(n(v), +)}, I ∪ {(n(v),−)} | I ∈ Ih(v)},

and we have

g(v) = f(x)f(w), h(v) =

(

f(x)

2

)

f(w), f(v) = g(v) + 2h(v).

(iii) Tx ≈
r

Ty ≈
r

Tw holds: Then

Ig(v) = {Ix ∪ Iy ∪ Iw | Ix ∈ I(x), Iy ∈ I(y), Iw ∈ I(w), Ix ≈
I

Iy},

Ih(v) = {Ix ∪ Iy ∪ Iw | Ix ∈ I(x), Iy ∈ I(y), Iw ∈ I(w), Ix 6≈
I

Iy 6≈
I

Iw 6≈
I

Ix},

I(v) = {I ∪ {(n(v), nil)} | I ∈ Ig(v)} ∪ {I ∪ {(n(v), +)}, I ∪ {(n(v),−)} | I ∈ Ih(v)},

and we have

g(v) = f(x)2, h(v) =

(

f(x)

3

)

, f(v) = g(v) + 2h(v).

Case-3. v ∈ VC, and v is joined to two subtrees by single bonds and is joined to one subtree by
a double bond: We consider the following two subcases.
(i) v is joined to its parent by a double bond (see Fig. S1 (b)): Then

Ig(v) = {Ix ∪ Iy | Ix ∈ I(x), Iy ∈ I(y), Ix ≈
I

Iy},

Ih(v) = {Ix ∪ Iy | Ix ∈ I(x), Iy ∈ I(y), Ix 6≈
I

Iy},

I(v) = {I ∪ {(n(v), nil)} | I ∈ Ig(v) ∪ Ih(v)},

and we consider the following two subcases.
(1) If Tx 6≈

r
Ty holds, then

g(v) = 0, h(v) = f(x)f(y), f(v) = g(v) + h(v).

(2) If Tx ≈
r

Ty holds, then

g(v) = f(x), h(v) =

(

f(x)

2

)

, f(v) = g(v) + h(v).

(ii) v is joined to a child x of v by a double bond (see Fig. S1 (c)): Then

Ig(v) = {Ix ∪ Iy | Ix ∈ Ig(x), Iy ∈ I(y)},

Ih(v) = {Ix ∪ Iy | Ix ∈ Ih(x), Iy ∈ I(y)},

I(v) = {I ∪ {(n(v), nil)} | I ∈ Ig(v)} ∪ {I ∪ {(n(v), cis)}, I ∪ {(n(v), trans)} | I ∈ Ih(v)},

and we have
g(v) = g(x)f(y), h(v) = h(x)f(y), f(v) = g(v) + 2h(v).
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Case-4. v ∈ VC and v is joined to its parent by a double bond and its child y by a double bond
(see Fig. S1 (d)): Then

Ig(v) = Ig(y), Ih(v) = Ih(y), I(v) = {I ∪ {(n(v), nil)} | I ∈ Ig(v) ∪ Ih(v)},

and we have
g(v) = g(y), h(v) = h(y), f(v) = f(y).

Case-5. The case other than Cases-1,2,3 and 4: In this case h(v) = 0 holds. Then f(v) = g(v),
and we consider the following two subcases.
(i) v ∈ V has exactly one child x: It holds

I(v) = {I ∪ {(n(v), nil)} | I ∈ I(x)}

and we have
f(v) = g(v) = f(x).

(ii) v ∈ V − VC has exactly two children x and y: Then

I(v) ={Ix ∪ Iy ∪ {(n(v), nil)} | Ix ∈ I(x), Iy ∈ I(y), Ix ≈
I

Iy}

∪ {Ix ∪ Iy ∪ {(n(v), nil)} | Ix ∈ I(x), Iy ∈ I(y), Ix 6≈
I

Iy}

and we consider the following two subcases.
(1) If Tx 6≈

r
Ty holds, then

g(v) = f(x)f(y).

(2) If Tx ≈
r

Ty holds, then

g(v) = f(x) +

(

f(x)

2

)

.

S2.2 How to compute f ∗(G)

We consider the following two subcases.
Case-1. The root of G is the unicentroid v ∈ V : We consider the following three subcases.

(i) v ∈ VC holds: We consider the following four subcases.

(1) v has exactly four children x, y, w and z (see Fig. S2 (a)): In this case v can be an asymmetric
carbon atom. We consider the following five subcases.
i. If no two of Tx, Ty, Tw and Tz are rooted-isomorphic each other, then

I(G) = {{(n(v), +)} ∪ Ix ∪ Iy ∪ Iw ∪ Iz , {(n(v),−)} ∪ Ix ∪ Iy ∪ Iw ∪ Iz |

Ix ∈ I(x), Iy ∈ I(y), Iw ∈ I(w), Iz ∈ I(z)}

and we have
f∗(G) = 2f(x)f(y)f(w)f(z).

ii. If Tx ≈
r

Ty holds and no two of Tx, Ty and Tw are rooted-isomorphic each other, then

I(G) ={{(n(v), nil} ∪ Ix ∪ Iy ∪ Iw ∪ Iz | Ix ∈ I(x), Iy ∈ I(y), Iw ∈ I(w), Iz ∈ I(z), Ix ≈
I

Iy}

∪ {{(n(v), +)} ∪ Ix ∪ Iy ∪ Iw ∪ Iz , {(n(v),−)} ∪ Ix ∪ Iy ∪ Iw ∪ Iz |

Ix ∈ I(x), Iy ∈ I(y), Iw ∈ I(w), Iz ∈ I(z), Ix 6≈
I

Iy}

and we have

f∗(G) = f(x)f(w)f(z) + 2

(

f(x)

2

)

f(w)f(z).
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Figure S1: Graph structures around a non-root vertex v.

iii. If Tx ≈
r

Ty, Tw ≈
r

Tz and Tx 6≈
r

Tw hold, then

I(G) ={{(n(v), nil)} ∪ Ix ∪ Iy ∪ Iw ∪ Iz |

Ix ∈ I(x), Iy ∈ I(y), Iw ∈ I(w), Iz ∈ I(z), Ix ≈
I

Iy , Iw ≈
I

Iz}

∪ {{(n(v), nil)} ∪ Ix ∪ Iy ∪ Iw ∪ Iz |

Ix ∈ I(x), Iy ∈ I(y), Iw ∈ I(w), Iz ∈ I(z), Ix ≈
I

Iy , Iw 6≈
I

Iz}

∪ {{(n(v), nil)} ∪ Ix ∪ Iy ∪ Iw ∪ Iz |

Ix ∈ I(x), Iy ∈ I(y), Iw ∈ I(w), Iz ∈ I(z), Ix 6≈
I

Iy , Iw ≈
I

Iz}

∪ {{(n(v), +)} ∪ Ix ∪ Iy ∪ Iw ∪ Iz, {(n(v),−)} ∪ Ix ∪ Iy ∪ Iw ∪ Iz |

Ix ∈ I(x), Iy ∈ I(y), Iw ∈ I(w), Iz ∈ I(z), Ix 6≈
I

Iy , Iw 6≈
I

Iz}

and we have

f∗(G) =

{

f(x)f(w) + f(x)

(

f(w)

2

)

+

(

f(x)

2

)

f(w)

}

+ 2

(

f(x)

2

)(

f(w)

2

)

.

iv. If Tx ≈
r

Ty ≈
r

Tw and Tx 6≈
r

Tz hold, then

I(G) ={{(n(v), nil)} ∪ Ix ∪ Iy ∪ Iw ∪ Iz | Ix ∈ I(x), Iy ∈ I(y), Iw ∈ I(w), Iz ∈ I(z), Ix ≈
I

Iy}

∪ {{(n(v), +)} ∪ Ix ∪ Iy ∪ Iw ∪ Iz , {(n(v),−)} ∪ Ix ∪ Iy ∪ Iw ∪ Iz |

Ix ∈ I(x), Iy ∈ I(y), Iw ∈ I(w), Iz ∈ I(z), Ix 6≈
I

Iy 6≈
I

Iw 6≈
I

Ix}
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and we have

f∗(G) = f(x)2f(z) + 2

(

f(x)

3

)

f(z).

v. If Tx ≈
r

Ty ≈
r

Tw ≈
r

Tz holds, then

I(G) ={{(n(v), nil)} ∪ Ix ∪ Iy ∪ Iw ∪ Iz |

Ix ∈ I(x), Iy ∈ I(y), Iw ∈ I(w), Iz ∈ I(z), Ix ≈
I

Iy ≈
I

Iw}

∪ {{(n(v), nil)} ∪ Ix ∪ Iy ∪ Iw ∪ Iz |

Ix ∈ I(x), Iy ∈ I(y), Iw ∈ I(w), Iz ∈ I(z), Ix ≈
I

Iy 6≈
I

Iw ≈
I

Iz}

∪ {{(n(v), nil)} ∪ Ix ∪ Iy ∪ Iw ∪ Iz |

Ix ∈ I(x), Iy ∈ I(y), Iw ∈ I(w), Iz ∈ I(z), Ix ≈
I

Iy 6≈
I

Iw 6≈
I

Iz 6≈
I

Ix}

∪ {{(n(v), +)} ∪ Ix ∪ Iy ∪ Iw ∪ Iz , {(n(v),−)} ∪ Ix ∪ Iy ∪ Iw ∪ Iz |

Ix ∈ I(x), Iy ∈ I(y), Iw ∈ I(w), Iz ∈ I(z),

No two of Ix, Iy, Iw and Iz represent the same stereoisomer}

and we have

f∗(G) =

{

f(x)2 +

(

f(x)

2

)

+ f(x)

(

f(x) − 1

2

)}

+ 2

(

f(x)

4

)

.

(2) v is joined to a child u by a double bond and children x and y by single bonds (see Fig. S2
(b)): In this case a cis-trans isomer can arise around v.

I(G) ={{(n(v), nil)} ∪ Iu ∪ Ix ∪ Iy | Iu ∈ I(u), Ix ∈ I(x), Iy ∈ I(y), Ix ≈
I

Iy}

∪ {{(n(v), nil)} ∪ Iu ∪ Ix ∪ Iy | Iu ∈ Ig(u), Ix ∈ I(x), Iy ∈ I(y), Ix 6≈
I

Iy}

∪ {{(n(v), cis)} ∪ Iu ∪ Ix ∪ Iy, {(n(v), trans)} ∪ Iu ∪ Ix ∪ Iy |

Iu ∈ Ih(u), Ix ∈ I(x), Iy ∈ I(y), Ix 6≈
I

Iy}

and we consider the following two subcases.
i. If Tx 6≈

r
Ty holds, then we have

f∗(G) = g(u)f(x)f(y) + 2h(u)f(x)f(y).

ii. If Tx ≈
r

Ty holds, then we have

f∗(G) =

{

g(u)f(x) + h(u)f(x) + g(u)

(

f(x)

2

)}

+ 2h(u)

(

f(x)

2

)

.

(3) v is joined to a child x by a triple bond and children y by a single bond (see Fig. S2 (c)): In
this case Ix 6≈

I

Iy holds. Then

I(G) = {{(n(v), nil)} ∪ Ix ∪ Iy | Ix ∈ I(x), Iy ∈ I(y)}

and we have
f∗(G) = f(x)f(y).

(4) v is joined to children x and y by double bonds (see Fig. S2 (d)): In this case a cis-trans
isomer can arise around v. We consider the following two subcases.
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i. Tx 6≈
r

Ty holds: Then

I(G) ={{(n(v), nil)} ∪ Ix ∪ Iy | Ix ∈ Ig(x), Iy ∈ Ig(y)}

∪ {{(n(v), nil)} ∪ Ix ∪ Iy | Ix ∈ Ig(x), Iy ∈ Ih(y)}

∪ {{(n(v), nil)} ∪ Ix ∪ Iy | Ix ∈ Ih(x), Iy ∈ Ig(y)}

∪ {{(n(v), cis)} ∪ Ix ∪ Iy, {(n(v), trans)} ∪ Ix ∪ Iy | Ix ∈ Ih(x), Iy ∈ Ih(y)}

and we have
f∗(G) = g(x)g(y) + g(x)h(y) + h(x)g(y) + 2h(x)h(y).

ii. Tx ≈
r

Ty holds: Then

I(G) ={{(n(v), nil)} ∪ Ix ∪ Iy | Ix ∈ Ig(x), Iy ∈ Ig(y), Ix ≈
I

Iy}

∪ {{(n(v), nil)} ∪ Ix ∪ Iy | Ix ∈ Ig(x), Iy ∈ Ig(y), Ix 6≈
I

Iy}

∪ {{(n(v), nil)} ∪ Ix ∪ Iy | Ix ∈ Ig(x), Iy ∈ Ih(y)}

∪ {{(n(v), cis)} ∪ Ix ∪ Iy, {(n(v), trans)} ∪ Ix ∪ Iy | Ix ∈ Ih(x), Iy ∈ Ih(y), Ix ≈
I

Iy}

∪ {{(n(v), cis)} ∪ Ix ∪ Iy, {(n(v), trans)} ∪ Ix ∪ Iy | Ix ∈ Ih(x), Iy ∈ Ih(y), Ix 6≈
I

Iy}

and we have

f∗(G) = g(x) +

(

g(x)

2

)

+ g(x)h(x) + 2

{

h(x) +

(

h(x)

2

)}

.

x y w z

v

(a)

x y

v

u

(b)

x y

v

(c)

x y

v

(d)

Figure S2: Graph structures around the unicentroid v ∈ VC.

(ii) v ∈ VN holds: We consider the following two subcases.

(1) v has exactly three children x, y and w: We consider the following three subcases.
i. If no two of Tx, Ty and Tw are rooted-isomorphic each other, then

I(G) = {{(n(v), nil)} ∪ Ix ∪ Iy ∪ Iw | Ix ∈ I(x), Iy ∈ I(y), Iw ∈ I(w)}

and we have
f∗(G) = f(x)f(y)f(w).
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ii. If Tx ≈
r

Ty and Tx 6≈
r

Tw hold, then

I(G) ={{(n(v), nil)} ∪ Ix ∪ Iy ∪ Iw | Ix ∈ I(x), Iy ∈ I(y), Iw ∈ I(w), Ix ≈
I

Iy}

∪ {{(n(v), nil)} ∪ Ix ∪ Iy ∪ Iw | Ix ∈ I(x), Iy ∈ I(y), Iw ∈ I(w), Ix 6≈
I

Iy}

and we have

f∗(G) = f(x)f(w) +

(

f(x)

2

)

f(w).

iii. If Tx ≈
r

Ty ≈
r

Tw holds, then

I(G) ={{(n(v), nil)} ∪ Ix ∪ Iy ∪ Iw | Ix ∈ I(x), Iy ∈ I(y), Iw ∈ I(w), Ix ≈
I

Iy}

∪ {{(n(v), nil)} ∪ Ix ∪ Iy ∪ Iw | Ix ∈ I(x), Iy ∈ I(y), Iw ∈ I(w), Ix 6≈
I

Iy 6≈
I

Iw 6≈
I

Ix}

and we have

f∗(G) = f(x)2 +

(

f(x)

3

)

.

(2) v is joined to a child x by a double bond and a child y by a single bond: In this case Ix 6≈
I

Iy

holds. Then
I(G) = {{(n(v), nil)} ∪ Ix ∪ Iy | Ix ∈ I(x), Iy ∈ I(y)}

and we have
f∗(G) = f(x)f(y).

(iii) v ∈ VO holds: Then

I(G) ={{(n(v), nil)} ∪ Ix ∪ Iy | Ix ∈ I(x), Iy ∈ I(y), Ix ≈
I

Iy}

∪ {{(n(v), nil)} ∪ Ix ∪ Iy | Ix ∈ I(x), Iy ∈ I(y), Ix 6≈
I

Iy}

and we consider the following two subcases.
(1) If Tx 6≈

r
Ty holds, then we have

f∗(G) = f(x)f(y).

(2) If Tx ≈
r

Ty holds, then we have

f∗(G) = f(x) +

(

f(x)

2

)

.

Case-2. The root of G is the bicentroid v1, v2 ∈ V : We suppose that n(v1) < n(v2) holds. In this
case, we first compute f(v1), g(v1) and h(v1) regarding v2 as the single root and f(v2), g(v2) and
h(v2) regarding v1 as the single root. Then we consider the following two subcases.
(i) v1, v2 ∈ VC holds, and v1 and v2 are joined by a double bond (see Fig. S3): A cis-trans isomer
occurs around v1 if and only if Iv1

∈ Ih(v1) and Iv2
∈ Ih(v2). We consider the following two

subcases.
(1) If Tv1

6≈
r

Tv2
holds, then

I(G) ={{(n(v1), nil)} ∪ {(n(v2), nil)} ∪ Iv1
∪ Iv2

| Iv1
∈ Ig(v1), Iv2

∈ Ig(v2)}

∪ {{(n(v1), nil)} ∪ {(n(v2), nil)} ∪ Iv1
∪ Iv2

| Iv1
∈ Ig(v1), Iv2

∈ Ih(v2)}

∪ {{(n(v1), nil)} ∪ {(n(v2), nil)} ∪ Iv1
∪ Iv2

| Iv1
∈ Ih(v1), Iv2

∈ Ig(v2)}

∪ {{(n(v1), cis)} ∪ {(n(v2), nil)} ∪ Iv1
∪ Iv2

, {(n(v1), trans)} ∪ {(n(v2), nil)} ∪ Iv1
∪ Iv2

|

Iv1
∈ Ih(v1), Iv2

∈ Ih(v2)}
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v1 v2

Figure S3: Graph structures around the bicentroid v1, v2 ∈ VC .

and we have
f∗(G) = g(v1)g(v2) + g(v1)h(v2) + h(v1)g(v2) + 2h(v1)h(v2).

(2) If Tv1
≈
r

Tv2
holds, then

I(G) ={{(n(v1), nil)} ∪ {(n(v2), nil)} ∪ Iv1
∪ Iv2

| Iv1
∈ Ig(v1), Iv2

∈ Ig(v2), Iv1
≈
I

Iv2
}

∪ {{(n(v1), nil)} ∪ {(n(v2), nil)} ∪ Iv1
∪ Iv2

| Iv1
∈ Ig(v1), Iv2

∈ Ig(v2), Iv1
6≈
I

Iv2
}

∪ {{(n(v1), nil)} ∪ {(n(v2), nil)} ∪ Iv1
∪ Iv2

| Iv1
∈ Ig(v1), Iv2

∈ Ih(v2)}

∪ {{(n(v1), cis)} ∪ {(n(v2), nil)} ∪ Iv1
∪ Iv2

, {(n(v1), trans)} ∪ {(n(v2), nil)} ∪ Iv1
∪ Iv2

|

Iv1
∈ Ih(v1), Iv2

∈ Ih(v2), Iv1
≈
I

Iv2
}

∪ {{(n(v1), cis)} ∪ {(n(v2), nil)} ∪ Iv1
∪ Iv2

, {(n(v1), trans)} ∪ {(n(v2), nil)} ∪ Iv1
∪ Iv2

|

Iv1
∈ Ih(v1), Iv2

∈ Ih(v2), Iv1
6≈
I

Iv2
}

and we have

f∗(G) = g(v1) +

(

g(v1)

2

)

+ g(v1)h(v1) + 2

{

h(v1) +

(

h(v1)

2

)}

.

(ii) The case other than case (i): Then

I(G) ={{(n(v1), nil)} ∪ {(n(v2), nil)} ∪ Iv1
∪ Iv2

| Iv1
∈ I(v1), Iv2

∈ I(v2), Iv1
≈
I

Iv2
}

{{(n(v1), nil)} ∪ {(n(v2), nil)} ∪ Iv1
∪ Iv2

| Iv1
∈ I(v1), Iv2

∈ I(v2), Iv1
6≈
I

Iv2
}

and we consider the following two subcases.
(1) If Tv1

6≈
r

Tv2
holds, then we have

f∗(G) = f(v1)f(v2).

(2) If Tv1
≈
r

Tv2
holds, then we have

f∗(G) = f(v1) +

(

f(v1)

2

)

.

S3 Design of bijections

First, we consider how to design bijections in Definition 11.
The case of p = 1 is trivial. We set D(k; M1) := k.
When p = 2, we number all pairs of two integers as in Table 1. Using the table, we compute

a ≥ 0 and b ∈ {1, 2, . . . , M2} such that k = aM2 + b, and set D(k; M1, M2) := [a + 1, b].
By extending the case of p = 2, we get the following theorem.
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Table 1: Lexicographical numbering.

k 1 2 · · · M2 M1M2

k1 1 1 · · · 1 2 2 · · · 2 · · · M1

k2 1 2 · · · M2 1 2 · · · M2 · · · M2

Theorem S1. For any positive integers p ≥ 1 and Mi (i = 1, 2, . . . , p), there exists a bijection

D(; M1, M2, . . . , Mp) such that we can compute D(k; M1, M2, . . . , Mp) in O(p) time and space for

any integer k ∈ {1, 2, . . . , M1M2 · · ·Mp}.

Proof. We design an algorithm to compute D(k; M1, M2, . . . , Mp) as follows. Clearly, it works in
O(p) time and space.

k′ := k;
for i = p to 1 do

Compute a ≥ 0 and b ∈ {1, 2, . . . , Mi} such that k = aMi + b;
ki := b; k′ := a + 1

end for;
Set Dp(k) := [k1, k2, . . . , kp];

Next, we consider how to design bijections in Definition 12.
The case of p = 1 is trivial. We set Cn,1(k) := k.
When p = 2, we get the following theorem.

Theorem S2. For any positive integer n ≥ 2, there exists a bijection Cn,2() such that we can

compute Cn,2(k) in O(1) time and space for any integer k ∈ {1, 2, . . . ,
(

n

2

)

}.

Proof. We design an algorithm to compute Cn,2(k) in O(1) time and space.

Case-1. n is odd: Assume that n integers are on a circle ordered clockwise. Let each pair of
distinct integers {m1, m2} with m1, m2 ∈ {1, 2, . . . , n} specify an edge of Kn. By rotating an edge
{1, i + 1}, we can get n pairs of integers whose differences are equal to i.

Let E(i) denote the set of pairs of two integers, where the difference between elements of
e ∈ E(i) equals to i, as follows.

E(i) = {[m1, m2] | m1 ∈ {1, 2, . . . , n}, m2 = max{m1 + i, m1 + i − n}}, i = 1, 2, . . . , (n − 1)/2.

Then
|E(i)| = n, i = 1, 2, . . . , (n − 1)/2.

We compute a ≥ 0 and b ∈ {1, 2, . . . , n} such that k = an + b, and set Cn,2(k) to be the b-th
element of E(a + 1). Thus we set

Cn,2(k) :=

{

[b, b + a + 1] if b + a + 1 ≤ n,
[b, b + a + 1 − n] if b + a + 1 > n.

Case-2. n is even: We treat the pairs [i, n] (i ∈ {1, 2, . . . , n− 1}) separately from the other pairs
[i, j] (i, j ∈ {1, 2, . . . , n − 1}). Then we set

Cn,2(k) :=

{

[k, n] if 1 ≤ k < n,
Cn−1,2(k − (n − 1)) if k ≥ n.

For the case of p = 3 and 4, we define the following bijection.
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Definition S3. For positive integers α, m and an integer β such that αi + β ≥ 1 (1 ≤ i ≤ m),
define the set C′

α,β,m of tuples by

C′
α,β,m := {[i, j] | i ∈ {1, 2, . . . , m}, j ∈ {1, 2, . . . , αi + β}}.

Let C′
α,β,m() denote a bijection between the set {1, 2, . . . ,

∑m

i=1 αi+β} of integers and C′
α,β,m. Let

C′
α,β,m(k) denote the tuple [i, j] ∈ C′

α,β,m corresponding to k ∈ {1, 2, . . . ,
∑m

i=1 αi + β}.

Lemma S4. For any positive integers α, m and any integer β such that αi + β ≥ 1 (1 ≤ i ≤ m),
there exists a bijection C′

α,β,m() such that we can compute C′
α,β,m(k) in O(1) time and space for

any integer k ∈ {1, 2, . . . ,
∑m

i=1 αi + β}.

Proof. We design an algorithm to compute C′
α,β,m(k) in O(1) time and space.

We define the following two sets.

S := {[i, j] | 1 ≤ i ≤ m, 1 ≤ j ≤ αi + β},

T (i) := {[i, j] | 1 ≤ j ≤ αi + β} (1 ≤ i ≤ m).

Then S is partitioned into T (i), 1 ≤ i ≤ m. The size of the set T (i)∪ T (m− i + 1), 1 ≤ i ≤ ⌊m/2⌋
is

|T (i) ∪ T (m − i + 1)| = αi + β + α(m − i + 1) + β

= (m + 1)α + 2β.

We define γ := (m + 1)α + 2β and compute a ≥ 1 and b ∈ {1, 2, . . . , γ} such that k = (a− 1)γ + b,
Let C′

α,β,m(k) be the b-th element of T (a) ∪ T (m − a + 1). Then we set

C′
α,β,m(k) :=

{

[a, b] if b ≤ αa + β,
[m − a + 1, b − (αa + β)] if b > αa + β.

When p = 3, we get the following theorem.

Theorem S5. For any positive integer n ≥ 3, there exists a bijection Cn,3() such that we can

compute Cn,3(k) in O(1) time and space for any integer k ∈ {1, 2, . . . ,
(

n
3

)

}.

Proof. Let m = ⌊n/3⌋ and r = n − 3m ∈ {0, 1, 2}.

Case-1. r ∈ {1, 2}: Assume that n integers are on a circle of length n, ordered clockwise. Then
each triplet of three integers specifies a set of triangles [a, b, c], where [a, b, c] is a triplet of the
lengths of clockwise ordered edges of triangles in the set. If we choose a and b, then c is specified
as c = n − a − b. By rotating one triangle whose vertices are {1, a + 1, a + b + 1}, we can get n
triplets of three integers, and each triplet corresponds to one triangle in the set of triangles [a, b, c].
From assumption we consider the following two patterns.

(i) a < b < c or a < c < b,

(ii) a < b = c or a = c < b.

To generate the patterns above, we generate pairs [a, b] such that a < b and c = n − a − b ≥ a.
For each a = 1, 2, . . . , ⌊n/3⌋, we set

b = a + j for j = 1, 2, . . . , n − 3a.

Now we take all the patterns into consideration. Clearly, we have ⌊n/3⌋ = m = (n − r)/3 and

∑

1≤a≤⌊n/3⌋

(n − 3a) = (n − r)(n + r − 3)/6.
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Then we have

n
∑

1≤a≤⌊n/3⌋

(n − 3a) = n(n − 1)(n − 2)/6 =

(

n

3

)

because r ∈ {1, 2}.
Let E(a, b) be the set of triplets of three integers generated by rotating a triangle in the set of

triangles [a, b, c = n − a − b]. Thus

E(a, b) = {[m1, m2, m3] |

m1 ∈ {1, 2, . . . , n}, m2 = max{m1 + a, m1 + a − n}, m3 = max{m2 + b, m2 + b − n}}

and |E(a, b)| = n hold. We compute k′ ≥ 1 and k′′ ∈ {1, 2, . . . , n} such that k = (k′ − 1)n + k′′,
and let Cn,3(k) be the k′′-th element of the k′-th set E(a, b).

To decide k′-th set E(a, b), we compute one element of the set of triplets of three integers

{[a, b = a + j, c = n − a − b] | j = 1, 2, . . . , n − 3a}, a = 1, 2, . . . , m

from given k′.
In order to convert a triplet [a, b, c] into a pair of two integers [i, j], we set a := m − i + 1.

Then the k′-th triplets of three integers [a, b = a + j, c = n − a − b] is decided by the k′-th pair
[i, j] (i = 1, 2, . . . , m, j = 1, 2, . . . , 3i + r − 3). From Lemma S4, there exists an O(1) time and
space algorithm that computes the k′-th pair [i, j]. Then we can decide the k′-th E(a, b) in O(1)
time and space.

Case-2. r = 0: We treat the triplets [i, j, n] (i, j ∈ {1, 2, . . . , n − 1}) separately from the other
triplets [i, j, k] (i, j, k ∈ {1, 2, . . . , n − 1}). Then we set

Cn,3(k) :=

{

Cn−1,2(k) ∪ {n} if 1 ≤ k ≤
(

n−1
2

)

,

Cn−1,3(k −
(

n−1
2

)

) if k > n.

When p = 4, we get the following theorem.

Theorem S6. For any positive integer n ≥ 4, there exists a bijection Cn,4() such that we can

compute Cn,4(k) in O(1) time and space for any integer k ∈ {1, 2, . . . ,
(

n

4

)

}.

Proof. Let m = ⌊n/4⌋ and r = n − 4m ∈ {0, 1, 2, 3}.

Case-1. r = 1: Assume that n integers are on a circle of length n, ordered clockwise. Then each
set of four integers specifies a set of tetragons [a, b, c, d], where [a, b, c, d] is a series of the lengths
of clockwise ordered edges of tetragons in the set. By rotating one tetragon whose vertices are
{1, a + 1, a + b + 1, a + b + c + 1}, we can get n series of four integers, and each set of four integers
corresponds to one tetragon in the set of tetragons [a, b, c, d]. We suppose that a is the shortest
edge length among a, b, c and d. If there are two or three shortest edges, then we choose the one
whose next edge is not the shortest as a. Then we have a = 1, 2, . . . , (n − 1)/4, b > a, c ≥ a and
d ≥ a. We consider patterns of tetragons according to the following two cases.

(i) c = a holds: We define the set A(a) of series of four integers for each a = 1, 2, . . . , m as follows.

A(a) := {[a, b, c, d] | b = n − a − c − d, c = a, d ∈ {a, a + 1, . . . , ⌊(n − 2a)/2⌋}}.

Then we have

|A(a)| = ⌊(n − 2a)/2⌋ − a + 1 = (n − 4a + 1)/2 = 2m + 1 − 2a, for a = 1, 2, . . . , m,

and
∑

1≤a≤m

|A(a)| =
∑

1≤a≤m

(2m + 1 − 2a) = m2.
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(a + 1, a + 1)

(a + 1, a + 2) (a + 2, a + 2)

(a + 2, a + 1)

b = a + 1,

c = a + 1,

a + 2,

a + 2,

(a + 1, n− 3a − 1)

(n − 3a− 2, a + 2)

(n − 3a− 2, a + 1) (n − 3a− 1, a + 1)

n − 3a − 1

...

· · ·

Figure S4: Size of B(a). Each pair in each block denotes (b, c). For c = a + 1, b ∈ {a + 1, a +
2, . . . , a + (n − 3a − c)(= n − 3a − 1)}, and for c = a + 2, b ∈ {a + 1, a + 2, . . . , n − 3a − 2}, and
. . . , and for c = a + (n − 4a− 1)(= n − 3a − 1), b ∈ {a + 1}.

(ii) c > a holds: We define the set B(a, c) of series of four integers for each a = 1, 2, . . . , m− 1 and
c = a + 1, a + 2, . . . , a + (n − 4a − 1) as follows.

B(a, c) := {[a, b, c, d] | b ∈ {a + 1, a + 2, . . . , a + (n − 3a − c)}, d = n − a − b − c}.

Then |B(a, c)| = n − 3a − c holds. We define the set B(a) = ∪a+1≤c≤n−3a−1B(a, c) for each
a = 1, 2, . . . , m − 1. Then all the elements of B(a) can be arranged in the upper half of a
(n − 4a− 1) × (n − 4a − 1) square, including the diagonal elements (see Fig. S4). Then we have

|B(a)| = (n − 4a − 1)(n − 4a)/2 = 2(m − a)(4m + 1 − 4a), for a = 1, 2, . . .m − 1.

and
∑

1≤a≤m−1

|B(a)| =
∑

1≤a≤m−1

2(m − a)(4m + 1 − 4a) = m(m − 1)(8m − 1)/3.

Now we take all the patterns into consideration. Clearly, m = (n − 1)/4 holds and we have

n





∑

1≤a≤m

|A(a)| +
∑

1≤a≤m−1

|B(a)|



 = n
{

m2 + m(m − 1)(8m− 1)/3
}

= nm(8m2 − 6m + 1)/3

= n(n − 1)(n − 2)(n − 3)/24 =

(

n

4

)

.

First we compute k′ ≥ 1 and k′′ ∈ {1, 2, . . . , n} such that k = (k′ − 1)n + k′′, and let Cn,4(k)
be the k′′-th element generated by rotation of the k′-th tetragon [a, b, c, d]. To compute [a, b, c, d]
from k′, we consider the following two cases.
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(i) k′ ≤ m2 =
∑

1≤a≤m |A(a)| holds: From definition, we have A(a) = {[a, b = n − a − c − d, c =
a, d = a − 1 + j] | 1 ≤ j ≤ 2m + 1 − 2a}, 1 ≤ a ≤ m. In order to convert a series [a, b, c, d] into a
pair of two integers [i, j], we set a := m − i + 1. Then A(a) is rewritten as

A(a) = {[a = m + 1 − i, b = n − a − c − d, c = a, d = a − 1 + j] | 1 ≤ j ≤ 2i − 1}, 1 ≤ i ≤ m.

Then the k′-th series of four integers [a, b, c, d] is decided by the k′-th pair [i, j] (i = 1, 2, . . . , m, j =
1, 2, . . . , 2i − 1). From Lemma S4, there exists an O(1) time algorithm that computes the k′-th
pair [i, j].

(ii) Otherwise: We set k′ := k′ − m2. From definition, we have B(a, c) = {[a, b = a + l, c =
a + h, d = n − a − b − c] | 1 ≤ l ≤ 4m + 1 − 3a − c}, 1 ≤ h ≤ 4m − 4a, 1 ≤ a ≤ m − 1. In
order to convert a series [a, b, c, d] into a triplet of three integers [i, j, l], we set i := m − a and
j := 4i − h + 1. Then B(a, c) is rewritten as

B(a, c) = {[a = m−i, b = a+l, c = a+4i−j+1, d = n−a−b−c] | 1 ≤ l ≤ j}, 1 ≤ j ≤ 4i, 1 ≤ i ≤ m−1.

Then the k′-th series of four integers [a, b, c, d] is decided by the k′-th triplet [i, j, l] (i = 1, 2, . . . , m−
1, j = 1, 2, . . . , 4i, l = 1, 2, . . . , j). In the following, we consider how to compute the k′-th triplet
[i, j, l].

We define the set of triplets of three integers

S(i) := {[i, j, l] | 1 ≤ j ≤ 4i, 1 ≤ l ≤ j}, 1 ≤ i ≤ m − 1.

and then S(i) is partitioned into the following sets, called blocks.

C(i, J, L) := {[i, j, l] | [i, j, l] ∈ S(i), j = 4(J − 1) + j′, l = 4(L − 1) + l′ (j′, l′ ∈ [1, 4])}

(1 ≤ J ≤ i, 1 ≤ L < J),

D(i, J) := {[i, j, l] | [i, j, l] ∈ S(i), j = 4(J − 1) + j′, l = 4(J − 1) + l′ (j′, l′ ∈ [1, 4])} (1 ≤ J ≤ i).

For example, S(4) is partitioned into blocks C(4, J, L) (1 ≤ J ≤ 4, 1 ≤ L < 3) and blocks
D(4, J) (1 ≤ J ≤ 4) (see Fig. S5). For any i ∈ {1, 2, . . . , m − 1}, J ∈ {1, 2, . . . , i} and L ∈
{1, 2, . . . , J − 1}, we have

|C(i, J, L)| = 16, |D(i, J)| = 10.

Then we have
∑

1≤i≤m−1

∑

1≤J<i

∑

1≤L<J

|C(i, J, L)| = 16
∑

1≤i≤m−1

∑

1≤J<i

∑

1≤L<J

1 = 8m(m − 1)(m − 2)/3.

Hence we consider the following two subcases.

(1) k′ ≤ 8m(m − 1)(m − 2)/3 holds: We compute k1 ≥ 1 and k2 ∈ {1, 2, . . . , 16} such that
k′ = 16(k1 − 1) + k2, and let [i, j, l] be the k2-th element of the k1-th block C(i, J, L). Block
C(i = I+1, J, L) which contains [i, j, l] is decided by [I, J, L] (1 ≤ I ≤ m−2, 1 ≤ J < I, 1 ≤ L < J).
From Theorem S5, there exists an O(1) time and space algorithm that computes the k1-th triplet
[I, J, L]. From Theorem S1, there exists an O(1) time and space algorithm that computes the
k2-th pair [j′, l′]. Then we can compute the k′-th triplet [i, j, l] in O(1) time and space.

(2) Otherwise: We compute k1 ≥ 1 and k2 ∈ {1, 2, . . . , 10} such that k′ − 8m(m − 1)(m − 2)/3 =
10(k1−1)+k2, and let [i, j, l] be the k2-th element of the k1-th block D(i, J). Block D(i, J) which
contains [i, j, l] is decided by [i, J ] (1 ≤ i ≤ m − 1, 1 ≤ J ≤ i). From Lemma S4, there exists an
O(1) time and space algorithm that computes the k1-th pair [i, J ]. From Lemma S4, there exists
an O(1) time and space algorithm that computes the k2-th pair [j′, l′]. Then we can compute the
k′-th triplet [i, j, l] in O(1) time and space.

Case-2. r ∈ {0, 2, 3}: We treat the series [i, j, k, n] (i, j, k ∈ {1, 2, . . . , n− 1}) separately from the
other series [i, j, k, l] (i, j, k, l ∈ {1, 2, . . . , n − 1}). Then we set

Cn,4(k) :=

{

Cn−1,3(k) ∪ {n} if 1 ≤ k ≤
(

n−1
3

)

,

Cn−1,4(k −
(

n−1
3

)

) if k >
(

n−1
3

)

.

The number of recursive calls Cn,p is at most four.
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D(4, 1)

D(4, 2)

D(4, 3)

D(4, 4)
C(4, 4, 1)C(4, 4, 2)C(4, 4, 3)

C(4, 3, 1)C(4, 3, 2)

C(4, 2, 1)

L = 1 L = 2 L = 3 L = 4

J = 1

J = 2

J = 3

J = 4

l = 1 2 3 4 · · ·

j = 1
j = 2

j = 3
j = 4

...

(a)

(4

l = 1 l = 2 l = 3 l = 4

j = 13

j = 14

j = 15

j = 16 (4, 16, 1) (4, 16, 2) (4, 16, 3) (4, 16, 4)

(4, 15, 1) (4, 15, 2) (4, 15, 3) (4, 15, 4)

(4, 14, 1) (4, 14, 2) (4, 14, 3) (4, 14, 4)

(4, 13, 1) (4, 13, 2) (4, 13, 3) (4, 13, 4)

(b)

l = 1 l = 2 l = 3 l = 4

j = 1

j = 2

j = 3

j = 4 (4, 4, 1) (4, 4, 2) (4, 4, 3) (4, 4, 4)

(4, 3, 1) (4, 3, 2) (4, 3, 3)

(4, 2, 1) (4, 2, 2)

(4, 1, 1)

(c)

Figure S5: (a) Partitioning of S(4) into C(4, J, L) (1 ≤ J ≤ 4, 1 ≤ L < 3) and D(4, J) (1 ≤ J ≤ 4).
(b) C(4, 4, 1). Each triplet in each block denotes [i, j, l]. (c) D(4, 1). Each triplet in each block
denotes [i, j, l].
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S4 Computation processes for Output phase

This section is organized as follows. Sections S4.1 and S4.2 show the computation process of
Output phase at the root and at a non-root vertex, respectively.

S4.1 Computation process at the root

When Output phase starts for generating the k-th stereoisomer of G, first it initializes l(v) := nil
for all v ∈ V . If the root of G is the unicentroid v ∈ V , then it computes l(v) and ku for each child
u of v from a given k. If the root of G is the bicentroid {v1, v2}, then it computes l(v1), l(v2), kv1

and kv2
. We consider the following two subcases.

Case-1. The root of G is the unicentroid v ∈ V : We consider the following three subcases.

(i) v ∈ VC holds: We consider the following four subcases.

(1) v has exactly four children x, y, w and z (see Fig. S2 (a)): In this case, v can be an asymmetric
carbon atom. We consider the following five subcases.
i. No two of Tx, Ty, Tw and Tz are rooted-isomorphic each other: It holds

f∗(G) = 2f(x)f(y)f(w)f(z).

We consider the following two subcases.
• k ≤ f(x)f(y)f(w)f(z) holds: We choose the k-th element of

{{(n(v), +)} ∪ Ix ∪ Iy ∪ Iw ∪ Iz | Ix ∈ I(x), Iy ∈ I(y), Iw ∈ I(w), Iz ∈ I(z)},

such that Ix is the kx-th element of I(x), Iy is the ky-th element of I(y), Iw is the kw-th element
of I(w), and Iz is the kz-th element of I(z). Then we set l(v) := + and [kx, ky, kw, kz ] :=
D(k; f(x), f(y), f(w), f(z)).

• Otherwise: We set k̂ = k − f(x)f(y)f(w)f(z) and choose the k̂-th element of

{{(n(v),−)} ∪ Ix ∪ Iy ∪ Iw ∪ Iz | Ix ∈ I(x), Iy ∈ I(y), Iw ∈ I(w), Iz ∈ I(z)}.

such that Ix is the kx-th element of I(x), Iy is the ky-th element of I(y), Iw is the kw-th element
of I(w), and Iz is the kz-th element of I(z). Then we set l(v) := − and [kx, ky, kw, kz ] :=

D(k̂; f(x), f(y), f(w), f(z)).

ii. Tx ≈
r

Ty holds and no two of Tx, Ty and Tw are rooted-isomorphic each other: It holds

f∗(G) = f(x)f(w)f(z) + 2

(

f(x)

2

)

f(w)f(z).

We consider the following three subcases.
• k ≤ f(x)f(w)f(z) holds: We choose the k-th element of

{{(n(v), nil)} ∪ Ix ∪ Iy ∪ Iw ∪ Iz | Ix ∈ I(x), Iy ∈ I(y), Iw ∈ I(w), Iz ∈ I(z), Ix ≈
I

Iy}.

Then we set [kx, kw, kz] = D(k; f(x), f(w), f(z)) and ky := kx.

• f(x)f(w)f(z) < k ≤ f(x)f(w)f(z) +
(

f(x)
2

)

f(w)f(z) holds: We set k̂ = k − f(x)f(w)f(z) and

choose the k̂-th element of

{{(n(v), +)} ∪ Ix ∪ Iy ∪ Iw ∪ Iz | Ix ∈ I(x), Iy ∈ I(y), Iw ∈ I(w), Iz ∈ I(z), Ix 6≈
I

Iy}.

Then we set l(v) := +, [k′, kw, kz] := D(k̂;
(

f(x)
2

)

, f(w), f(z)) and [kx, ky] := Cf(x),2(k
′).

• Otherwise: We set k̂ = k − f(x)f(w)f(z) −
(

f(x)
2

)

f(w)f(z) and choose k̂-th element of

{{(n(v),−)} ∪ Ix ∪ Iy ∪ Iw ∪ Iz | Ix ∈ I(x), Iy ∈ I(y), Iw ∈ I(w), Iz ∈ I(z), Ix 6≈
I

Iy}.
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Then we set l(v) := − and set [kx, ky, kw, kz ] similarly to the case where f(x)f(w)f(z) < k ≤

f(x)f(w)f(z) +
(

f(x)
2

)

f(w)f(z) holds.

iii. Tx ≈
r

Ty, Tw ≈
r

Tz and Tx 6≈
r

Tw hold: It holds

f∗(G) =

{

f(x)f(w) + f(x)

(

f(w)

2

)

+

(

f(x)

2

)

f(w)

}

+ 2

(

f(x)

2

)(

f(w)

2

)

.

We consider the following five subcases.
• k ≤ f(x)f(w) holds: We choose the k-th element of

{{(n(v), nil)} ∪ Ix ∪ Iy ∪ Iw ∪ Iz | Ix ∈ I(x), Iy ∈ I(y), Iw ∈ I(w), Iz ∈ I(z), Ix ≈
I

Iy, Iw ≈
I

Iz}.

Then we set [kx, kw] := D(k; f(x), f(w)), ky := kx and kz := kw.

• f(x)f(w) < k ≤ f(x)f(w) + f(x)
(

f(w)
2

)

holds: We set k̂ = k − f(x)f(w) and choose the k̂-th
element of

{{(n(v), nil)} ∪ Ix ∪ Iy ∪ Iw ∪ Iz | Ix ∈ I(x), Iy ∈ I(y), Iw ∈ I(w), Iz ∈ I(z), Ix ≈
I

Iy, Iw 6≈
I

Iz}.

Then we set [kx, k′] := D(k̂; f(x),
(

f(w)
2

)

), ky := kx and [kw, kz] := Cf(w),2(k
′).

• f(x)f(w) + f(x)
(

f(w)
2

)

< k ≤ f(x)f(w) + f(x)
(

f(w)
2

)

+
(

f(x)
2

)

f(w) holds: We set k̂ = k −

f(x)f(w) − f(x)
(

f(w)
2

)

and choose the k̂-th element of

{{(n(v), nil)} ∪ Ix ∪ Iy ∪ Iw ∪ Iz | Ix ∈ I(x), Iy ∈ I(y), Iw ∈ I(w), Iz ∈ I(z), Ix 6≈
I

Iy, Iw ≈
I

Iz}.

Then we set [k′, kw] := D(k̂;
(

f(x)
2

)

, f(w)), [kx, ky] := Cf(x),2(k
′) and kz := kw.

• f(x)f(w) + f(x)
(

f(w)
2

)

+
(

f(x)
2

)

f(w) < k ≤ f(x)f(w) + f(x)
(

f(w)
2

)

+
(

f(x)
2

)

f(w) +
(

f(x)
2

)(

f(w)
2

)

holds: We set k̂ = k − f(x)f(w) − f(x)
(

f(w)
2

)

−
(

f(x)
2

)

f(w) and choose the k̂-th element of

{{(n(v), +)} ∪ Ix ∪ Iy ∪ Iw ∪ Iz | Ix ∈ I(x), Iy ∈ I(y), Iw ∈ I(w), Iz ∈ I(z), Ix 6≈
I

Iy , Iw 6≈
I

Iz}.

Then we set l(v) := +, [k′, k′′] := D(k̂;
(

f(x)
2

)

,
(

f(w)
2

)

), [kx, ky] := Cf(x),2(k
′) and [kw, kz ] :=

Cf(w),2(k
′′).

• Otherwise: We set k̂ = k − f(x)f(w) − f(x)
(

f(w)
2

)

−
(

f(x)
2

)

f(w) −
(

f(x)
2

)(

f(w)
2

)

and choose the

k̂-th element of

{{(n(v),−)} ∪ Ix ∪ Iy ∪ Iw ∪ Iz | Ix ∈ I(x), Iy ∈ I(y), Iw ∈ I(w), Iz ∈ I(z), Ix 6≈
I

Iy , Iw 6≈
I

Iz}.

Then we set l(v) = − and set [kx, ky, kw, kz] similarly to the case where f(x)f(w) + f(x)
(

f(w)
2

)

+
(

f(x)
2

)

f(w) < k ≤ f(x)f(w) + f(x)
(

f(w)
2

)

+
(

f(x)
2

)

f(w) +
(

f(x)
2

)(

f(w)
2

)

holds.

iv. Tx ≈
r

Ty ≈
r

Tw and Tx 6≈
r

Tz hold: It holds

f∗(G) = f(x)2f(z) + 2

(

f(x)

3

)

f(z).

We consider the following three subcases.
• k ≤ f(x)2f(z) holds: We choose the k-th element of

{{(n(v), nil)} ∪ Ix ∪ Iy ∪ Iw ∪ Iz | Ix ∈ I(x), Iy ∈ I(y), Iw ∈ I(w), Iz ∈ I(z), Ix ≈
I

Iy}.

Then we set [kx, kw, kz] := D(k; f(x), f(x), f(z)) and ky := kx.
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• f(x)2f(z) < k ≤ f(x)2f(z)+
(

f(x)
3

)

f(z) holds: We set k̂ = k−f(x)2 and choose the k̂-th element
of

{{(n(v), +)} ∪ Ix ∪ Iy ∪ Iw ∪ Iz | Ix ∈ I(x), Iy ∈ I(y), Iw ∈ I(w), Iz ∈ I(z), Ix 6≈
I

Iy 6≈
I

Iw 6≈
I

Ix}.

Then we set l(v) := + and [k′, kz ] = D(k̂;
(

f(x)
3

)

, f(z)) and [kx, ky, kw] := Cf(x),3(k
′).

• Otherwise: We set k̂ = k − f(x)2 and choose the k̂-th element of

{{(n(v),−)} ∪ Ix ∪ Iy ∪ Iw ∪ Iz | Ix ∈ I(x), Iy ∈ I(y), Iw ∈ I(w), Iz ∈ I(z), Ix 6≈
I

Iy 6≈
I

Iw 6≈
I

Ix}.

Then we set l(v) := − and set [kx, ky, kw, kz] similarly to the case where f(x)2f(z) < k ≤

f(x)2f(z) +
(

f(x)
3

)

f(z) holds.

v. Tx ≈
r

Ty ≈
r

Tw ≈
r

Tz holds: It holds

f∗(G) =

{

f(x)2 +

(

f(x)

2

)

+ f(x)

(

f(x) − 1

2

)}

+ 2

(

f(x)

4

)

.

We consider the following five subcases.
• k ≤ f(x)2 holds: We choose the k-th element of

{{(n(v), nil)} ∪ Ix ∪ Iy ∪ Iw ∪ Iz | Ix ∈ I(x), Iy ∈ I(y), Iw ∈ I(w), Iz ∈ I(z), Ix ≈
I

Iy ≈
I

Iw}.

Then we set [kx, kz] := D(k; f(x), f(z)), ky := kx and kw := kx.

• f(x)2 < k ≤ f(x)2 +
(

f(x)
2

)

holds: We set k̂ = k − f(x)2 and choose the k̂-th element of

{{(n(v), nil)} ∪ Ix ∪ Iy ∪ Iw ∪ Iz | Ix ∈ I(x), Iy ∈ I(y), Iw ∈ I(w), Iz ∈ I(z), Ix ≈
I

Iy 6≈
I

Iw ≈
I

Iz}.

Then we set [kx, kw] := Cf(x),2(k̂), ky := kx and kz := kw.

• f(x)2 +
(

f(x)
2

)

< k ≤ f(x)2 +
(

f(x)
2

)

+ f(x)
(

f(x)−1
2

)

holds: We set k̂ = k − f(x)2 −
(

f(x)
2

)

and

choose the k̂-th element of

{{(n(v), nil)}∪Ix∪Iy∪Iw∪Iz | Ix ∈ I(x), Iy ∈ I(y), Iw ∈ I(w), Iz ∈ I(z), Ix ≈
I

Iy 6≈
I

Iw 6≈
I

Iz 6≈
I

Ix}.

Then we compute p and q such that k = 3p + q (p ≥ 0, q ∈ {1, 2, 3}), and set [k1, k2, k3] :=
Cf(x),2(p + 1) and

[kx, ky, kw, kz] :=







[k1, k1, k2, k3] if q = 1,
[k2, k2, k3, k1] if q = 2,
[k3, k3, k1, k2] if q = 3.

• f(x)2 +
(

f(x)
2

)

+ f(x)
(

f(x)−1
2

)

< k ≤ f(x)2 +
(

f(x)
2

)

+ f(x)
(

f(x)−1
2

)

+
(

f(x)
4

)

holds: We set

k̂ = k − f(x)2 −
(

f(x)
2

)

− f(x)
(

f(x)−1
2

)

and choose the k̂-th element of

{{(n(v), +)} ∪ Ix ∪ Iy ∪ Iw ∪ Iz | Ix ∈ I(x), Iy ∈ I(y), Iw ∈ I(w), Iz ∈ I(z),

No two of Ix, Iy, Iw and Iz are rooted-stereoisomorphic}.

Then we set l(v) := + and [kx, ky, kw, kz ] := Cf(x),4(k̂).

• Otherwise: We set k̂ = k− f(x)2 −
(

f(x)
2

)

− f(x)
(

f(x)−1
2

)

−
(

f(x)
4

)

and choose the k̂-th element of

{{(n(v),−)} ∪ Ix ∪ Iy ∪ Iw ∪ Iz | Ix ∈ I(x), Iy ∈ I(y), Iw ∈ I(w), Iz ∈ I(z),

No two of Ix, Iy, Iw and Iz are rooted-stereoisomorphic}.
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Then we set l(v) := − and [kx, ky, kw, kz ] := Cf(x),4(k̂).

(2) v is joined to a child u by a double bond and children x and y by single bonds (see Fig. S2
(b)): We consider the following two subcases.
i. Tx 6≈

r
Ty holds: It holds

f∗(G) = g(u)f(x)f(y) + 2h(u)f(x)f(y).

We consider the following three subcases.
• k ≤ g(u)f(x)f(y) holds: We choose the k-th element of

{{(n(v), nil)} ∪ Iu ∪ Ix ∪ Iy | Iu ∈ Ig(u), Ix ∈ I(x), Iy ∈ I(y)}.

Then we set [ku, kx, ky] := D(k; g(u), f(x), f(y)).

• g(u)f(x)f(y) < k ≤ g(u)f(x)f(y) + h(u)f(x)f(y) holds: We set k̂ = k − g(u)f(x)f(y) and

choose the k̂-th element of

{{(n(v), cis)} ∪ Iu ∪ Ix ∪ Iy | Iu ∈ Ih(u), Ix ∈ I(x), Iy ∈ I(y)}.

Then we set l(v) := cis , [k′, kx, ky] := D(k̂; h(u), f(x), f(y)) and ku := g(u) + k′.

• Otherwise: We set k̂ = k − g(u)f(x)f(y) − h(u)f(x)f(y) and choose the k̂-th element of

{{(n(v), trans)} ∪ Iu ∪ Ix ∪ Iy | Iu ∈ Ih(u), Ix ∈ I(x), Iy ∈ I(y)}.

Then we set l(v) := trans and set [ku, kx, ky] similarly to the case where g(u)f(x)f(y) < k ≤
g(u)f(x)f(y) + h(u)f(x)f(y) holds.

ii. Tx ≈
r

Ty holds: It holds

f∗(G) =

{

g(u)f(x) + h(u)f(x) + g(u)

(

f(x)

2

)}

+ 2h(u)

(

f(x)

2

)

.

We consider the following five subcases.
• k ≤ f(x)g(u) holds: We choose the k-th element of

{{(n(v), nil)} ∪ Iu ∪ Ix ∪ Iy | Iu ∈ Ig(u), Ix ∈ I(x), Iy ∈ I(y), Ix ≈
I

Iy}.

Then we set [ku, kx] := D(k; g(u), f(x)) and ky := kx.

• f(x)g(u) < k ≤ f(x)g(u)+f(x)h(u) holds: We set k̂ = k−f(x)g(u) and choose the k̂-th element
of

{{(n(v), nil)} ∪ Iu ∪ Ix ∪ Iy | Iu ∈ Ih(u), Ix ∈ I(x), Iy ∈ I(y), Ix ≈
I

Iy}.

Then we set [k′, kx] := D(k̂; h(u), f(x)), ku := g(u) + k′ and ky := kx.

• f(x)g(u) + f(x)h(u) < k ≤ f(x)g(u) + f(x)h(u) + g(u)
(

f(x)
2

)

holds: We set k̂ = k − f(x)g(u) −

f(x)h(u) and choose the k̂-th element of

{{(n(v), nil)} ∪ Iu ∪ Ix ∪ Iy | Iu ∈ Ig(u), Ix ∈ I(x), Iy ∈ I(y), Ix 6≈
I

Iy}.

Then we set [ku, k′] := D(k̂; g(u),
(

f(x)
2

)

) and [kx, ky] := Cf(x),2(k
′).

• f(x)g(u)+ f(x)h(u)+ g(u)
(

f(x)
2

)

< k ≤ f(x)g(u)+ f(x)h(u)+ g(u)
(

f(x)
2

)

+h(u)
(

f(x)
2

)

holds: We

set k̂ = k − f(x)g(u) − f(x)h(u) − g(u)
(

f(x)
2

)

and choose the k̂-th element of

{{(n(v), cis)} ∪ Iu ∪ Ix ∪ Iy | Iu ∈ Ih(u), Ix ∈ I(x), Iy ∈ I(y), Ix 6≈
I

Iy}.

Then we set l(v) := cis , [k′, k′′] := D2(k̂; h(u),
(

f(x)
2

)

), ku := g(u) + k′ and [kx, ky] := Cf(x),2(k
′′).
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• Otherwise: We set k̂ = k − f(x)g(u) − f(x)h(u) − g(u)
(

f(x)
2

)

− h(u)
(

f(x)
2

)

and choose the k̂-th
element of

{{(n(v), trans)} ∪ Iu ∪ Ix ∪ Iy | Iu ∈ Ih(u), Ix ∈ I(x), Iy ∈ I(y), Ix 6≈
I

Iy}.

Then we set l(v) := trans and set [ku, kx, ky] similarly to the case where f(x)g(u) + f(x)h(u) +

g(u)
(

f(x)
2

)

< k ≤ f(x)g(u) + f(x)h(u) + g(u)
(

f(x)
2

)

+ h(u)
(

f(x)
2

)

holds.

(3) v is joined to a child x by a triple bond and children y by a single bond (see Fig. S2 (c)): It
holds

f∗(G) = f(x)f(y).

We output the k-th element of

{{(n(v), nil)} ∪ Ix ∪ Iy | Ix ∈ I(x), Iy ∈ I(y)}.

Then we set [kx, ky] := D(k; f(x), f(y)).

(4) v is joined to a child x and y by double bonds (see Fig. S2 (d)): We consider the following
two subcases.
i. Tx 6≈

r
Ty holds: It holds

f∗(G) = g(x)g(y) + g(x)h(y) + h(x)g(y) + 2h(x)h(y).

We consider the following five subcases.
• k ≤ g(x)g(y) holds: We choose the k-th element of

{{(n(v), nil)} ∪ Ix ∪ Iy | Ix ∈ Ig(x), Iy ∈ Ig(y)}.

Then we set [kx, ky] := D(k; g(x), g(y)).

• g(x)g(y) < k ≤ g(x)g(y)+ g(x)h(y) holds: We set k̂ = k− g(x)g(y) and choose the k̂-th element
of

{{(n(v), nil)} ∪ Ix ∪ Iy | Ix ∈ Ig(x), Iy ∈ Ih(y)}.

Then we set [kx, k′] := D(k̂; g(x), h(y)) and ky := g(y) + k′.

• g(x)g(y) + g(x)h(y) < k ≤ g(x)g(y) + g(x)h(y) + h(x)g(y) holds: We set k̂ = k − g(x)g(y) −

g(x)h(y) and choose the k̂-th element of

{{(n(v), nil)} ∪ Ix ∪ Iy | Ix ∈ Ih(x), Iy ∈ Ig(y)}.

Then we set [k′, ky] := D(k̂; h(x), g(y)) and kx := g(x) + k′.
• g(x)g(y) + g(x)h(y) + h(x)g(y) < k ≤ g(x)g(y) + g(x)h(y) + h(x)g(y) + h(x)h(y) holds: We set

k̂ = k − g(x)g(y) − g(x)h(y) − h(x)g(y) and choose the k̂-th element of

{{(n(v), cis)} ∪ Ix ∪ Iy | Ix ∈ Ih(x), Iy ∈ Ih(y)}.

Then we set l(v) := cis , [k′, k′′] := D(k̂; h(x), h(y)), kx := g(x) + k′ and ky := g(y) + k′′.

• Otherwise: We set k̂ = k−g(x)g(y)−g(x)h(y)−h(x)g(y)−h(x)h(y) and choose the k̂-th element
of

{{(n(v), trans)} ∪ Ix ∪ Iy | Ix ∈ Ih(x), Iy ∈ Ih(y)}.

Then we set l(v) := trans and set [kx, ky] similarly to the case where g(x)g(y) + g(x)h(y) +
h(x)g(y) < k ≤ g(x)g(y) + g(x)h(y) + h(x)g(y) + h(x)h(y) holds.

ii. Tx ≈
r

Ty holds: It holds

f∗(G) = g(x) +

(

g(x)

2

)

+ g(x)h(x) + 2

{

h(x) +

(

h(x)

2

)}

.
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We consider the following seven subcases.
• k ≤ g(x) holds: We choose the k-th element of

{{(n(v), nil)} ∪ Ix ∪ Iy | Ix ∈ Ig(x), Iy ∈ Ig(y), Ix ≈
I

Iy}.

Then we set kx := k and ky := k.

• g(x) < k ≤ g(x) +
(

g(x)
2

)

holds: We set k̂ = k − g(x) and choose the k̂-th element of

{{(n(v), nil)} ∪ Ix ∪ Iy | Ix ∈ Ig(x), Iy ∈ Ig(y), Ix 6≈
I

Iy}.

Then we set [kx, ky] := Cg(x),2(k̂).

• g(x) +
(

g(x)
2

)

< k ≤ g(x) +
(

g(x)
2

)

+ g(x)h(x) holds: We set k̂ = k − g(x) −
(

g(x)
2

)

and choose the

k̂-th element of
{{(n(v), nil)} ∪ Ix ∪ Iy | Ix ∈ Ig(x), Iy ∈ Ih(y)}.

Then we set [kx, k′] := D(k̂; g(x), h(x)) and ky := g(x) + k′.

• g(x) +
(

g(x)
2

)

+ g(x)h(x) < k ≤ g(x) +
(

g(x)
2

)

+ g(x)h(x) + h(x) holds: We set k̂ = k − g(x) −
(

g(x)
2

)

− g(x)h(x) and choose the k̂-th element of

{{(n(v), cis)} ∪ Ix ∪ Iy | Ix ∈ Ih(x), Iy ∈ Ih(y), Ix ≈
I

Iy}.

Then we set l(v) := cis , kx := g(x) + k̂ and ky := g(x) + k̂.

• g(x) +
(

g(x)
2

)

+ g(x)h(x) + h(x) < k ≤ g(x) +
(

g(x)
2

)

+ g(x)h(x) + 2h(x) holds: We set k̂ =

k − g(x) −
(

g(x)
2

)

− g(x)h(x) − h(x) and choose the k̂-th element of

{{(n(v), trans)} ∪ Ix ∪ Iy | Ix ∈ Ih(x), Iy ∈ Ih(y), Ix ≈
I

Iy}.

Then we set l(v) := trans, kx := g(x) + k̂ and ky := g(x) + k̂.

• g(x) +
(

g(x)
2

)

+ g(x)h(x) + 2h(x) < k ≤ g(x) +
(

g(x)
2

)

+ g(x)h(x) + 2h(x) +
(

h(x)
2

)

holds: We set

k̂ = k − g(x) −
(

g(x)
2

)

− g(x)h(x) − 2h(x) and choose the k̂-th element of

{{(n(v), cis)} ∪ Ix ∪ Iy | Ix ∈ Ih(x), Iy ∈ Ih(y), Ix 6≈
I

Iy}.

Then we set l(v) := cis , [k′, k′′] := Ch(x),2(k̂), kx := g(x) + k′ and ky := g(x) + k′′.

• Otherwise: We set k̂ = k− g(x)−
(

g(x)
2

)

− g(x)h(x)− 2h(x)−
(

h(x)
2

)

and choose the k̂-th element
of

{{(n(v), trans)} ∪ Ix ∪ Iy | Ix ∈ Ih(x), Iy ∈ Ih(y), Ix 6≈
I

Iy}.

Then we set l(v) := trans and set [kx, ky] similarly to the case where g(x) +
(

g(x)
2

)

+ g(x)h(x) +

2h(x) < k ≤ g(x) +
(

g(x)
2

)

+ g(x)h(x) + 2h(x) +
(

h(x)
2

)

holds.

(ii) v ∈ VN holds: We consider the following two subcases.

(1) v has exactly three children x, y and w: We consider the following three subcases.

i. No two of Tx, Ty and Tw are rooted-isomorphic each other: It holds

f∗(G) = f(x)f(y)f(w).

We choose the k-th element of

{{(n(v), nil)} ∪ Ix ∪ Iy ∪ Iw | Ix ∈ I(x), Iy ∈ I(y), Iw ∈ I(w)}.

Then we set [kx, ky, kw] := D(k; f(x), f(y), f(w)).
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ii. Tx ≈
r

Ty and Tx 6≈
r

Tw hold: It holds

f∗(G) = f(x)f(w) +

(

f(x)

2

)

f(w).

We consider the following two subcases.
• k ≤ f(x)f(w) holds: We choose the k-th element of

{{(n(v), nil)} ∪ Ix ∪ Iy ∪ Iw | Ix ∈ I(x), Iy ∈ I(y), Iw ∈ I(w), Ix ≈
I

Iy}.

Then we set[kx, kw] := D(k; f(x)f(w)) and ky := kx.

• Otherwise: We set k̂ = k − f(x)f(w) and choose the k̂-th element of

{{(n(v), nil)} ∪ Ix ∪ Iy ∪ Iw | Ix ∈ I(x), Iy ∈ I(y), Iw ∈ I(w), Ix 6≈
I

Iy}.

Then we set[k′, kw] := D(k̂;
(

f(x)
2

)

, f(w)) and [kx, ky] := Cf(x),2(k
′).

iii. Tx ≈
r

Ty ≈
r

Tw holds: It holds

f∗(G) = f(x)2 +

(

f(x)

3

)

.

We consider the following two subcases.
• k ≤ f(x)2 holds: We choose the k-th element of

{{(n(v), nil)} ∪ Ix ∪ Iy ∪ Iw | Ix ∈ I(x), Iy ∈ I(y), Iw ∈ I(w), Ix ≈
I

Iy}.

Then we set[kx, kw] := D(k; f(x), f(w)) and ky := kx.

• Otherwise: We set k̂ = k − f(x)f(w) and choose the k̂-th element of

{{(n(v), nil)} ∪ Ix ∪ Iy ∪ Iw | Ix ∈ I(x), Iy ∈ I(y), Iw ∈ I(w), Ix 6≈
I

Iy 6≈
I

Iw 6≈
I

Ix}.

Then we set[kx, ky, kw] := Cf(x),3(k̂).

(2) v is joined to a child x by a double bond and a child y by a single bond: It holds

f∗(G) = f(x)f(y).

We choose the k-th element of

{{(n(v), nil)} ∪ Ix ∪ Iy | Ix ∈ I(x), Iy ∈ I(y)}.

Then we set [kx, ky] := D(k; f(x), f(y)).

(iii) v ∈ VO holds: We consider the following two subcases.

(1) Tx 6≈
r

Ty holds: It holds

f∗(G) = f(x)f(y).

We choose the k-th element of

{{(n(v), nil)} ∪ Ix ∪ Iy | Ix ∈ I(x), Iy ∈ I(y)}.

Then we set [kx, ky] := D(k; f(x), f(y)).

(2) Tx ≈
r

Ty holds: It holds

f∗(G) = f(x) +

(

f(x)

2

)

.
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We consider the following two subcases.
• k ≤ f(x) holds: We choose the k-th element of

{{(n(v), nil)} ∪ Ix ∪ Iy | Ix ∈ I(x), Iy ∈ I(y), Ix ≈
I

Iy}.

Then we set kx := k and ky := k.

• Otherwise: We set k̂ = k − f(x) and choose the k̂-th element of

{{(n(v), nil)} ∪ Ix ∪ Iy | Ix ∈ I(x), Iy ∈ I(y), Ix 6≈
I

Iy}.

Then we set [kx, ky] := Cf(x),2(k̂).

Case-2. The root of G is the bicentroid v1, v2 ∈ V : We assume without loss of generality that
n(v1) < n(v2) holds. We consider the following two subcases.

(i) v1, v2 ∈ VC holds, and v1 and v2 are joined by a double bond (see Fig. S3): We set l(v1), kv1

and kv2
similarly to the Case-1.(i)(4), by interpreting {x, y} as {v1, v2} and l(v) as l(v1).

(ii) The case other than case (i): We set kv1
and kv2

similarly to the Case-1.(iii), by interpreting
{x, y} as {kv1

, kv2
}.

S4.2 Computation process at a non-root vertex v

When Output phase processes a non-root vertex v, it computes l(v) and ku for each child u of v
from a given k.

We consider the following five cases.

Case-1. v ∈ V is a leaf: It holds
f(v) = 1

and we set l(v) := nil.

Case-2. v ∈ VC and v has three children. Let x, y and w be the three children of v (see Fig. S1
(a)): We consider the following three subcases.

(i) No two of Tx, Ty and Tw are rooted-isomorphic each other: It holds

f(v) = 2f(x)f(y)f(w).

We consider the following two subcases.
• k ≤ f(x)f(y)f(w) holds: We choose the k-th element of

{{(n(v), +)} ∪ Ix ∪ Iy ∪ Iw | Ix ∈ I(x), Iy ∈ I(y), Iw ∈ I(w)},

such that Ix is the kx-th element of I(x), Iy is the ky-th element of I(y), and Iw is the kw-th
element of I(w). Then we set l(v) := + and [kx, ky, kw] := D(k; f(x), f(y), f(w)).

• k > f(x)f(y)f(w) holds: We set k̂ = k − f(x)f(y)f(w) and choose the k̂-th element of

{{(n(v),−)} ∪ Ix ∪ Iy ∪ Iw | Ix ∈ I(x), Iy ∈ I(y), Iw ∈ I(w)},

such that Ix is the kx-th element of I(x), Iy is the ky-th element of I(y), and Iw is the kw-th

element of I(w). Then we set l(v) := − and [kx, ky, kw] := D(k̂; f(x), f(y), f(w)).

(ii) Tx ≈
r

Ty and Tx 6≈
r

Tw hold: It holds

f(v) = f(x)f(w) + 2

(

f(x)

2

)

f(w).

We consider the following three subcases.
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• k ≤ f(x)f(w) holds: We choose the k-th element of

{{(n(v), nil)} ∪ Ix ∪ Iy ∪ Iw | Ix ∈ I(x), Iy ∈ I(y), Iw ∈ I(w), Ix ≈
I

Iy}.

Then we set [kx, kw] := D(k; f(x), f(w)) and ky := kx.

• f(x)f(w) < k ≤ f(x)f(w) +
(

f(x)
2

)

f(w) holds: We set k̂ = k − f(x)f(w) and choose the k̂-th
element of

{{(n(v), +)} ∪ Ix ∪ Iy ∪ Iw | Ix ∈ I(x), Iy ∈ I(y), Iw ∈ I(w), Ix 6≈
I

Iy}.

Then we set l(v) := + and [k′, kw] := D(k̂;
(

f(x)
2

)

, f(w)), [kx, ky] := Cf(x),2(k
′).

• Otherwise: We set k̂ = k − f(x)f(w) −
(

f(x)
2

)

f(w) and choose the k̂-th element of

{{(n(v),−)} ∪ Ix ∪ Iy ∪ Iw | Ix ∈ I(x), Iy ∈ I(y), Iw ∈ I(w), Ix 6≈
I

Iy}.

Then we set l(v) := − and set [kx, ky, kw] similarly to the case where f(x)f(w) < k ≤ f(x)f(w)+
(

f(x)
2

)

f(w) holds.

(iii) Tx ≈
r

Ty ≈
r

Tw holds: It holds

f(v) = f(x)2 + 2

(

f(x)

3

)

.

We consider the following three subcases.
• k ≤ f(x)2 holds: We choose the k-th element of

{{(n(v), nil)} ∪ Ix ∪ Iy ∪ Iw | Ix ∈ I(x), Iy ∈ I(y), Iw ∈ I(w), Ix ≈
I

Iy}.

Then we set [kx, kw] := D(k; f(x), f(w)) and ky := kx.

• f(x)2 < k ≤ f(x)2 +
(

f(x)
3

)

holds: We set k̂ = k − f(x)2 and choose the k̂-th element of

{{(n(v), +)} ∪ Ix ∪ Iy ∪ Iw | Ix ∈ I(x), Iy ∈ I(y), Iw ∈ I(w), Ix 6≈
I

Iy 6≈
I

Iw 6≈
I

Ix}.

Then we set l(v) := + and [kx, ky, kw] := Cf(x),3(k̂).

• Otherwise: We set k̂ = k − f(x)2 −
(

f(x)
3

)

and choose the k̂-th element of

{{(n(v),−)} ∪ Ix ∪ Iy ∪ Iw | Ix ∈ I(x), Iy ∈ I(y), Iw ∈ I(w), Ix 6≈
I

Iy 6≈
I

Iw 6≈
I

Ix}.

Then we set l(v) := − and [kx, ky, kw] := Cf(x),3(k̂).

Case-3. v ∈ VC and v is joined to two subtrees by single bonds and is joined to one subtree by a
double bond: We consider the following two subcases.

(i) v is joined to its parent by a double bond (see Fig. S1 (b)): We consider the following two
subcases.

(1) If Tx 6≈
r

Ty holds, then

f(v) = f(x)f(y)

holds. We choose the k-th element of

{{(n(v), nil)} ∪ Ix ∪ Iy | Ix ∈ I(x), Iy ∈ I(y)}.

Then we set [kx, ky] := D(k; f(x), f(y)).
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(2) If Tx ≈
r

Ty holds, then

f(v) = f(x) +

(

f(x)

2

)

holds. We consider the following two subcases.
• k ≤ f(x) holds: We choose the k-th element of

{{(n(v), nil)} ∪ Ix ∪ Iy | Ix ∈ I(x), Iy ∈ I(y), Ix ≈
I

Iy}.

Then we set kx := k and ky := k.

• Otherwise: We set k̂ = k − f(x) and choose the k̂-th element of

{{(n(v), nil)} ∪ Ix ∪ Iy | Ix ∈ I(x), Iy ∈ I(y), Ix 6≈
I

Iy}.

Then we set [kx, ky] := Cf(x),2(k̂).

(ii) v is joined to a child x of v by a double bond (see Fig. S1 (c)):

f(v) = g(x)f(y) + 2h(x)f(y)

holds and we consider the following three subcases.
• k ≤ g(x)f(y) holds: We choose the k-th element of

{{(n(v), nil)} ∪ Ix ∪ Iy | Ix ∈ Ig(x), Iy ∈ I(y)}.

Then we set [kx, ky] := D(k; g(x), f(y)).

• g(x)f(y) < k ≤ g(x)f(y)+h(x)f(y) holds: We set k̂ = k−g(x)f(y) and choose the k̂-th element
of

{{(n(v), cis)} ∪ Ix ∪ Iy | Ix ∈ Ih(x), Iy ∈ I(y)}.

Then we set l(v) := cis and [kx, ky] := D(k̂; h(x), f(y)).

• Otherwise: We set k̂ = k − g(x)f(y) − h(x)f(y) and choose the k̂-th element of

{{(n(v), trans)} ∪ Ix ∪ Iy | Ix ∈ Ih(x), Iy ∈ I(y)}.

Then we set l(v) := trans and [kx, ky] := D(k̂; h(x), f(y)).

Case-4. v ∈ VC and v is joined to its parent by a double bond and its child y by a double bond
(see Fig. S1 (d)): It holds

f(v) = f(y).

We choose the k-th element of

{{(n(v), nil)} ∪ Iy | I ∈ I(y)}.

Then and we set ky := k.

Case-5. The case other than Cases-1,2,3 and 4: We consider the following two subcases.

(i) v ∈ V has exactly one child x: It holds

f(v) = f(x).

We choose the k-th element of

{{(n(v), nil)} ∪ Ix | I ∈ I(x)}.

Then we set kx := k.

(ii) v ∈ V − VC has exactly two children x and y: We consider the following two subcases.
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(1) Tx 6≈
r

Ty holds; It holds

f(v) = f(x)f(y).

We choose the k-th element of

{{(n(v), nil)} ∪ Ix ∪ Iy | Ix ∈ I(x), Iy ∈ I(y)}.

Then we set [kx, ky] := D(k; f(x), f(y)).

(2) Tx ≈
r

Ty holds; It holds

f(v) = f(x) +

(

f(x)

2

)

.

We consider the following two subcases.
• k ≤ f(x) holds: We choose the k-th element of

{{(n(v), nil)} ∪ Ix ∪ Iy | Ix ∈ I(x), Iy ∈ I(y), Ix ≈
I

Iy}.

Then we set kx := k and ky := k.

• otherwise: We set k̂ = k − f(x) and choose the k̂-th element of

{{(n(v), nil)} ∪ Ix ∪ Iy | Ix ∈ I(x), Iy ∈ I(y), Ix 6≈
I

Iy}.

Then we set [kx, ky] := Cf(x),2(k̂).
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