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Abstract This paper reviews recent progress on plasma control studies to improve plasma 

performance in Heliotron J. The SMBI fueling is successfully applied to Heliotron J plasma. A 

supersonic H2-beam is effective to increase fueling efficiency and make a peaked density profile. 

Local fueling with a short pulse by SMBI can increase the core plasma density avoiding the 

degradation due to the edge cooling. Second harmonic ECCD experiments have been performed 

by injecting a focused Gaussian beam with a parallel refractive index of -0.05  N||  0.6. The 

experimental results show that the electron cyclotron (EC) driven current is determined not only 

by N|| but also by local magnetic field (B) structure where the EC power is deposited. The detailed 

analysis of the observed N|| and B dependences is in progress with a ray-tracing simulation using 

TRAVIS code. Fast ion velocity distribution has been investigated using fast protons generated by 

ICRF minority heating. In the standard configuration in Heliotron J, CX-NPA measurements show 

the higher effective temperature of fast minority protons in the on-axis resonance case than that in 

the HFS (high field side) off-axis resonance case. However, the increase of the bulk ion 

temperature in the HFS resonance case is larger than that in the on-axis resonance.  

 

Keywords：plasma control, Heliotron J, improved confinement, ECH/ECCD, NBI, ICRF, minority heating, 
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fueling control. 

PACS: 52.20.Hv, 52.25.Ya, 52.55.-s, 52.50.-b, 52.30.-q, 52.75.-d, 52.35.Hr, 52.35.Qz 

 

 

1.  Introduction 

Heliotron J [1, 2] is a medium sized helical device (R0/ap = 1.2/0.17 m, B0  1.5 T) based 

on the helical-axis heliotron concept [3, 4] with an L/M = 1/4 helical coil. Here, L and M are the pole 

number of the helical coil and its helical pitch number, respectively. In the helical-axis heliotron 

concept, the bumpiness b is introduced as the third measure to control the neoclassical transport 

in addition to the other major harmonics in the Boozer coordinates, helicity h and toroidicity t. 

One of the main goals of the Heliotron J project is to experimentally explore the potential of this 

advanced concept as an attractive fusion device and to expand the operation regimes of the helical 

system.  

In the previous experiments, the configuration effects on various aspects of plasma 

performance (bulk plasma confinement, high-energy particle confinement, plasma current control, 

particle fuelling, magnet-hydro-dynamics (MHD), etc.) were mainly investigated in the parameter 

range of (/2, b)
 [5]. Recently, experiments in the expanded investigation range in (t/h, 

b/h)-space have been performed. In addition to such configuration studies, survey of effective 

heating and fuelling scenarios has been conducted for better plasma performance. By using ICRF 

minority heating, the fast ion formation and confinement has been investigated under low-density 

conditions (~ 41018 m-3) by changing the resonance position. The ECCD experiments have been 

carried out by controlling a parallel refractive index (N||) at several conditions of the magnetic 

field ripple. These results are compared with expectations from numerical simulations. The 

NBI(neutral beam injection) experiments with two tangential beam lines (Co and CTR) have been 

performed not only to control plasma performance in higher density region but also to study 

high-energy particle loss mechanism and relating MHD phenomena in a helical-axis heliotron. 

The optimization of fuelling scenario is also in progress. A gas fuelling by supersonic molecular 

beam injection (SMBI) was successively applied to ECH(electron cyclotron heating)/NBI plasmas 

[6]. An interesting discharge mode, similar to the re-heat mode in CHS [7], is observed for high 

power NBI with short-pulse intensive gas-puffing.  
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This paper briefly reviews the recent progress on plasma control studies to improve plasma 

performance in Heliotron J. 

 

2. Experimental Set-up 

Figure 1 schematically shows a layout of main heating, fueling and some diagnostic 

equipment. The initial hydrogen or deuterium plasma is usually produced by using second 

harmonic X-mode ECH (70 GHz, < 0.40 MW). The hydrogen beam is injected for NBI 

experiments by using one or two tangential beam-lines (BL-1 and BL-2). The acceleration voltage 

of NB is < 30 kV and the beam power is < 0.7 MW/beam-line). For density control, a 

piezoelectric-valve system is usually used as a conventional gas-puffing (GP) system, which are 

installed at four inboard-side ports at  90 intervals around the torus (indicated by “Gas” in 

Fig. 1). Due to the space limitation, the nozzles of these valves do not directly see the plasma. The 

amount of H (or D) atoms from the GP system is pre-programmed to control the line-averaged 

density en . Two SMBI systems of hydrogen are equipped on two horizontal outboard-side ports 

(the port number: #3.5, #11.5). The SMBI system at #11.5 consists of a fast solenoid-valve with a 

short (~ 4 mm) conic-nozzle. The diameter of its orifice is 0.2 mm for this experiment. To reduce 

the stray field effect on the fast valve action, a soft-magnetic-iron cylinder covers it as a magnetic 

shield. The other system at #3.5 consists of a fast piezoelectric valve with a short conic-nozzle 

(0.2 mm orifice). In front of the #3.5-SMBI nozzle, a movable shutter plate is installed to protect 

a viewing window at the same port. The amount of H atoms injected with these SMBIs is 

controlled by changing the pulse width of each SMBI valve under a fixed plenum pressure (Ppl 

~1-2 MPa).  

 

3. Effects of SMBI Fueling 

 Fueling and recycling control is one of the key issues to obtain high density and high 

performance plasma in magnetic confinement devices from two aspects; (1) profile control of 

core plasma and (2) reduction of neutrals in the peripheral region. A supersonic molecular-beam 

injection (SMBI) technique is considered to be not only an effective fueling method for deeper 

penetration of neutral particles into the core plasma compared to the conventional gas-puffing 
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(GP) [8] but also an effective edge modification technique in fusion devices [9, 10, 11]. In Heliotron J, 

fueling control studies have been performed with high-pressure SMBI. In a combination heating 

condition of ECH and Co-NBI, the stored energy reached ~ 4.5kJ, which is about 50% higher 

than the maximum one achieved so far under the similar heating condition with conventional 

gas-puff fueling in Heliotron J [6].  

The speed of injected H2-beam is evaluated by a “time of flight” method, where the distance 

from the nozzle to the last closed flux surface (LCFS) is divided by the delay time from the SMBI 

trigger to the start of H increase monitored at almost the same toroidal position with the injector. 

The beam speed of 1.3-1.6 km/s is evaluated for Ppl ~ 1.0-1.5 MPa [12]. Since the beam speed 

itself is not so fast compared to that for H2 introduced by normal GP (i.e. thermal speed at room 

temperature), a key of SMBI fueling, which cause the peculiar plasma performance in SMBI, 

should be the directional motion of the injected gas and the small area of plasma-beam interaction. 

If the high neutral density area is small enough and localized in SMBI, it could be useful to avoid 

the degradation of plasma performance through the increase of CX-loss, convection, etc.  

Direct comparison between the directed (beam) gas injection and non-directional gas 

injection was performed by using the shutter plate in front of the #3.5-SMBI nozzle. When the 

shutter is open, the injected beam can reach directly to the plasma, while the beam is blocked at 

the shutter and then the injected gas diffuses to the plasma when the shutter is closed. Figure 2 

shows time traces of the stored energy Wp and the line-averaged density en  and the intensity of 

H emission at #3.5 (indicating the SMBI timing, t  208.5 ms), 5.3#
αH , for two discharges 

under the same experimental condition except for the shutter condition; the shutter is open 

(Fig. 2(a)) and closed (Fig. 2(b)). The SMBI timing is indicated by a rapid increase of 5.3#
αH . As 

shown in Fig. 2(a), en  shows quick increase just after SMBI and then gradually increases up to 

~ 2.61019 m-3 during ~30 ms in the directly injected case (the open shutter case). The stored 

energy also shows rapid increase with a slight delay, keeps the elevated value for ~10 ms and then 

starts to decrease when the increase of en  becomes saturated. In the case of closed shutter 

(Fig. 2(b)), on the other hand, the increases of en  and Wp are slow and mild. The density already 

saturates at ~1.41019 m-3 and starts to decrease at ~15 ms after SMBI. The change of density 
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profile for these two discharges is measured with a microwave reflectmeter [13] at #15.5 section. 

In the open shutter case, the density profile, which is rather flat before SMBI, rapidly changes to 

a peaked one after SMBI, while the profile change is slow and mild in the closed shutter case [14]. 

These observations indicate that the injected beam well penetrates to core plasma region in the 

open shutter case. Since the amount of injected gas is the same for these two cases, the difference 

of the attainable en  after the SMBI indicates the effectiveness of “deep fueling” by SMBI in the 

fueling efficiency and/or the confinement improving. 

 

4. Second Harmonic Electron Cyclotron Current Drive 

In stellarators/heliotrons, non-inductive current can change the rotational transform profile, 

affecting equilibrium and MHD activities like in tokamaks. In a low magnetic shear configuration, 

moreover, non-inductive current also can modify the edge field topology and divertor 

performance [15]. Electron cyclotron current drive (ECCD) is expected as an effective method to 

control such non-inductive current effects caused by finite-plasma pressure and neutral beams. 

The ECCD experiments in Heliotron J revealed strong dependence of the magnetic field 

configuration on the EC current (Fig. 3) [16, 17]. (Figure.3) This suggests that the ECCD is 

determined by the balance between two current drive mechanisms; the Fisch-Boozer and the 

Ohkawa effects. To deepen understanding in the ECCD physics and to extend the controllability 

of ECCD in a helical-axis heliotron, a launching system with a focusing mirror and a steering 

mirror has been installed recently [18]. By using this system, a focused Gaussian beam is injected 

with the parallel refractive index of -0.05  N||  0.6. The position of the EC injection port and the 

available toroidal injection angle are shown in Fig. 4 with the magnetic field strength along the 

magnetic axis for different three b configurations (i.e. different field ripple ratio). (Figure.4) 

The experimental results with this new launching system have revealed the N|| dependence 

of EC driven current in different field ripple configurations [19]. The maximum EC driven current 

is attained at N|| = 0.5 when the EC power is deposited nearly at the ripple top, while the EC 

driven current is nearly zero independent of N|| when the EC power is deposited near the ripple 

bottom. An important role of high-energy electrons is indicated from the strong correlation 

between EC current and ECE (electron cyclotron emission) signals. The detailed analysis of the 
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experimental results including the B and N|| dependences is in progress with simulation using the 

TRAVIS code [20, 21].  

 

5. Resonance Position Dependence of Fast-Ion Energy Spectra Generated by ICRF 

In order to study the effect of the magnetic field ripple on fast-ion behavior and to optimize 

the ICRF heating condition in the three dimensional magnetic field configuration of the 

helical-axis heliotron, fast ion velocity distribution has been investigated using fast protons 

generated by ICRF minority heating in Heliotron J [22]. The cyclotron-resonance layer is located 

near the axis with a frequency of 19 MHz in the STD configuration. Changing the frequency, the 

resonance layer can be shifted to the selected position (Fig. 5). (Figure.5)  

The pitch angle pitch  dependences of ion energy spectra for two resonance positions, 

on-axis and HFS (inner-side) off-axis resonance, are investigated by using a CX-NPA [22]. For 

both the cases, the effective temperature of the minority protons 
H
.effT , shows the pitch angle 

dependence and the peak of 
H
.effT  is observed at ~ 120 in the pitch angle. Higher 

H
.effT  is 

observed in the on-axis resonance case compared to the HFS resonance case. The number of fast 

ions is also large in the on-axis case compared to the HFS resonance case. However, the increase 

of the bulk ion temperature in the HFS resonance case is larger than that in the on-axis case. In 

order to understand these observations, three-dimensional wave analyses have been performed by 

using TASK/WM code [23].  

 

6. Summary 

This paper reviewed recent progress of Heliotron J experiments from a viewpoint of plasma 

control to improve plasma performance in Heliotron J.  

1. The SMBI fueling is successfully applied to Heliotron J plasma. A supersonic H2-beam is 

effective to increase fueling efficiency and make a peaked profile. Local fueling with a 

short pulse by SMBI can increase the core plasma density avoiding the degradation due 

to the edge cooling. A large increment of plasma stored energy after a short pulse intense 

gas fueling from a conventional piezoelectric-valve system has been observed in NBI (or 

NBI+ECH) plasma. The physics under the observation would give us new insight into 
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more preferable plasma operation conditions. 

2. Second harmonic ECCD experiments have been performed. A focused Gaussian beam is 

injected with -0.05  N||  0.6. The experimental results show that the EC driven current 

is determined not only by N|| but also by local magnetic field structure where the EC 

power is deposited. A large increase in ECE signals has been observed when the EC 

current was driven, indicating the important role of high-energy electrons on the ECCD. 

The detailed analysis of the experimental results on the N|| and B dependences is in 

progress with a ray tracing simulation using TRAVIS code.  

3. Fast ion velocity distribution has been investigated using fast protons generated by ICRF 

minority heating. In the standard configuration in Heliotron J, the larger fast minority 

protons are observed in the on-axis resonance case than in the HFS resonance case. 

However, the increase of the bulk ion temperature in the HFS resonance case is larger.  
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Figure 1 Experimental Set-up. A layout of main heating, fueling and diagnostic equipment. 
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Figure 2 Time traces of the line-averaged density en , the stored energy Wp, the electric pulse for the 

gas-puff GP and H#3.5 for ECH(~0.3MW)+NBI(Pport-through 
total ~ 1 MW) plasmas for two cases of 

open (a) and closed (b) conditions of the shutter in front of SMBI.  
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Figure 3. Dependence of measured toroidal current on magnetic field ripple. [17]  
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Figure 4. Magnetic field strength along the magnetic axis for different three b configurations.  

The shaded span denotes the available toroidal injection range. 
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Fig. 5. The magnetic flux surfaces (a), vacuum chamber (b), mod-B surfaces (c), the fundamental cyclotron 

resonance layer of minority proton for 19 MHz (red) and 23.2 MHz (blue) at the various toroidal angle (). The 

antennas are installed in the poloidal cross section at  = 0. Resonance layer for 19MHz is in the confinement 

region for any toroidal angle, while that for 23.2MHz is only in limited toroidal positions. 


