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Summary

This dissertation is devoted to the investigation of geometrical
configurations and the reliability of framed structural systems used
in bridges.

In the first part of this paper, some fundamental characteristics
of the geometrical configurations of framed structures are studied on
the basis of optimum design concepts, placing particular attention on
the inflﬁence of topological and geometrical characteristics on the
weight-minimized systems. In order to disclose their effects on struc-
tural configuration in the design process, the concepts of " topology "
and " geometry " are specifically introduced by means of the " node
system " and the " member system ". By use of the above-mentioned con-
cepts, the weight-minimization formula is presented and a practical
design procedure useful for obtaining the effective configuration is
found through some numerical experimentation.

For a more practical point of view, an approximate design method
is also employed, with the aid of the optimality criterion method, to
reduce the computation load which is inevitable because of the complex
set of mutual correlations between factors involved in the design
process.

The latter part deals with the safety analysis and design methods
based on the reliability concepts. As the measure of safety, two dif-
ferent parameters, failure probability and safety index, are adopted
for evaluating the influence of uncertainties on structural design.
While failure probability is used to discuss the structural character-
istics under the environment with variational loads and resistances,

a safety index is employed to make the reliability-based design practi-
cal. Here, particular attention is placed on the evaluation of the
reliability of indeterminate structural systems, the influence of
statistical uncertainty on the structural safety, and the application

of the reliability theory to the load factor design.

&Y



Acknowledgements

The author would like to express his deepest gratitude to Professor
Emeritus Ichiro Konishi and Professor Naruhito Shiraishi of Kyoto Univer-
sity for their constant encouragement during the course of his studies,
and for the many hours of consultation and advice that were invaluable
toward the compilation of the manuscript.

To Professor Masaru Matsumoto, the author wishes to express his
sincere thanks for his valuable suggestions in compiling the disserta-
tion. He is also indebted to lecturer Takeo Taniguchi of Okayama Univer-
sity who has been a continuing source of inspiration.

He is thankful to Messr's Shigeki Kitazono, Shingo Irie and Kenji
Tkejima for their stimulating discussions concerning the first part of
this thesis. And to Messr's Kunihiro Tarumi, Masanori Nakano and
Katsuhiko Goto, he is grateful for their constructive criticisms about
the latter part.

This is a good opportunity for the author to extend his apprecia-
tion to his parents for their understanding and support throughout his
course of studies. His wife Tami is given his special acknowledgement

for typing the thesis.

(i)



CONTENTS

Summary 1)
Acknowledgements (11)
Chapter 1 Introduction 1
1.1 Structural Design 1
1.2 Bridge Design 3
1.3 Objectives and Layout of This Dissertation 6
References 9
Chapter .2 Geometrical Configurations of Trussed Structural
Systems Used for Bridges 10
2.1 Geometrical Configurations of Trussed Structures 10
2.2 Configurational Characteristics of Trussed Bridges 11
2.3 Recognition of Truss Configuration 14
2.4 Mechanical Design Factors 15
2.5 Some Optimization Schemes and Their Relationship
to the Decision of Geometrical Configurations 16
2.6 The Relationship between Topology and Geometry 21
2.7 The Influence of Mechanical Properties on Geometrical
Configurations 27
2.8 Conclusions 40
References 43
Chapter 3 The Practical Design Method of Bridge Structures
Regarding Configurational Variation 47
3.1 Design Procedure 47
2 Partitioning of Design Variables 49
3.3 Approximate Design Method Based on Optimality
Criterion 52
3.4 Sub-Optimization of Members 54
3.5 Applications of Approximate Method to Truss Design 61
3.6 Applications of Approximate Method to Arch Design 65
3.7 Design Examples 67
3.8 Conclusions 86
References 89
Chapter 4 Safety Analysis and Minimum-Weight Design of
Framed Structures Using Failure Probability 91

(ii1)



Chapter

Chapter

Chapter

~ b &

(o W = \ W AU« A« A = N @ )
N oy BNy

7

SN e

Safety of Structure

Failure Probability of Framed Structure
Reliability of Indeterminate Structural Systems
Reliability Analysis Including Statistical
Uncertainty

Minimum—Weighf Design of Rigid Frames with
Failure Probability Constraint

Minimum-Weight Design of Trussed Systems with
Failure Probability Constraint

Conclusions

References

Safety Index and Its Application to Reliability
Analysis

Reliability Analysis Based on Second-Moment

First~-Order Approximation

The Influence of Statistical Uncertainty on Safety

Index

3 Safety Index and Correction Factor

4 Reliability Analysis of Structural Systems with

Multiple Failure Modes

Evaluation of the Effects of Each Failure Mode on

System Reliability

Numerical Examples ( Documentation )
Conclusions

References

Appendix

Structural Design Based on Second-Moment Theory
Second-Moment Design Format

Usual Reliability~Based Design Methods
Failure Point

Iterative Design Method Using Failure Point
Determination of Partial Load Factors
Numerical Examples

Conclusions

References

Concluding Remarks

(iv)

91
92
94

110

124

137
145
147

152

152

153
159

166

170
173
183
185
187
189
189
190
193
197
203
209
229
230
232



Chapter 1 Introduction

1.1 Structural Design

" Where economic law reigns supreme and mathematical exactness
is jointed to daring and imagination : that is beauty! "

- Le Corbusier -

Before the Industrial Revolution, the word " design " had been scarce-
ly used except in the field of the fine and applied arts. Today, it can
be seen in the various fields other than the artistic fields. One of
these designs is structural design which may be defined here :

" Structural design is to decide the definite form, interiors
and details of a structure which offers maximum benefit from
a limited investiment through its expected service period. "
A process of structural design can be illustrated in Fig. 1.1, using

1)

the concept of mapping. Here, the design process consists of four ab-
stract spaces ; data space D, type space T, proportional space M and norm
space N. Data space contains the uncontrollable primitive constraints
due to design requirements. Type space stands for various types of
structures, and each point of proportional space represents a resulting
design. Therefore, in the narrow sense of selecting member sizes and
proportion, design can be interpreted as an establishment of correspond-
ence between data space and proportional space, in which both scalar
mapping function and norm space present a criterion to evaluate the effi-
ciency of design.

Numerous investigations have been made on improvements of structural
design with emphasis on various stages involved in the design process.
By use of the afore-mentioned concept, they can be classified into the
following categoriesz) H

1) On determination of a rational mapping function without refer-

ence to norm space
2) On examination of structural characteristics from a designing

point of views, by calling attention to data and type spaces



3) On influence of norm space on structural design
4) On optimization of design process, itself, including the exam-
ination of norm space

Most of studies belong to category 1, which aim to determine the ration-
al combination of design parameters according to the current design codes.
Category 2 contains the studies relevant to the decision of geometrical
configuration and the examination of structural behavior of new typed
structures. The objective of the studies in category 3 is to elucidate
the influence of factors whose treatment is not established in the cur-
rent design codes. Those investigations are generally based upon the
new design concepts such as limit state design, probabilistic design.
As a whole, design process is discussed in category 4, in which the risk

assessment and the code-optimization are involved.

Data Space

Type Space

f : mapping
function

Proportion
Space

layout or
type of

primitive design
constraints

Norm
Space
member sizes and
proportion
codes or
specifications
Fig. 1.1 Design Process as a Mapping



1.2 Bridge Design

Of all the human artifacts, none can beat the great bridge :
for power, for grace, for the reflection of period and the
taste of progress, for the illumination of a setting or the

honouring of old vitality

3)

- James Morris -

Procedure of Bridge Design

Bridge design forms a hierarchy as well as other structural designs.
According to A. Templeman4), it is classified as four stages;
1) Topology of the structure
2) Geometry of the structure
3) Overall sizes of structure members

4) Detailed design of elements

For trussed bridges, topology " means the number of nodes or members

and their connectivity, and " geometry "

means the locations of nodes
and the lenghts of members. In stage 3, the cross sectional areas and
the proportion of members are determined. Stage 4 means the detailed
design such as the selection of plate thickness, depth of cross section,
etc. Through the decisions concerned with the above four stages, a de-
sign is completed. It is, however, quite difficult to obtain a design
which produces the maximum benefit, because each stage involved in the
design process is not independent but inter-related.

Generally, bridge design process is quite different from the anal-
ysis. Design process consists of comparison and decision to reach many
feasible solutions, while a unique solution can generally be obtained

in structural analysis.

Application of Mathematical Programming to Structural Design

If the objective of structural design is to obtain a structure which
produces the maximum benefit, the concept of optimization should be in-
troduced into the design process. Then, the interpretation of design
should be transferred from the analysis-oriented method to the design-

oriented one. Increasing the neccesity of rationality in structural de-
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sign, structural optimization has been developed in recent years. 1In
accordance with the development of the digital computer, remarkable ad-
vances have been shown in this field since 1960 when the modern form of
structural optimization was born by L. A. Schmits). There are, however,
many difficulties to overcome for the full potential of optimization to
be realized. 1In designs of civil engineering structures, the difficul-
ties involved in the structural optimization seem to appear quite explic-~
itly, because many requirements are imposed on these designs ;

1) Usefulness-—--convenience, comfort, and maintenance

2) Safety---sufficient strength, durability and stability for the

applied forces and weather conditions during the life
of structure

3) Economy---choice of type of structure and materials

4) Harmony with the environment

Some of these requirements are intractable in the optimization pro-
cedure because of the difficulty in expressing them numerically. 1In
addition, a great deal of the design variables induce difficulties, such
as a poor convergency and an excessive computation load. In order to
reduce the computation load, some special treatments, for instance, ap-
proximation or decomposition, should be introduced into the design pro-
cedure, by calling attention to the characteristics of the underlying

problems  that are large, multivariable, nonlinear, constrained problems.

Geometrical Configurations of Bridges

To many people the bridge is one of man's most beautiful and useful
works, and symbolic of man's achievements. The aesthetic factor has
played a quite important role in the design of bridge. As noted from
the elegant shapes of ancient stone arches and those of modern suspended

6)-9)

bridges, a number of investigations have been performed to disclose
the relationships between structural configurations and mechanical pro-
perties. The process of pursuing the mechanical rationality in structural
design problems is greatly concerned with the determining configurations
of a structural system, which is vested with so many kinds of possibili-
ties of selections, based on the high reliability of materials and the

recent development of construction method. It should be mentioned here
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that the economical consideration takes one of the most important roles
in the decision process for structural design.

The first step for obtaining the effective configuration is to clar-
ify the factors which constitute the configuration. Next, the recognition
of configuration should be performed by means of those factors specified
previously. After these processes, an interest is focused on fundamental
characteristics of geometrical configurations, placing attention on in-
herent mechanical aspects of bridges. An effective procedure to determine
the configuration will be achieved through the numerical experiments.

When the establishment of design process is made, it is desirable to de-
rive an approximate method in which the geometrical variation can be tak-
en into accout, to save the memory capacity and computation time necessary

for the optimization.

Reliability of Bridges

It is well known that bridge structures as well as other civil engi-
neering structures must withstand the severe environments. Because of
this, it is necessary to evaluate the influence of environmental uncer-
tainties on structural safety. Generally, the uncertainties involved in
the design process are due to the dispersions of the loads and resist-
ances, and errors occurring in analysis and construction, etc., whether
it is possible or not to perform the probabilistic evaluation under arti-
ficial controls. As a rule, those uncertainties have been taken into
consideration by the introduction of safety factor. Needless to say,
the accumulated experiments or observation data obtained in the past are
reflected in the determination of safety factor, but the probabilistic or
statistical treatment is preferable from the standpoint of rational design.

Numerical investigations have been made on the application of proba-
bilistic concepts to structural problems since the intensive work by A.
Freudenthal in 1947. An excellent review of the development in this
field so far is given by the 1972 Task Committee on Structural Safety of
ASCElO). Up to the present the probabilistic interpretation of structural
safety has gained acceptance on the belief that this approach can be im-
plemented without difficulty within the framework of conventional struc-

tural analysis and design.



Recent research is roughly divided into five subjects ;

1) Application to practical design ; rationalization of current design
codes, minimization of total expected cost, etc.

2) Extension of reliability analysis ; probabilistic evaluation of struc-
tural instability, estimation of structural safety of complex or large
systems.

3) Fundamental consideration on the theoretical framework of reliability
theory ; establishment of new safety measure, management of various
uncertainties.

4) Application to time-dependent problems ; safety analysis and design
against seismic or wind load, application of random process theory.

5) Application to prediction problems ; risk assessment, statistical

decision making.

1.3 Objectives and Layout of This Dissertation

This dissertation deals with two separate subjects ; geometrical
configuration of framed structure and safety analysis and design based
on the reliability concepts.

Some fundamental characteristics of geometrical configuration of
framed structures are investigated on the basis of the optimum design
concepts, placing particular attention on the influence of topological
and geometrical characteristics on the weight alleviated systems. In
order to disclose their effects on structural configuration, the con-

cepts of " topology " and " geometry ' are specifically introduced by

means of the " node system " and the " member system ". By use of the
abovementioned concept, the weight-minimization formulation is con-
structed, and also an approximation is introduced into the design proc-
ess so as to reduce the computation load associated with complex opti-
mization problems. From the standpoint of structural design, this
subject is referred to the one with respect to the type space describ-
ed in section 1.1.

Next, the influence of uncertainties unavoidably involved in vari-

ous stages of the design process on structural safety and design is

—-6-



studied on the basis of both the classical theory and the second-moment
theory. The classical theory is used to discuss the safety of struc-
tural system with the variated strength under the random load. Using
the fiducial statistics or Bayesian decision theory, the effect of sam-
pling on structural safety is examined with interests on the number of
data and the sampling method. And the weight-minimization design with
failure probability constraints is formulated for the indeterminate
structural systems with many possible failure modes.

Based on the second-moment theory, a practical design method is
proposed and applied to the load factor design. Comparing with several
reliability-based design methods, the efficiency and applicability of
the proposed method is discussed through some numerical examples.

Chapter 2 contributes to clarify the configurational characteris-
tics of trussed sysﬁems. A distinctive feature of the configuration of
trussed bridge is illustrated compared with other trussed structures.
Geometrical configuration of trussed system is graphically interpreted

by introducing the concepts of " topology " and " geometry ". Further-

more, two abstract systems, the " node system " and the " member system ",
are considered to disclose the influence of topological and geometrical
characteristics on weight-minimization. Examination of mutual relation-
ship between geometrical configuration and mechanical properties of mem-
bers provides a rough but useful guide for the design procedure.

In Chapter 3, from a practical point of views an approximate design
method is studied to reduce the computation load associated with large
optimization problems with many variables and a large number of nonlin-
ear constraints. A least-weight structure is sought with the aid of a
two-step approach, in which the design variables, cross sectional areas
of members and nodal coordinates, are treated in two separate but depend-
ent design spaces. Cross sectional areas can be expressed as functions
of the nodal coordinates, using the sub-optimization of members and the
optimality criterion. A truss example whose dimension and configuration
are the same as the Amakusa 1-Go Bridge is employed to demonstrate the
efficiency and applicability of the method. This design method is also
applicable to arched structures, and the characteristics of trussed and

arched structures are discussed with interests on their geometrical con-
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figurations through numerical examples.

Chapter 4 deals with the safety analysis and the minimum-weight
design of framed structures based upon the calssical reliability theory
in which structural safety is evaluated by means of failure probability.
For indeterminate structural systems with many possible failure modes, a
simple method presenting a good upper bound of failure probability is
derived by using the correlations between every two failure modes. By
use of the fiducial statistics and Bayesian decision theory the influ-
ence of sampling or measurement is discussed. Also, the minimum-weight
design with reliability constraints is outlined and an approximate method
is proposed for a large system, which decomposes the possible failure
modes into basic and non-basic modes.

Safety index is adopted as a measure of safety in Chapter 5. The
influence of statistical uncertainty is discussed by considering the
safety index as a random variable. To evaluate the safety of structural
systems with different kinds of failure modes, the reliability analysis
based on the second-moment theory is extended by calling attention to
the definition of safety index presented by A. Hasofer and N. Lind.

Chapter 6 presents a reliability-based design method without depend-
ence on mathematical assumption or approximation. The design formulation

" which indica-

is constructed by paying attention to the " failure point
tes the most unsafety situation. In order to make the reliability-based
design practical, the method proposed here is applied for the load factor
design. Performing the calibration to the current code, resistance and
load factors are determined. Then, it becomes possible to examine the
safety of present bridges through numerical experiments.

Main conclusions obtained through these chapters are comprehensive-

ly reviewed in Chapter 7 accompanied with some proposals for structural

design and the prospects for the future studies to be continued.
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Chapter 2 Geometrical Configurations of Trussed Structural

Systems Used for Bridges

2.1 Geometrical Configurations of Trussed Structures

There are some kinds of trussed structures ; transmission tower,
space truss used for roof and dome, trussed bridge, etc., which possess

mutually different geometrical configurations to comply with their

purpose of use. ( " geometrical configuration " will be frequently

abbreviated as " configuration " hereafter ) In truss design, the

designer can freely determine the interior layout of the structure,
while the exterior is frequently constrained. Although many factors
affect the determination of truss configuration, economy must be one
of important factors. In fact, a number of design examples has made
it clear that it is possible to obtain more economic designs by intro-
ducing the variety of configuration into the design process.

Up to the present many efforts have been made to disclose the
configurational characteristics of truss. The first important contri-

bution to the decision of structural configuration was made by J.

1) 2)

Maxwell™’. Later, A. Michell recognized the importance of Maxwell's

theorem, applied it to determine the least-weight structure. H. Cox3),

4) 5) 6)-13)

W. Hemp “, D. Ghista and et al developed the classical theorem

by Maxwell and Michell and gave examples of optimum configurations for
certain load cases. However, their works are essentially based on the
analytical method, and are not suitable for practical design because
of the lack of generality.

In recent years the search for rational configuration has been

carried out with the aid of mathematical programmings. Using the

14)

Linear Programming ( LP ), W. Dorn and et al determined the optimum

layout of members, eliminating the unnecessary members from the "

" which is formed by connecting the truss members

5)

ground structure
between every possible nodes. Also, A. Palmer and D. Sheppardl derived
the effective layout by use of the Dynamic Programming ( DP ). In addition,

many papersl6)—22) have been presented for this field.

~10-



Despite of many contributions as listed above, there remain some
difficulties in the treatment of configuration in the design process.
Evidently, it is impossible to simultaneously take thought of all
design factors pertaining to the configuration, and even if possible,
the implementation of design work will be prohibitive and time-
consuming. Then, it is inevitable to disclose the intrinsic properties
of present structures and further the effect of design factors on
structural configuration. It is obvious that the loading condition is
the most important factor among all design factors, and that the paths
between the loading points and the supporting points are closely related
with the configuration.

Generally, trussed structure is defined as a pin-jointed frame-
work whose members do not resist bending but carry only axial forces.
For this specific structural character, truss configuration is con-
structed as a superposition of triangles which are the basic patterns
to hold the stability of structure. For example, a typical one is

Warren truss which consists of the " isomorphic " tritangles, and in

" of nodes is less than four.

which the " degree
Unlike the decision of the configuration of continuous media, the
numbers of nodes and members, the lengths of members, the locations of
nodes and the connectivity are important to specify the configuration
of truss. By means of these quantities the efficiency of configuration

is discussed in this paper.

2.2 Configurational Characteristics of Trussed Bridges

Trussed bridge is considered as a system which resists the bending
action as a whole. On account of the functional requirements, its con-
figuration is horizontally long and also the vertical load due to the
gravity force is excellent among the applied loads. Generally, usual
trussed bridges consist of chord members and hanger members. Truss
type ( e.g. Pratt truss, Warren truss, etc. ) is mainly recognized by

the layout of hanger members. Here, in order to clarify the character-

-11-



istics of trussed bridges, the concepts of " exterior " and " in-

23)

" The exterior means the chord members and

terior " are introduced.
a part of the hanger members, which distinguish the space occupied by
trussritself from the other space. The interior means the remains

of members.

By use of the above-mentioned concepts, the configurational
characteristics of trussed bridges are investigated through some simple
design examples. Consider example 1 shown in Fig. 2.1. Under the
supporting and loading conditions given in this figure, the configura-
tion shown in Fig. 2.1(b) can be considered optimal, because the force
is directly transmitted from the applied point to the supporting points.
In this case, the interior members are unnecessary since the buckling
failure does not occur at the exterior members. The same load is
reversely applied in example 2, where the load induces the compressive
force in members. Unless the buckling occurs, the system shown in Fig.
2.2(b) is optimum. But, if the buckling effect can not be ignored,
the resulting system will change, for instance, to the one shown in
Fig. 2.2(c). Example 3 represents a model for trussed bridge. In the
former two cases, the configurations of the exterior can be similarly
determined without difficulty, though those of the interior are differ-
ent. The de&ermination of the exterior can be carried out by consider-
ing the transmission paths from the loading point to the supporting
points. However, in example 3 it is difficult to find the effective
transmitting paths. The direct connection of the loading and support-
ing points yields the system shown in Fig. 2.3(b), whose members give
no contribution. If the load is allowed to move along the acting line,
various configurations can be considered for the exterior with corre-
spondence to individual applied points. Furthermore, the member force
may change from compressive to tensile or vice versa as the location of
node changes. Since the buckling effect should be taken into consider-
ation for the design of compressive members, the layout of the interior
becomes important to reduce the weight or cost.

As mentioned before, the loading condition is one of the most im-

portant factors to determine the configuration. Here, the configura-

tional characteristics are argued with interests on the relations between

-12-
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the loading condition and the arrangement of members. Consider a tri-
angular truss shown in Fig. 2.4, in which the vertical load is applied
at the center of span and the buckling effect is not taken into account.
In this example, node (2) must be translated upwards to coincide the
directions of some members with that of the load. The necessary cross
sectional areas of member 1 and member 4 are reduced by the translation
of node (2), but the lengths of those members become larger. The opti-
mum position will be determined as a point where the increase and de-
crease on weight due to the above phenomena are balanced. As observed
in these examples, the difficulty involved in the decision of truss
configuration lies in the’fact that truss is a discrete system whose

elements are chosen relatively free.

24)

2.3 Recognition of Truss Configuration

The problem treated here can be specified as " to determine an optimal
configuration which satisfies the functional requirement and is safe
against an external load ". Then, it 1s of importance how to recognize

and specify the configuration.

25)-29)

With the aid of the graph theory , the configuration of the

truss system can be expressed by a linear graph consisting of only nodes

and lines, which is here expressed by the term " topology ". And the

mechanical characteristics of the structural system considered here can

be determined by specifying geometrical dimensions of members used, which

are termed as geometry Thus, the factors to define the configura-

tion consist of the " node system " and the " member system ", namely
Node System factors with respect to topology

----- number of nodes

\ factors with respect to geometry

————— locations of nodes

Member System ( factors with respect to topology

----- number and layout of members

* factors with respect to geometry
----- lengths and sectional areas

of members

-14~



The optimum problem here is, therefore, composed of the following four
steps ;30)

(1) How many nodes shall the truss have ?

(2) Where shall the nodes be located ?

(3) How shall the nodes be connected by members ?

(4) What cross sectional areas shall they be assigned ?
These questions are, as well known, so mutually correlated that the

questions should be solved simultanecusly to reach the optimum solution.

2.4 Mechanical Design Factors

As observed in the previous examples, the buckling effect is con-
sidered influential on the determination of the configuration of truss.
Representative factors as to mechanical properties are enumerated as
31)
follows ;

Limit allowable stress Under allowable stress cqnstraints, the va-

lidity of configuration can be evaluated to some extent by tracing the
path from loading point to datum point. However, the search of the op-
timal configuration for a trussed bridge tends to be involved on account
of complicated paths due to the bending action.

Limit strength for buckling For the buckling strength, length of

member becomes significant since the buckling strength usually decreases
in accordance with the square of member length. Note that this factor
greatly affects configuration.

Rigidity The deflection constraint is often specified in design of
bridges. Generally, trussed bridges are relatively rigid compared with
other types of bridge structures. However, if the deflection constraint
is violated, most factors pertaining to the configuration should be mod-
ified, since the limitation of deflection may also affect the determi-

nation of configuration.

Supporting condition The path from loading point to datum point de-
pends on supporting conditions and the decision is closely related with
this path.

Loading condition This loading condition is considered as the most

-15-



important factor. Note that moving load remarkably affects the struc-
tural configuration since induced stresses vary from positive to nega-
tive according to the location of the load and vice versa.

Other properties The effects of secondary stress, kind of material,

construction method, etc.

2.5 Some Optimization Schemes and Their Relationship to the Design

of Geometrical Configurations

The configurations of actual structures are determined based on
aesthetic, economic and functional factors. Evidently, functional fac-
tors should be first taken into account in the designing process. Thus,
it is postulated here that necessary conditions for the functional re-
quirement are given at the first stage of such design process as the
optimal principle which is discussed on the basis of the weight-minimi-
zation concept.

Here, configurational optimization is performed by use of the mathe-
matical programmings, different from Michell's work. Since none of
usual optimization methods can simultaneously treat all design factors,
some appropriate methods should be adopted for the representative design
cases. The optimization methods employed here are shown as follows :

1) Linear Programming ( LP )32)-34)

Linear programming is used to investigate the effect of topology
regarding the member system when the number and the locations of the
nodes are given. According to the method proposed in Ref. 14, the op-
timal configuration is obtained by deleting the unnecessary members from

the ground structure. In the case, the problem is referred to as

To find Ai (i=1, *** , m)
m
such that f= ¥ 0.,A4, Li + Minimize (2.1)
i=1 T2
j - <P < A .2
subject to 0 A<P Oat A (2.2)

where gm = gflg_, and Eqs (2.1) and (2.2) can be rewritten by introducing

the redundant force 5,35)36)
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- -1 i n~1 n,
P
Bl &2
B B R pomm—- i (2.3)
r o v I r
! = r
-0__ A< P+ < g (2.4)
ac —— EO - g0 I =%t 4
o, o
-0 A< r<g A .
ac — — =— — at — (2.5)
where oat ’ Oac : allowable tensile and compressive stresses
P : member force vector
-m
A : vector of sectional areas
P : external load vector
c : incidence matrix
[ ¢ zero matrix
I : unit matrix

Notations ~ and v denote the determinate basic system and redundant
member, respectively and subscript 0 designates the sub-matrix. Also,
the underlined symbol means a vector or a matrix.

Necessary and unnecessary members are recognized by corresponding
to " basic variables " and " non-basic variables " in linear programming.
2) Linear Programming with Monte Carlo Method

Linear programming method is combined with the Monte Carlo method
to include the effect of node positions. In this case, it is necessary
to make use of nonlinear programming, because node positions are varia-
bles and the preceding method is not applicable. The method can provide
a reasonable solution without any nonlinear programming.

The permissible space is divided into some sub-spaces, where a node
is generated by using the Monte Carlo method. By repeting this proce-
dure and comparing the results obtained at each step, one can reach the
final solution. This treatment excludes complicated procedures caused
by taking the node positions as variables.

3) Sequential Linear Programming ( SLP )37)—39)
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In order to obtain more accurate node positions and to investigate
the effect of geometry, the sequential programming is utilized. Then,
the design variables consist of sectional areas Ai and nodal coordinates

Xj' Using the Taylor expansion, it follows that

To find ; A Ai , A Xj ' i=1,""""" ,m m : number of members
JF = 1,000 ,n n : number of moving
direction of nodes
such that
m n m
Af=Zp,L.AA. +L I p,A,(0L./3X_)A X, ~ Minimize
] i1 i, , i1 i 3 b
i= j=1 i=1
, (2.6)
subject to
m n (k)
Z (30,/0A))b A, + _Z (aoi/axj)A in O.p = 0 2.7
=1 Jj=1
m n
-z (aol./aA2 + aoaci/aAg)A AQ - .Z (aoi/'axj + Boaci/axj)A xj
2=1 j=1
< O(k)_ _ O{k) (2.8)
or - Taci i
m n (k)
_él (aci/aAl)A AQ -jzl (Boi/axj)A Xj < Oat + 0, (2.9)

where Oi is the stress of the i-th member and superscript k denotes the
k-th iteration step.
4) Modified Sequential Linear Programming

Although SLP has wide applicability, some difficulties appear fre-
quently in the actual calculation, such as enormous implementation time
and poor convergency. An attempt is, therefore, made to improve SLP by
classifying the constraints into active and passive ones. An outline
of this method is described for two designs.

a) Application to the design with buckling constraint

Initially, the nodal coordinates are determined by using only
buckling constraints. Cross sectional areas are modified at the next
step by adding the stress constraints. The separation of buckling con-
straints reduces the memory capacity to 2/3 of that required in the usual

treatment. The flow chart is shown in Fig. 2.5.

-18-



read initial value X(O)

calculate g%(Xi),f§(Xi)

calculate yg3(X'), VE (X))
: |

read buckling constraint
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Fig. 2.5 Macro Flow Chart of Modified Sequential

Linear Programming Method
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b) Application to the design subjected to multiple loading conditions
For n-cases of multiple loading conditions, the number of con-
straints become n times larger than the case for single loading condi-
tion. Generally, the influence line method is used to analyze trussed
bridges subjected to the moving load. However, the influence line
changes as the nodal coordinates change, and hence the moving load is
equivalently replaced by multiple load, which may invoke the increase
of constraints as aforementioned. For such problems, two ways of se-
lecting the active constraints are utilized : one is by taking three
constraints, which correspond to the absolutely maximum stresses ( ten-
sile, compressive and bucRkling ) among n loading cases, for a member,
while the other is to use a single constraint by finding the most dan-
gerous situation. They are called " Method 1 " and " Method 2 ".
5) Mixed Integer Programminng)-42)
In certain design cases, some design variables need to be treated
as integer or discrete variables on account of their intrinsic charac-
teristics. One of those design problems is the selection of materials
in which the variables representing the grade of materials are consid-

ered discrete. By use of a special integer variable whose value is 1

or 0, the problem can be reduced to a mixed integer programming problem.

It is noted that in this case cost should be chosen as the objective
function instead of the weight, because the use of the high grade mate-
rial makes a remarkable contribution to the weight-alleviation unless

economy is taken into consideration.

To find ; AA. , A X. , 6Zi £ =1,"**,p p : number of kinds
1 J of materials

such that

m P, m
9:1 Al,Li (acl. (oa)/aoai)él GaQ,GQ,i + 151 ¢ (oa)Ll.A a,
n m
+ .Z 'Z Ci(oa)Ai(BLi/BXj)A Xj > Minimize
j=1 i=1
(2.10)
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subject to

P 4 a

—22 Oaléki + (30,794, )0 A, + E (Bci/BXj)A Xy -0, (2.11)
=1 _7—1
p n

- - - <

221 Oalsli (aol./aAi)A a, jil (aoi/axj)A xj <0, (2.12)

where gaﬂ is the allowable stress of the 2-th kind of material and

Ci(') denotes the cost function.

2.6 The Relationship between Topology and Geometry

Fundamental characteristics of geometrical configurations of
trussed bridges are discussed by placing particular attention on their
topological properties. According to the afore-mentioned classification
( the node system and the member system ), the effects of topology and
geometry on the weight minimized system are examined through some numer-
ical examples. Attention is particularly paid to the correlation be-
tween topology and geometry, which has been scarcely argued.

1) Topology of the Member System and Geometry of the Node System

At first, presented are some considerations on the changes of
topology and geometry in the optimization procedure. Consider the model
of a trussed bridge, which is simply supported. It consists of four
panels and the span length is 40 m. The convergency and the topology
obtained at each design step are illustrated in Fig. 2.6. 1In this case,
an optimal topology is obtained by deleting the unnecessary members
from the ground structure. Then, the linear programming is used for
the optimization, because the number and positions of nodes are fixed.
Some distinct changes on the topology can be seen in the optimizationm,
in which the solution at each step is systematically compared from one
to another. Whether a member is necessary or not is judged by corre-
sponding it to the basic or non-basic variable. Unnecessary members
are eliminated through the pivot operation. Fig. 2.7 shows the effect

of the truss height on weight-minimization, where the parameter o is
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the rate of the panel length and the truss height. The least volume
( the volume is often used as the objective function ) is obtained at
o = 1.85.

In the next example, the nodes of the upper chord are variable,
while the nodes of the lower chord are fixed. Similarly to the previ-
ous example, the ground structure is formed on the basis of the nodal
pattern generated by the Monte Carlo method. By use of the linear pro-
gramming combined with the Monte Carlo method, the correlation between
the topology of member and the geometry of node can be examined without
difficulty.

The representative configurations obtained for the generated nodal
pattern are presented in Fig. 2.8. It is observed from this figure that
types a, b and d cover most of the configurations obtained here. Al though
a truss belonging to type a has the least members, its weight is heavier
than that of type b or type d. A truss of type b shows the least weight
within a range where the y-coordinates of node 3 is less than 15 m.
Through the successive use of the above procedure, the optimal configu-
ration is obtained, as shown in Fig. 2.9.

Next, let's consider the change of geometry in the optimization.
With the aid of SLP, the optimal node positions are sought without vary-
ing the topology of member. The change of geometry is seen in Fig. 2.10,
where the initial configuration ( Pratt truss ) gradually transfers to
the final configuration ( Warren truss ). It is to be noted that node 2
tends to approach to node 1 and then the induced force of the 4th member
is almost zero. This fact means that the treatment of variational ge-
ometry enables to make a rough estimation of the optimal topology of
member. Thus, one can prove that node positions are so important that
topology of the member system may change according to the change of node
positions. Namely, node positions are so dominant to specify topology
of the member system.

2) Topology of the Member System and Topology of the Node System

The number of generated nodes is increased from 5 ( 4-panel model
) to 7 ( 6-panel model ) or 9 ( 8-panel model ) to investigate the re-
lation between the layout of members and the number of nodes. The con-

figurations obtained for the latter two cases are shown in Fig. 2.11
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Fig. 2.9 Optimal Configuration
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Fig. 2.10 Truss Configuration according to Each Design Step
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Fig. 2.11 Configuration Obtained Fig. 2.12 Configuration Obtained

for 6-panel Model by for 8-panel Model by
LP with Monte Carlo LP with Monte Carlo
Method Method

Fig. 2.14 Optimal Configuration

Fig. 2.13 Optimal Configuration
of 8-panel Model Obtained

of 6-panel Model Obtained

by SLP by SLP
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and Fig. 2.12. Note that there exsist non-basic ( unnecessary ) nodes
other than non-basic members and that similar configurations were ob-
tained for three cases in spite of the number of nodes. If the members
whose sectional areas are close to zero are ignored, topology of mem-
bers for each case is the same.

To further discussion on the effect of node numbers, 6-, 8-, 10-
and 12-panel models are designed by use of SLP., Among them, the confi-
gurations obtained for 6- and 8-panel models are shown in Fig. 2.13 and
Fig. 2.14. These results lead to the conclusion that for this loading
condition the optimal topology of members is the one obtained for 2-panel
model shown in Fig. 2.15.

Through these design examples, it can be said that an optimum num-
ber of nodes exsists for each topology of members. In other words, it
is effective to assign the number of nodes before determining the topol-
ogy of members, and that the use of an appropriate number of nodes pos-

sibly reduces a certain amount of the weight of the structure.

2.7 The Influence of Mechanical Properties on Geometrical Configurations

Through some numerical examples, the effects of mechanical proper-
ties on truss configuration are discussed in detail.
1) Influence of Buckling Effect

The buckling effect is introduced by using an approximate formula
which was proposed by G. Vanderplaats and F. Mose544)

tions. ( see Fig. 2.16 )

for the pipe sec-

p = 14.13 TEA ( D/t = 15.0 ) (2.13)
cr 2
8 L
where Pcr : limit strength for buckling E : Young's modulus
A : cross sectional area I : member length
: diameter t ¢ thickness

Let's consider a 4-panel truss model similar to the previous ex-

ample. The calcualted configuration shows low height and similar mem-

=27~



l
P=20 ton
40 m
f —el

Fig. 2.15 Optimal Configuration of 2-panel Model

t/D

15.0

- ————

Fig. 2.16 Pipe Section

PO

Fig. 2.17 Optimal Configuration Obtained by

Considering Buckling Effect

-28-



ber lengths. ( see Fig. 2.17 ) Considering the effect of buckling,
all members are meaningful and useful for reducing the weight, while
some members are useless for the case without buckling constraint.
These results can be easily inferred from Eq.(2.13), for it implies
that the necessary cross sectional areas increase proportionally to
the square of member length. Naturally, the volume obtained for the
case with buckling constraint is more than two times of the weight
obtained for the case without buckling constraint. Also, the modified
sequential linear programming method can reduce the computation time
to the half of that needed for usual methods.

More design examples are employed to clarify the influence of
buckling effect on the number of nodes. The results are summarized in
Fig. 2.18, where the design conditions are as follows

case a : designs of Pratt truss whose configuration is fixed, where
the buckling effect is not included.

case b : designs of Pratt truss with buckling constraint.

case ¢ : designs of truss with variable configurations ( only allow-
able stress limit )

case d : designs with buckling constraint, whose configuration is
that given by case c.

case e : designs with variable configurations, where the buckling
effect is directly introduced into the optimizationm.

From this figure, the following items can be obtained : in case a,
the optimum number of panels is 2 or 4. There is no difference in vol-
ume between them. However, considering the buckling effect, the optimum
number becomes 4. ( see the curve of case b ) The curve of case c as-
certains the conclusion that there is an optimal configuration under the
design condition in which only the allowable stress limit is imposed.

In this curve, the value of the volume is unchanged regardless of the
number of panels. The curve of case d indicates that the greater the
number of panels, the lighter the truss. While the configurations given
by case ¢ have almost the same configuration with respect to the exterior
members, they have different numbers of interior members. As the number
of the interior members increases, the lengths of the exterior members

become shorter. This is useful for a design which is considering the
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Fig. 2.18 Relations between Panel Number and Volume
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Fig. 2.19 Pratt Truss and Warren Truss
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buckling effect.

Case e shows the least volume, and then, the optimum number is ob-
tained as 10. It may be considered that the increase caused by the addi-
tion of interior members and the decrease caused by the shortening of
exterior members are balanced at this number. Also, these results lead
to the conclusion that the optimum number of panel will change, if the
variation of configuration 1s taken into account in the design process.
2) Influence of Rigidity

As mentioned before, the deflection constraint is often important
in the design of bridge structure. It can be also considered that the
limitation of deflection affects the determination of truss configura-
tion. Here, only the correlation between deflection and weight is dis-
cussed for determinate trussed systems, because a detail discussion on
the effect of a deflection constraint will be presented in chapter 3.

Consider two truss models, Pratt truss and Warren truss, whose con-
figurations are fixed and presented in Fig. 2.19. The volumes and the
deflections of the center of span calculated for these trusses are
0.1667 x 106 cm3, 5.714 cm and 0.1333 x 106 cm3, 4.571 cm, respectively.
These results show that determinate trusses have a tendency that the
deflection is smaller as the weight is lighter. One can prove this fact
by considering the characteristics of the weight-minimized determinate
truss systems. Generally, the deflection § is calculated by using the

45)

following formula.

L. (2.14)

where Fi and F; denote the axial force of the i-th member induced by the

external load P and the virtual unit load applied at the center of the span

respectively.
Since each member reaches the " fully stressed " condition in the optimum
solution, the following relations are obtained.46)47)

Fi =% 4 (2.15)

F, =0, 4, / P (2.16)
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where Ga is the allowable stress, and its value is assumed to be equal
for all members.
Substituting Eq.(2.15) and Eq.(2.16) to Eq.(2.14), the deflection

is found as

§==% Ta, L (2.17)

From Eq.(2.17), it can be obtained that the deflection is proportional
to the volume or weight.

48)

Further examples show that this fact seems to be held for the
design cases sujected to other loading conditions or buckling constraints.
For instance, on account of buckling constraint, the weights and the

deflections of the same models change to 0.342 x 106 cm3, 3.805 cm and

0.288 x 106 cm3, 2.298 cm, respectively.

3) 1Influence of Supporting Conditionag)
Three supporting systems of simple support ( Model 1 ), continuous
support ( Model 2 ) and cantilever support ( Model 3 ) are employed in
order to disclose the influence of supporting systems. Fig. 2.20 indi-
cates considerable difference in configurations and it is interesting
to note that the formation of upper chords is quite similar to the bend-
ing moment diagrams regarding beam models. Table 2.1 indicates that
Model 1 is the heaviest and Model 3 the lightest, whether the positions
of nodes are fixed or variable. It seems that each supporting condition
reaches the limit of weight-minimization. This means that a feasible
supporting system should be chosen at the first step of designing.
4) Influence of Loading Condition
Here, the method proposed in section 2.5 is applied to the multiple
loading case. Consider the model shown in Fig. 2.21. The moving load
is replaced by the six loads, Pl - P6’ whose positions are illustrated
in the same figure. Numerical results are summarized in Fig. 2.22 and
Table 2.2. Fig. 2.22 shows the changes of configuration and total volume
through optimization, and that the final configuration differs consider-

ably from that obtained for the single loading case. It can be said that

the loading condition is one of the most important factors, and hence
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Fig. 2.20 Optimal Configurations Obtained for Some Kinds

of Supports

Table 2.1 Numerical Results for Some Kinds of Supports

Total Volume Total Volume
(fixed geometry)| (variable geometry)
Model 1 0.3580 0.2657
Model 2 0.3236 0.2629
Model 3 0.2681 0.2260
X 106 cm3
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Table 2.2 Numerical Results for Multiple Loading Condition

Method 1
Memberll A cm3 L cm R, max| R, mi P g kg/cm2
t t cr

1 19.2 535.1 * -15000 | -15000 -781

2 46.4 ) 1262.7 * =15725 | -15726 -339-

3 13.0] 1134.2{ 15585 * -1528 1199
5.0} 1000.0 0 0 -291 0
23.7 | 1153.8 | 12700 -4922 -4922 -208

6 34.7 896.7 * -17490 | -17490 -504

7 33.8 ] 1457.6 | 12820 -6272 -6272 0186

8 10.5 1 1000.0 | 12600 * 01286 1200

9 5.0} 1143.5 * -222 -224 ~-45

Calculation Time 15 sec.

Method 2
Memberfl A cm3 L cm Rt max| Rt min Peor o kg/cm2
1 19.2 535.1 * ~15000 }-15000 -781
2 46.6 | 1267.1 * ~15745 | -15745 -338
3 13.0] 1133.7 ] 15600 * -1533 1200
4 5.0 | 1000.0 0 0 0291 0
5 23,7 | 1154.7 | 12700 -4922 -4922 -208
6 34.6 892.5 * -17483 |-17483 -505
7 33.7 | 1455.4 ] 12800 -6259 -6259 -186
8 10.5 | 1000.0 | 12585 * -1282 1199
5.0 1144.0 * -222 -223 -45

Calculation Time 11 sec.
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that an accurate modeling of load condition is inevitable to determine
the configurations of trussed bridges. Compared with the computation
time, the proposed method is able to solve the problem in half the
time. Therefore, Method 2 is preferable.

5) 1Influence of Secondary Stress

For trussed bridges, the secondary stress is mainly due to the
bending moment which occurs in each member. Generally, the effect of
bending moment is not taken into account in the analysis of trussed
structures, because of simplicity and small difference between the
strict and approximate treatments. However, this effect is no longer
ignored for the design of trusses whose members have high rigidity,
large eccentricity and long length.

It is quite difficult to investigate the effect of secondary stress
on configuration, because the secondary stress can be evaluated only
when all design parameters are completely determined. Here, the effect
of secondary stress is examined by use of a design example shown in Fig.
2.17. Numerical results are presented in Table 2.3, which shows that
the secondary stress tends to increase in the upper chord and the ver-
tical members subjected to the compressive force, and that the ratio of
secondary stress and original stress is from 10 to 20 per cent. Con-
sidering the effect of secondary stress, the configuration should be
determined to diminish the axial forces for the compressive members.

6) Influence of the Grade of MaterialSO)Sl)

Three kinds of material, M1, M2 and M3 ( which correspond to Ss41,
SM50 and SM58 steels ) are employed to disclose the effect of the grade
of material. The optimal configurations are obtained for three design
cases., In case 1, Ml is used for all members. In case 2 and case 3,

Ml is also used for the hanger members, while M2 and M3 are used for the
chord members, respectively. As shown in Fig. 2.23, truss height tends
to become smaller as the higher grade material is employed for the chord
members.

Next, the search for the optimal configuration is carried out on
the basis of the cost-optimization formulation in which the costs of
M2 And M3 are 1.05 and 1.20 times that of M1l and those materials are

treated as design variables. Numerical results for the 4-panel model
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Table 2.3 Secondary Stresses of 4-Panel Model

Member Secondary f Stress ¢'/o
Member Stress () Stress (0") Ratio (%)
) 1200 ol, = 32.23 "2.69

- .0 T
o), = 15.23 1.27
) o)y = -15.41 5.09
-302.4 o}, = =-5.65 1.87
- L] = -

X L200.1 oy, = -7.33 0.01
op, = -9.43 0.79

g'. = -69.35

4 0.0 b1

Glh = -44.82
. o), = 28.99 19.19
';51'6 of, = 19.16 12.69
- — olg = -2.29 0.67
6 =339.6 ol = -31.28 9.21
; L2001 olg = 6.91 0.58

- . 1 = -
. 9 1.45 0.12
. ofc = -29.00 2.42
200.
1200.0 o) = -35.86 2.99
or, = 0.00 0.00
9 . 56

243.3 Ogs =  0.00 0.00

- Case 1l

==== (Case 2

--== (Case 3

20 ton

e}
Il

T
|

Fig. 2.23 Influence of Member Strength on
Optimal Configuration
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PANIZN

Fig. 2.24 Optimal Configuration of 4-Panel Truss

with Some Grades of Materials

Table 2.4 Numerical Results of 4-Panel Model

zigglOf Area cm ?g?ggr kg nggiﬁ cm
1 5541 18.00 ~10000 250
2 5841 46.47 -11777 1134
3 SM50 4.79 9103 1031
4 Ss41 7.57 0 1000
5 5541 23.19 ~2232 1079
6 SS541 54.20 -15900 1188
7 SMS0 4.80 9123 1524
8 SM50 4.47 8500 1000
9 SM50 4.22 8027 1300

Total Volume = 0.3365 x lO6 cm3

Total Cost = 0.3385 x 10°
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Fig. 2.26 Convergence of Truss Design with

Discrete Components

-39~



are given in Fig. 2.24 and Table 2.4. It can be seen that truss height

is smaller than that of the truss with the same material. Note that

Ml material is chosen for the compressive members and M2 material for

the tensile members. In Table 2.4, positive and negative values in

member forces show tension and compression, respectively.

7) Influence of Discrete Sizingsz)_Ss)
For civil engineering structures, it is often desirable to select

member size as discrete values from a table of acceptable values.

Here, the design problem with discrete variables is dealt with by use

of a mixed integer programming. Let's consider the 2-panel truss model

in which the cross sectional areas are given as discrete values, e.g.,

five cross sectional areas ( 2., A_, A A5 )y = (5, 10, 15, 20,

2 1 2 3’ A4’
25 cm” ). The resulting configuration is presented in Fig. 2.25, com-
pared with the configuration obtained for the case with continuous var-
iables. As expected, one can find a considerable difference in configu-
ration, but the difference in volume is merely 2 per cent. This means
that when cross sectional areas are given as discrete values, it is pos-
sible to obtain an effective design by introducing a variation of con-
figurations into the design process.
The calculation is carried out by use of Doig and Land's algorithm56)
based on the branch bound method. Fig. 2.26 shows the convergency in
the optimization. It is seen that this problem has an uneven conver-
gence, which is caused by the replacements of discrete variables. As
known from the poor convergency, the problem requires more computation
time, about 7 times that of the usual treatments. From a practical

point of views, the design problem with discrete variables requires a

special treatment to reduce the computation time and memory capacity.
2.8 Conclusions
In this chapter, the influence of geometrical factors and mechanical

properties on configuration are investigated by placing attention on

topological and geometrical characteristics of trussed bridges. Through

numerical results, one may conclude as follows
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D)

2)

3)

4)

5)

6)

7)

Graphical representation is useful to recognize the geometrical
configurations of trussed structures. Based on the concepts of the
topology and geometry, the characteristics of truss configuration
can be elucidated by means of the classification of the member
system and the node system.

It is confirmed that a considerable weight reduction can often be
achieved by introducing the variation of configurations into the
designing process. For trussed bridges, " geometry " is more im-
portant than " topology " to determine structural configurations.
Namely, the topology of the member system is specified to a great
extent by the node positions. There is an optimal configuration
when only stress constraints are taken into consideration. Then,
the number of nodes does not play an important role.

Buckling effect is of primary importance in the decision of confi-
guration. Using the approximate method proposed in this chapter,
it is possibie to reach the optimum solution or a reasonable
solution in a comparatively simplified manner. Note that the
method is also applicable for the moving load case.

Needless to say, the loading condition is the most important factor
to determine structural configurations, and the loading condition
should be modeled to correspond well to the real state. From the
points of practical computation, it is accepted to replace the
moving load by the decomposed multiple loads.

Also, supporting condition affects the decision of truss configu-
ration. A feasible supporting condition should be chosen at the
first step of design, because each supporting condition used in the
present designs has the limit of weight-minimization, regardless of
whether the configuration is fixed or variable.

Seemingly, deflection constraint is not so important in the deci-
sion of geometrical configurations of statically determinate truss-
ed systems, because those trusses have more rigidity as they are
lighter.

The use of some grades of materials contributes to reduce the cost
and weight when some constraints are imposed on configuration.

However, it is inconvenient to implement the selection of materials
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8)

by means of the mixed integer programmings, because of the enormous

computation time and memory capacity.
Consequently, the following procedure is considered effective to
decide the configuration of a trussed bridge.
i) Determine the 'supporting condition.
ii) Assume the number of nodes and topology of the member
system.
iii) Perform the optimization by taking the nodal coordinates

and the cross sectional areas of members as design varia-
bles.
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Chapter 3 The Practical Design Method of Bridge Structures
Regarding Configurational Variation

3.1 Design Procedure

In usual bridge designs, the selection of structural type is first-

ly made according to the prescribed span length. Generally, the effec-
1)

tive span lengths are given for some types of bridges as follows

Plate Girder Bridge, Hybrid Girder Bridge ’ < 40 m
Continuous Girder Bridge 40 Vv 200 m
Trussed Bridge 50 vV 300 m
Cable~Stayed Bridge 100 v 350 m
Arched Bridge 80 Vv 500 m
Suspension Bridge 100 ~v 1500 m

Trussed bridges treated here are suitable for the medium span from 100 m
to 300 m, for which cable-stayed bridges and arched bridges are also a-
vailable.

According to the design hierarchy described in Chapter 1, the deci-
sion of structural type is closely related to the decision of topology.
We obtained in the previous chapter that geometry is more important than
topology to determine the geometrical configuration of trussed bridge.
However, this result may be due to the limitation of structural type.

If there is no limitation on structural type, topology will become more
important., Accepted to use a simple expression, the configurational
relations between trussed, arched and cable-stayed bridges can be con-
sidered as shown in Fig. 3.1. Conceptually, bridge structures can be
expressed as a model shown at the top of the figure on account of its
definition that bridge is a structure which connects the two separate
points. Then, some kinds of discretization are introduced to reduce the
weight or cost, It may be said that present typical bridge structures
have been developed by pursuiting the effective discretization with a
mechanical rationality, Also, it is observed in the figure that sup-
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porting condition is quite important in the decision of configuratiom,
and that the truss and arch models, which have the same supports, show
no distinctive difference.

In this chapter, configurational optimization of trussed and arch-
ed bridges are treated on the assumption that the supporting condition
and topology of the member system are given as fixed. Then, the design
problem to be considered reduces to a decision problem of optimal geo-
metry.

To determine the effective geometry, two kinds of parameters, cross
sectional areas and nodal coordinates, need to be taken into account in
the optimization procedure. The treatment of nodal coordinates apparent-
ly results in the increase of the number of design variables, which often
induces some difficulties in the application of mathematical programming.
Large scale optimization problems gererally have a poor convergency to
require excessive computation time or memory capacity. For such problems,
U. Kirschz) proposed a decomposition approach and showed its efficiency
by some design examples.

Here, a search for least-weight geometry is carried out by a two-
step treatment based on Kirsch's approach. The cross sectional areas
and the nodal coordinates are treated in two separate but dependent de-
sign spaces. Based on the optimality criterion and the sub-optimization
of members, the cross sectional areas can be expressed as functions of
the nodal coordinates., Also, this treatment can include the effects of
buckling constraints or deflection constraints and the grade of materials.
While attention is particularly placed on the design of trussed bridges,
a brief comparison of trussed and arched bridges is done with emphasis
on their geometrical configurations, and also the relation between span

length and weight is investigated.

2)

3.2 Partitioning of Design Variables
Formally, it is easy to include a change of geometry into a design

formulation. This can be done by introducing the nodal coordinates into

the set of design variables. Then, the design variables consist of cross
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sectional areas and nodal coordinates, which have different character-
istics and different orders of magnitude, In a practical use of mathe-
matical programming, the increase of design variables induced by the
addition of nodal coordinates and the mixing of variables having differ-
ent dimensions will cause such difficulties as a poor convergency and

an excessive computation load. Using the modified sequential linear pro-
gramming method, a considerable reduction of computation time and memory
capacity is achieved. Although this method is applicable to any kind of
non-linear optimization problem, more improvements on computation and
convergence are necessary to treat the configurational optimization pro-
blems which have a large number of design variables and constraints.

3)

G. Vanderplaats and F, Moses attempted to treat this problem in two
separate but dependent design spaces, one for the cross sectional areas
of members and one for the nodal coordinates. They obtained good results
for a considerably large transmission tower example. In this chapter, a
similar treatment is employed to remove the difficulties in conjunction
with computation. Cross sectional areas are considered to be completely
dependent on nodal coordinates, It is not so difficult to find the op-
timum set of cross sectional areas if the configuration is fixed. Fur-
thermore, for a special case, it is possible to find an effective relation
or an optimality criterion, Here, the search for effective configuration
is carried out, using the optimality criterion and mathematical program-
ming. Although this method has no guarantee that a global optimum solu-
tion can be obtained, it is advantageous from an engineering point of
view.

At first, a two-level formulation is shown based on Kirsch's approach
in order to explain how to deal with the design variables in the opti-
mization procedure,

General optimum design problems can be mathematically written as

follows

Find w
such that the objective function

Z=f (W) = Minimize (3.1)

-50-



subject to

0 (3.2)

I (W)

g (W)<o (3.3)

wL_i W< W (3.4)

in which WL and WU are the lower and upper bounds for design variables
#, and Eqs (3.2) and (3.3) are the equality and inequality conditionms,
respectiveiy. In truss problems, Eq.(3.2) represents the relation be-
tween the variables, For instance, they are derived from the symmetry
condition and the fabrication requirements. Eq.(3.3) represents the
design requirements with respect to safety or performance.

Here, the design variables W consist of cross sectional areas, 4,

and nodal coordinates, X.

(3.5)

Then, the problem expressed by Eqs (3,1) - (3.4) is treated as a two~
level problem,

At the first level, the nodal coordinates represented by X are
considered to be fixed and not to he variables, The initial values are

given with a range where all the imposed constraints are satisfied.

X = XO (3.6)

XO is the initial value selected for nodal coordinates, Using XO’ we
find A such that

I(A,X,)=0 (3.7)
g (A, X,) =0 (3.8)
al <a<a’ (3.9)

(3.10)
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The next step is to solve the second level problem.

¥t <x <A (3.11)

Minimize 2 = f ( A, » X ) (3.12)

where AO represents the cross sectional areas calculated in the previous
step ( as the first level ) and, in turn, X is treated as a variable.
The alternate steps are repeated until a sufficient design is achieved.
The method mentioned above is called the modal coordination method.
Although this method has also no security that the optimum solution can
be obtained, it is advantageous from a point of practical computation,
since the iteration can always be terminated with a feasible solution.
It should be, of course, noted that some treatments are necessary for

programming in order to improve the convergency.

4)

3.3 Approximate Design Method Based on Optimality Criterion

Here, in order to make the calculation easier, further simplifica-
tions are introduced into the decision process of cross sectional areas.
Namely, it is assumed that the cross sectional areas completely depends
on the nodal coordinates and can be expressed as functions of them by
using the optimality criterion derived from the inherent characteristics
of framed structures.

It is said that in the majority of minimum-weight designs of test
problems, a fully stressed design is an optimal one, or that the result-

5)

ing design has a weight close to that of the true solution. By using
this condition ( fully stressed ) as an optimality criterion, the cross
sectional areas A can be expressed as a function of the nodal coordinates

X.

A= A*( X ) (3.13)

In general, the design problem including a geometrical variation is for-

mulated as follows.
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Find A, , X. {i=1, ----- , m
1 J

j:l' ..... s I
such that
m
zZ = p.Z a, Li(Xj) + Minimize (3.14)
l=
subject to
- < < . .
Oaci —-Oi —-Oal (3.15)

where Oi and Gaci denote the induced stress and the allowable compres—
sive stress of the i-th member, respectively.
Using Eq.(3.13), the above design problem is reduced to an unconstrained

optimization problem.

Find X,
J
such that
m *
z = pi§1 Ai(Xj) L(x:) > Minimize (3.16)

Then, it is obvious that the search for unconstrained problems is much
easier than that for constrained ones. In the case, the improving di-

rection can be easily obtained by using the derivatives of Eq.(3.16).

d 2 m A (x.) . 3L, (X )
= pr{—2 1, (x) + 2 (x) —1 J (3.17)

9 X, i=1 93X, X,
J J J

It is noted that the design variables treated in Eq.(3.16) are reduced

to only the nodal coordinates and the reduction of design variables re-
markably contributes to mitigate the computation time and memory capac-
ity.

Treatment of Multiple Loading Condition6)‘lo)

Fully stressed condition is also applied for the multiple loading

condition, Namely, the cross sectional area A is determined by the ab-
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solutely maximum value of the member forces Fn, which are induced by

n
n-cases external load pP.

F? = 5"1 " (3.18)

A

F' = max (F"} (3.19)
n

where X is the stiffness matrix.

For truss problems, the cross sectional area is calculted as

un
A=F / oa (3.20)

Treatment of Indeterminate Systemsll)

In indeterminate structures, the member forces are determined not
only by the external load and the structural configuration, but also by
the cross sectional areas of individual members. 1In other words, the
induced force of each member affects the decision of the cross sectional
areas of other members. Since it is impossible to express the member
force by only the nodal coordinates, an approximate treatment is necces-
sary for dealing with indeterminate systems. Here, an iterative proce~

7 is utilized so as to calculate the cross sectional areas. ( see
Fig. 3.2 )

dure

At first, assume the initial values for cross sectional areas, re-
maining the configuration fixed., By use of the structural analysis,
calculate the member forces, from which new cross sectional areas are
determined. Terminate the iterative procedure when the cross sectional

areas converge to certain values, Otherwise, repeat the above steps.

3.4 Sub-Optimization of Members4)

In a case where the stress limitation 1s solely employed as con-

straints and the allowable stress is constant, the optimal set of cross

sectional areas can be determined by using the member force F.
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_~1
Ai =0, Fi (X) (3.21)

Then, the design formulation ( Eq.(3.16) ) is found as
Find X,
J

such that

m
Z = . i§1 Fi(Xj) Li(Xj) -+  Minimize (3.22)

alo

In a case with buckling constraints, the allowable stress Oa is a

function of Xx.

a= o;l(x) F(X) (3.23)

In checking the safety against a buckling failure, the slenderness ratio
is very important factor. It is said that the allowable strength for
each compressive member should be determined according to its slender-
ness ratio. Then, the cross sectional areas can no longer be expressed
as explicit functions of the nodal coordinates. However, using an ap-
proximate formula such as Eq.(2.13), the cross sectional area of the i-

th member, Ai’ can be obtained for pipe section

A. =KV F (X) L,(X) (3.24)
i i i 1
. . . -1/2 -1
in which Ki is a constant and Ki{ Fi(X) } Li(X) corresponds to Oa (X)

in Eq.(3.23). Using Eq.(3.24), the objective function Z is expressed as

m' m

2= o{z otr.x)rL.x)+ T k. VFIX L.x)}  (3.25)
. al 1 1 . 1 1 1
i=1 i=m'+1

where m' is the number of tensile members.
For generality, buckling effects are treated herein by means of a

" 12)

preoperational technique called " sub-optimization This technique

has been developed to obtain a simple formula which relates the cross
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sectional areas to the nodal coordinates, for general sections such as
13)14) with

application to a truss design in which the configuration is fixed. When

rectangular or square box sections. There are some studies

the length and the induced force of a member are given, the optimal
cross sectional areas can be calculated with the aid of the optimality
criterion " fully stressed ".

The moment inertia I and the cross sectional area A of the pipe

section with the thickness t are calculated as

4 4
;=2 _mD-2t) (3.26)
64 64
2 2
4 4

where D is the diameter of the pipe section.

Then, the slenderness ratio R is

r _ 4Lt (3.28)

R =—
L V2 Ya/t)+ tF

in which L and r denote the length of member and the radius of gyration,
respectively.
According to the formula which the Japan Road Association recommends,

the allowable compressive strength Oac is found as

7
o _ 4 L _ s 1.2 x 10
Ope = Iyl Ky = Tk 0 T - kY + (A-5y) 2 2
k5 + (L/r) (kg/cm”)
(3.29)
where
ky,>L/x i J;=1.3,= 0
, (3.30)
= =l
k, < L/r < k3 ; Iq 1,7,
. Yy = i = 1
k3iL/r ; Jg 0,7,
The parameters k., - k_ are constants dependent on the kinds of steel.

1 5
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( see Table 3.1 ) Using Eq.(3.28), Eq.(3.30) is rewritten as

r<k, ; n/sam)’-1 <a
: on/ ek -1 <a<uy/ewmk ) -1
2= 3 7 3 PY (3.31)
kK, <R ; Aiﬂ/B(L/k3)2—l

Observing the results of sub-optimization for S541 steel , the

following formula can be obrained for a given length.

A(x) = a VF(X) + b 93 <R
A(X) = F(X)/1568 + ¢ 20 < R < 93 (3.32)
A(X) = F(X)/1400 2 R < 20

(cm )

where a, b and ¢ are constants to be obtained by the curve in Fig. 3.3.
( see Table 3.2 )

Using Eq.(3.32), the cross sectional areas can be immediately calculated

when the member force is given.

For box sections, the following relations were presented by S§.

Okub013).
A.(X)=—1'(F.(X)—Y.)ni+8. F,(X) <F
i o b i i i — 01
1 (3.33)
A (X) =— (F.(X)-¢€,) F_ . < F.(X)
1 Gi 1 1 01 1

where ai, Bi, Yi’ Gi and ni are constants to be determined from the A-F
curve and FOi indicates the branching point of the A-F curve.

On the other hand, the automatic selection of materials can be made
by use of the sub-optimization technique without any integer programming.
Namely, one can choose the effective material by comparing the A-F curves
obtained for individual materials. The resulting A-F curve obtained for
5541 and SM50 steels is shown in Fig. 3.4 as a representative case. It

can be seen in this figure taht when the member force is more than 78 ton,

SM50 steel is superior to SS41 steel for the compressive member with 4
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Table 3.1 Values of kl - k5
SS41,8M41 SM53 SM58
SMa4l §850 SM50 SM50Y SMAS0
#m

k1 1400 1700 1900 2100 2600
k2 20 17 15 14 14
k3 93 86 80 76 67
k4 8.4 11.3 13 15 21
kS 6700 5700 5000 4500 3600

Table 3.2 Sub-Optimization for SS41 Steel

A=a’F +b a=F_ a=F __
A (93<R) F 1568 F 1400
+ C

L a b ( R=93 ) (R=20) | (R<20)
100 | 0.110 | -0.104 6778.46 4.7 62048.0
200 | 0.149 1.010 | 14660.80 9.5 | 124320.0
300 | 0.181 1.932 | 22406.72 | 14.2 | 186550.0
400 | 0.208 2.786 1 29933.12 | 19.0 | 248766.0
500 | 0.232 3.606 | 37428.16 | 23.8 | 310968.0
600 [ 0.254 4.407 | 45064.32| 28.5 | 373170.0
700 | 0.274 5.197 | 52543.68 | 33.3 | 435386.0
800 [ 0.293 5.980 | 60164.16 | 38.0 | 497588.0
900 | 0.311 6.757 | 67627.84 | 42.8 | 559790.0
1000 | 0.328 7.531 | 75107.20 | 47.6 | 621964.0
1100 | 0.344 8.302 | 82712.00| 52.3 | 684194.0
1200 | 0.363 8.804 | 90175.68 | 57.1 | 746396.0
1300 | 0.382 9.197 | 97796.16 | 61.8 | 808598.0
1400 | 0.403 9.525| 105259.04 | 66.6 | 870800.0
1500 | 0.423 9.801 | 112707.84 | 71.4 | 933002.0
1600 | 0.445 | 10.035| 120328.32) 76.1 | 995190.0
1700 | 0.466 | 10.236 | 127792.00| 80.9 [1057392.0
1800 | 0.488 | 10.407 | 135396.80| 85.6 [ 1119594.0
1900 | 0.510 [ 10.556 | 142860.48 | 90.4 | 1181796.0
2000 0.532 | 10.686 | 150324.16| 95.2 | 1243889.0
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meters length, Note that this figure is made by comparing the material

costs, whose rate is assumed to be 1 ( SS41 ) : 1.05 ( SM50 ).

3,5 Applications of Approximate Method to Truss Design

Here, the truss design including a geometrical variation is per-

formed on
chapter.,
Templeman

Hierarchy

Hierarchy

Hierarchy

Hierarchy

Then, the

following

Step 1

Step 2

Step 3

Step 4

Step 5

the basis of the design procedure obtained in the previous
Corresponding to the design hierarchy presented by A. B.

15), the design procedure is summarized as follows :

1 Topology --- Assume the number of nodes and the layout of
members under the prescribed supporting con-
dition.

2 Geometry —-—- The change of geometry is taken into account
by introducing the nodal coordinates‘iﬁto
the set of design variables. "

3 Overall Design --- The proportion of members is determined :
by dealing with the cross sectional areas as
variables.

4 Detail Design --- The details are determined by the sub-

optimization of members.
optimal positions of nodes are calculated according to the
steps.
Assume the initial geometry. ( i.,e. nodal coordinates X(O) )
Perform the structural analysis of the truss with the ge-
ometry determined in the previous step.
Obtain the optimum set of cross sectional areas by using the
values of member forces and member lengths calculated in
Step 2.
Search for the most effective direction S in the design space
which consists of nodal coordinates, and calculate the dis-

tance 0 with the aid of a one-dimensional optimization scheme.

Then, the improved geometry can be defined as

@ = xT s
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Step 6 If the value of X(I) converges, the procedure is terminated.
Otherwise, return to Step 2 and repeat Steps 3 - 5.
The above process 1s expressed as a macro flow chart. ( see Fig. 3.5 )
In order to treat some kinds of material, the material cost should
be empioyed as the objective function. Then, the problem is expressed
as

m
I min { C, A (F.) }i L, (3.34)
i=1 k

Minimize P

where P and Ck represent the total cost and the coefficient of the k-

th material, respectively.
The term of min { C A (F) } means the minimum of the product of cross
1

sectional area and unit cost. Replacing this term by a;s Eq.(3.34) is

written as
Find X,
7
such that

ai( Fi(Xj) , Li(Xj) ) Li(Xj) + Minimize (3.35)

o
[]
8

i=1

The derivatives necessary for calculating the improving direction are

derived as

3p Bai BLi aai BFi Bai BLi BLi
ox. - Tox, Pi T %uTox. T OR, ax. Lit . ox L t ey X .
j J J i %5 i %%y b

(3.36)

Thus, a truss design can be carried out without difficulty, using
the relations between the member forces and the cross sectional areas.
( i.e. Eq.(3.23) for a case without buckling constraints, Eq.(3.24) for
a case with buckling constraints, Eqs (3.32) and (3.33) for general
cases )

Next, the introduction of deflection constraint is attempted on
the basis of the optimality criterion presented by-A. Gellatly and
L. Berkel6). Using the generalized-virtual-load method, the deflection

is give as
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Fi obtained at Step 2
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X - a Vf

No

Converge

Fig. 3.5 Macro Flow Chart of Approximate
Design Method
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m . .
§= 5 — 1 1 (3.37)

in which Fg is the force due to the virtual load Q.
The optimum structure for which the deflection has the specified value
8* can be determined by finding the stationary value of the objective

function subjected to the equality condition.

§ =386 (3.38)

Using Eqs (3.37) and (3.38), the weight-minimization problem can be ex-

pressed in the following form by means of Lagrange's multiplier method.

m m F, Fi Li *
= I p,A, L.+ X (I -+t 2 2 _ ¢
i i ,

i=1 i=1 i

) (3.39)

where ® and A are Lagrangean and Lagrange's multiplier, respectively.

For a minimum

(0]
F,F- L, m oF oF L
—%%— =0 = Lj pj S WS S SR A W ¥ ( k Fi + k Fi ) k
j Ag 5 =1 BAj 3Aj Ak E
J
; (3.40)
@ *
— = 6-38 (3.41)
A

0=L.p.———'72——]>\ (3.42)

From Eq.(3.42), the cross sectional area is found as

a.= Y x Jir . P2/ 0. (3.43)
7 J 37 J

Finally, the cross sectional area can be expressed as a function of the

—6l—



member forces Fj and F?, combining Eq.(3.41) and Eq.(3.43).

For convenience to a practical computation, the cross sectional
area is expressed as a form in which structural members are divided into
two groups ; active and passive members. A. Gellatly and L. Berke spec-
ify that the active members are those whose cross sectional area may be
varied to achieve an optimized deflection-limited design, whereas the
passive members remain unchanged. With this division, the cross sec-

tional area can be written as

= 2" - 1 m 0 0
A, = A (X)) = L L (X,) //Fk(Xj)Fk(Xj)/Ek Fi(Xj)Fi(Xj)/Ei

*
T J 6—60k=lk

(3.44)

where m is the number of active members and 60 is the contribution of
passive members to the deflection.
Furthermore, Eq.(3.44) can be rewritten as a recursive form suitable for

the design of indeterminate systems.

0 -
.07 (I) m o %

(I+1) _ (1) i1 1 (I) k k 3.45
Ay = A —F,5. ) * LoaLe) ) Ee (3.43)

., .
i"i 8 60 k=1 k

where 0, = F,/A, and GQ = FQ/A..
i 71 i i"71
Substituting Eq.(3.44) to Eq.(3.35), the deflection constraint can be

taken into account in the design of truss.

3.6 Applications of Approximate Method to Arch Design

Truss resists the external load by axial forces, whereas arch
resists not only axial forces but also bending moments. This structural
property of arches gives a further freedom to select the structural con-

17)

figuration Trussed structures have a limitation in the determination
of configuration due to the stability condition. For instance, their

configurations are composed of triangles. On the other hand, for arched
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structures, other fundamental patterns such as square or trapezoid are
allowed to choose for constituting the configuration without loss of
overall stability. This means that arched structures have more free-
dom in the topology, and the increase of freedom may enable to achieve
more weight reduction.

As well as truss designs, the design of arched bridges is formulated

by use of the optimality criterion, " fully stressed ".

W ( weight ) = p L Ai Li -+ Minimize (3.46)
i=]
In this case, it is quite difficult to find an explicit relation between
the member force and the cross sectional area.
For arch members except for hanger members, the fully stressed con-

dition is expressed by neglecting the effect of shearing force as follows.

o; < * =9, (3.47)

in which Ni’ Mi and Zi signify the induced axial force, the induced bend-
ing moment and the section modulus, respectively.
It is assumed that the section modulus can be approximately express-

18)

ed as a function of the cross sectional area

Z = 8 Af/Z (3-48)

where B is a constant which depends on the shape of cross section. Then,

the fiber stress Oi 1s written as

v, | v, |

i 3/2
Ai BA;

(3.49)

Using Eqs (3.47) and (3.49), the following relation can be obtained.

2 3 2 _ 2 2 _ (3.50)
ol a; - 20, vl &+ |v.|a, - [u]° /8 =0
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Solving Eq.(3.50) analytically, the relation between the member force
and the cross sectional area can be obtained. However, it is conven-

ient to solve it numerically in the optimization procedure, where the

derivatives of the objective function are given aslg)
w__ 1o rg {(3a./8x.) L. + A, (3L,/3x.)} (3.51)
X, . E A M | i i '
b i=1
in which
2 2
- , M.|/3x,
2, (203 2|Ni|Ai)(3|Ni|/3Xj) +2(|m[/8%) (3|m;]/ )
09X . -
J (30,4, - |Ni|)(0aAi |N1.|)
(3.52)

3.7 Design Examples

1) Nein-Bar Truss Model

This example is employed to investigate the relation between nodal
coordinates and volume. The optimal geometry is shown in Fig. 3.6, with
the loading condition and the selected design variables being Xl - X3.
This truss is simply supported and its span length is 40 m. Since this
truss is statically determinate and subject to a single loading condi-
tion, the resulting design is fully stressed. 1In this case the member

forces, Fl - F9, can be expressed by nodal coordinates.

Fl = -10 / sino

F o= 1 { sinB (-10/tano. + 10/tany ) _ 10 }
2 sin¥y sinB /tany + cosB

F.= - -10/tano. + 10/tany
3" sinB/tany + cosfB

F = 10/tano (3.53)

_2 {sinB(-lO/tana + 10/tany) _ 10 }
5 sinf/tany + cosB
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where the nagative values indicate the compressive forces. Unless the
buckling effect is taken into consideration, the necessary cross sec-

tional areas are found to be

A, =F, /O (3.54)

Using Eqs (3.53) and (3.54), the total volume, V, can be obtained as

follows.

2 2 2 2

- 4 X_-X_) +(20-X
20(X1+x2)+400X1 ., 400(x3 x2) , 00 {( 3 2) ( 1) }
T 12000 X, (20-X,) (20-x,) X,

|20X2-X1X3 ] , .55
X2X3(20-Xl) (m ) .

2 2
+20{x2+ (20-X) }

where

/2 12 _/‘7_ 24120-x )2 =/ %%+ (20-x )%
L X +X2 , L2 = (X3 X2) +(20 Xl) , L X2 ( l)

3

L,=20 , L5 = X3

sino = X2 / Ll , cosQa Xl / Ll , tano = X2 / Xl

sinR = X_ / L cosf (20—X1) / L3 , tanB = X2 / (20-Xl)

siny = (X3—X2) / L. , cosY = (20-Xl) / L2 , tany = (X3-X2)/(20-X1)

Oa = 1200 kg/cm2

When the values of Xl - X3 are given, the cross sectional areas and
the total volume can be calculated from Eq.(3.53) to Eq.(3.55). It is
also possible to draw the contour surface of the objective function
( i.e. volume ). For two cases where the values of volume are specified
as 0.115 x 106 cm3 and 0.120 x 106 cm3, the contour surfaces are shown
in Fig. 3.7. Fig. 3.8 and Fig. 3.9 show the projections on the X -X

173

plane and the X2-X3 plane, respectively. Fig. 3.7 indicates that in this
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Fig. 3.7 Design Space of Nein-Bar Truss Example
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model the contour surfaces have round shapes like an egg, though two ends
are cut off by two planes. This is due to the side constraints imposed
on the design variables Xl and X2.

Fig, 3.10 shows the relation between the total volume and Xl when

14 m and X, = 20 m. And the relations

between the total volume and X2 or X3 are shown in Fig. 3.11 and Fig.

3,12, respectively, From these figures, it is obtained that the optimum

other variables are fixed as X2

set of nodal coordinates is roughly estimated as (Xl’Xz'X3) = (6,14,20)
(m) and the optimum point is located at a point near the center of the
contour surfaces, The above observation leads to the conclusion that

the problem treated here provides assurance that the approximate method

employed in this chapter will give good results.

2) 1Influence of Span Length

Using the approximate method, three kinds of trussed bridges, Warren
truss with vertical members ( Model 1 ), Warren truss ( Model 2 ) and
Pratt truss ( Model 3 ), are designed to investigate the change of the
material cost for unit length due to the change of span length. The
loading condition and the configuration of employed truss models are
illustrated in Fig, 3,13. As shown in Fig. 3.14, the numerical results
indicate that the increase of span length gives rise to the increase of
the unit material cost on account of the increase of the dead load. A
rapld increase can be seen where the span length is more than 140 m.
Model 1 shows the superiority in cost-minimization over all the span
lengths, because of the effect of the buckling constraint. Although
there 1s little difference between Model 2 and Model 3, Model 3 becomes
superior when the span length exceeds 140 m.

In all designs, SS41 steel is chosen for the compressive members,
whereas SM50 steel for the tensile members. The rate of truss height
and span length exsists from 1/11.5to1/7.5. These values seem to be
somewhat small, comparing the values 1/10 - 1/6 obtained for parallel-
chord trussed bridges whose span lengths are less than 100 m. This dif-
ference may be due to the effects of panel numbers, kinds of materials
and loading condition employed herein, However, the optimal rate of
truss height and span length is unchanged within a range of 0 - 100 m,
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for all trusses. One design case requires 70 seconds in computation for

FACOM M-190 computer.

3) Design of Continuous Trussed Bridge ( AMAKUSA 1-GO Bridge Model )

The proposed approximate method is applied for the large truss model
which has 80 nodes and 157 members. The supporting condition and the
loading condition are given in Fig. 3.15. This model has such limitations
on configuration that the upper chord members are allocated as horizon-
tally straight, and also the lower chord members give the clearance for
the place near the center of the bridge. Considering the symmetrical
and supporting conditions, 99 design variables should be taken into ac-
count in the optimization. However, the proposed method can reduce the
number of design variables from 99 to 20, eliminating the cross section-
al areas from the set of design variables. 1In Fig. 3.16, the configura-
tion obtained at the 4th step is shown. It is seen that the configura-
tion tends to transfer from Pratt type to Warren type, according to the
change of node positions with respect to the lower chords. Since this
result is obtained under optimization and is not a final solution, the
configuration shows an uneven curve for the formation of lower chord
members.

At the 4th step, the material cost diminishes by 2 per cent from
the initial step. It is also possible to reduce the material cost more
than 8 per cent by decreasing the truss height. Finally, the configu-
ration shown in Fig. 3.17 enables to achieve more than 16 per cent re-
duction. In this example, the optimization is performed by use of the
conjugate gradient method., The computation time for a step is about 5
minutes, which are mainly consumed in the iterative procedure used for
the structural analysis.

4) Effect of Deflection Constraintzo)

The efficiency of the optimality criterion algorithm is first ex-
amined by a truss example shown in Fig. 3,18, whose geometry is fixed.
The optimality criterion algorithm reaches the optimum solution with only
one iteration, whereas SLP requires 29 iterations, starting from the

same initial values. The convergency of both methods is presented in
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Fig, 3.19. While the convergency of the optimality criterion method is
not affected by the initial values, SLP depends on the initial values
and the selection of the moving limits. It can be said that for re-
latively simple trusses, the optimality criterion algorithm gives an
accurate solution with less computation time, independent of the initial
values.

Fig., 3.20 presents the relations between the deflection constraint
and the total weight, which are obtained for the truss example shown in
Fig. 3,21. - It is seen in this figure that the totalsweight is in inverse
proportional to the deflection limit. This can be inferred by the fact
that 60 in Eq.(3.44) 1is identically zero when the truss is statically
determinate and the external load is applied at the center of span.

Next, the optimality criterion algorithm is used together with the
variable metric method to search for the optimal configuration. The
change of configuration through optimization is given in Fig. 3.22, where
the initial configuration is a 4-panel Pratt truss. The resulting con-
figuration is quite similar to that obtained without deflection con-
straints, It seems that the deflection constraint hardly affects the

determination of the configuration of statically determinate trusses.

5) Comparison of Truss and Arch

Some simple arch models are designed by use of the proposed method.
Fig. 3,23 shows the optimal configuration of an arch model with the same
topology of members as that of the truss model shown in Fig. 3.6. Com-
paring Fig. 3.23 with Fig. 3.6, it is obtained that arch and truss show
no distinct difference in configuration, if the topology of members is
the same,

Next, consider an arch model shown in Fig. 3.24, whose topology of
members is not accepted for truss models on account of the stability
condition. In this case, the obtained configuration becomes quite dif-
ferent in spite of the same loading condition. This means that topology
of members is of primary importance in the determination of the configu-
ration of arched structures, though it is not so important in truss prob-
lems. For a 4~panel arch model subjected to the uniform load, the optimal

configuration 1s obtained, as shown in Fig. 3.25. Then, the total weight
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Fig. 3.27 Optimal Configuration of Model 1

Fig. 3.28 Optimal Configuration of Model 2
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Table 3.3

Numerical Results of Model 1

Length Area Total Normal Bending
(cm) (cmz) Stress Stress Stress
1 225.1 4.88 -1181.5 -814.3 -367.2
2 500.0 1.77 1185.5 669.4 516.2
3 438.8 1.41 1214.5 1214.5 0.0
4 687.5 8.51 ~-580.1 -513.6 ~-66.5
5 643.3 0.20 1179.2 1179.2 0.0
6 500.0 2.90 1198.1 1159.3 39.0
7 720.4 0.94 1151.4 1151.4 0.0
8 616.0 7.08 -605.7 -592.7 . -13.0
9 882.3 0.05 1092.6 1092.6 0.0
10 500.0 3.25 1203.5 1194.5 9.0
11 900.0 0.43 1200.0 1200.0 0.0
12 540.7 6.20 -688.2 -672.3 -15.9
13 1015.4 0.44 1198.2 1198.2 0.0
14 500.0 3.29 1202.4 1191.5 10.9
15 1019.5 0.24 1205.3 1205.3 0.0
16 252.8 3.38 -1204.9 -1182.8 -22.1
17 1000.7 0.37 11%94.0 1194.0 0.0
Table 3.4  Numerical Results of Model 2
Length Area Total Normal Bending
(cm) (cmz) Stress Stress Stress
1 330.1 7.31 -1185.2 =-572.9 -612.3
2 500.0 3.20 116l1.1 708.4 452.7
3 430.1 1.31 1195.4 1195.4 0.0
4 653.3 10.06 -779.6 -423.5 -356.1
5 500.0 4.05 1171.9 852.6 319.3
6 712.4 0.96 1125.7 1125.7 0.0
7 584.3 8.04 -770.4 -516.8 -253.6
8 500.0 4.29 1164.1 906.8 257.3
9 907.5 0.83 1265.1 1265.1 0.0
10 754.6 10.03 -577.9 -420.3 -157.6
11 , 500.0 4.39 1178.8 952.4 226.4
12 958.5 0.88 1116.9 1116.9 0.0
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and the maximum deflection are 1193 kg and 4.2 cm, respectively. 1In this
case, the arch model is lighter than the truss model, because the weight
of the truss model becomes 1815 kg under the same design condition.

Fig. 3.26 presents the comparison of truss and arch structures with
various span lengths, wheré both truss and arch models have the same
panel number and the same deflection limit. It can be seen that as the
increase of span length the weight of arch model increases with a cer-
tain rate, while that of truss model increases rapidly. It is, however,
noted that truss is superior for the case where the deflection constraint
is not significant.

In order to disclose the effect of topology on the configuration of
arched bridges, two different kinds of arch examples ( Model 1 and Model
2 ) are employed. The numerical results obtained by the proposed method
are summarized in Table 3.3, Table 3.4, Fig. 3.27 and Fig. 3.28. The
upper chord members of both examples have the parabolic shapes similar
to the bending diagram of simple beam models. From Table 3.3 and Table
3.4, it is seen that Model 1 has the bending stress less than the normal
stress, though Model 2 has the larger bending stress. This implies that
topology of Model 1 is effective for a trussed bridge and that of Model
2 for an arched bridge. Therefore, topological factors may play an im-

portant role in decisions concerning the selection of structural types.

3.8 Conclusions

While the importance of geometrical configuration has been suffi-
ciently recognized in the design of bridge structures, its direct intro-
duction has had such difficulties as poor convergency and excessive com-
putation time. In this chapter, an approximate method based on the op-
timality criterion is proposed to remove the above problems concerning
practical computations. Through some numerical examples, the following
conclusions were reached.

1) It is confirmed that the geometrical configuration of trussed bridges
can be efficiently treated with the use of the proposed method, and

considerable weight or cost reduction can often be achieved. Effec-
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2)

3)

4)

5)

6)

7)

tive use of the optimality criterion makes it possible to decrease
the number of design variables, which results in a remarkable sav-
ing of computational effort.

The most remarkable feature of the approximate method is the fast
convergence due to the simplification of unconstrained optimization
problems. Although this method has no guarantee to reach the global
optimum, it has an advantage from an engineering point of view. The
calculation can be terminated at any design step in which a feasible
solution is obtained. The design example of Amakusa l-go bridge shows
that this approximate method seems to be extremely promising in prac-
tical applications.

)

As seen in the work by H. Sugimoto and et al21 , trussed bridges
without high redundancy tend to be fully stressed in the weight-
minimization systems. For the reason, the optimality criterion

" fully stressed " employed here is considered reasonable for the
design of trussed bridges with geometrical variations.

Combining the sub-optimization technique with the mathematical pro-
gramming, buckling effects can be taken into consideration, and also
discrete variables with respect to the selection of materials can be
treated without integer programming.,

In order to search for the optimum node positions, the variable met-
ric method seems to be superior in convergency to the conjugate gra-
dient method. By using the band matrix method or the decomposition
method in the structural analysis, one can reduce the computation
time and memory capacity.

The optimality criterion algorithm proposed by A. Gellatly and L.
Berke is very efficient for the design of trussed structures with
deflection constraint. For statically determinate trusses, accu-
rate solutions can be obtained by only one iteration, in spite of
the choice of initial values. Also, for indeterminate trusses,
satisfactory solutions can be obtained without difficulty.

Using this algorithm, it is possible to investigate the effect of
deflection constraints on the decision of truss configuration.

Most examples show that the deflection limitation does not change

the node positions but the values of cross sectional areas.
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8)

It is to be noted that the proposed method is applicable for the
design of arched bridges. Numerical results obtained for arch ex-
amples imply that topology of members is significant for the weight-
minimization of arched bridges, whereas it is not for trussed bridges.
Generally, trussed systems are lighter than arched systems for the
case without deflection limitation. This tendency is due to the
difference in the definition of fully stressed condition. Namely,

in truss systems the induced stresses reach the allowable limit at
all parts of the member, but in arched system merely at the ends of

the member.

-88-



1

2)

3)

4)

5)

6)

7)

8)

9

10)

11)

12)

13)

14)

References for Chapter 3

Tachibana, Y., " Bridge Engineering ", Kyoritsu Publishing,
1977, pp7 ( in Japanese )

Kirsch, U., " Multilevel Approach to Optimum Structural Design ",
Proc. ASCE, ST4, Apr., 1975, pp957-974

Vanderplaats, G. N. and Moses, F., " Automated Design of Trusses
for Optimum Geometry ", Proc. ASCE, ST3, Mar., 1972, pp671-690
Shiraishi, N. and Furuta, H., " On Geometry of Truss ", The
Memoirs of the Faculty of Engineering, Kyoto Univ., Vol.XLI,

Part 4, Oct., 1979, pp498-517

Kunar, P. R. and Chan, A. S. L., " A Method for the Configurational
Optimisation of Structures ", J. of Computer Methods in Applied
Mechanics and Engineering, Vol.7, 1976, pp331-350

Spillers, W. R. and Al-Banna, S., " Optimization Using Iterative

", Int. J. of Computers and Structures, Vol.3,

Design Techniques
1973, ppl263-1271
Reinschmidt, K. F., Cornell, C. A. and Brotchie, J. F., "
Iterative Design and Structural Optimization ", Proc. ASCE, ST6,
Dec., 1966, pp281-318

Spillers, W. R. and Funaro, J., " Iterative Design with Deflection
Constraints ", Int. J. of Solid and Structures, Vol.ll, 1975,
pp793-802

Spillers, W. R. and Al-Banna, S., " Convergence in Iterative
Design ", Quarterly of Applied Mathematics, July, 1975, ppl60-164
Spillers, W. R. and Lev, O., " Design for Two Loading Conditiomns ",
Int. J. of Solid and Structures, Vol.7, 1971, ppl261-1267
Johnson, D. and Brotton, D. M., " Optimum Elastic Design of
Redundant Trusses ", Proc. ASCE, ST12, Dec., 1969, pp2589-2610
Kavlie, D. and Moe, J., " Automated Design of Frame Structures ",
Proc. ASCE, STl1, Jan., 1971, pp33-62

Okubo, S., " Optimization of Truss ", Proc. JSCE, No.177, May,
1970, pp9-19 ( in Japanese )

Sugimoto, H., " Practical Optimization of Truss ", Proc. JSCE,

No.208, Dec., 1972, pp23-31 ( in Japanese )

-89-



15) Templeman, A. B., " Optimization Concepts and Techniques in

Structural Design "

» IABSE 10th Congress, Inductory Report,
Tokyo, 1975, pp4l-60

16) Gellatly, A. and Berke, L., " Optimality-Criterion-Based
Algorithms, Chapter 4 of Optimum Structural Design : Theory
and Application ( by R. Gallagher and 0. Zienkiewicz ) ", John
Wiley and Sons, Inc., 1973

17) Shiraishi, N. and Furuta, H., " Some Considerations on Geometrical
Configurations of Bridge Structures ", The 27th Annual Meeting of
Applied Mechanics, Tokyo, Nov., 1977 ( in Japanese )

18) Naruoka, M. and others, " Optimum Design of Framed Structures ",
JSsC, Vol.7, No.63 - Vol.8, No.74, 1971 - 1972 ( in Japanese )

19) Shiraishi, N., Furuta, H. and Ikejima, K., " Configurational

", to appear in

Optimization of Framed Structural Systems
Theoretical and Applied Mechanics, Vol.29
20) Gellatly, R. A., Helenbrook, R. G. and Kocher, L. H., " Multiple
Constraints in Structural Optimization ", Int. J. for Numerical
Methods in Engineering, Vol.13, 1978, pp297-309
21) Sugimoto, H., Doi, H. and Nakamura, S., " On the Optimum Design
"

of Long Truss Bridges by Partitioning into Substructures ",

Proc. JSCE, No.261, 1977, ppl-6 ( in Japanese )

-90-



Chapter 4 Safety Analysis and Minimum—Weight Design of
Framed Structures Using Failure Probability

4,1 Safety of Strhcturel)

The ultimate objective of a structural engineer is to design
structures which are both economically feasible and functionally
reliable. In the previous chapters, attention is placed on economic
design, where structures are designed on the basis of the determinis-
tic design philosophy. The deterministic approach has been developed
based on the past valuable experiences and empirical or theoretical
investigations on structural safety. However, it is currently real-
ized that there is some risk which is unavoidable, in view of numerous
uncertainties underlying the design and construction of a structure.
Absolute safety, therefore, is ordinarily not tenable nor practically
realizablez).

To recognize and measure theirisk, it is desirable to introduce
the probabilistic approach into the design process. The foundation
of the probability-based design was first given by A. M. Freudenthal

in 19473), and its theoretical aspects have been clarified by many

4)-11)

researchers These refinements and clarifications of the theory

are called the classical reliability theory, and thereafter A. Ang

12)-16) have extended the classical theory to account for

and others
the subjective uncertainties involved in the prediction of relevant
probability distributions.

In this chapter, structural safety is examined by using the fail-
ure probability as a measure of safety. To calculate the failure
probability, it is necessary to specify a probability distribution
function for each uncertain factor. However, the specification of
distribution function is in practical quite difficult, due to the
lack of sufficient data relevant to applied loads and structural
resistances. Also, even if appropriate functions are found, the calcu-

lation of failure probability often requires a numerical integration

which is prohibitive and time-consuming. It can be said that the
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difficulties in calculation and the selection of distribution function
are obstacles to a practical use of the reliability theory.

Regardless of the abovementioned problems, this approach has
such significant features that it is suitable to investigate the
influence of each uncertainty on structural design and the structural

behavior under the unpredicting environment.

4.2 Failure Probability of Framed Structure

Assuming the independence between the applied load and the struc-

tural resistance, the failure probability of a structure with a single

load can be computed as follows :17)

J (1 - Fg(x)) fo(r) dr

= <
p,=P (R<S) 0

fo FR(S) fS(S) ds (4.1)

in which fR(r) and fs(s) are the derivatives of distribution functions
FR(r) and FS(s), respectively, and S and R denote the load effect and
the material strength in terms of carrying capacity of load, respective-
1ly.

For mathematical convenience, both the applied load and the
structural resistance are often assumed to be normally distributed or
lognormally distributed. In the former case, the failure probability

p, can be expressed as

p, = o —Bl ) 4.2)
in which B = (u -u ) / v 02 + 02 (4.3)
1 R S R S
t 2
det) = f exp(-t/2) dt (4.4)
-00 2ﬂ

“R : mean value of member resistance

US ¢ mean value of load effect
2 .

OR : variance of member resistance
2

OS : variance of load effect
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For the latter case, P is approximately found as

(4.5)

pf*<1>(-82)

=1n (v /ug) / Y 52 + 6; (4.6)

6R : coefficient of variation with respect to resistance

in which

B,

GS : coefficient of variation with respect to load effect

For general cases, the failure probability is calculated as
pf=1-Pr(§eD)=1-fo£(§)d§ 4.7
where X is a n-dimensional vector which collects all the random

quantities, and D is the safe region.

By use of the polar coordinates, Eq. (4.7) can be rewritten 3518)
. Be@) ,
p.=1- f do. fo fa',B (o ,B) dB (4.8)

f o<o .<2m —
> =
_t -_
cosa cosg_f;

where B is the distance of X from the origin and ui is the angle

between the generic axis, and vector o is defined as

o
< < ] = soe
a = |a 0<a, <a2m (i=1, /n)
* t
. cos0. coso = 1
o
n
and cos 0 : director cosines
o : the reduced vector which is obtained from o by

deleting the last component
)

0"n-J

Bf(gf): safe boundary described in polar coordinates

|
n

Bf(gf) =max { B | Bcoso €D}
£- B(g',e) : joint distribution function described in polar
- coordinates
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4.3 Reliability of Indeterminate Structural Systems

A safety analysis of indeterminate systems has difficult
features, which are due to the fact that those systems have generally
many various possible failiure modes. As a rule, the approximations
have been done on the assumption of statistical independence and
complete dependence among failure modes. However, the resulting
solution may be widely different as the number of failure modes
increases. Also, usual structures have considerable dependence on
their own failure mechanisms.

Indeterminate trusses can be considered to fail by the initial
yielding. There are, however, many routes to reach the system collapse
in indeterminate trusses, which while it is considerably difficult to
trace all of them, some investigations were presented.lg)zo) While
the actual collapse criterion is applied without difficulty, several
mechanisms must be taken into consideration.21)—24)

The 1limit analysis concept is employed here to discuss the safety
of indeterminate structures, placing attention on rigid frames. Then,
only the failure due to the formation of plastic hinge is treated, so
the failure through the loss of stability is not accounted for. Since
the collapse mechanisms are inter-dependent, this effect is inevitable
in the exact evaluation of system reliability. Here, the correlation
between each failure mode is taken into account by calling attention
to the events that two modes occur simultaneously.

Using the coefficient of correlation between each modal margin
and an appropriate mathematical approximation, one can obtain a simple
method presenting a good upper bound of system failure probability.
From the view of safety design, only the value of the upper bound is
necessary, but the lower bound is important to check the availability
of the approximation. There is a brief discussion with regard to the
lower bound. Furthermore, an improvement is attempted based on the
fact that the simultaneous occurrence of three modes is considerably
affected and limited by the occurrence of two of three modes. A simple

mathematical model is developed to evaluate the effect of those events

on the average.
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Reduction of Upper Bound Formula2>) ~30)

Supposing that a structural system has n failure modes, the
probability of a system failure, p., can be written in the terms of

the modal failure events Fi as follows :
Pf=Pr( FlUFZUconoo-o--a UFn) (4.9)

where the symbol "U" signifies the union of the events.
The event Fi occurs when the modal resistance Ri is less than the
modal load effect Si'

F. = ( R, - 5; <0) (4.10)

Taking the collapse mechanisms as a typical failure mode, the
failure event Fi is written by introducing the reserve strength zi

in the following :

F.=(2,<0) (4.11)
i i
n m
where Z;, = z A M - 'Z Bij Sj (4.12)
Mk ¢ structural resistance of a structural member at the
k-th point in the structure
Aik : resistance coefficient determined by the position

and condition of the k-th point related to the i-th

failure
Sj : effect of the j-th load on the structure
Bij : load coefficient determined by the position and

magnitude of the j-th load on the structure related

to the i-th failure mode.

The beam failure mode of a single-bent frame shown in Fig. 4.1 is

Z, =My + 2MB M- 4P1L/2 (4.13)

If the form of Eq.(4.12) is used,

7 2
zZ,= L A _M - I B ,S, (4.14)

1 k=1 1k 'k 3=1 1 3
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P, Ms Ms
Mef Ms M T
L
M e ‘L
4L

FaiLure Mobes

Z, = Mg+ 2Mg+ Mg -4R, L/2
Z, = M+ 2Mg+ M, -4RL/2
Z3 = Mg+ 2Mg*+M. -4RL/2
Zg=M.+ M+ M.+ M - PL
Zg= Mg+ Mg+ Mg+ M. —PR,L
Zg = M+ Mg+ Mg+ M —P,L
Z7 = Mg+ 2Mg* 2M+ M -P,L - 4P L/2
Zg = Mc+ 2Mg+2Mg+ M~ P,L - 4P L/2

Fig. 4.1 Single Bent Frame
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where M =M =M =M =M

Ay 521252168370

(4.15)
A3 8551, 8,,=2
By, =0, By, =2L

Then, the failure probability of the i-th mode, Pfi’ is given as

Pgy = Pr( Z; <0) (4.16)
By paying attention to the n-th event, Eq.(4.9) can be expanded to be3l)
. = LR + P
Pr(Fl U F2 U U Fn) Pr(Fl UeeeU Fn_l) r(Fn)
- Pr((FlU""' U Fn_l) n Fn) (4.17)
where the symbol " N1 " signifies the intersection of the events.
The last term on the right side in Eq.(4.17) is lowly limited by the
probability of the occurrence of two events.
P_((F,U *o°¢ >
r(( 1 U Fn-l) n Fn) __Pr(Fk n Fn) (4.18)
where Fk is one of the events Fi'( i=1l, esece , n-1 ).
Thus, the upper bound of p, can be reduced, that is,
< oo -
pp S P (FyUF, s« UF ) +P(F)-P(F 0F)
(4.19)
To obtain the closest upper bound, one should select the value which
minimizes the last term of inequality (4.19). When the expansion is
continued, a simple formula presenting an upper bound can be obtained.32)
n n-1 i
p, = _): P (F,) - .E max (Pr(Fj nFE...)) (4.20)
i=1 i=1 j=1

Here, assuming a statistically complete dependence between each mode,

the failure probability becomes as follows :33)
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P_=P (F, ) (4.21)

f r iw

where Fiw is the weakest mode.
On the other hand, assuming a probabilistic independence, it can be
expressed as

n

Pg = .Z Pr(Fi) 4.22)

i=1
It is apparent that Eq.(4.20) gives a better upper bound than Eq. (4.22),
because the value calculated by Eq.(4.20) is less than that by Eq. (4.
22) by the value of its second term.

When the failure modes do not have a strong dependence, Eq.(4.21)

gives a value very far from the true solution. For such a case, the

following equation may give a better result.

n
p.> L P_(F,) - L P (F.q F)) (4.23)
£f— 7 T 1 oci<jn TP

An Improvement on Evaluation of System Reliability

In the preceding section, a simple method is presented, which
requires the probabilities that two events occur simultaneously.
These probabilities can be obtained by introducing the inter-dependence
between two modes through the coefficients of correlation. Using the
approximate method developed by M. Tichy and M. Vorlicek35), they can
be calculated without integration.

When Pr(Fi) is less than Pr(Fj)’ the probability of the occurrence

of two events, Fi and Fj’ is expressed as

- $5+2 4 _
PoF; 0 Fj) - Pr(Fj) {Pr(Fi) * YFiFj (1 Pr(Fi))} (4.24)
where YFiFj : the coefficient of correlation between Fi and Fj
¢j = —loglo Pr(Fj) (4.25)

While the implementation of Eq.(4.20) needs only the failure
probability of each mode and the coefficient of correlation, it may
give a too conservative value for a case where the failure modes are

considerably dependent. To examine the accuracy of this method, an
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improvement on the lower bound is considered herein.
Eq.(4.9) can be rewritten in the terms of the intersections of

the events as follows :
n
P (F UseUF )=% P (F.,)- L P _(F.nF._ )+ pX P E.aF nF, )=
r 1 noL r i 0<i<j<n r i J 0<i<3<k<n r i J

......+pr(FlnF2n..nFn) (4.26)
It is evident that in Eq.(4.26) any term has a greater value than
those of the successive terms. Also, the former is influential on the
latter. Generally, higher terms are truncated in the calculation,
assuming that those have small values. However, this assumption is
not true for some cases, and the case treatéed here may be one of the
exceptions. Therefore, we attempt to take additionally the third
term of Eq.(4.26) into account, in order to improve the approximation.
In order to obtain this probability analytically, a simple mathematical
model is proposed.

In general, the failure probability of the i-th mode is calculated
as the negative region shown in Fig. 4.2. Then, the circle with the
same area as this region is transferred to express the failure event
Fi and a similar treatment is used for the remainders, Fj and Fk.
The probability of the occurrence of two events is given as the
intersected region of two circles, as shown in Fig. 4.3. Also, the
event that three modes occur at the same time can be specified as the
shading part of Fig. 4.4. This procedure is summarized as follows

Step 1 Specify the three circles, where their radii are determined
by corresponding their areas to their failure probabilities.
Step 2 The distance between each two circles can be obtained by
making the overlapped section areas equivalent to those of
the two-events-occurrence probabilities.
Step 3 The three-events-occurrence probability can be calculated
as the area of the induced curve-linear triangle.
It should be noted that the actual failure can never be exactly
expressed by that simple figure, which may have a complicated bound-
ary. The two-dimensional model employed here may be insufficient to
express some special cases. Nevertheless, it can be considered to
give the inter-dependence between three modes on the average, though

it may include little physical meaning.
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The system failure probability is calculated by using the first
to the third terms of Eq. (4.26).

n
p.< I P (F,) - z P (F.n F,) + % P(F,NF,NF)
f — =3 T 1 0<i<j<n r 1 J 0<i<j<k<n r i J k

4.27)
While this model is developed to improve the lower bound, the used
equation will give an upper bound. It is natural that this approxima-
tion presents a conservative value when the model corresponds well to
the actual event and the calculation is performed with a good accuracy.
The obtained value will approach the true solution more closely,

whether it is conservative or not.

The Relation between Proposed Method and Ordering Method
36)37)

F. Moses and D. Kinser proposed the analysis method called
the ordering method for estimating the overall failure probability.
By using the relationship of mutually exclusive events, pg can be
written as
= F nrF 0OF ceee
p, =P (F) +P (F,0 F)) +P (F NF F,) +
cees 4 ﬂ— H_ n"n_
Pr(Fn Fl F2 Fn-l) (4.28)
While this equation covers all possible failure events of the entire
system, it requires enormous computations. Its implementation can be

carried out solely when the correlations among all modes are found.

It is apparent that the following relation exsists.
F eenNF < F
Pr(Fn n Fl n len_l) < Pr(Fn n k) (4.29)
where k is one of number 1 through n-1.

If k is selected as having the minimum value of Pr( Fi n Fn ) (i=1,°"

ese , n-1), that is,
n = ]
Pr(Fk Fn) min Pr(Fi n Fn) (4.30)
i=1
the difference between the left and the right hands of inequality (4.
29) will be the smallest. Now, the probability, min Pr( Fi n Fn ) can

be rewritten by use of the failure event Fi as follows :
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n-1 _ n-1
min P (F, 0 F ) = min {Pr(Fn) - P (F. Fn)} (4.31)
i=1 i=1

Since Pr(Fn) is constant, the minimum value is obtained when Pr( Fi n

Fn ) indicates the maximum value.

n-1 _ n-1
‘n P _ _
?ig r(Fi n Fn) Pr(Fn) Ti§ Pr(Fi n Fn) (4.32)

Using Eq.(4.32), Eq.(4.28) can be approximately expressed as follows :

2
Py P (F)) + (P (F,) = P (F, 0 F)) +{P_(F) - max P (F, 0 F,)}
n-1
teee 4 {Pr(Fn) - max P (F, n Fn)}
i=1
n n-1
= iil Pr(Fi) - izl max {Pr(Fl n Fi+l)/"" p Pr(Fi n Fi+l)} (4.33)

Thus, the relationship between the proposed method and the ordering
method is clarified. Namely, they are equivalent, if the ordering

method accepts the approximation as shown in Eq. (4.29).

Design Examples

To illustrate the validity and the accuracy of the proposed method,
some test examples are presented. In all examples, the loads and
resistances are assumed to be normally distributed, because of the
easiness of the treatment and the security of the central limit theorem.
At first, the approximate method proposed by M. Tichy and M. Vorlicek
is examined for some cases in which the ratio of Pr(Fi) and Pr(Fj)
varies. The results are shown in Fig. 4.5(a) - (d), in which the
abscissa is the coefficient of correlation. From these figures, this
method seems to overestimate the joint probability density function
when the probabilities of the i-th and j-th failure events have the
same orders, or their coefficient of correlation is greater than 0.8.
For other cases, this method presents unconservative values which are
fairly close to the true solutions.

" Example 1 : Reliability Analysis of Portal Frame "

This simple model is used to explain the proposed method in detail.
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Table 4.1 Reliability Analysis of Single Bent Frame

a) Condition of Input Data

Mean Value of Mean Value of Coefficient of
Moment Resist.| Load Variation

( K-FT ) Pl (K) P, (K)

Resist.| Load

40 0.5 1.0 0.2 0.2

b) Calculated Probabilities of Failure

1 2 3 4 5 6
0.808 0.920 0.958 0.886 0.100 0.150
x 1072 % 1072| x 1072 x 1074 x 1074 x 107!
4
0.8 5 x 10 1.9 0.8
sec.| trials secC. sec.

1 : Dependent 2 : Lower Bound [ Eg.(4.26)]
3 : Monte Carlo Simulation 4 : Stevenson's Method
5 : Upper Bound [ Eg.(4.20) ] 6 : Independent
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The load condition and failure modes are illustrated in Fig. 4.1. The
applied loads Pl and P2 are considered to be dependent and to have
the mean values and the coefficient of variation presented in Table
4.1. Assuming the statistical independence and the complete dependence,
the resulting band is considerably wide, and the proposed method gives
an upper bound which is closer to the true solution than Eq. (4.22).
By using a circle model, Eq.(4.27) presents a good lower bound. While
the method by J. Stevenson shows a good agreement, it may lead to uncon-
servative solutions, and also it requires twice the execution time of
Eq. (4.20) in computing. ( see Table 4.1 )

" Example 2 : Reliability Analysis of One-Bay Two-Story Frame "

This model, whose geometry and applied load are shown in Fig. 4.6,
is considered to have many dominant failure modes which are considerably
inter-dependent on each other. Then, the assumption of statistical
independence will give a too conservative value. By taking the corre-
lation of two failure events into account, the proposed method improves
the upper bound effectively. ( see Table 4.2 and Table 4.3 )

The failure probability decreases and approaches the result ob-
tained by assuming the statistical independence, as the mean value of
the load decreases. This phenomena can be explained by the fact that
the coefficient of correlation between each mode becomes smaller
according to the decrease of the load. However, this tendency accom-
panied with the decrease of failure probability is not observed when
the coefficients of variation of the load and resistance decrease.

The approximate solution by the method of M. Tichy and M. Vorlicek is
compare& with the exact solution for this model to show that this
method always presents conservative values. Its application can be
considered useful for ordinal structures, because it can reduce the
execution time by the elimination of numerical integration.

Next, the failure probabilities are calculated for those cases in
which the moment resistances have 60 and 70 ( K-FT ) as mean values.
Then, the numerical results are summarized in Table 4.4, including the
results of the improving method proposed here.

This method is considered to improve the lower bound. In the

calculation processes, the curve-linear triangles, which correspond
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Fig. 4.6 Two-Story Single-Bay Rigid Frame
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Fig. 4.7 One-Story Two-Bay Rigid Frame
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Table 4.2

Frame

a) Condition of Input Data

Reliability Analysis of Two-Story Single-Bay
(1)

Mean Value Mean Value of Load Coefficient of Variation
Case! ot Moment P, P,
No.{ Resistance Pl P2 Mament Resistance | Load
1 40 1.0 0.5 0.2 0.2 Dependent
2 40 0.8 0.4 0.2 0.2 Dependent
3 40 0.6 0.3 0.2 0.2 Dependent
b) Calculated Probabilities of Failure
Case Simulation Stevenson's | Proposed
Dependent | Independent [, ., Elastic | Method Method
No. Analysis Analysis
0.157 *
0.118 0.722 0.113
-1 0.132
1] 0.941 x 10 0.462
10° trials |10% trials | 7.8 sec. | 2.5 sec
0.160 x 107"
-1 -1
> o 0.131 x 10 0.414 0.112 x 10 0.147 x 10 1
2 0.841 x 10 0.369 x 10
104 trials 104 trials 7.2 sec. 2.5 sec.
-3 -3 -3
0.640 x 10 0.109 0.587 x 10 0.710 x 10
3 [0.271 x 1073 | 0.831 x 1073
leo5 trials 104 trials 5.7 sec. 2.5 sec.

Proposed Method

* Upper Value by M. Tichy's Method

Lower Value by Numerical Integration
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Table 4.3 Reliability Analysis of Two-Story Single-Bay

Frame ( II )

a) Condition of Input Data

case| Mean Value Mean Value of Load Coefficient of variation
of Moment
No.| Resistance Pl (K) P2 (K) | Moment Resistance | Load l:’l ' I'72
K~FT
1 a0 ! ) 1.0 0.5 0.1 0.1 | Dependent
2 40 0.8 0.4 0.1 0.1 |Deperdent
b) Calculated Probabilities of Failure
Simulation Stevenson's |Proposed
Case Dependent Independent —
No. Limit Elastic Method Method
Analysis Analysis
-2 - -
0.425 0.969 0.504 x 10 0.776 0.480 x 10 2 0.515 x 10 2
1 -2 -2
10
x x 10 sx10% trials| 10 trials | 4.8 sec. 2.5 sec.
0.864 0.113 0.199 0.938 x 10°%] 0.961 x 107°
2 -6 -5
x 10
x 10 10* trials | 3.2 sec. 2.5 sec.

Table 4.4 Reliability Analysis of Two-Story Single-Bay

Frame ( 111 )
Monte Proposed
y‘f’a"m‘fil‘ée Dependent | Lower Bound msed carlo Method Independent
cliesista:ce i by Eq. (4.27) (Lower Bound)| Simulation | (Upper Bound)
0.355 0.947 0.112 0.121 0.138 0.170
-2 -2 -1 -1 10_1 % lo—l
60 x 10 x 10 x 10 x 10 x
(4.6 x 104
trials )
0.123 0.375 0.375 0.380 5 0.400 5 0.407 -
70 -2 -2 -2 10” x 10~ x 10
10 x 10 x 10 X
* (4.6 x 104
trials )
Mean Value of Load : Pl =1.0 (K) , P2 = 0.5 (K)
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Table 4.5 Reliability Analysis of One-Story

Two-Bay Frame

a) Condition of Input Data

Mean Value Mean Value of Load Coefficient of Variation
Case} of Mament Pl ’ P2
No. | Resistance P, (® {P, (K | Moment Resistance| Load
1 40 ( K-FT ) 1.0 0.5 0.2 0.2 |Dependent
2 40 1.0 0.5 0.2 0.2 Independent
b) Calculated Probabilities of Failure
Case Simulation Stevenson's Proposed
Dependent | Independent thod thod
No. Limit Elastic Me Me
Analysis Analysis
0.808 0.200 0.158 x 107" | 0.736 x 107~ |0.162 x 10~} 0.169 x 107
1| x107t x 1071 - "
5x10° trials | 5x10° trials 4.2 sec. 1.8 sec.
-1 -1 -1 -1
0.808 0.199 _, [0.158 x 10 0.610 x 10 0.163 x 10 0.169 x 10
2 x 1072 x 10 ry 2
5x10° trials | 5x10° trials 3.6 sec. 1.8 sec.
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to the three-events-occurrence probabilities, are approximated by the
linear triangles, in order to save the execution time and make the
programming simple. In spite of this approximation, this method gives
lower bounds very close to the solution obtained by Monte Carlo simu-
lation. However, this method seems to have the possibility of present-
ing greater values for cases where the difference between the curve-
linear triangles and the linear triangles is small, or the estimating
method for the two-events-occurrence probability presents values that
are too conservative. Nevertheless, these results show good agreement
with the true solutions.

" Example 3 : Reliability Analysis of One-Story Two-Bay Frame "

In this model, the beam mechanism can be considered to be the

most dominant mode, and to have less correlation among the modes.
( see Fig. 4.7 ) Table 4.5 shows that all solutions are almost equal,
excepting those obtained by assuming complete dependence or independ-
ence. Considering the matter of less calculation time, the proposed
method is also useful for this case, though Stevenson's method

presents the closest value to the true solution.

4.4 Reliability Analysis Including Statistical Uncertainty

In the foregoing section, the failure probability is calculated
on the assumption that each uncertain quantity is normally distributed.
As mentioned before, it is quite difficult to select an appropriate
distribution for a random variable. It is said that the failure
probability is sensitive and unstable, depending on the selected

9)38) Furthermore, even if a good estimation

distribution function.
of distribution function can be done, it is impossible to obtain the
mean value and variance of the population. In practice, the character-
istics such as mean and variance are estimated from observations and
experimental results. Then, the sample mean and variance obtained

from the measured data with a small size are seldom consistent with

the population mean and variance. Also, the difference between the

sample and population characteristics may give a considerably large
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influence on the calculation of failure probability.39)

In this section, the effect of statistical uncertainty related to
measured data on the reliability analysis is studied on the basis of
the fiducial statistics and Bayesian concept. Furthermore, the optimum

sampling number is discussed by use of the risk analysis.

Reliability Analysis Using the Fiducial Statistics

The fiducial statistics deals with the population mean and
variance as random variables, whereas usual classical statistics treat
the sample mean and variance as variables. By use of the peculiar
property of the fiducial statistics, the statistical uncertainty can
be evaluated in the calculation of failure probability.40)

Sample mean X and variance Si with n independent samples, Xl - Xn,

are calculated as

n
x= L 5 i (4.34)
2= L Lox, - X )2 (4.35)

Postulated that a variable X is normally distributed, those probability

density functions are

— - 2
f=(X)= exp( - n(X - u_ )/2c, ) (4.36)
X Y21 o X X
X
n-2
s
n-1 X
£, (5,) = n_‘/3_“ 2| | exp(-ns2/207) (4.37)
X V2 T((n-1)/2) X xJ
where 5
_ 2
£(x) = = o exp( -(X-UX) /ZOX ) (4.38)
X

in which UX and Oi are the population mean and variance, respectively.
Then, the joint probability density function of X and SX can be obtained

by assuming a statistical independence between them.

-111-



X

s
f— (x,5.) =¢c —= |— | exp(-n(x- )2/202) -ns2 /252
X’Sx 1Sy) = 02 OX P UX ¥ exp(-n X/ZOX) (4.39)
X

Here, the joint density function of UX and OX can be calculated by
converting dx-dSX/SX and duX-dOX/OX in Eq. (4.39).

s n-1
1 X — 2 2 2 2
= — - - 20 -nS_/20 .40
fi,o, MgO) =€ 73 [ o ] exp(-n(X-Uy)"/20,) exp(-nS,/20,) (4.40)
X X OX X

where c nn/

2,0 m T((n-1)/2) (4.41)

I'(e) : gamma function

The conditional density function, f(Xl},SX), can be obtained by
multiplying Eq. (4.38) with Eq. (4.40).
T(n/2)

_ =2
£(x]x,5,) = {1+ —z(—m—— }
T((n-1)/2) YT (n+l) S, (n+1)

-n/2

(4.42)

Using Eq.(4.42) for the load s and the resistance R which are independ-
ent, the failure probability including the statistical uncertainty can
be formulated as

pp= I pes £(R|R,S,) £(s|s,s_) drds (4.43)

Reliability Analysis Based on Bayes Theorem't) ™43)

Here, statistical uncertainty is introduced into the calculation
of failure probability by using Bayesian statistical decision theory.
A major contribution of this theory is the procedure for coupling the
professional information and the information contained in the measured
data. The coupling procedure is performed with the aid of Bayes
theorem that the posterior probability, Pr( HiIA )}, of hypothesis, i,
given observations A, is proportional to the prior probability, Pr(Hi),
times the likelihood of A, given Hi’ Pr( A|Hi ) :44)

P (H |2) « Pr(AlHl,) P (H.) (4.44)

In the continuous form, the above relation can be written as
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£r0(0) = —9(e]8) £1(8)

S . g(e|®) £ (0) d®

(4.45)

in which £'(8) : prior distribution function
£"(6) : posterior distribution function
- 8 : parameter
€ : measured data

g(e|8) : likelihood function ( = L(8) )
Using Eq.(4.45), Bayesian distribution of a variable can be deduced.
00
£}, (x|8) = f_mfx(xle) L(8) dsd (4.46)

Applying Eq.(4.46) for the load S and the resistance R, the failure

probability can be formulated as

-_— " ” 4.47
P = flpes £7(R|6) fs(sle) drds ( )

Application of Bayes Theorem to Proof-Load Test45)46)

Proof-load test is often performed for aerospace structures to
improve the reliability and the statistical confidence. By eliminat-
ing the members with less strength than the proof load, more reliable
structures can be obtained. Although usual proof-load tests can not
be carried out for civil engineering structures with large members,
these structures undergo tacit processes of proof-load test during the
construction.47)48)

Let Sp be the stress induced by a proof-load test. Then, the
members which pass the proof-load test have the following probability

density function.
fR(X)dX

P_(X<R<x+dX | R>S_)
't = p

P_((X<R<X+dX) 0 (R>S)))
P_(R>S )

H(X—Sp) fR(X)dX
l—FR(Sp)

il

(4.48)

where H(X) is Heaviside's unit step function and FR(X) is the probability
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distribution function for the yield point before the test. Therefore,

the probability function for the yield point after the test, FR(X),

becomes

H(x—sp) {FR(X) - FR(sp)}

FE(X) = . (4.49)
1 - FR (sp)

Let the probability density function for the stress induced by the
applied load be fS(X). Then, the failure probability is obtained as

follows, if the load is statistically independent of the resistance.49)

Py = fo F_(X) fS(X) ax (4.50)

The distributional sensitivity of member is considerably improved
by introducing the proof-load test which truncates the tail of distri-
bution function of resistance. However, there still remain a problem
with respect to the statistical uncertainty involved in the proof-
load test. Here, the statistical uncertainty is treated on the basis
of Bayesian decision theory.

Consider three experimental methods in which the informations
obtained from the proof-load test ( undestructive test ) are reflected
in the evaluation of failure probability in different manners.

Method 1 The data obtained from the yielding test are used as the
samples, by which the likelihood function is calculated,
whereas the proof load Sp is used merely to modify the
distribution of resistance. Bayesian distribution of

resistance R is expressed as

£1(R[6) = ff;fé(R|6) L(8) dd (4.51)

in which n
L(e) =1 f(Xile) (4.52)
i=1

Xl - Xn ¢ the data obtained from the yielding
test

Method 2 The proof-load test is considered to be a kind of yielding
tests, and hence the data obtained from the proof-load test
are used for estimating the parameter 6. The likelihood

function is calculated by using the strength Sp and the
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yielding strength for the undestructive and destructive

members under the proof-load test, respectively.

n n
L®) = L £(x.18) I  £(s |6) (4.53)
i=1 i=n_+1 P
1
where x, <8 i1<n
i—"p -1
X, >S n, <i<n
i bl 1 —

Method 3 The yielding test is further carried out for the members
which pass the proof-load test. Then, the proof load Sp
is used for the modifications of the distribution and the

likelihood functions.

n  H(X-S_) £(x,|0)
L(e) = T 12 =

1

(4.54)
1 1 - F(S
( p|e)

In Method 1, the statistical uncertainty due to the lack of data
is compensated by performing the yielding test with respect to struc-
tural members which are practically utilized. Method 2 gives an upper
bound of the failure probability by treating the strength larger than
Sp as the proof load. Comparing with these two methods, Method 3 is
considered to provide the most accurate value for the failure proba-

bility.

Optimum Sampling Method Based on Risk Analysis

Risk analysis is an evaluation method of structural safety which

51)

has developed mainly in the field of nuclear engineering. Struc-
tures, which indicate a great social loss in their destruction, should
be designed based on the expected loss instead of the expected benefit.
In risk analysis, structural safety is evaluated by defining the term
" risk " as the multiplication of failure cost and failure probability.

Let E_, be the various events which cause the failure in structures
and pf,j be the failure probability relating to the event Ej' If Ej
are independent of each other, the total failure probability, Pgs is
expressed as

Pe =P (E, UE, U +seeee U Ej) = Z Pe ; (4.55)
J
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Then, risk is defined as

7 = = C . . .
Risk = Cp pe =1L Cp 5 Pg g (4.56)
where Cm ¢ total expected cost of failure
Cm j: expected cost of the failure caused by Ej
7

It can be considered that the failure probability of a structure
decreases by the protection action against for failure such as inspec-
tion. Then, the decreasing probability p} is expressed by using the

prior probability P and the effectiveness of the added protection r.52)

P} = Pge (1-r) (4.57)
The value r = 0 indicates an ineffective measure, and also r = 1

indicates full ( or 100 7 ) effectiveness implying p} = 0. By using

Eqs (4.55) and (4.57), the effectiveness r is expressed as
pp = Lpp 5 (11 (4.58)
Combining Eqs (4.58) and (4.57), the effectiveness r is rewritten as

p, - I . (1-r
p. - p' f .pf,J( J)
£ f
Pg

Pe

Pe,;

]
™

r, (4.59)
il Pr )7

Then, the expected benefit bm obtained by a protection is

b, =CpPse- CnPe=CpPert (4.60)

By use of the abovementioned formulation, the optimum sampling
is studied, where the effectiveness is considered to be provided by
the increase of sampling number instead of protection actions. The

expected benefit bm can be rewritten as
bm = Cm pf - ( Cm p}(n) + Ct n) (4.61)

in which Ct : expected cost for a sampling

n : sampling number
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Numerical Examples

" Example of Bayesian Renewal Process "

The change of failure probability is calculated for the case
where the data of resistance are newly obtained from the additive
yielding tests. Then, it is assumed that the load is sufficiently
specified. Numerical results are shown in Table 4.6, in which five
sampling cases are considered. In each case, the failure probability
considerably changes when the mean value is treated as the unkown
parameter, whereas it hardly changes when the variance is the unknown
parameter; This implies that the effect of new data can be reflected
well in the evaluation of failure probability, by employing only mean
values as the unknown parameter in Bayesian decision process.

" Influence of Sampling Number on Failure Probability "

Using the fiducial statistics, the relations between the mean
value or variance and the sampling number are obtained, as shown in
Fig. 4.8 and Fig. 4.9. These figures indicate that the statistical
uncertainty becomes considerably small when the sampling number exceeds
50 or 60. Fig. 4.10 shows the change of failure probability according
to the increase of sampling number. It is seen that P shows no
difference in both the case with n = 50 and the case with n = 100,
when the coefficient of variation of the load is large. This fact
leads to the conclusion that it is impossible to remove the statistical
uncertainty for the case with large GR’ unless a great number of samples
is obtained.

" Example of Proof-Load Test "

Three experiment methods described before are examined by using
a numerical example. The numerical results are given in Fig. 4.11 to
Fig. 4.13. Table 4.7 indicates the input data used for these calcu-
lations. In all cases, the calculted failure probabilities are large
in the order of Method 2, Method 1 and Method 3. Considering that how
the obtained data are used in these methods, it is obvious that Method
2 presents the most conservative value, and that Method 3 presents the
most reliable value. However, the differences between the three methods
tend to vanish when the parameter U, which is defined as U = ( uR -

Sp )/ OR’ exceeds one. The reason is that in the case with small Sp,
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Table 4.7 Input Data for Proof-Load Test

a) Data of Material Strength

Step 1 2 3 4 5 6 7 8 9 10

2991.2502095.39 [2038.19 | 2637.04] 2156.72] 2010.36[2533.57]2459.23 | 2064.97]1729.95
Case 11 5438.67]2227.15 2029.25) 2031.35| 2355.01| 2387.66|1624.72|2434.39 | 2182.58]2419.47

1394.71]1959.25 |2421.62 | 2030.88]) 2460.24] 1780.85]|1926.80] 2420.33 ] 2229.80)2228.54
Case 2

2268.73]2080.03 12486.01 | 2134.43] 2445.24] 2294.30|2555.56|2300.30 | 2137.09]2015. 56

1415.4111986.13 12290.04 | 2242.10} 2391.38| 2475.53|2068.84|1819.74 | 2338.83|1978.98
Case 3

2119.30[1932.33 ]2286.54| 2264.07] 2338.64] 2204.90|1719.93}2117.95 | 2320.45]2219.57

b) Sampling Number
o] -2.0 -1.0 0.0 1.0
Case 1 18 18 10 6
Case 2 19 16 11 6
Case 3 18 15 11 1
n_= 50
——— R } §_=0.25
- n_=100 S
0 L R — nh= 50
1oL _——— _R_ } §_=0.10
nR—lOO R

0.5 F.

0 1 I 1 i 1 1
0 20 N L N 0 M ng

Fig. 4.14 Change of Effectiveness
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Fig. 4.16 Relation between Cost and Sampling Number
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the likelihood function is quite sensitive to the obtained data,
while in the case with large Sp it is insensitive to the data,
because of the small number of obtained data.

" Optimum Sampling Number "

Based on the concept of the risk analysis, the optimum number of
sampling is sought. Fig. 4.14 shows the change of effectiveness
against the change of sampling number. As a matter of course, the
effectiveness becomes larger as the sampling number increases. Compar-
ing with the effectiveness obtained in the previous step, the sampling
considered here is efficient to raise the effectiveness, within a range
where the sampling number with respect to the load is less than 30.
Fig. 4.16 gives the relation between cost C and sampling number n,

where the parameter O denotes the ratio of failure cost C_ and sampl-

f

ing cost Cy It is seen in this figure that the optimum number of

£

sampling, n becomes relatively large when o ( e.g. Cf ) is large.

>
This implie:pthat for the design of an important structure with a large
failure cost, a large number of sampling is necessary to reduce the
failure probability. Conversely, nopt is very small or close to zero
for small a. This tendency corresponds to the case where the sampling
cost is often larger than the benefit obtained by the reduction of

failure probability.

4,5 Minimum-Weight Design of Rigid Frames with Failure Probability

Constraint

Design Formulation53)

In this section, the minimum-weight design of rigid frames is
36)
and

others mentioned, the minimization with a probability level moves the

outlined based on the reliability concepts. As F. Moses

design away from having many active individual constraints. However,
it is naturally anticipated that the safety analysis process will
have more complicated and difficult features.

The minimum-weight design procedure is formulated as follows :
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Find A ( i = 1,".", m)

such that

W=ZK Y A.L. - Minimize (4.62)

subject to

4.63
Pp S p,, ( )

where A, : the cross sectional area of the i-th member
L, : the length of the i-th member
K ¢ constant
m : number of members
W total weight

Pg ¢ allowable failure probability

Then, according to Ridha's workSA), the cross sectional area can be

expressed by the full plastic moment.

a 1 36 2/3 M2/3
i 3 s . i (4.64)
g1
where Sgi : the yielding stress of the i-th member
Mi : the full plastic moment of the i-th member

Taking Mi as the design variable, this problem is reduced to a non-
linear programming problem. The objective function is calculated
from Eqs (4.62) and (4.64), and the overall failure probability pe
is obtained from Eq. (4.20).

There is, however, a point to be careful about in the use of Eq.
(4.20) for the minimum-weight design. While the cross sectional areas
of members are prescribed in the analysis, they are variables and are
to be specified in the design procedure. Through the optimization,
the dominant failure modes may move from one to others. Then, the
ordering of possible modes is influential on the accuracy of Eq. (4.20).
Its second terms ( two-events—occurrence probabilities ) are found to
be the maximum value among those probabilities which are related to

a failure mode. Here, the failure modes are successively ordered from
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those with the largest failure probability. Since this process is
employed in each design stage, it will require some time for comput-
ing the data.

Approximate Design Method Using Decomposition Techniquess)

As mentioned above, the minimum-weight design of rigid frame is
reduced to a mathematical programming problem. Then, using Eq.(4.20)
for the safety analysis, it is easily performed with the aid of an
appropriate mathematical programming technique. However, there still
remain some problems in its direct application to large structural
systems. As the number of the failure modes increases, the imple-
mentation of Eq.(4.20) will consume more time, especially in the
calculation of the covariance matrices. This procedure, of course,
does not require so many runnings different from the usual determinis-
tic analysis. However, since this procedure appears many times in the
design process, the total computation time will become enormous. In
this study, an approximation based on the decomposition concepts is
introduced to remove the problem concerned with computation. It is
not likely that all collapse modes will be critical for the determinis-
tic design. While the critical modes are active as constraints, the
remainders are not and they don't contribute to the resulting solution.
If the active modes whose numbers are the same as those of the design
variables are taken as the constraints, the optimum set of values on
welght and design variables can be obtained. This can be understood

" of the coordinates

by corresponding the active modes to the " basis
of the design space.

Here, paying attention to this fact, the possible modes are divided
into two groups : a basic group and non-basic group of modes, which
correspond to the groups of active and non-active modes. It is,
however, to be noted that this explicit classification of modes is
hardly allowed in the probabilistic design. This is because all modes
contribute to the evaluation of a system failure probability, even
if some of them are very small. Furthermore, since the probabilistic

design has only one constraint, a sufficient number of modes is not

explicitly determined. Therefore, the basic and non-basic modes can
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be expressed merely by the terms of " dominant " and " indominant ",
respectively.

The basic modes are possibly selected in the following way. 1If
the modes, which have the larger probability and are less correlated,
are chosen to be part of the basic modes, the resulting solution may
show a good agreement with the exact one. Then, the failure proba-
bility of the entire system is calculated by neglecting the effects of

the non-basic modes.

p = P _(F,) (4.65)

where Fb denotes the failure event induced by at least one of the
basic modes.

It should be noted that some treatment is necessary to use Eq.
(4.65) for the design process, because it underestimates the failure
probability. Assuming that the non-basic modes are independent of
each other and uncorrelated to the basic modes, p, can be expressed as

n
Pe =P (F,) + ' I P (F) (4.66)

i=q+1
in which g and n denote the numbers of the basic modes and all modes,
respectively. While the use of this equation removes the problem of
underestimation, it still involves the problem of the execution time
for the case of complex structures having a large number of non-basic
modes. For such cases, it is a considerably prohibitive task to
calculate the failure probabilities of all the non-basic modes. Then,
it is to be desired that safety is guaranteed without using the non-
basic modes in the design process.

56)

E. Vanmarcke proposed an iterative design scheme for the design
of large systems. At first, the design is performed by solving a
relatively simple auxiliary problem in which only a set of basic modes
are considered in computing system failure probabilities. Next, by
changing the set of basic modes, new designs are successively generated.
At every step, the upper bounds on the objective function are followed
by solving the formulation :

Find a,
i
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such that the objective function

W=KZ a, L, > Minimize (4.67)
1
subject to
< - ! . 8
Pp 2 Pey ™ Pp (4.68)

where p% can be found by subtracting Pr(Fb) from the system failure
probability which was obtained by using the design variables of the
earlier stage. This method is very useful, because it not only saves
the core size and the execution time but also easily gives good
solutions which satisfy the design requirement. However, it seems
to have problems in convergency and applicability such as how many
modes are appropriate for the basic modes, and when or by what the
iteration should be terminated. If the structural system to be
designed has more dominant modes than the employed basic modes, the
resulting upper and lower bounds will not converge, and the modified
allowable failure level may become negative for some special cases.

An iterative design method is proposed herein, based on Vanmarcke'
s method. An improvement of convergency is attempted. The number of
basic modes is not fixed and new dominant modes are successively added
as the design stage proceeds. The procedure is summarized as follows :
( see Fig. 4.17 )

1) Construct the possible failure mechanisms. Specify the number of
basic modes as that of the independent design variables. Give the
allowable failure probability level. Assume the initial values
for the design variables.

2) Perform the failure probability analysis for the current set of
design variables. Obtain the system failure probability and find
the basic modes.

3) Solve the problem :

m

Minimize W ( scaled weight ) = § M, Li (4.69)
i=1 7

, (1) (1) (4.70

subject to Pr(Fb ) f-pfa )
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(1)

where Pey is the modified allowable failure level. This value
is obtained by using the modification factor a(I).
(T) _ (1) (1) () ... (I-1)
Ppg = Ppy @ o o (4.71)
where a(I) _ (1) /b (F(I) (4.72)
Pra Ty )

Introducing the modification factor a(I), the allowable failure

level is forced to converge to an appropriate value.

4) If the improved design is not generated after two cycles, new

basic modes are added for the next cycle. That number is found in

the subsequent analysis by comparing the basic modes with those of

the previous stage. If the design is improved, the basic modes
are exchanged, but the number is unchanged.
5) Upon proceeding to the iterative process, the final design is

achieved when the basic modes are not changed, or the difference

between the predetermined failure level and the calculated failure

probability is sufficiently small.

Design Examples

" Minimum-Weight Design of Portal Frame "

By using Eq. (4.20) for the safety analysis, a simple portal frame,

shown in Fig. 4.1, is designed to minimize its total weight or its
cost with some specified allowable probability levels. The obtained
results are shown in Table 4.8 and Table 4.9, and compared with the

25)

results obtained by J. Stevenson as well as the results based on

the assumption of the independence of the failure modes. The proba-

bility of each failure mode is affected by its mean value and variance.

For example, the failure modes, Zl and 22, have nearly equal central
safety factors, but their failure probabilities have a relatively
large difference. This is due to the difference of their variances.
Then, one will reach the conclusion that the number of independent
design variables, which are included in the failure modes, is very
important in the probabilistic design. Therefore, the failure modes
which are considered to be dominant in the deterministic design do

not always-become dominant from the probabilistic point of view.
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Table 4.8 1Input Data for Optimum Design of Single Bent Frame

L= 10 FT

Case Initia% Xf;;e? Load ( K) Coefficient of Variation Prob. of Failire
No. MC MB Pl P2 Mé MB Pl P, to be allowed M

1 220 260 20 30 0.10 0.10 0.10 0.10 0.08

2 320 360 20 30 0.10 0.10 0.10 0.10 0.008

3 320 360 20 30 0.10 0.10 0.10 0.10 0.0008

4 380 420 20 30 0.10 0.10 0.10 0.10 0.00008

5 320 360 20 30 0.10 0.10 0.05 0.05 0.0008

6 320 360 20 30 0.10 0.10 0.15 0.15 0.0008

7 320 360 20 30 0.10 0.10 0.20 0.20 0.0008

Table 4.9 Numerical Results of Single Bent Frame Example

a) Optimum Solutions

Case Final ( K-FT )| Object Prob. of Prob. of
No. MC MB Function Failure Failure {Independent)
1 171.12 | 188.01 197.41 0.888 x 10+ 0.163
2 278.95 | 219.14 | 213.61 0.800 x 1072 0.160 x 107%
3 195.06 | 241.68 227.66 0.798 x 1073 0.149 x 1072
4 190.51 | 247.72 240.07 0.798 x 107? 0.124 x 1073
5 168.98 | 229.61 215.99 0.800 x 1073 0.142 x 1072
6 208.63 | 266.66 241.36 0.800 x 1073 0.151 x 1072
7 238.48 | 285.19 256.05 0.798 x 1073 0.157 x 1072
b) Failure Probabilities of Individual Modes
Case
No. Z1 22 Z3 Z4 Z5 26 ?17 ZB
1 Jo.573x107°| 0.572x2071] 0.543x10" ] 0.0] 0.0| 0.0 0.218x10° %] 0.183x1072
2 J0.463x1072] 0.653x1072] 0.472x1072] 0.0| 0.0| 0.0] 0.115x1073| 0.479x107*
3 {0.635x1073| 0.416x1073| 0.434x1073| 0.0| 0.0f 0.0| 0.207x1073| 0.137x1075
4 l0.339x107*] 0.577x107%] 0.319x107% | 0.0 0.0| 0.0 0.358x107%| 0.745x10"7
5 10.499x1073] 0.497x1073 | 0.413x1073| 0.0| 0.0 0.0 0.720x1073] 0.256x107>
6 [0.413x1073 | 0.669x1073 | 0.425x2073 | 0.0| 0.0] 0.0/ 0.459x107%] 0.145x1075
7 10.547x1073 | 0.551x2073 | 0.469x1073 | 0.0| 0.0] 0.0} 0.225x107%| 0.121x1075
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c) Safety Factors for Mean Load and Moment Resistance

ee 4 22 Z3 2 Zg Z¢ % Zg
1 1.25 | 1.20] 1.22| 3.42 | 3.59 | 3.51 | 1.33] 1.37
2 1.46 | 1.32| 1.39| 3.57( 3.97 | 3.77 | 1.44] 1.54
3 1.61 | 1.46 ] 1.53 | 3.90 ] 4.37 ] 4.23 | 1.58] 1.70
4 1.83 | 1.55| 1.69 ] 3.81 | 4.65 ] 4.23 | 1.64| 1.85
5 1.53 | 1.33| 1.43| 3.38 | 3.98 | 3.68 | 1.42| 1.57
6 1.78 | 1.58 | 1.68 | 4.15{ 4.74 | 4.45 [ 1.70| 1.85
7 1.90 | 1.75| 1.82 | 4.77 | 5.24 | s.00 | 1.91| 2.02

Table 4.10 Comparison of Proposed Method and

Stevenson's Method

case Final ( K~FT Obj. Prob. of Failure

No. MC MB Func.| Stevenson's| Proposed M.
2 | 196.38| 196.89 [207.68] 0.765 x1072| 0.325 x107!
3 215.45 | 213.07 [219.57] 0.762 x1073| 0.831 x1072
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Table 4.10 indicates the failure probabilities calculated by the
proposed method and Stevenson's method. The proposed method gives a
greater value than Stevenson's method. The reasons are that Stevenson'
s method does not have the security of safety, and the assumption adopt-
ed in his work is not adequate, except for the case where the effect
of variance is sufficiently small compared with the difference of the
mean values.

" Minimum-Weight Design of Two-Story Single-Bay Frame "

A two-story single-bay model is employed to demonstrate the
approximate design method based on the decomposition concept. The
optimization is performed by the SUMT incorporating Powell's direct
search technique, which does not require the derivatives of the
functions. The possible modes are divided into basic and non-basic
modes. This model has more than fifty collapse mechanisms. It is
difficult to specify the appropriate basic modes at the start of the
design process, because the dominant modes may change at any stage of
the optimization. Here, their selection is automatically carried out
at each design stage.

At first, the example frame model is designed by using Eq. (4.66)
in computing the system failure probability. Then, sixteen modes are
used for the basic modes. While this method needs less calculation
time than the entire mode design, it gives a heavier design. ( see
Table 4.11 )

Next, according to Vanmarcke's method, some designs are generated,
where 8 and 16 are employed as the number of basic modes so as to in-
vestigate its influence. As shown in Table 4.11 and Fig. 4.18, infeasi-
ble designs are generated at the first design cycle. These are induced
by the lack of effects of the non-basic failure modes. Next, upper and
lower bounds on weight are produced in turn, and they are conservative
and unconservative, respectively. In both cases, safety is examined
by calculating the system failure probability with an analysis of all
the modes.

For the case of 16 modes, the following items are observed from
Table 4.11. The approximate method requires only 20 seconds of com-

putation for one iteration, while the complete mode design requires
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Table 4.11 Numerical Results of Two-Story Single-Bay

Frame Design

a) Decomposition Design with 8 Basic Modes ( Vanmarcke's M. )

Iteration X X X X Scaled Prob. of
Number 1 2 3 4 Weight Failure

1 69.83 39.12 62.73| 62.53| 46,842 0.0159

2 75.95 43.26 71.00] 71.78| 52,398 0.0051

3 69.54 41.14 65.23| 61.28| 47,438 0.0137

4 74.12 |+ 41.34 67.55) 67.64| 50,132 0.0078

5 69.54 41.14 65.23] 61.28]| 47,438 0.0137

6 74.12 41.34 67.55] 67.65] 50,132 0.0078

Xl ~ X4 : Design Variables ( Moment Resistances [K~FT) )

b) Decomposition Method with 16 Basic Modes ( Vanmarcke's M. )

Iter. X X X X Scaled Prgb. of

Number 1 2 3 4 Weight Failure
1 73.26 41.63 65.57 63.48| 48,788 0.01025
2 72.07 40.42 66.91 65.49{ 48,978 0.00991
3 74.72 40.61 64.60 64.41| 48,868 0.01021
4 73.89 38.96 68.08 64.69| 49,002 0.009925
5 74.71 50.70 64.61 64.41( 48,886 0.010167
6 75.31 40.58 66.21 62.14] 49.020 0.009934

Calculation Time 20 sec¢./ lLteration

c¢) Entire Mode Design

Entire
Design| 71.69 40.79 67.25 64.93 48,932 0.009993

Calculation Time 150 sec.
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d) Approximate Design

( Using Eq.(4.66) )

Approx 4
Design 79.52 38.98 66.30] 65.53 49,066 0.009956
Calculation Time 120 sec.
e) Proposed Iterative Design Method
éﬁ:;ér x1 x2 X3 x4 Pea Pge 3Zi;§i gg;igfuodes
1 63.02 33.54 61.38] 62.20| 0.01000| 0.03716 44,628 4
2 55.63 67.75 58.40 | 49.97 | 0.02691| 0.03887 46,350 4
3 91.11 0. 91.03] 91.91] 0.00059| 0.28290 54,808 4
4 69.83 39.12 62.73] 62.53] 0.01000f 0.01592 46,842 8
5 71.28 42.85 68.30| 67.72| 0.00628 | 0.00791 50,030 8
6 74.39 39.21 65.73f 65.41} 0.00799 | 0.01015 48,948 8
7 72.09 39.36 68.08 | 65.31} 0.00783] 0.01019 48,968 8
8 71.17 42.56 64.80 ] 66.39 | 0.00783 | 0.00971 48,984 8
9 70.32 42.82 64.31| 62.35| 0.01000 | 0.01211 47,960 12
10 77.52 40.22 65.60 ] 65.51] 0.00825) 0.00866 49,770 12
11 71.08 41.81 66.43] 63.07 | 0.00954 | 0.01007 48,878 12
12 73.57 40.90 64.24 )1 65.89 ] 0.00946 { 0.01001 48.920 12
13 73.57 40.89 64.33] 65.93| 0.00947 | 0.00995 48,944 12
X Mean Plastic Moment of Member ( K-FT )

1, 3 : Beams of Upper and Lower Stories

2, 4

Calculation Time

118 sec.
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150 seconds. Also, the results show acceptable values on weight,
though the obtained values are slightly different in design variables
from the exact values. Among the feasible designs, the second design
shows the least weight, which is only 0.1 per cent heavier than the
entire mode design. Other designs have larger failure probabilities
than this design in spite of heavier weights. This fact may imply
that the optimization for this problem is very sensitive to the change
of the allowable failure level. It may also imply that the induced
constraint surface does not have the distinct vertices which are ob-
served in linear programming problems. The design space obtained for
a two-variable problem indicates this tendency. ( see Fig. 4.19 )
Taking 8 as the numer of basic modes, this method does not give
good solutions, for which the iterative procedure is terminated after
four cycles, because the solutions hitherto bigin to diverge as shown
in Table 4.11. Then, there are considerably large gaps on the weights
of the upper and lower bounds. The accuracy of the decomposition
method is explicitly dependent on how to select the basic modes.
Table 4.11(e) presents the results obtained by the proposed iterative
method. The design starts with the same number of basic modes as that
of the independent variables. ( i.e. 4 ) After three iterations, four
modes are newly added to the basic modes. After five more cycles, the
number is changed to 12, and an acceptable design i1s generated at the
13th cycle. This method requires 118 seconds in computation, but the
calculation time can be reduced by starting from more basic modes.
The first three steps contribute nothing to the final solution, and
they should be eliminated. Also, this method gives a good design with
only 8 basic modes. The obtained design is only 0.03 per cent heavier
than the entire mode design. The convergency may be improved by intro-

ducing the modification factor.

4.6 Minimiu-Weight Design of Trussed Systems with Failure

Probability Constraint> ) >

The approximate design method proposed in the previous section is
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applicable for the design of trussed systems. For indeterminate trusses,
the failure modes can be formulated in the same fashion as that of rigid
frames. In this section, the truss design including a variation of

geometry is investigated on the basis of the reliability concept.

Optimality Condition

Based on the reliability concept, the minimum-weight design of

trussed systems is formulated as

Find Ai , X.

J
such that
m
_ ~ Minimi .
Z p'Z Ai(Xj) Li(Xj) inimize (4.73)
i=1
subject to
< 4.74
pf(Ai'Xj) < Pgy ( )

in which P is affected by the values of cross sectional areas and
nodal coordinates.

Since the above design problem has a single constraint with'respect to
the system failure probability, it is useful to employ Lagrange's
multiplier method as the optimization scheme. Then, the problem can

be rewritten as

® = Z(A,X) + A(pf(A,X) - P
op
29 V4 £ _
X x T A Tx <O L
4.75)
o _ sz, Pro_
%A EY 24

0 _ J

o Pr T Pra
where ® and A are Lagrangean and Lagrange's multiplier, respectively.
For statically determinate truss problems, H. Switzky60) presented
an optimality condition which contributes to the minimum-weight design.

The failure probability of statically determinate trusses can be
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approximated for the case where the failure probability of each member,
Pgis is quite small.

m
Pg= L Py (4.76)
i=1
By using Eqs (4.75) and (4.76), the partial derivative of the weight
with respect to the weight of the i-th member is set equal to zero.

This results in

3 m OP;
37 {z + A(pfa - ‘Z pfi)} =1-2X _3_2— =0 4.77)
1 i=1 i
.1 %y
°* A Y (4.78)
i

Eq. (4.78) implies that at an overall minimum weight, changes in the
failure probability of each member are proportional to its change in
weight, and that this ratio is independent of the respective members.
Furthermore, if it is assumed that the ratio of the weight of a member
to the overall weight is relatively insensitive to the overall failure
probability, the following relation can be available for reducing a

valuable optimality condition.

Z. z,
__1__ = -—l (4 79)
AN r Z, .
1 Per 1] Pea
Eqs (4.77) and (4.79) are satisfied if
Pri _ % (4.80)
pfa z

Eq.(4.80) indicates that a minimum-weight design will result when the
failure probability of each component is proportional to its weight.

Approximate Design Method

By using the optimality condition ( i.e. Eq.(4.80) ) at each
design step, the optimal geometry of the truss can be approximately

sought as follows :
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(0) )

Step 1 Assume the initial geometry ( i.e. nodal coordinates X

Step 2 Perform the structural analysis of the truss with the
geometry determined in the previous step.

Step 3 Obtain the optimum set of cross sectional areas by using
the calculated values of member forces and member lengths.

Step 4 Search for the most effective direction in the design space
which consists of nodal coordinates, and calculate the dis-
tance O with the aid of a one-dimensional optimization
scheme.

Step 5 Then, the improved geometry can be defined as

1) o x(T 1) _ s (4.81)
(1)

X

Step 6 If the values of X converge, the procedure is terminated.

Otherwise, return to Step 2 and repeat Steps 3 - 5.

The direction S can be easily calculated for the case in which the
member resistances and member forces have normal distributions.
Differentiating the weight,

m 94 (X) dL, (X)

i
Li(X) + Ai(X) —ax—j“) } (4.82)

Then, the cross sectional areas Ai(X) can be expressed by the member

force Fi(X) induced by the unit load, based on Switzky's optimality

condition.
2 2 2 2 22 2
Vsfr, " B; “/(ORi”s * uRiOS) - BioRiOS
A.(X) = F.(X)
i (2 - g2 1
Hr, = Bi%
i i
=D, F,(X) (4.83)
i1
where Mg r Hp the mean values of the applied force and member
1 resistance of the i-th member
0; , G; ¢ the variances of the applied force and member
1

resistance of the i-th member

-1
By == "(pgy;)
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Peo; and ®(+) denote the allowable level assigned to the i-th member
and the standard normal distribution function, respectively.

Using Eq.(4.83), the weight and its derivatives can be found to be

m
Z = piil D; F.(X) L, (X) (4.84)
32 m oF , (X) BLi(X)
g =P (T (D g B # DF ) g —— ) (4:89)
J i=1 J

Numerical Examples

Consider a 4-panel model, where the member resistances and applied
load are random. Assume now that both of them have independent nomal
distributions. The numerical results are given in Table 4.12 and Fig.
4.20, where the used mean values and standard deviations are uR = 2040
kg/cmz, us = 20000 kg, OR = 204 kg/cm2 and Os = 4000 kg, respectively.
Also, the employed allowable level of failure probability is 0.04.

It can be found from Fig. 4.20 that the geometry obtained by the proba-
bilistic method is not so different from that obtained by the deter-
ministic method. That is, for statically determinate systems, both
methods give an identical optimal geometry, though the values of the
cross sectional areas differ somewhat from each other. It should be
noted that it is impossible to compare both methods in volume because
the employed value of the allowable level, 0.04, does not correspond

to the safety factor of the deterministic approach.

From Table 4.12, it is obtained that the introduction of geoemtri-
cal variations presents an economic design, whose volume is 34.5 per
cent less than the Pratt truss with a fixed geometry. The convergency
is shown in Fig. 4.21. This shows the efficiency of the proposed
method. This method requires only 7 seconds to reach the optimum point.
Though the convergency depends on the initial values, the search proce-
dure was terminated at the 5th step. The results for some design cases
are given in Table 4.13. The truss becomes heavier as the value of the
allowable level becomes smaller. However, all geometries obtained for
these conditions show no distinct difference. Next, the buckling effect

is taken into account. The resulting geometry is shown in Fig. 4.22.
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Table 4.12 Numerical Results of 4-~Panel Model
Pratt Truss Variable Geametry
A (af) 8.66 9.61
a, 8.66 8.98
A3 11.76 4.99
A4 0.0002 0.0002
A 8.66 0.49
A 16.64 8.93
a, 11.76 7.15
Ay 8.66 4.96
A, 0.0002 4.41
Pg 0.04 0.04
Volue (aw )| 169101 112581
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This shows a tendency similar to that of the deterministic method.

4.7 Conclusions

The safety analysis and minimum-weight design of framed structures

are studied by using the failure probability as a measure of safety.

The improvements on the upper and lower bounds of a system failure

probability are attempted by considering the correlations between two

or three failure events. With the aid of the fiducial statistics or

Bayesian decision theory, the effect of statistical uncertainty with

respect to the sampling on the estimation of failure probability is

investigated. Based on the decomposition technique, an approximate

design method is proposed to reduce the computational load. Also, a

variation of geometry is treated in the design of truss, in which both

the member strength and the applied load are considered to be random.

Main results derived from the study in this chapter are as follows :

1) A considerably exact estimation of failure probability can be
made for indeterminate structural systems, using the p