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SUMMARY

This dissertation is devoted to investigations of earthquake response
of stationary and deteriorating simple hysteretic structures through numer-
ical simulations, theoretical analyses and examinations of earthquake ac-
celerograms.

Plastic deformation of simple structures with bilinear and curved
hysteresis loops subjected to artificial earthquakes is simulated on a
digital computer as a moving average of the displacement time history,
eliminating elastic component of vibration. Shapes of the hysteresis loops
are found to have significant effects on the plastic deformation of rela-
tively short period structures.

Plastic deformation of the one-way yielding perfectly elasto-plastic
structures for each yielding is estimated analytically through replacing
the kinetic energy at yielding point by the equivalent plastic deforma-
tion.The analytical‘results are compared with simulated results to check
the applicability of the technique, from which it is found that estimation
of the plastic deformation in random response is satisfactory. Further
application of the technique to equivalently linearized vibrational system
is tried to find the expected amount of the accumulated plastic deformation
subjected to stationary white noise excitation.

Two different types of equivalent linearization techniques are
adopted for theoretical discussions and statistical prediction of earth-
quake hysteretic response. The relation between the two techniques is
examined to conclude that they have the same expression of equivalent
linear parameters. Stationary and nonstationary rms response of bilinear
hysteretic structures are analytically predicted with application of
linearization techniques. Using the results, probability distribution of
the maximum hysteretic response is also predicted through pure-birth and
envelope methods. Monte Carlo simulation performed on a digital computer
verifies the applicability of the techniques within admissible ranges of

error.

(1)



The strong motion earthquake accelerograms are investigated to find
deteriorating hysteretic properties of restoring force of a reinforced
concrete structure. Equivalently linearized and hysteretic models for
the fundamental mode of the structure are examined to see if they can
describe the observed response. Models with time-depending parameters
are found to match the response with suggestions of degrading stiffness
and energy dissipation capacity of the structure. A new simple model
of which equivalent structural parameters are controlled to degrade with
decreasing residual strength is proposed to represent general deteriorat-
ing hysteretic structures. Response analysis of the proposed model points
out the significant effects of time-depending structural capacities to

the earthquake response both in amplitude and frequency components.
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1. INTRODUCTION

1-1 General Remarks

Relatively recent development in the field of earthquake engineering
especially since the tragic Kanto Earthquake in 1923 in Japan reveals
the great endeavours that have been made by many research workers and
engineers. Current earthquake resistant designing codes for civil engi-
neering structures could be considered as one of the great fruits of the

studies in the early stage of this field as described below.

Development of the instrument for measurement of ground acceleration
since theearly 1930's by U.S. Coast and Geodetic Survey made investi-
gators possible to use recorded seismograms as excitations to idealized
mechanical, electronical and mathematical models of different types of
structures.

The idea of response spectrum first suggested by M.A.Biotl)was

2)

improved and generalized by G.W.Housner et al "to propose that the struc-
tural codes should be based on the frequency-dependent maximum response
of one-degree-of-freedom (simple) linear structures not on the maximum

3)

value of ground acceleration. D.E.Hudson”’showed the technique to com-
bine the response spectrum and the modal analysis to estimate the maximum
linear response of more complicated structures having many degree-of-
freedom.

The structural codes for aseismic design have been improved by these
investigations and have been used widely even today because of relatively
simple procedure of predicting the maximum linear response of structures
and also because of the current elastic-designing codes to let the
maximum stress of each structural member within the allowable elastic
limit.

In this way of designing, however, it was completely out of the
question how dynamic behaviour of structures beyond linear elastic limit
would be explained, mainly due to the lack of powerful techniques and

tools available to solve nonlinear equation of motion.
Inevitable necessities of nonlinear response analyses have been
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proposed since the First World Conference on Earthquake Engineering (WCEE)

for the following reasons.

1) Ductile structures with less strength than that required by building
codes have withstood strong earthquakes with only moderate damages.
The hysteretic energy absorbing capacity of ductile structural
members in the plastic range was considered favourable to structures
during earthquakes to suppress their dynamic response.

2) Observed dynamic properties of structures during strong earthquakes
such as natural periods of them sometimes showed quite different
from those of small amplitude vibration tests.

Nonlinear relations between displacement and restoring force of
structures and ground were pointed out as one of main reasons of
the difference.

3) Recent severe damages of R.C. buildings due to strong ground motion
have needed extensive studies on the restoring force characteristics
of brittle structural members and also structural response character-
istics in the plastic range up to failure.

4) Possibly general understandings of response properties of hysteretic
structures through theoretical and numerical investigations would
achieve new limit-designing codes which will estimate more accurate
reliability of structures during strong earthquakes than the current

elastic-designing codes.

Numerious studies have been made on these problems according as
analog and digital computers and also experimental facilities have
made tremendous developments, which will be discussed in the next
section. However these nonlinear problems are so complicated because
of incapability of the principle of linear superposition, that there
still exist many problems to be investigated. Among these problems,
following four topics are the contents of this dissertation to grasp
possibly general understandings of earthquake response properties of
stationary and deteriorating hysteretic structures.

(1) Simulation techniques to estimate the plastic deformation from

the time history of hysteretic response of structures with various
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shapes of hysteresis loops.

(2) Analytical methods to predict the plastic deformation in random
response through replacing the kinetic energy by the equivalent
plastic deformation.

(3) Theoretical discussions and statistical prediction of earthquake
response of hysteretic structures by means of linearization tech-
niques.

(4) Examination of seismograms recorded at an existing building to
propose general deteriorating hysteretic models of which structural

capacities degrade during earthquake motion.

1-2 Reviews of Studies on Nonlinear Hysteretic Response to Earthquake
Motion

It is quite interesting to note that investigations of nonlinear
hysteretic response initiated with elementary techniques almost at the
same time when the First World Conference on Earthquake Engineering
(WCEE) was held in 1956 and since then remarkable developments of analog
and digital computers and experimental facilities have contributed toward
the significant steps to open the wide varieties of this field.

Hence it would be worthwhile in the first part of this section to
take a brief review of papers which appeared at the proceedings of WCEE
from the first to the latest sixth in 1977.

At the First WCEE, G.W.HousnerA)

proposed a method of limit-design
which expects the hysteretic energy absorption capacity to let the
velocity response spectrum of yielding structures less than linear re-

s)calculated. Although the time

sponse spectrum which D.E.Hudson et al
history of nonlinear response was not estimated in his paper, it was a
first step in earthquake engineering field that significance of nonlinear
hysteretic effects to structural response during severe ground shaking
was pointed out.

R.Tanabashi6)calcu1ated the hysteretic response subjected to a few

pulse-type excitation with an improved Phase-Plane-Delta method and
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proposed almost the same idea as G.W.Housner had shown.

At the Second WCEE, 9 studies about earthquake response of hysteretic
structures were brought out to show the remarkable advances made in this
field after the First WCEE supported by development of analog and digital
computers.

Response Analyzer Committee7)in Japan developed the analog computer
RAC IIT to enable engineers to calculate the nonlinear response of elasto-
plastic structures subjected to any types of random excitation.
Displacement response spectrum of simple structures with bilinear hyster-
esis loops for recorded seismograms during the Imperial Valley (1940) and
the Saitama (1956) earthquakes was calculated.

R.Tanabashis)also calculated the hysteretic response of multi-degree~
of-freedom structures subjected to a few pulse-type excitation through
an analog computers. Phase-Plane-Delta method was still used by
T.Kobori and R.Minaig? Response time history curves obtained by the
Phase-Plane-Delta method and by an analog computer were compared by

10)

H.Goto and K.Kaneta Stability of nonlinear hysteretic structures

subjected to a stationary sinusoidal excitation was theoretically
discussed by N.Andoll).

Digital computers developed mainly in the U.S.A. at that time played
significant roles in the earthquake response analyses of hysteretic
structures. J.Penzienlz)calculated the elasto-plastic response of
multi-story buildings to suggest that there exists optimum yielding
level which minimizes the displacement response. A.S.Veletsos and
N.M.Newmarkl3)pointed out that lateral force coefficient (Spectral
Acceleration/Acceleration of gravity) decreased significantly for the
larger values of ductility factor. The energy absorption capacity of

yeilding structures was especially investigated by J.A.Blumela).

At the Third WCEE, 16 papers were presented in this field which
reflected the remarkable development in computational speed and memory
capacity of digital computers. 1In these papers, new trials for general

understandings of nonliner hysteretic response characteristics of



relatively simple structures and for practical applications of elasto-
plastic response analyses of structures with multi-degree-of-freedom to
designings of high-rise buildings seem to have initiated. Following
papers are devoted to investigations of one-degree-of-freedom (simple)
hysteretic structures.

An exact solution for the steady state response of bilinear hyste-

15)

retic systems was presented by W.D.Iwan and general yielding structures

16)

with curved hysteretic loops were proposed by P.C.Jennings™ .

Statistically generated random processes were used as excitations

16)

and mathematical discussion

17)

for hysteretic structures by P.C.Jennings
of nonlinear response statistics was made by J.M.J.Pereira by means of
Fokker-Planck equation.

T.0Odaka and F.Horiels)

pointed out the existence of the optimum seis-
mic coefficient which minimizes the maximum displacement response of
bilinear structures.

A.S.Veletsos, N.M.Newmark and C.V.Chelapatilg)

presented the defor-
mation spectra subjected to pulse-type ground shock, from which the
effects of hysteretic characteristics was found quite different between
short period and long period structures. Similar tendency which seems

due to nonlinear vibration with longer natural period than that of

linear systems was reported by G.R.Walkerzoz
D.E.Hudson21)discussed the equivalent viscous damping for hysteretic

systems and found relatively low values that correspond to earthquake-
type excitation with suggestions that hysteretic systems might be equally
linearized.

Six papers were devoted to hysteretic response analyses of multi-
degree-of-freedom systems for the purpose of practical designing of high-
rise buildings. Some of them reported the maximum displacement response
of elasto-plastic structures to be significantly greater than that of the
corresponding linear structures, contrary to the findings for simple

oscillators.

Fifteen papers were presented at the Fourth WCEE in the field of



nonlinear hysteretic response analysis. Although no remarkable develop-
ments of analyzing tools and methods could be observed since the Third
WCEE, response spectra of simple hysteretic structures and reliability
of high-rise buildings during strong earthquakes were more intensively
investigated.

A.S.Veletsoszz)

and A.Pocesk123)discussed the displacement response
spectra of simple linear and hysteretic structures to show that the
difference between them depends on their natural period. J.Penzien and
SrC.Liuza)presented the probability distribution of maximum displacement
response of simple linear, elasto-plastic and stiffness-~degrading struc-
tures by simulating large number of artificial earthquakes on a digital
computer.

W.D.Iwanzs)

proposed the conbination of sliders and springs to express
a new type of curved hysteretic loops. R.Husid26)discussed the effects
of gravity to the rocking motion of structures especially in the plastic
range of restoring force.

Rotarional and torsional vibration of relatively simple elasto-
plastic structures subjected to three components of excitation was

investigated by N.C.Nigam and G.W.Housner27)

to show significant drift of
response displacement from the zero base line. This drift is considered
to be the structural plastic deformation which will be further discussed

in Chapter 2 and 3. A.Shibata et a128)

also discussed hysteretic torsional
response of unsymmetrical building models with analytical and experimental
methods.

Eight papers were devoted to estimation of reliability of steel
framed and reinforced concrete high-rise buildings during strong earth-
quakes through hysteretic response analyses of multi-degree-of-freedom
systems. In some of these papers, experimentally obtained displacement

and restoring-force relations of structural members were taken into

account for step-by-step integration of time history of response.

At the fifth WCEE held in Rome in 1973, found is the trememdous

increase in number of papers. Ninety-five out of 439 papers in total



were presented in the session of "Response of Structures to Ground Shaking"
to show not only research worker's but also engineer's strong interests

and urgent needs for earthquake engineering. Most papers were devoted to
precise and practical investigations of earthquake response of specific
structures such as buildings, bridges, dams, tunnels, pipe-lines, towers,
water tanks and so on, through mathematical modeling by means of discrete
multi-degree-of-freedom systems and finite elements representation.

Nonlinearities in force-deflection relations of structures which were
taken into account in almost half of these papers have become no more
especially interesting parts of papers to be noted but necessary and
inevitable topics for accurate estimation of structural reliablility
during strong earthquakes. Recent developments mainly in software of
digital computers has made it possible and relatively easy to calculate
nonlinear hysteretic response of complex structures when force-deflection
relations of structural members are available.

From these view points, about 30 papers were devoted to studies on
experimental dynamic loading of structural members such as columns,
beams, frames, bracings, walls and so on in the session of "Dynamic
Behavior of Structural Elements". In most of these papers, dynamic
behavior of R.C. elements were tested up to failure to show significant
deterioration of dynamic load-bearing capacities in the plastic range,
in search of the severe damages of R.C. buildings during the Tokachioki
in 1968 and the San Fernando in 1971 earthquakes. Theoretical models
for deteriorating force-deflection relation were proposed for R.C.
structures and analysis of recorded response of R.C. building also
resulted in nonstationary deteriorating characteristics of structural
parameters. Further discussions of structural deterioration under
severe earthquake loading will be made in Chapter 5.

Remaining several papers dealt with steel elements to show in most
cases stable energy absorbing capacity in the plastic range which would
be of significant favour for structural safety against severe dynamic
loading.

Results of experiments on structural members instead of conventional

-7-



hysteretic modelings such as bilinear loops were taken into account for
computation of structural response for more accurate prediction of
structural reliability during strong earthquakes. In some of these
paperszg), nonlinear response analyses were applied to precise and sophis-
ticated designing procedures of buildings to avoid structural collapse
without increasing the yielding level of structural members.

In most numerical calculations, force-deflection relation was
mathematically modeled in computers to simulate the experimental results,
however it is interesting to note that on-line connection of a dynamic
loading machine to an analog computer for direct use of restoring force

30)

to response estimation was proposed” .

In the preprints of the latest sixth WCEE held at New Delhi in 1977,
611 papers in total were found. Among them 191 papers contributed to the
sessions of "Response of Structures to Ground Shaking', "Dynamic Test
on Structures" and '"Dynamic Behavior of Structural Elements'. Nonline-
arity effects of structures to earthquake response were investigated in
about half of the papers. The latest development of research works in

the sessions is now being studied.

Besides above mentioned papers which appeared in the proceedings
of WCEE, theoretical and numerical investigations of statistical response
of hysteretic systems were made mainly in the field of applied mechanics.
Both randomness in accelerograms of ground motion and nonlinearity in
structural members are quite important features to be simultaneously
investigated in earthquake response analyses.

T.K.Caughey3l)’32)

for the first time discussed the stationary random
response of simple bilinear hysteretic systems through linearization
techniques and the Fokker-Planck equation to open this field. T.Kobori

and R.MinaiBB)extended the linearization techniques for nonstationary

response. W.D.Iwan34), L.D.Lutes35) 36)

and H.Takemiya discussed the
applicability of linearization techniques for prediction of stationary
hysteretic response through investigations of deficiencies between

analytical and experimental response statistics. Further discussions of



linearization techniques will be made in Chapter 4.

1-3 Outline of the Dissertation

In this dissertation, earthquake response properties of simple
hysteretic structures are investigated with special interests on how
the differences between hysteretic and linear response could be explained
in general terms through numerical simulations on digital computers,
theoretical analysis with approximate linearization techniques and

examination of strong motion earthquake accelerograms.

In Chapter 2, the plastic deformation of elasto-plastic structures
in strong earthquakes is investigated by means of numerical simulation
on a digital computer, since accumulation of the plastic deformation
is considered to have direct connection with the process of structural
collapse due to severe ground shaking. The plastic deformation is
defined as a moving average on the time axis of the displacement
response, by which the elastic component of the vibration is eliminated.
Discussions are made as to what cases will make the plastic deformation
grow large by reference to nondimensional parameters showing the
intensity and duration of exitation, rate of nonlinearity of hysteresis

loops and natural frequency of structures.

An analytical method is adopted in Chapter 3, to predict the amount
of the plastic deformation in random response of the perfectly elasto-
plastic structures. In this method, the plastic deformation at each
yielding is estimated by equating the kinetic energy at the yielding
point to the dissipated energy during the plastic drifting and the
accumulated value in certain interval is calculated from the response
statistics of an artificially linearized vibrational system. The
predicted plastic deformation is compared with simulated results to

check the applicability of this method for earthquake-type excitation.

Chapter 4 is devoted to the discussion of applicability of two



equivalent linearization techniques for the investigation of general
properties of earthquake response statistics of nonlinear hysteretic
structures. One is the least mean-square error method and the other
is the energy balance method. The relation between linearization
criteria of the two techniques is examined to conclude that they have
the same expression of equivalent linear parameters for any types of
hysteresis loops. Stationary and nonstationary root-mean-square
(r.m.s.) response of bilinear hysteretic structures are theoretically
predicted by an iterative and a step-by-step linearization techniques,
respectively. Using the results, probability distribution of the
maximum hysteretic response is also predicted through pure-birth and
envelope methods. Monte Carlo simulations are performed on a digital
computer to check the applicability of the techniques used in this

chapter.

In Chapter 5, examined are the strong motion earthquake accelerograms
recorded at the Millikan Library on the campus of the California
Institute of Technology during the San Fernando earthquake of February
9, 1971. The time-dependence of the hysteretic behavior of the library
is studied by plotting the measured values of acceleration against the
calculated values of relative displacement. The equivalent natural
frequency and the equivalent damping factor for each full cycle of the
response are estimated from the experimental hysteresis loops to show
that they are significantly time-dependent suggesting degradation of
the stiffness and energy dissipation capacities of the building. Four
simple linear and hysteretic models for the fundamental mode of the
building, two stationary and two with changing parameters are examined
to see if they could describe the observed response.

Another new simple model is proposed to represent dynamic properties
of general deteriorating hysteretic structures. The equivalent struc-
tural capacities of the model are controlled to degrade with the
decreasing residual strength defined from the theory of low-cycle

fatigue. From response analyses of the proposed models, it is also

-10-



investigated how significant the effects of time-depending structural
capacities to the earthquake response both in amplitude and frequency

components are.

Main results of these chapters are reviewed comprehensively in
Chapter 6 to derive conclusions with proposals for earthquake engineers
at the present time and also in relation to the prospects for the future

studies to be continued.
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2. SIMULATED PLASTIC DEFORMATION OF SIMPLE HYSTERETIC STRUCTURES

2-1 General Remarks

Earthquake response analyses of structures with hysteretic restoring

force (hysteretic structures) could be distinguished into two categories

by their analyzing techniques as briefly explained in the previous chapter.

First technique for response analyses of hysteretic structures
corresponds to earthquake excitation with quite severe size of intensity.
In this technique, every ideally modeled hysteretic loop has been taken
into account for step-by-step integration of nonlinear equations of motion.

The other technique for hysteretic analyses deals with earthquake
excitations with relatively moderate size of intensity. This technique
replaces hysteretic properties of restoring forces by equivalently
determined linear stiffness and linear viscous damping to let nonlinear
problems easy to solve and also to compare the difference between linear
and nonlinear hysteretic response.

These two types of analyzing techniques have been used for research
and designing purposes according to the case of investigation with
consideration of intensity of excitations and types of structures.

However next two issues which seem to be interesting subjects of study
have not yet been discussed precisely.

Calculated response of hysteretic structures with the first technique
sometimes shows quite different features from those of linear structures,
which is the notable drift of displacement from zero base line. The
cause of the drift has not been studies intensively but seems due to
growth of plastic deformation of hysteretic structures, although it is
quite difficult to estimate the amount of plastic deformation on the
time history of response extinguishing the elastic component of fluctua-
tiom.

In the application of second technique, stable dynamic behavior of
hysteretic loops should be guaranteed for the proper and accurate
equivalent linearization of the loops. But admissible conditions of

excitations and hysteretic structures for linearization techniques have
not yet been examined nor clarified except limiting the technique for
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"week' nonlinear structures.
This chapter is aimed to deal with the above mentioned two issues
through investigation of numerically simulated plastic deformation on a

digital computer

P.C.Jenningsl)proposed the curved hysteretic loops which can cover
wide range of shapes to make force-deflection relations of structures
more similar to observed results than idealistic and conventional model-
ings such as bilinear hysteresis. Not only stationary response of the
simple hysteretic structures subjected to a sinusoidal excitation but
also nonstationary response excited by artificially generated earthquakes
was calculated through theoretical analysis and numerical simulation
respectively. The plastic deformation only at the end of an excitation
was examined for different parameters of hysteresis and excitation,
remaining the problem how to pick out the plastic component from the
total displacement response during structural vibration.

J.Penzien and S.—C.Liuz)performed numerous simulations on response
statistics of simple structures with elasto-plastic and stiffness-degrad-
ing hysteresis subjected to artificial earthquakes. The probability
distribution functions of maximum response of linear and hysteretic struc-
tures were especially examined to show the significantly different char-
acteristics according to the natural period of structures in small
vibration. However general understanding of hysteretic response is not
easy from this paper because of no analytical treatments of the problem
and also of no discussions about the plastic deformation. S.—C.Liu3)
made an additional study on the amount of the plastic deformation for
limitted sets of parameters to remain further discussions in future studies.

4)

N.C.Nigam and G.W.Housner ’also noticed the drift of displacement

and pointed out plastic deformation during rotational and torsional
vibration of a relatively simple hysteretic structure. However hysteretic
loops were limitted only for elasto-plastic shapes and the amount of the
plastic deformation was not specifically investigated.

D.Karnopp and T.D.Schartons)proposed theoretical methods to predict
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the accumulated plastic deformation of elasto-plastic structures in random

vibration. Although the methods to convert the kinetic energy at the
yielding level into the potential energy of plastic deformation is
promissing for further studies, stationary and monotonous accumulation
of plastic deformation was assumed to limit the investigation for speci-
fied problems.

6),7)

M.Hakuno and M.Shidawara adopted the force-deflection relation

of a small piece of steel for hysteretic response analysis. They connect-
ed a dynamic loading machine and an analog computer to find the restoring
force characteristics directly from the testing piece and then to
calculate the displacement response on the real time, feeding back the
relative displacement response to the loading machine. Some of the
simulated hysteretic response showed the significant drift of displacement
from the zero base line, which seems as the consequence of accumulation

of plastic deformation. However it is not made clear what range of

parameters would make the drift grow large.

This chapter is devoted to the discussions of the simulated plastic
deformation of the structures with various shapes of hysteretic loops
subjected to artificial earthquakes.

First to make the analysis as general as possible, every term of
the equation of motion with arbitrary types of restoring force is made
dimensionless. A stationary artificial earthquake of which intensity
and frequency properties are clearly defined is used as the excitation.

Then the step-by-step integration of the equation of motion is
performed on a digital computer with relatively precise explanation of
computing procedures and a moving average method is proposed to pick
out the plastic deformation from the total displacement, extinguishing
the elastic component of vibration.

Discussions are made as to what cases would make the plastic
deformation grow large by reference to dimensionless parameters showing
the intensity and duration of excitation, rate of nonlinearity of two
different types of hysteresis loops and the natural frequency of

structures in small vibration.
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2-2 Dimensionless Representation of Hysteretic Restoring Force

2-2-1 Dimensionless Equation of Motion

It is desirable for general discussions about numerical results of
nonlinear response to try dimensionless representation of equation of mo-
tion with any types of hysteresis loops.

Let structures be expressed by single-degree-of-freedom systems (sim-

ple structures) with hysteretic restoring force P(0,B,x,t) and also with

viscous damping proportional to relative velocity. Then the equation of
motion of simple hysteretic structures subjected to ground acceleration

7(t) is written as

d’x dx _ 7
M7+ C4 57+ Plo,B,x,t) = -M-2(¢) (2-1)

where M : mass of a simple structure, Cd : viscous damping constant, X :
relative displacement, 0. and B : parameters which show characteristics of
hysteresis loops, ¢ : time, respectively.

Let zy be yielding displacement of hysteresis, Py be yielding restor-
ing force and ground acceleration Z(t) be expressed by the product of a
constant F, which has dimension of acceleration and dimensionless station-
ary random process N(t) of which average and root-mean-square (r.m.s.)

values are zero and unity, respectively and of which predominant frequen-

cy is we i.e., Z(t)=FON(t). Then dimensionless parameters Hh,, ros T, W
g, N will be introduced as

w = Py/(M-xy), cp =Cy/M, ho= Cp/(2wo)

ry = MFo/P,, T = wet, U = x/xy, n = wf/wo (2-2)

q(o,B,u, 1) = P(a,B,u,T)/Py

In these equations, intensity F/, and predominant frequency wf of excita-
tion are made dimensionless by yielding force of hysteresis Py and natural

frequency of hysteretic structures w, in elastic range, respectively.
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Dimensionless time T is proportional to the ratio of real time and the
natural period of structures. Relative displacement and restoring force
of hysteresis are divided by yielding displacement and yielding restoring
force.

Using these parameters in Eq.(2-1), the dimensionless equation of

motion is written as

2
d—‘} + 2h, au + q(a,B,u, 1) = -r_ N(nT/we) (2-3)
d1 dt s f

In this study, response characteristics of dimensionless displace-

ment (ductility factor) will be simulated on a digital computer, for

different sets of parameters rg, N, & and B which represent relative
intensity of excitation, relative natural period of structures and

types and shapes of hysteresis loops, respectively.

2-2-2 Bilinear Hysteresis Loops

In this study, force-deflection relations will be discussed on the
dimensionless coordinate which consists of dimensionless displacement u
and restoring force g shown in Fig.2.1 (a). On this coordinate, yielding
occurs at the points where p=g=1 or -1 and the stiffness before yielding
is unity. In many studies, hysteresis loops have been modeled on the
conventional coordinate shown in Fig.2.1 (b), then dimensionless
representation has been tried. However, modelings of hysteresis loops
on the dimensionless coordinate adopted in this study would give more
convinience to compare effects of different types of hysteresis loops
to their random response, because less parameters are needed for repre-
sentation of hysteresis loops than for modelings on the conventional
coordinate. v

As one of two different types of hysteresis loops, typical and
commonly used bilinear hysteresis has been adopted. The stiffness of
bilinear hysteresis after yielding is represented by (1-n) shown in
Fig.2.1 (a), where n represents the nonlinearity of the second slope of

bilinear hysteresis loops. Various shapes of bilinear hysteresis loops

-20~



(a) Bilinear Hysteresis on

Dimensionless Coordinate
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Fig.2.2 Various Shapes of Bilinear Hysteresis

Loops with a Parameter »n

-21-




for different values of n are shown in Fig.2.2, where the perfect elasto-
plastic hysteresis is represented when n=1 and linear structures are
represented when »n=0. This bilinear representation of hysteresis has
commonly been used for earthquake response analyses of hysteretic
structures by many engineers and investigators mainly because of the
simplicity not only for representation of a shape itself but also for

procedures of step-by-step numerical calculation.

2-2-3 Modified Jennings Hysteresis loops

Smooth and curved restoring force characteristic has been adopted
as the other type of hysteresis loops in this study. P.C.Jenningss)
proposed curved and smooth hysteresis loops for representation of general
yielding structures. Although mathematical expression of force-deflec-
tion relation of the loops by him is complicated,continuously decreasing
stiffness of them seems much more close to real structures consisting

of many structural yielding elements than that of bilinear hysteresis.
When the representation of curved hysteresis by him is tried directly

on the dimensionless coordinate, however, the skeleton curve of the
hysteresis which is the force-deflection relation in virgin loading does
not come across the previously defined yielding point (u=g=%1).

H.Goto et a19)

made a little modification to the curved hysteresis
by P.C.Jennings to come across the yielding point. Typical shape of
modified Jennings hysteresis is shown in Fig.2.3 and the equations of the

skeleton and each branch are expressed as follows:

R r
Skeleton : u = 7— {qg + ag’ }
U-p 1 (93-9o q-qo,r (2=
TR -9 -qo
Branches : 5 - Tra { 5 + af 3 )7}

where a: positive constant, r: positive odd integer, (U,, qo) is the
point where relative velocity du/dt changes its sign.
Various shapes of the hysteresis for a=0.1 and different values of

r are shown in Fig.2.4. It is easily known that the larger values of r
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give the stronger nonlinearity and also the larger area of the hysteresis
loops. This curved and smooth modeling can represent quite wide range
of hysteretic shapes using two parameters & and r. When a=0 or r=l1,
the hysteresis becomes linear systems. On the other hand r==(a=0) gives
the perfect elast-plastic hysteresis. Although different values of o
give different shapes of hysteresis, 0 was set exclusively 0.1 to make
the natural frequency of the hysteretic structures in small vibration
constant.

It is easily understood that the stiffness of the hysteresis of
small amplitude will be given as a function of a as

dg 1+0

du lu=0 = (Trorqr1) |U=0 =l+ta (2-5)

Then the natural frequency of the structure is

we = V1l + (2-6)

2-3 Simulational Techniques

2-3-1 Generation of Artificial Earthquakes

The difference between artificial earthquakes and real strong motion
accelerograms has often been discussed by many researchers, when random
excitation is needed for response analyses of linear and nonlinear
structures.

Records of strong earthquake ground motion have been used not only
for practical purposes of structural designing to estimate the maximum
response of structures, but also for research purposes to investigate
dynamic characteristics of mathematically modeled structures, because
strong motion accelerograms can be used among many engineers and
reseachers on the common bases of their reality of being recorded.

However, nonstationality and frequency characteristics of records

—24—



differ from one to another and such full of variety of accelerograms is
not always suitable for investigation of foundamental characteristics
of dynamic response of especially nonlinear structures,

On the contrary, artificial earthquakes which are usually generated
from imitation of averaged characteristics of recorded earthquake accel-
erograms have the merit of being mathematically well-defined both in
amplitude and on frequency domain. For example, white noise random
process which consists of equally distributed frequency components is
often used to investigate the dynamic characteristics of linear and
nonlinear structures because of its mathematical simplicity.

As mentioned above, artificially generated accelerograms and real
strong motion accelerograms have their own merits and demerits.
Therefore, it seems preferable to use both of them in common for practical

and research purposes.

However, from the purpose of this chapter to investigate the funda-
mental characteristics of plastic deformation of hysteretic structures
with possibly general discussions, a stationary artificial earthquake
which has relatively simple amplitude and frequency characteristics is
exclusively generated and used following the work done by M.Shinozuka
and Y.Satoloz It is the same as the stationary velocity response of
simple linear oscillator with damping factor hf and natural frequency
wg subjected to white noise excitation. The power spectral density of
this artificial earthquake Sp(w) is obtained as the product of the
constant power spectral density of white noise random process D and
the receptance of simple oscillator in the case of acceleration exci-
tation and velocity response; i.e.,

o (wz—w2)20+w421h2 77 (2-7)
f o

Sf(w) =D-|H(h

The corresponding autocorrelation functionE}JT) is obtained by the
11)

inverse Fourier transform of Swa) from the well-known Wiener-Khinchin

relation.
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‘1) = L ® ZwT
Bpl® = gq JoSy(w-e™™ du

-h T
D e ; t (
= 4hfwf = ? —hfuvsin(wfVJ—hfI)+9fv]—h;COs(wf/]-h;T)} (2-8)

The same autocorrelation function will also be estimated from the

direct calculation of the definition of the function as

o o t . .
Rf(T) E[2(t)z2(t+1)] = E[f_who(t‘TI)H(T1)dT1ff:Tho(t+T—T2)n(T2)dT2]

]

t AT .
ST ol 6-T 1) R o(t4T=T2)En(T1)n(T5) 1dT 1ds

00 00

t AT, .
S o 6T )R o £41-1,) DS (T1=T5)dT1dT,

D'If:THo(t-T1)Ho(t+T-T1)dTl (2-9)

where Z(t) is the random process considered as the acceleration of the
artificial earthquakes, n(t) is white noise random process, éo(t) is

a unit impulse response function of velocity given as
ho(t) = & HAFE i VI-R% VI-h2
° VT:Z;?IH( - fwft) - cos/( Z-hfwft)} (2-10)

Then the mean square value of the artificial earthquake is given
from random theory as shown below.
E(7(t)] =Ru1)|._ = 2 [~
. Uz = 37 _msf(w)dw = D/(4wfhf) (2-11)
In this chapter, the damping factor hf is determined as 30% of
critical to let the power spectral density of the artificial earthquake
have relatively sharp peak around the predominant frequency we. The
parameter of frequency ratio n=wf/wo determines long or short period

structures relative to the predominant period of the artificial earth-

quake.
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The way of generating the artificial earthquake on a digital computer
is as follows.

Firstly white noise random process n(t) is generated by the summa-
tion of cosine time functions which have uniform distribution of frequency
and phase angle as it was done by H.Goto, K.Toki and T.Akiyoshilzz that

is,

L
n(t) =/% L cos(anf t+6 ) (2-12)
r=]

where a is a constant value which determines the intensity of the process,
L is a number of the summation, f,, and ¢r are random values of frequency

r
and phase angle respectively. K.Tokil3)

showed that the Fourier transform
of the autocorrelation function of the above equation gives the relation
between the power spectral density Sf(f) of this process and the function

of probability density p(fp) of random frequency component f,, as

Sf(f) = a?/2 p(fr) (2-13)

Thus, the random frequency and phase angle of which probability density
functions P(f}) and p(¢p) are shown in Fig.2.5 (a) and (b) are generated

14)

using RADOM(0) in the Scientific Subroutine™ “at the Kyoto University
Computer Center. In the Fig.2.5 (a), Ot represents the time interval
of generated random variables. The autocorrelation function of the
generated white noise random process shown in Fig.2.6 looks almost like
Dirac's delta function even though there is a little correlation for
large value of T.

Secondly, the velocity response of simple linear oscillator with
natural frequency wf and damping factor hf subjected the the generated
white noise is calculated by the linear acceleration method to make the
artificial earthquake. To take only the stationary part of the velocity
response, the transient part of the response due to initial conditions
of zero-displacement and zero-velocity is thrown out, The duration

which is ten times as long as the natural period of the filtering
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oscillator is considered as the transient part with the reference of
the theoretical results by T.K.Caugheylsz A typical example of time
history of the generated artificial earthquake is shown in Fig.2.7.

The autocorrelation function of the generated earthquake shows good
agreement with the theoretical results given by Eq.(2-8) at their first
peaks. A little time lag at their second peaks does not seem to make
the generated result considerablely differ from the theoretical one.
The autocorrelation function of the recorded accelerogram of the N21°E

component at Taft during the Kern County earthquake is also shown in
Fig.2.6.

2-3-2 Control of Time History of Bilinear Hysteresis Loops

(a) Control due to change of velocity sign

At the point B and E shown in Fig.2.8, relative velocity of hyster-
etic structures du/dt shall be zero. Hence when relative velocity changes
its sign during step-by-step calculation with time interval of At: an
approximate time when relative velocity is zero will be estimated by the

Taylor expansion as

At' = (ﬁi” - f‘i)/ﬂi (2-14)

where ﬁi+1 is the calculated relative velocity at the next step under the
initial conditions of W; and u;, without changing the previous stiffness.
Then an approximate coordinate when li is zero will be determined on g or
1 line which have the stiffness of plastic region to continue the calcu-

lation toward B-C or E-F line which have the stiffness of elastic region.

(b) Control due to change of stiffness

At the points A,C,D,F shwon in Fig.2.8, the stiffness of elastic
region reduces its value to that of the plastic region. The displacement
of these alteration points can be predicted by adding the width of elastic
region to or reducing it from the displacement at the previous points
where relative velocity L is zero. Hence, when the response of relative

displacement during step-by-step calculation goes beyond this alteration
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point, an approximate time when stiffness change shall occur will also

be estimated by the Taylor expansion as

A" = (., - ui)/ﬁi (2-15)

Then an approximate velocity at these alteration points will be determined
to continue the further calculation for g or 1 line.

In this way, the control due to the change of the stiffness can be
done by defining the displacement of alteration points. So this way of
controlling method of bilinear hysteresis loops would be considered as
though it were depending exclusively on the displacement.

From the phisical view points of dynamic characterisitcs of struc-
tural materials, however, it seems desirable to take a different way of
the controlling method by which the restoring force is limitted by two
parallel straight lines; g which limits the upper boundary and 1 which
limits the lower boundary of the restoring force. Because it is natural
to consider that restoring force of structures is not restricted by
displacement but the level of restoring force which makes structural
elements yield.

This view point that the hysteresis is controlled by the limitted
level of restoring force gives an easy way to control more complex
hysteresis loops like modified Jennings hysteresis to be discussed in

the next section.

To check the accuracy of the controlling method above mentioned,
the calculated response of the elasto-plastic structure with no viscous
damping subjected to sinusoidal excitation which has the same intensity
as the yielding level of the restoring force is compared with the
theoretical frequency response curve which was firstly obtained by
T.K.Caughy16)using slowly varying parameter method (Appendix 2-A).

Both results are plotted in Fig.2.9 to show fairly good agreement, which
would allow one to use both numerical and theoretical techniques for

investigations of nonlinear hysteretic response.

It is also pointed out that the frequency response curve of the

=30~



Fig.2.8 Control of Bilinear
Hysteresis Loop

4t — THEORY
% SIMULATION
3.
21
I
O L i PO

1.0 2.077

Fig.2.9 Predicted and Simulated Frequency

Response Curve of the Elasto-
Plastic Structure (%,=0.0)

-31-



elasto-plastic structure with no viscous damping has its limitted peak
around n=0.4, which is due to energy dissipation by the hysteresis loops
and softening type of restoring force, respectively. It is noted that
frequency response curves of linear structures with no viscous damping

shall show infinite value at n=1.0.

2-3-3 Control of Time History of Modified Jennings Hysteresis Loops

A more complex and skillful technique is needed for the step-by-
step control of random time history of modified Jennings hysteresis
loops, because transition of restoring force from one curve to another
can not be controlled exclusively by the displacement as was done for
the control of bilinear hysteresis loops, but shall be controlled by the
restoring force curves appropriately defined from the previous time
history.

P.C.Jenningsl7)

proposed the two restoring force curves which define
the upper and the lower boundary of time history to calculate earthquake
response of structures with the curved hysteresis loops he presented.
The way of controlling technique which seems to be applicable for any
types of hysteresis loops will be explained briefly to adopt it also for

this study.

(a) Control due to change of velocity sign

At the points A and C shown in Fig.2.10, relative velocity of
hysteretic structures shall change its sign. The same technique as used
for the control of bilinear hysteresis loops is adopted at these points
to change the restoring force curve from one skeleton or one branch to
another branch. The equation of the ascending or descending branch
represented by Eq.(2-4) will be defined exclusively from the previous
point where relative velocity is zero unless each branch cuts across the

previously defined upper or lower boundary of the restoring force.

(b) Control of branches by the restoring force curve

On the ascending branch (C+D+A) or on the descending branch (A+B-C)

in Fig.2.10, it should be checked whether each branch cuts across the
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upper or lower boundary curves which are defined from the previous time
history.

The upper boundary curves as shown in Fig.2.1l consists of one of
ascending branches which has the minimum value of the intercept on
y-axis during the previous random time history and also of the skeleton
except A-B section.

The lower boundary curve as shown in Fig.2.12 consists of one of
descending branches which has the maximum value of the intercept on
p-axis at B-A section and also of the skeleton except B-A section.

When the ascending branch goes beyond the upper boundary curve
during the step-by-step calculation of response, the transition of the
restoring force from the branch to the upper boundary curve should be
performed to avoid the higher level of restoring force than that of
previous time history at the same displacement. Similarly when the
descending branch goes below the lower boundary curve, the transition
of the restoring force from the branch to lower boundary curve should
be performed to avoid the lower level of restoring force than that of
previous time history at the same displacement.

Approximate time and the coordinate of the transition point of the
restoring force can also be determined by using the same techniques as
it was used for the reduction of stiffness of bilinear hysteresis loops.

This method to control time history of hysteresis loops by two
boundary curves seems applicable for any types and shapes of hysteresis
loops, because appropriately defined upper and lower boundary curves
could control complex restoring force characteristics, even the

18)

rotation of hysteresis loops as S.Yoshihara adopted.

The frequency response curves of the modified Jennings hysteresis
loops (@=0.1, r=9) obtained from the theoretical analysis using the
slowly varying parameter method (Appendix 2-A) and also from the
simulation using above mentioned controlling technique are plotted
in Fig.2.13 to show good agreement between them, from which accuracy

of both methods could be considered satisfactory for practical usage
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like the simulation in this study.

A typical example of calculated random response of a structure with
modified Jennings hysteresis loop (a=0.1, r=11) subjected to the gener-
ated artificial earthquake is shown in Fig.2.14 (a) and (b).

The drift of displacement from zero base line which seems due to
growth of plastic deformation is apparent along the computed displace-
ment shown in Fig.2.14 (a).

The limitted part of the time history of the hysteresis loops plotted
in Fig.2.14 (b) indicates satisfactorily smooth control of the hysteresis

loops with strong nonlinearity.

2-4 Simulated Plastic Deformation

2-4-1 Estimation of Plastic Deformation by Moving Average Method

As shown in Fig.2.14 (a), time history of displacement response of
structures with strong nonlinearity of hysteresis loops subjected to
strong earthquake excitation often shows plastic drift from zero base
line, which is also reported by P.C.Jenningsl72 N.C.Nigam32 M.Hakuno6)
and others. Such complex features of nonlinear hysteretic response
which consists of elastic component of vibration and also of plastic
drift are quite different from those of linear elastic response.

It seems not sufficient enough for discussions of structural damages
or process of failure due to strong earthquakes to calculate only maximum
response of structures over the yielding limit. Because the values of

ductility factor and plastic deformation seems to concern strongly with

structural damages such as cracks of walls, columns and beams.

In this section, a technique to estimate the amount of local plastic
drift from zero base line during earthquake-type random excitation is
proposed. The amount of plastic drift could be estimated by taking an
average of displacement response over limitted section where drift seems

constant. The component of elastic vibration over there would be
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Fig.2.14 A Part of Random Response of Modified Jennings
Hysteresis Loops Subjected to Artificial
Accelerograms (h,=0.05, a=0.1, r=11, rs=l.0, n=1.0)
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eliminated by averaging process.

A moving average technique which is one kind of filters to eliminate
small period fluctuations along relatively long period drift of displace-
ment is adopted to estimate the amount of local plastic drift.

Let define the moving average as

(1 (1+T,/2
Tzfo 7 ult)dr 5 TET,/2
)1 t+T./2 .
Mo (TT5) = 'TZIT-T§/2 u(t)d 5 T,/25T8TmeTy/2  (2-16)
LT w(t)dt ; T, 2<t<T
I =T-T;/2 J1-T,/2 5 Smmiy/ ety

where T; is the time interval of the averaging section and Tm is the
total duration of the calculated response. In this study Tm is set

as 60T which is 30 times as long as the natural period 2m of hysteretic
structures in small oscillation.

The time interval of the averaging section TZ would be the most
important parameter of this technique to estimate the plastic drift.
That is, too much short TZ could not eliminate the elastic vibration
component. In this case, the value of plastic drift might be estimated
much bigger than real one. On the contrary, too long TZ could not point
out the local value of plastic drift due to the local strong pulse of
excitation., Therefore TZ should be set as the shortest interval by

which the most of elastic vibration component could be eliminated.

In Fig.2.15,the time history of displacement response of a linear
structure (%,=0.05, n=1.0) subjected to the artificial earthquake
(PS=1.0) and the moving average of it for the set of parameters I;=2T,
4m, 87, 121 which correspond to 1, 2, 4, 6 times as long as the natural
period of the structure 2w, This figure indicates that the most of
elastic vibration components is eliminated and the moving average becomes

almost zero when T; is set larger than 8.
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The displacement response of a structure with elasto-plastichyster-
esis loop (%,=0.05, n=1.0, n=1.0) subjected to the same excitation in
Fig.2.15 and the moving average of it are plotted in Fig.2.16. The
time history of the displacement response shows large amount of the
plastic drift which seems due to strong nonlinearity of the hysteresis
and also short period fluctuations with relatively small amplitude which
seemsdue to large amount of energy dissipation by hysteresis loops. The
moving average with similar set of parameters of TZ as in Fig.2.15
shows that the large value of TZ gives the smoother time variation of
the average as could be expected. It is noted that the initial value
of the moving average at T=0 for TZ which is less than 47 shows non-zero
value because the small fluctuation can not be eliminated for such small
averaging interval.

Similar results of a structure with modified Jennings hysteresis
loops (a=0.1, r=11, %©,=0.05, n=1.0) are shown in Fig.2.17. Although
the small period fluctuation of displacement response is almost same
as that of a structure with elasto-plastic hysteresis loops, much less
amount of plastic drift is found. This difference seems due to the
different type of hysteresis loops.

From the numerical results shown in Figs.2.15, 16, 17 and above
discussions, T; is set as 87 which is 4 times as long as the natural
period of hysteretic structures in small oscillation to estimate the
local variation of plastic drift eliminating the small period elastic

fluctuation.

Up(‘[) = uav(r,Bn) (2-17)

It is of great interest for designing of structures to resist strong
earthquake to know the direction and the amount of the plastic deforma-
tion for different parameters of structures and also of excitations.

As symmetric shapes of hysteresis loops are assumed in this study,

however, the direction of the plastic drift would be affected exclusively
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by the characteristics of exciting accelerograms. Hence the direction
will not be discussed herein but only the absolute value of plastic
drift will be investigated with relative to the absolute value of dis-
placement response.

It is one of the purposes of this study to find how the local abso-
lute maximum displacement grows and how the plastic deformation accumu-
lates with the duration of excitation. Hence the absolute maximum
value umax(T) is defined as shown in Fig.2.18. In this figure, the
absolute value of u(tT) is plotted for the first step, then the envelope
of the peaks which are bigger than any other previous ones is taken.

The absolute maximum values defined in this way would be convenient
to examine the nonstationary characteristics of hysteretic structures
especially the duration effects more in detail. Discussions about the
simulated results will be made in following sections as to the effects
of types and shapes of hysteresis loops, intensity of excitation and
frequency ratio between natural frequency of hysteretic structures and

predominant frequency of excitation.

2-4-2 Effects of Shapes of Hysteresis Loops

The parameters which determine the shapes of restoring force are =
for bilinear hysteresis and r for modified Jennings hysteresis. Another
parameter 0 for modified Jennings hysteresis is set constant as 0.1.

The larger values of n and r show the stronger nonlinearity of restoring

force.

In Fig.2.19 (a) and (b), shown are the absolute maximum value of the
response displacement Umax(r) and also the absolute maximum value of the
plastic drift up,max(T) of a structure with bilinear hysteresis (%,=0.05,
n=1.0) subjected to the artificial earthquake (rgs=1.0), respectively.

This set of parameters is supposed to express the situation that
structures are subjected to very strong random ground motion of which
predominant frequency is the same as the natural frequency of structures
in small oscillation for relatively long duration. '

It is not easy to find any clear difference among umax(T) shown in
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Fig.2.19 (a) for different values of n. However displacement response
of hysteretic structures seems to show larger value than that of the
linear structure at the time-section T225T except for the case of n=0.75.
The effect of the duration of excitation to hysteretic response is
significant up to about T=30T which is 15 times as long as the natural

period of structures in small oscillation.

19)

On the results of the improved Phase-Plane-Delta method, R.Tanabashi
and T.Kobori suggested that a few strong pulses would be sufficient
enough for estimation of hysteretic response at the early stage of this
field. Mainly because energy dissipation due to hysteretic behavior of
restoring force would add so much damping to structures that preceding
small pulses before the strong pulses would not have any significant
effects to the total response.

The necessity of nonlinear hysteretic response analyses has been
highly appreciated by many research workers since then as mentioned
in the previous chapter. However the effect of duration of excitation
shown in Fig.2.19 (a) does not seem small enough to be neglected. Similar
results are also reported by J.Penzien and S.-C.Liuzz

D.E.Hudsonzo)reported that the order of hysteretic energy dissipation
in random response is about several percent of critical damping.

These results point out the importance of further intensive investi-

gations of the duration effects of excitations on hysteretic response

for different sets of parameters.

The absolute maximum value of the plastic drift up,max(T) shown in
Fig.2.19 has significantly different character with respect to the param-
eter of n. It is found that a structure with elasto-plastic hysteresis
loop (7=1.0) which has no stiffness in the plastic range shows consider-
able amount of plastic drift than any other structures with bilinear
hysteresis loops, even though umax(T) does not change so much among
them.

This result suggests that features of displacement response of elasto-

plastic structures would be quite different from those of bilinear or
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linear structures. That is, the part of plastic drift in the total dis-
placement response is significantly large for elasto-plastic structures
and little for bilinear or linear structures. These different features
of response should especially be noticed when estimation of response
statistics of hysteretic structures is tried using linearization tech-

nique such as those which will be discussed in the next chapter.

Effects of different shapes of modified Jennings hysteresis loops
to]#mmrand up,max are also plotted in Fig.2.20 (a) and (b) for different
values of the paramter r. Plotted Umax does not have significant
differencewithin the range of r from 3 to 11 used hearein. It is
interesting to note that the corresponding linear structure shows larger
response than almost all of modified Jennings hysteresis, contrary to
the results of bilinear hysteresis. Values of umax keeps growing up
to 30T as that of bilinear hysteresis to suggest the effect of duration
of excitation is not negligibly small.

Plotted up,max in Fig.2.20 (b) shows the larger value for the bigger
r. The large plastic deformation seems due to strong nonlinearity after
yielding for large value of r as is known from the shapes of modified
Jennings hysteresis loops shown in Fig.2.4. There is no significant
step-wise increase of up,max with respect to the parameter r. None of
specified r determines which hysteresis loop is stable or nonstable with
relative to plastic deformation. Even the hysteresis loop with the
weakest nonlinearity (r=3) shows noticeable plastic deforamtion (up,max=
1.0 for umax=8.0) This value of plastic deformation is bigger than that
of the bilinear hysteresis of #=0.75 which shows realtively strong non-
linearity. Therefore modified Jennings hysteresis representation is
considered as models of restoring force which let the plastic deformation
grow easier than bilinear hysteresis representation.

This consequence could be explained from the difference of stiffness
after yielding of two hysteresis loops. Bilinear hysteresis loops show
constant stiffness after yielding as

% = I-n for 1.0<u<® (2-18)
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On the contrary, the stiffness of modified Jennings hysteresis loops
after yielding gradually decreases and it is asymptotic to zero when
amplitude increases infinitely as

dq 1+o

oo = 5| o = 0 (2-19)
du'y {1+arqr'1} q=

Hence, higher ductility of modified Jennings hysteresis loops lets the
plastic deformation occur easily due to the significant loss of the

stiffness even for small value of r.

2-4-3 Effects of Intensity of Excitation

Effects of intensity of the excitation to the absolute maximum
displacement umax and the plastic deformation up,max are investigated
in this section for specified bilinear hysteresis and modified Jennings
hysteresis by changing the intensity parameter re. It is again noted
that ry represents the ratio of r.m.s. intensity of excitation to the
yielding level of a structure.

In Fig.2.21 (a) and (b), shown is the response of a structure with
the elasto-plastic hysteresis loop (n=1.0, h,=0.05, n=1.0) subjected
to the stationary artificial earthquake of which intensity parameter
ro varies from 0.25 to 1.0.

Plotted - in Fig.2.21 (a) shows unusually large response for
r3=0.75 and 1.0. That is, umax of rs=0.75 is almost two times as large
as that of rs=0.50, and also umax of rs=l.0 is about two times as large
as that of rs=0.75. For linear structures, umax should be proportional
to the intensity parameter rs from the principle of linear superposition.
When the intensity of the excitation is small (P3=0.25 and 0.50), the
linear principle seems applicable, since umax of rs=0.5 is about twice
of that of rs=0.25.

These nonlinear characteristics of the elasto-plastic hysteresis
loops would clearly be understood by examining the up,max shown in
Fig.2.21 (b). Plotted up,max shows small value for low level of the

excitation (rs=0.25 and 0.50), because ductility response itself is
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still small. However when ry becomes larger than 0.50, up,max grows
remarkably to let umax out of the linear principle.

The results obtained in Fig.2.19 and here suggest that the plastic
deformation grows almost exclusively for the elasto-plastic hysteresis
loop subjected to relatively strong excitation (PSZO.75) to show the

strong nonlinearity of .
8 y Umax

Similar examination of effects of the intensity of the excitation
to modified Jennings hysteresis loops (h,=0.05, a=0.1, r=9) is done by
plotting Umax and up,max in Fig.2.22 (a) and (b). The values of umax
and Up,max are almost proportional to ry at any point of their time
history. This result suggests that the response of the modified Jennings
hysteresis which keeps the positive stiffness even decreasing strongly
after yielding, follows linear principle better than that of the elasto-
plastic hysteresis which loses stiffness completely after yeilding.

So it is hard to find the critical value of r, which lets u ,mazx of the
modified Jennings hysteresis grow significantly.

The results obtained in Fig.2.20 and here conclude that the amount
of plastic deformation up mazx of modified Jennings hysteresis is not so

3
large as that of the elasto-plastic hysteresis and also that the up mazx
3
of modified Jennings hysteresis would grow, even a little, for structures
with relatively weak nonlinearity of hysteresis loops subjected to

relatively low level of the excitation.

2-4-4 Effects of Natural Period of Structures

Effects of natural period of hysteretic structures in infinitesimal

vibration to the response of u and u are investigated in this
max p,max
section.

In Fig.2.23 (a) and (b), response of the elasto-plastic hysteresis
loops (h,=0.05, n=1.0, PS=1.O) is plotted with the frequency parameter
n which shows the ratio of the natural period of the structure T, and
the predominant period of the excitation Tf (i.e., n=To/Tf). Fig.2.23

(a) shows that the umax of the elasto-plastic hysteresis is larger for
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structures with smaller value of N which could be called "

relatively
short period" or '"relatively rigid" structures. The effect of duration
of the excitation is also significant for smaller value of n. Almost
similar effects are found for up,max shown in Fig.2.23 (b).

These results indicate that the response of the relatively short
period structures (n<l1.0) shows the larger values and also grows more
rapidly after yielding on the time history than that of the relatively
long period structures (n>1.0). Therefore from engineering view point,
yielding of short period structures with strong nonlinearity should
especially be avoided not to let the response grow rapidly up to failure

due to many number of loading cycles in the state of resonance.

Response of the modified Jennings hysteresis (o=0.1, r=9, h,=0.05, r,
=1.0) is also plotted in Fig.2.24 (a) and (b) for a set of parameter n.
Plotted U and especially u in these figures are found to be

max p,max
smaller than those of the elasto-plastic hysteresis, However, it is the
same tendency for modified Jennings hysteresis loops that the smaller
values of n gives the bigger response of Umax and up,max' The effect of
duration of the excitation is also similar to that of the elasto-plastic

hysteresis.

These results suggest that the effects of N to the response of
hysteretic structures are almost identical even for different type of
hysteresis loops. That is, the relatively short period hysteretic
structures recieve the duration effect more strongly and show bigger
response than the relatively long period hysteretic structures.

The reason of this effect of n could reasonably be explained by
taking acount of the resonance between hysteretic structures with the
amplitude-depending natural frequency and the random excitation with the
single predominant frequency.

Every hysteretic model adopted in this chapter has soft-spring type
restoring force characterisitcs to let the natural period of structures
grow large after yielding. Hence, when the response of relatively short

period hysteretic structures goes over the yielding limit, the peak of
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the receptance of the structures moves closer to the predominant frequen-
cy of the excitation. On the contrary, the peak of the receptance of the

relatively long period structures goes far from the predominant frequency
of the excitation due to yielding to suppress the response. As the result
of this receptance shifting, the response neither grows large nor recieves

the duration effects.

The results in this section seem to allow to conclude that the fre-
quency-depending response characteristics of hysteretic structures which
had been said to be very small due to additional damping are almost as
significant as those of linear structures. Further theoretical studies
are strongly needed for general discussions of earthquake response char-
acteristics of hysteretic structures.

As one of the important suggestions for earthquake engineers obtained
in this section, it is strongly noted that the response of the relatively
short period hysteretic structures after yielding is expected to grow
very rapidly up to failure due to the high number of loading cycles in

the state of resonance.

2-5 Conclusions

In this chapter, the plastic deformation of elasto-plastic struc-
tures in strong earthquakes has been discussed by means of numerical
simulation on a digital computer. Main results derived from the study

in this chapter are as follows.

(1) The dimensionless representation of the equation of motion of a
single-degree-of-freedom (simple) structures with arbitrary types
of restoring force has been proposed to reduce the number of pa-
rameters of excitation and hysteretic structures. Consequently,
the effects of different types of restoring force of structures
to their random response have been discussed and examined more

generally than for the conventional investigations with dimensions.

(2) Displacement response of hysteretic structures has been separated
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(3

(4)

(%)

into elastic and plastic components. The amount of plastic defor-
mation has been estimated by means of the moving average technique
by which local vibration of elastic component has been eliminated.
The suitable time interval of the averaging section has been found
as 4 times as long as the natural period of structures to take out

the plastic deformation from total displacement response.

Effects of shapes of hysteresis loops to the plastic deformation
have been checked for bilinear and modified Jennings types of
representation. For bilinear hysteresis loops, the plastic defor-
mation grows very rapidly when the stiffness after yielding becomes
close to zero. When the stiffness in the plastic region is greater
than one quarter of that in the elastic region, the plastic defor-
mation was found to grow little. For modified Jennings hysteresis
loops, the plastic deformation was observed even for r=3 which
shows the weakest nonlinearity of the hysteresis loop. The Plastic
deformation increased gradually for stronger nonlinearity of the
hysteresis loops, however, it did not reach to so large as that

of the elasto-plastic hysteresis loop.

Effects of intensity of the excitation have been examined for two
specified hysteresis loops. For the elasto-plastic hysteresis
loops, the plastic deformation was found to grow significantly
out of the principle of linear superposition when the r.m.s.
intensity of the excitation is greater than half of the yielding
level. Relatively proportional relation was found between the
plastic deformation and the intensity of the excitation for the

modified Jennings hysteresis loops (r=9).

Effects of natural period of structures were found almost the same
between the elasto-plastic hysteresis and the modified Jennings
hysteresis loops (r=9). Response of "relatively short period
structures" of which natural period is shorter than the predominant
period of the excitation has shown the larger values and also

grown more rapidly after yielding than that of "relatively long
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period structures'". This frequency effect seems due to the soft-
spring type restoring force which lets the natural period of struc-
tures grow longer and shift more close to the predominant period

of the excitation.

(6) Effects of the duration of the excitaion have been found not so
small as had been suggested before, especially for ''relatively
short period structures" with strong nonlinearity of hysteresis
loops. Accumulation of plastic deformation of these structures
should strongly be avoided not to cause structural collapse due

to severe ground motion.

The study in this chapter has also derived next three topics to be
investigated for more realistic, statistical and theoretical discussions

about earthquake response characteristics of hysteretic structures.

(a) Only two idealized models were used in this chapter as the presen-
tation of nonlinear hysteretic restoring force characteristics
of structures to examine their random response. However, restoring
force characteristics of real structures have not yet been well
investigated, particularly in the large amplitude range from the
yielding level up to failure. From this point of view, experimental
studies both in laboratories and in fields are strongly needed to

measure more realistic behavior of restoring forces.

(b) Main features of hysteretic response of structures with weak non-
linearity were found not so different from those of linear ones.
This result suggested that nonlinear response could be predicted
theoretically by choosing equivallent linear structures and apply-
ing linear theories to them. From this point of view, investigation
of linearization techniques and their application to earthquake

response of hysteretic structures are of strong necessity.

(c) Plastic deformation was found to grow significantly only for

structures with strong nonlinearity. Theoretical investigation of
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plastic deformation is also needed to predict the probabilistic
amount of it, particularly for discussions of structural reliability

during strong earthquakes.

These three topics will be discussed intensively in the following
three chapters of this dissertation.
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APPENDIX 2-A

Frequency Response Curve of Hysteretic Structures with Viscous Damping

Frequency response curves of hysteretic structures without viscous

damping were theoretically investigated by T.K.Caugheyl6)

8)

and P.C.Jennings
using the slowly varying parameter method. In this appendix, similar

investigation is made for hysteretic structures with viscous damping.

The equation of motion of simple hysteretic structures with damping

subjected to sinusoidal excitation is written as

U(T)#2holt(T)+q(0y B, U, T) = -r_cosnt (2-A-1)

Let's assume slowly varying amplitude p, (1) and phase angle ¢(t) of

the response of the above equation, i.e.;

W(T) = polT)cosint+d(1)} (2-A-2)
where
duol(tl)/dt = 0, dé(t)/dt = 0 (2-A-3
Substituting Eq.(2-A-2) into Eq.(2-A-1) and taking the first term of
sine and cosine Fourier expansion series of Eq.(2-A~1) with conditions of

Eq. (2-A-3) will give the relation among response amplitude p_, frequency

parameter n and phase angle ¢, as

=2honi, + S(p,) = -rssin¢o
, (2-A-4)
“NUo + ClUy) = -r_cosd,
where
Sluy) = % fzﬂq(a,B,uocose,T)sinedﬁ
1 gn } (2-A-5)
Clue) = ;'f; glo, B, Hocosh, T)costdd

The frequency response curve will be obtained by elimination of phase
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angle ¢, from Eq.(2-A-4), that is
{S(uo)=2honto}? + {Cluo)-n’uo}l? = rl (2-A-6)

The phase angle is also shown from Eq. (2-A-4) as

—1{—2honuq+5(uo)} (2-A-7)

$o = tan Cluo)-Nlo

S(u,) and C(u,) defined by Eq.(2-A-5) are calculated for bilinear
16)
hysteresis loops as

5(uo) =| ™osin?e” ;w10
0 ;U <1.0
Clue) = %"-[ne*+(1—n)ﬂ—n/2sin26*] s u>1.0 L (2-A-8)
Uo ; w<l.C
VheTe g% _ cos Y(1-2/uy) ‘

Those for modified Jennings hysteresis loops are obtained as followss).

r
S(uy) = _da(r-1) go -
T (r+l) (1+og, ~)
(2-4-9)
) = - ol
HoT =H,
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3. ANALYTICAL PREDICTION OF PLASTIC DEFORMATION IN RANDOM RESPONSE

3~1 General Remarks

In the occasion of extremely strong earthquakes which might occur
once or less in the life time of structures, it would be inevitable for
structures to recieve damages, even though they are designed to resist
earthquakes following the current aseismic codes. In some cases, struc-
tural damages may be permissible unless occupants are injured or killed
due to serious collapse of structures. However, it is quite difficult
to estimate the extent of structural damages caused by random ground
motion of strong earthquakes. Main reasons of the difficulty are 1)
there are no effective parameters by which the degree of structural
damages can be measured simply, 2) probabilistic approach can not be
easily applied to nonlinear response of structures.

Plastic deformation discussed in the previous chapter could be
considered as one of the important parameters which represent the
degree of structural damages due to random ground motion. When plastic
deformation caused by earthquakes is small, structures can be repaired
for further use. However when it is large, structures are collapsed
or they can not be used anymore. In these cases, structures should
be demolished. Hence probabilistic estimation of plastic deformation
is expected to give crucial informations on the reliability of structures
especially in the plastic range.

As discussed in Chapter 2, most studies on plastic deformation have
dealt only with numerically simulated valueslz In these studies,
probabilistic approach needs large amount of calculated results and
theoretical prediction of plastic deformation is almost impossible.
D.Karnopp and T.D.Schartonz)proposed the linearization technique to
predict the plastic deformation of elasto-plastic structures. This

technique is adopted by E.H.Vanmarke3)and D.Venezianoé)for estimation
of probabilistic seismic response of simple inelastic systems with

the effect of gravity. Although the linearization technique is
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promissing for probabilistic discussions of plastic deformation, accu-

racy of basic assumptions has not been investigated.

In this chapter, an improved linearization technique is proposed to
predict the accumulated plastic deformation in random response of the
elasto-plastic structures. The structures are modeled by single-degree-
of-freedom (simple) oscillators in which plastic drifting occurs only in
one direction. The accumulated plastic deformation of this model can
easily be found proportional to the total energy dissipated by conven-
tional elasto-plastic hysteresis loops. Hence it is expected that predic-
tion of the accumulated plastic deformation would give significant infor-
mation to measure the degree of structural damages due to strong earth-
quakes.

In the section of 3-2, analytical methods are developed for proba-
bilistic estimation of plastic deformation. Firstly, plastic deformation
for each yielding is predicted from the velocity at the yielding point
neglecting the effects of external force during plastic drifting. Then
the lienarization technique is adopted for probabilistic prediction of
the accumulated plastic deformation which is computed from the expected
values of number of upward crossing of the yielding level and of relative
velocity at the level. The proposed analytical method which estimates
the equivalent damping factor due to plastic drifting is expected to
improve the equivalent linear response for accurate prediction. In the
section of 3-3, numerical simulations are performed on a digital computer
to check the accuracy of theoretical methods of prediction. Random re-
sponse of the proposed model subjected to recorded seismogram and also
to artificially generated white noise accelerogram is numerically cal-
culated by the Runge-Kutta methods. Basic assumptions involved in the
theoretical analyses are examined from the comparison of simulated and

predicted results.

3-2 Analytical Method to Predict Plastic Deformation
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3-2-1 Oﬁe—Way Yielding Elasto-Plastic Force-Deflection Relation

Force-deflection relations of structures during strong earthquakes
would have different hysteresis loops when they respond over the yield-

ing limit. These relations have been represented by various types or

5) 6)

shapes of hysteretic models such as bilinear, trilinear”’, curved loops
and so on as stated on the previous chapters. Each of them is an ideal
model for the dynamic property of structural element derived from em-
pirical studies. Among them, bilinear hysteretic model has been used most
commonly for earthquake response analyses. The way of representation of

this model is very simple, although different shapes of hysteretic re-

storing force; linear elastic, bilinear and perfect elasto-plastic loops

can be represented.

In this chapter, the perfect elasto-plastic hysteresis loop in which
yielding occurs toward only one direction is adopted to investigate the
accumulation of plastic deformation which is proportional to the dissi-
pated energy due to conventional elasto-plastic hysteresis loops in
random response. The model shown in Fig.3.l1 indicates that the plastic
deformation after the yielding (A-B and B-C in the figure) is irreversible
and the linear fluctuation within the elastic region (A-AZ B-B: ¢-C' in
the figure) is reversible. x, f(x), xy and Fy denote relative displace-
ment, restoring force, yielding displacement and yielding force, respec-
tively. This type of monotonous accumulation of plastic deformation is
noticed when the yielding structures with strong nonlinearity receive
the effect of the gravity and collapse occurs towards the only one
direction72

Let structures be expressed by simple nonlinear oscillators with
mass of M and viscous damping coefficient C. Then the equation of
motion of the oscillator subjected to ground acceleration of z(t) becomes

as

ME(E)+CE(E)+f(x(t)) ==MZ(t) (3-1)
The above equation will be reduced to the following form with ductility
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factor Y, damping ratio %,, natural frequency w, in the elastic region,

and intensity parameter of excitation rs, as
() +2howoli(t) +ulq (u(t)) = -r () (3-2)

where

u(t) = x(t)/xy, We = /Fy/M
(3-3)

ho = c/(z./FyW), r = l/xy

q(u) is the dimensionless force and ductility factor relation shown in
Fig.3.2.

3-2-2 Prediction of Plastic Deformation from the Velocity at the Yielding
Point

Suppose that response of a structure with a unit mass has reached
to the yielding point A shown in Fig.3.2 with the relative velocity ﬁy’
then the total energy at this point will be evaluated from the sum of
the potential energy Pa(E) and the kinetic enrgy Ka(E) which is calcu-
lated from the velocity at the point A as

- 2 (3-4)
Ka(E) uy/2

During the plastic drifting from A to B in Fig.3.2, the kinetic energy
Ka(E) will be dissipated and relative velocity j will become zero at
the point B, 1If it is possible to ignore the effect of external force
to the energy balance between points A and B, next relation will be
reduced.

= (3-5)
Pa(E) + Ka(E) = Pb(E) + Db(E)

Db in the above equation is the dissipated energy due to plastic drifting
and it is obtained from the hatched area shown in Fig.3.2. Pb(E) is
the potential energy at the point B which is equal to Pa(E) in this

study. Hence following simple relations are brought out.
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Fig.3.1 One Way Yielding Elasto-Plastic
Force-Deflection Relation

A

0 Hy(=10) 'y

Fig.3.2 Plastic Deformation in Ductility
Factor and the Dissipated Energy
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Ka(E) = Db(E') s Db(E') = wlAp (3-6)

Using Egs.(3-4) and (3-6), the plastic deformation Ay is estimated from

the velocity at the yielding point as

Dy = ﬁ;/(Zwi) (3-7)

The time interval At during the plastic drifting from the point A+B, is

evaluated by solving the next equation of motion
{i(t) + w3 =0 (3-8)
under the initial conditions of

u(t) = W, = 1.0 and W(t) = hy at t=0 (3-9)

At the point B, relative velocity p is zero, then

At = ﬁy/wé (3-10)

The result of Eq.(3-7) can also be obtained from the solution of Eq.(3-
8). The relation between At and Au (Au=w3At?/2) is plotted in Fig.3-3.
It is seen that the plastic deformation is proportional to the square

of the time interval of plastic drifting and also to the square of the

natural frequency of the model in the linear oscillation.

Above discussions are brought out without considering the effects
of external force. When input acceleration rsz(t) is considered, Eq.(3

-8) becomes as

Ht) + wd = -rsé(t) (3-11)

The solution of the above equation is obtained by the sum of the free
vibration uf(t) due to the initial conditions and the forced vibration

due to the external force as

Wt) = un(t) + psf; net-t") (L) dt! (3-12)

Uy
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where h(t) is the unit impulse response function of Eq.(3-11). For
discussions of Eq.(3~12) in the sense of an average of random response,

let's take the ensemble average of the equation; i.e.,

E[u(t)] E[Uf.(t)] + E[rsfz h(t-t')2(t')dt")

(3~13)

t ’ . , '
E[uf(t)] + ”sfo h(t-t')E[Z(t'))dt

Since ensemble average of random external force like earthquake ground
motion is usually zero, the effect of the external force in Eq.(3-13)
can be neglected. Therefore, the plastic deformation can be evaluated
from Eq.(3-7) in the sense of an average of random samples. The accuracy
of the method discussed in this section to measure the plastic deforma-
tion will be examined through simulation in the next section.

3-2-3 Prediction of Accumulated Plastic Deformation through the
Linearization Technique

From the technique shown in the previous term, the expected amount
of plastic deformation can be predicted from the expected value of the
mean-square of the relative velocity at the yielding point. However, it
is still quite difficult to estimate the expected mean-square of relative
velocity response of structures with one-way yielding perfect elasto-
plastic restoring force. An approximate linearization technique is
introduced in this term to make the linear random vibration theory
applicable for statistical estimation of nonlinear response.

The time history of ductility factor response of a structure with
the one-way yielding restoring force shown in Fig.3.l exhibits one-way
drifting as schematically illustrated in Fig.3.4 (a). Subtraction of
the plastic deformation from the time history gives the portion of re-
sponse only in the linear range as seen in Fig.3.4 (b). In this figure,
ductility factor response has no specified value during the time inter-
val of plastic drifting. Connection of the portaions of linear response
eliminating the small portion of plastic drifting brings the semi-linear

response shown in Fig.3.4 (c). If it is possible to apply linear vibra-
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tion theory to the semi-linear response, expected value of the accumu-
lated plastic deformation which is proportional to the total energy
dissipated by conventional elasto-plastic hysteresis loops can be evalu-
ated from product of the expected number of upward crossing of the

yielding level and the expected plastic deformation per yielding.

Firstly, it is assumed that the semi-linear response is at the
stationary state subjected to stationary white noise excitation of which
power spectrum intensity is D. The intensity parameter of excitation r,
is proportional to root of D. From the stationality of the response,
Gaussian probability density function p(u,ﬁ)hasno correlation between

displacement | and velocity JI; i.e.,

©y 42 2y_12 2 _
plu,n) = Z/(ZTTOUO}-J)eXp{ u /(ZOU) 1 /(20‘.1)} (3-14)

where oy and Oﬂ are the r.m.s. response of ductility factor u and ve-

locity 1. These values are obtained from integration of power spectrum

density of the response over all frequency range as

Q
]

2 = [° p/{(wP-w? ) ?+4h2wlw? tdw = TD/(2h g})
b (3-15)
meDwz/{(wz-wﬁ)2+4h%w%w2}dw = 1D/ (2h wo)

Q
N
1]

in which %k, is the damping factor of the semi-linear system.
Using the probability density function p(u,lt) of the semi-linear

response, the expected number v of upward crossing of the yielding level

u=uy=l.0 in a unit time is calculated ass)

v = fjﬁp(uy,ﬁ)dﬁ = Oﬁ/(2ﬂou)exP{_uy/(2Oi)} (3-16)

Hence, the expected total number E[N] of the upward crossing during

time interval of T is written as

E{N] = VT (3-17)

Taking the ensemble average of Eq.(3-7), the expected value of plastic
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deformation per yeilding is estimated from the following relation
E[Au] = E[ﬁ; 1/ (2wd) _ (3-18)

The expected mean-square value E[ﬁ;] of relative velocity at the yeild-

ing point is derived as follows,

1

2 2p(m=v |u=u_ Jdv
B0 ] [Tv?p (i=v |b=n, (3-19)

fjvzp(u=uy,ﬁzv)/p(u=uy)dv = OE/Z

in which p(A|B) represents the conditional probability density of event

A on the hypothesis of event B. It is noted that E[ﬁ;] does not depend

on yielding level but only on mean-square of velocity response.
Combining the above discussed results, the accumulated plastic

deformation E[Du] is obtained as follows.

E[Du] = E[N]E[AM] = Twooi/(4ﬂ)exp{—uy/(203)} (3-20)

In the estimation of Eq.(3-20) so far discussed, effects of energy
dissipation of plastic drifting to the semi-linear response have not
been considered. So, Eq.(3-20) is expected to estimate larger accumu-
lated plastic deformation than actual response. From this point, it is
preferable to add substitute damping factor to the equivalently line-
arized structure.

The equivalent damping factor heq of plastic deformation can be
evaluated by equating the dissipated energy due to plastic drift to that
of viscous damping. The total amount of dissipated energy Edp due to
plastic drifting is obtained by the product of the accumulated plastic

deformation and the yielding force as

c o= Wl 3-21
Edp on[Du] ( )

It is noted that Edp is exactly the same as the total energy dissipated
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by conventional elasto-plastic hysteresis loops in random response.

The amount of dissipated energy due to substitute damping factor heq in

9)

one cycle with response amplitude U, is obtained as
. 2.2 -
ﬁ2hgqmoudu = Z“heqona (3-22)
in which fdu denotes the integration over one cycle of oscillation.

The probability density function of peaks L, of random response derived

by S.O.Rices) is given in the form of
pliy) = uo/Oiexp{-uz/(20i)} (3-23)

From the above two equations, the expected amount of dissipated

energy due to heq in one cycle with random amplitude is computed as,
00 4
f02nngqm%u§v(uo)duo = 4ﬂheqwio; (3-24)

Equating the total dissipated enrgy of plastic deformation during the

time interval T to that of equivalent damping factor, we have

ng[DU] = 4nheqw%oiT/TO (To=2T/wo) (3-25)

Hence, the equivalent damping factor heq is computed in the form of

h =E[D 2w ,0° -
eq [ U]/()moouT) (3-26)

For accurate estimation of the accumulated plastic deformation, it is
preferable to use the damping factor of (h°+heq) instead of %, in Eq.
(3-15). The accuracy of the methods will be examined in the next sec-

tion from comparison of predicted and simulated results.

3-3 Numerical Simulations

3-3-1 Simulation of Plastic Deformation

To check the accuracy of prediction of plastic deformation from

the velocity at the yielding point neglecting the effects of external
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force during plastic drifting, numerical simulation is carried out on

a digital computer. Random response of the proposed model with one-way
yielding elasto-plastic restoring force is numerically calculated by
the Runge-Kutta method. As the input acceleration, two different types
of excitation are used. One is the S69°E component of the recorded
accelerogram at Taft during the Kern County California earthquake in
July 21, 1952102 The other is the stationary white noise acceleration
which is generated using the technique discussed in Chapter 2. Its
duration is 54 seconds.

Predicted and simulated results of the models subjected to the
recorded acceleration and the white noise acceleration are shown in
Figs.3.5 and 3.6, respectively. The abscissa represents dimensionless
yielding level ry which is the ratio between yielding acceleration
w%uy(=wﬁ) and the maximum acceleration of excitation Zmax’ i.e., ry=
w%/zmax. It is noted ry is proportional to 1//D. The total number of
plastic drifting N shown in (a) of the figures is found decreasing with
the increasing yielding level. This tendency is quite clear when exci-
tation is white noise presumably due to stationality of input accelera-
tion. Averaged plastic deformation shown in (b) of the figures
represents the mean value of plastic deformation per yielding during
the course of random response. E[Aus] is the simulated plastic
deformation which is obtained from the direct integration of Eq.(3-2)
with the effects of the external force. E[Aup] is the predicted plastic
deformation which is calculated from the relative velocity at the
yielding point by Eq.(3-7) neglecting the effects of the external force
during plastic drifting. E[Ats] and E[Atp] shown in (c) of the figures
are the simulated and predicted mean value of time interval of plastic
drifting per yielding, respectively. From these figures, no significant
discrepancy is found between predicted and simulated values of plastic

deformation and time interval.

In Fig.3.7, relation between the simulated plastic deformation and

the time interval for each yielding is plotted. Theoretical relation
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Fig.3.7 Predicted and Simulated Relation between Plastic
Deformation Ay and Time Interval At
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between Ay of Eq.(3-7) and Af of Eq.(3-10) is also plotted in this
figure. Although simulated values show fluctuation along the theoretical
curve recieving the effects of local external acceleration, both results
agree quite well in the sense of average. From discussion in Figs.3.5~
3.7, it is concluded that the effects of external force during plastic
drifting can be neglected for estimation of plastic deformation in the
sense of average. Hence it is concluded that the expected value of
plastic deformation can be predicted fairly well from the expected value

of relative velocity at the yielding point by Eq.(3-18).

3-3-2 Accuracy Evaluation of the Linearization Technique

The accuracy of the linearization technique to predict accumulated
plastic deformation discussed in the previous section is also examined
through numerical simulation. Firstly, construction of the semi-linear
response from the time history of ductility factor response is tried.

In Fig.3.8, shown are the numerically calculated results of the
model subjected to the recorded acceleration at Taft for a set of
parameters, T,(=2T/w,)=1.0sec., and ry=0.6. Response of the one-way
yielding elasto-plastic restoring force plotted in figure (a) verifies
that numerical simulation is well performed. It is recognized that
yielding occurred 11 times during random earthquake response. The figure
(b) shows the time history of plastic drifting of ductility factor
response, The accumulated plastic deformation at the end of vibration
is found about 3.9 in ductility factor. The semi-linear response is
constructed following the process discussed in the previous section
and plotted in the figure (¢). It is noticed in this figure that no
upward crossing of yielding level (u =1.0) occurs in one direction and
the duration of response is shorter %han real response by about 2 seconds
due to subtraction of plastic deformation. However general feature of
the response seems similar to linear response, which suggests the
possibility of application of equivalent linearization technique.

Input acceleration during the plastic drifting is plotted in the figure

(d). Although perfect symmetry is not found, no significant effects of
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input acceleration during plastic drifting to the accumulated plastic

deformation is expected.

In Fig.3.9, similar calculated results of the model subjected to
the white noise excitation are plotted for a set of parameters T,=0.8sec.,
ry=0.8. This figure also suggests the applicability of equivalent
linearization technique. Especially the artificially generated white
noise excitation gives more symmetric input acceleration during the

plastic drifting than the recorded seismograms.

Using the linearization technique discussed in the term of 3-2-3,
the accumulated plastic deformation of the model in stationary response
subjected to white noise excitation is predicted for a set of parameters
#1o=0.06 and T=40 seconds. Egs.(3-17)v(3-19) which give the expected
total number E[N] of upward crossing of the yielding level and the
expected mean-square of the relative velocity E[ﬂf] are used for
prediction. Both predicted and simulated results of E[N], E[ﬁ;] and
the expected accumulated plastic deformation E[DU] are shown in Table
3-1 for different sets of natural period T, and yielding level ry of
the model. Good agreement is found for sets of parameters T,=1.25 and
PU=0.4, 0.5. 1In other cases, predicted values show larger values than
simulated results. The cause of the over estimation is due to neglec-
tion of effects of energy dissipation of plastic drifting to the semi-
linear response. Predicted results of E[ﬁ;] are found not depending on
ry. This is the result of Eq.(3-19) in which no correlation between

Y and 1 is considered.

As discussed in the term of 3-2-3, it is preferable to adopt the
damping factor of (h°+heq) instead of %, in Eq.(3-15) for accurate
prediction. To estimate the order of he which is due to plastic
deformation, theoretically predicted and simulated results of the
expected number Vv of upward crossing of the yielding level in a second
are plotted in Fig.3.10 for a parameter T,=1.25sec.. Theoretical values
are predicted from Eq.(3-16) in which no equivalent damping factor is

considered. Hence the predicted results show a little larger value than
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Fig.3.10 Predicted and Simulated Expected Number of Upward
Crossing of the Yielding Level per Second

Table 3.1 Predicted and Simulated Results (%,=0.06, T=40sec.)

7
To’i—z " Efv] EL"] %]

(sec) Y lpredicted|Simulated | Predicted|[Simulated | Predicted|Simulated

0.4 46 25 6.62 4.08 21.34 9.96

0.50 [ 0.5 23 14 6.62 4.34 10.03 3.52

0.6 14 7 6.62 3.62 4.81 0.88

0.4 8 6 16.65 18.70 1.15 1.17

1.2510.5 2 2 16.65 17.05 0.42 0.33

0.6 2 1 16.65 7.68 0.12 0.03

1.50 0.3 10 4 19.87 13.98 2.77 0.84

’ 0.4 5 1 19.87 9.14 0.79 0.07
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simulated ones when vV is greater than 0.2. In this range, additional

a few percent of critical damping is expected to let the predicted

results close to simulated values. When V is less than 0.2, little
discrepancy is found between predicted and simulated values. In this
range, no additional damping is needed because of infrequent yielding.

The order of additional damping factor found in Fig.3.10 agrees well

with the equivalent damping factor given by Eq.(3-26). Therefore, it's con-
cluded that the equivalent damping factor due to plastic drifting should be
taken into account in establishing the equivalent linear response for
probabilistic estimation of the accumulated plastic deformation of

the proposed model in random response.

3-4 Conclusions

In this chapter, an improved linearization technique which is
based on the study done by D.Karnopp and T.D.Sharton is proposed to
predict the accumulated plastic deformation in random response of the
one-way yielding elasto-plastic structures. It is expected that the
predicted plastic deformation which is found proportional toc the total
energy dissipated by the conventional elasto-plastic hysteresis loops
would give significant information on measuring the degree of struc-
tural damages due to severe ground motions. Basic assumptions involved
in the analyses are examined from the comparison between predicted
results and numerically simulated values on a digital computer. Main

conclusions obtained in this chapter are as follows.

(1) Plastic deformation and time interval of drifting for each
yielding are predicted from the relative velocity at the yielding
point neglecting the effects of external force during plastic
drifting. Simulated values both to the recorded seismogram and
the artificially generated white noise accelerogram are found
close to predicted values to suggest applicability of the
technique for estimation of accumulated plastic deformation in

random response.
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(2)

(3)

(4)

The semi-linear response is constructed by subtracting the simulated
plastic deformation from the one-way drifting ductility factor
response subjected to the recorded and artificially generated
accelerograms. General feature of the response is found similar to
linear response, which verifies applicability of linear vibration
theory to the constructed semi-linear system to calculate expected
value of relative velocity at the yielding level. Although simulated
input acceleration only at the time interval of plastic drifting
does not show perfect summetry, no significant effects of it are

noticed for estimation of expected value of plastic deformation.

Accumulated plastic deformation of the model in stationary response
subjected to white noise excitation is predicted from product of
the expected total number E[N] of upward crossing of the yielding
level and the expected mean-square E[[1?] of relative velocity at
the level. Predicted values of E[N] and E[ﬂ;] are found mostly
larger than simulated results. The cause of the over estimation is
attributable to neglection of effects of energy dissipation during

plastic drifting to the constructed equivalent linear system.

A theoretical method to estimate the equivalent damping factor for
energy dissipation during plastic drifting is proposed to improve
construction of the equivalent linear system. From comparison
between predicted and simulated values of expected number of upward
crossing of the ylelding level in a unit time, it is concluded

that adoption of the proposed equivalent damping factor improves

the accuracy of prediction fairly well.
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4. LINEARIZATION TECHNIQUES FOR EARTHQUAKE RESPONSE OF SIMPLE HYSTERETIC
STRUCTURES

4-1 General Remarks

In recent years, statistical aspects of structural vibration induced
by earthquake excitation have received considerable attension of many
research workers because of the randomness found in the strong motion
seismograms. A majority of these statistical works has dealt only with
structures with linear restoring forcelz Response statistics of these
linear structures could be estimated relatively easily through the linear
random vibration theory if the statistics of random excitation are clearly
defined.

To evaluate more realistic reliability of structures during strong
earthquakes, however, it is considered essential to investigate statisti-
cal properties of the response of structures with hysteretic restoring
force, since most of structures subjected to severe ground motion show
weak or strong yielding behaviour. 1In spite of these inevitable neces-
sities, it is generally quite difficult to make theoretical analyses on
earthquake response statistics of hysteretic structures from the reason
that the principle of linear superposition (Duhamel's Integral) cannot
be applied to them.

As an exact analytical method for nonlinear response problems, we

2)

have tﬁe Fokker-Plank equation™’, But at the present stage, it is appli-
cable only to the stationary response of hysteretic structures subjected
to white noise excitation. However it is of great importance in inves-
tigations of earthquake response to consider the frequency characteristics
of excitations and the nonstationarity of structural response, because
most of strong earthquake motions have the predominant frequency and
structures start or vibrate from the static state. These importatnt
characteristics of the excitation and of the response cannot be discussed
from the solution of the Fokker-Plank equation which is now available.

On the other hand, the numerical methods such as step-by-step

integration of nonlinear equations of motion on digital or analog
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computers have great applicability for almost any kind of hysteresis
loops and for any kind of excitations. However these methods consume

a lot of time for the calculation of many samples which are needed for
statistical discussions of random response of hysteretic structures.
Moreover additional ruling parameters due to hysteretic characteristics
of the structures should be taken into account, which makes the investi-
gations more complex than for linear structures. Hence, accumulation
of a great amount of numerical samples whch are sufficient enough to
cover wide range of each parameter seems quite difficult to make general
and theoretical statements about earthquake response characteristics of

nonlinear hysteretic structures.

To overcome these difficulties, equivalent linearization techniques
seem to be very powerful in the range of admissible error, since the
results of linear random vibration theory can be available to predict
the response statistics analytically.

The linearization technique for random response of simple hysteretic
systems was proposed in the field of applied mechanics firstly by
T.K.Caughy3)using the method of slowly varying parameters based on the
work of Kryloff and Bogoliuboff. 1In this technique, equivalent natural
frequency and damping factor of linearized second order systems are
determined so as to make the mean-square error due to linearization
minimum. T.Kobori and R.MinaiA)showed the fundamental technique to
estimate the nonstationary hysteretic response combining the linearization

technique by T.K.Caugheys)

by Y.Sawaragi et a162

W.D.Iwan7)

and the step-by-step parameter method proposed

and L.D.Lutess)’g)

estimated time-average statistics of
the response of simple bilinear hysteretic systems to an excitation
with white power spectrum density. The applicability of the Krylov
and Bogoliubov method of equivalent linearization to the problem was
investigated by comparing predicted and experimentally measured mean-

10)

square level of the response. H.Takemiya “additionally discussed the

equivalent linearization by 3rd order system and tried to extend
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the results on the stationary response to the case of transient response.

In the field of earthquake engineering, six conceivable equivalent
linearization techniques for the steady state harmonic motion were

D 2)and

proposed by P.C.Jenningsl based on the works by L.S.Jacobsenl
T.K.Caughey3? In these techniques, main interest was put in the estima-
tion of equivalent linear damping factors which show different values
depending on each difinition of linearization. An energy balance method
to determine the equivalent linear system in the steady state random
motion was proposed by D.Karnopp and R.N.Brown132

Another linearization technique which lets the response spectrum
of a hysteretic structure equal to that of a linearized structures was

proposed by D.E.Hudsonl4)

to conclude that the equivalent damping factor
under initial stiffness for earthquake-type excitation is about several

percent of the critical.

These works of equivalent linearization contributed considerably
toward general understandings of the stationary response of hysteretic
structures subjected to stationary harmonic or stationary random excita-
tions. From earthquake engineering point of view, however, more detailed
investigations which represent closer conditions of real structures and
excitations are strongly needed.

Among these problems, next five issues are strong concern of this
chapter for intensive discussions.

1) The phisical relation between two different types of equivalent
linearization techniques; one is the least mean-square error method
and the other is the energy balance method.

2) Effects of non-white frequency components of random excitation and
yielding level of hysteretic structures to r.m.s. response with
relative to the transition of the structural receptance due to
yielding.

3) Application of step-by-step linearization technique to predict
nonstationary mean-square response of hysteretic structures subjected

to the nonstationary excitation represented by the product of the
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nonstationary envelope function and the stationary random process.

4) Probability distribution of maximum response of hysteretic struc-
tures both in stationary and nonstationary state predicted by pure-
birth and envelope methods for reliability analysis of structures
during strong earthquakes.

5) Monte Carlo simulations on a digital computer to calculate time and
ensemble average of generated response for discussions of accuracy
of theoretically predicted r.m.s. response and probability distri-

bution of maximum response.

4-2 Equivalent Linearization Techniques

To make theoretical and general discussions about the earthquake
response characteristics of nonlinear hysteretic structures, a dimension-
less representation of the equation of motion is tried in Chapter 2,
which leads to the following equation of motion of a single-degree-of-
freedom structure with viscous damping and with arbitrary types of

nonlinear hysteretic characteristics:

H0e) + Boli(t) + gla,Byu,l,t) = -rsw(a)j‘(n,hf,t) (4-1)

where u(t): ductility factor, o and B: parameters which show character-
istics of dimensionless hysteresis q(a,B,U,1,t), Ro: damping coefficient
in small oscillation of yielding structures, « : derivative by dimention-
less time £, PS: a constant showing the intensity of the excitation,
Y(t): a deterministic shape function which exclusively assumes positive
values, f(n,hfut): a stationary non-white random process with zero mean
value and the variance of unity, n=wf/wo and hf: parameters showing
the characteristics of the power spectrum of f(¢), wf: predominant
frequency of f(t), wy(=1.0):natural frequency of small oscillation of
yielding structure, respectively.

By using the equivalent damping coefficient Beq and the equivalent

natural frequency weq’ the equation of motion of the equivalent linear
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structure can be written as follows:
fict) + B, u(t) + w u(t) = -r w(t)f(n,hfu (4-2)

Concerning the te?hniques to determine Beq and weq both in sinu-
soidal and in random vibration, discussions have been made by many
investigators using mainly two different types of linearization criteria;
one is the least mean-square error method and the other is what we may
call the energy balance method as briefly explained in the previous
section. These two methods have been discussed separately and their
relation with each other has never been discussed as far as the author
concerned. However we shall see in the following sections that they

are closely correlated to each other.

4-2-1 The Least Mean-Square Error Method

This method is based on the work of N.Wienerls)to find the optimum
linear controlling system which filters out the random noise involved in
the output of the system as much as possible. The criterion which deals
with mean-square values of error terms between output of the system and
true signal is called the Wiener's criterion.

T.K.Caughey3)adopted this Wiener's criterion firstly in random
vibration of hysteretic systems to find equivalently linearized systems.
In this method, the two equivalent linearization parameters Beq and weq
of the second order linear system are determined so as to minimize the
least mean-square error between Eqs.(4-1) and (4-2). The mean-square

error in one cycle (T,T+§T) can be written as follows:

T+HT

1 T s IR (4-3)
I(B ,weq) = ¥; fT {Bou+q-86qu weqp} dt
Now let's minimize I(B ,m ) with respect to B o and mzeq.
=B &uzdt+§qudt-s pitdt-w} pundt = 0
38 )
=20

3L, = popundtrhqude-B, pulidt-ul pu'd
eq
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in which ﬁdt denotes the integration over one cycle of oscillation.

I1f the nonlinearity of the hysteresis loops is weak and the damping
is slight, we can assume that the response u(%t) is a sinusoidal time
function with a slowly varying random amplitude U,(t) and a random phase

angle ¢(t); i.e.,
ut) = uo(t)COS{weqt+¢(t)} (4-5)

By substituting Eq.(4-5) to Eq.(4-4), we obtain equivalent linear param-
eters as functions of response amplitude.

Bog Mo/ Botpqiidt/ pii*dt

e

(4-6)

2
o/
w q(u

2
) paudt/pu*dt

4-2-2 Energy balance method

Energy balance method was firstly proposed in the earthquake engi-

14) 11)

neering field by D.E.Hudson and P.C.Jennings after the preliminary

work done by L.S.Jacobsenlsz Although the definition of the equivalent
damping factor by Jacobsen originated from the ratio between dissipated
energy and the maximum potential energy of hysteretic structures, the
energy balance between hysteretic and linearized structures is guaranteed

when the potential energy is taken appropriately.

In this method, the equivalent damping coefficient is determined
S0 as to equate the energydissipation by the hysteresis loops to that

of the linear viscous damping; i.e.,
${Boltqldu = ﬁBequdu (4-7)

From the above equation, Beq can be determined without any reference to

w_ .
eq
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It is interestingly noted that various values of equivalent damping

factor heq will be obtained according to conceivable definitions of weq
since

I’Zeq = Beq/(gweq) (4—8)

In the study of this section, it is considered reasonable to estimate
weq as the resonant frequency of hysteretic structures. In the previous

study (Appendix 2-A), the resonance curve was obtained as

{S(Uo)'BoUow}z + {C(Uo)"udﬂz}z = P; (4_9)

where

1¢2m .
Sluo) = FIO qla, B, i ocosB) sinbd8

1¢2m (4-10)
Cluy) = EJO q(a, B, u,cosb)cosbdd
The resonant frequency is determined by letting
Molw) /3w = 0 (4-11)

From Egs.(4-8)V(4-11), the equivalent linearization parameters can be

obtained as functions of response amplitude.

Bog(Mo) = Bo + fqdu/ $lidu

wéq(uo) = C(Uo) /Mo (4=12)
Under the assumption of Eq.(4-5) and considering the relation of

du = (du/dt)dt = \idt (4-13)

the results of Eqs.(4~6) and (4-12) completely coincide with each other
for any types of hysteresis loopsl72 It is very interesting from the
physical point of view that the quite different methods based on the

different criteria of linearization conclude the same expressions of
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the equivalent linear damping coefficient and natural frequency. That
is to say, the equivalent linear structure determined from the least
mean-square error method has the same resonant frequency and moreover
dissipates the same amount of energy as that of hysteretic structures.
Therefore, it may be concluded that the least mean-square error method is
physically well-grounded in the sense of frequency matching and energy
balance in linearizing the hysteretic structures.

As a typical example of dimensionless hysteretic characteristicslsz
bilinear hysteresis loop shown in Fig.4.1 is considered in this chapter.
The yielding point is defined as the point at which U=g=1. The initial
stiffness before yielding is unity and the second stiffness after yield-
ing is (1-n), where n is the parameter which shows the nonlinearity of
the hysteresis. So, this hysteresis shows the linear structure when »n=0,
and the perfect elasto-plastic structure when n=1. Then after some
algebraic treatments, expressions in Eqs.(4-6) and (4-12) for the bilinear

hysteresis yield

w? (uy) =1
eq "° Mol 1
Bog (Mo = Bo
4-14)
on(2-y,) -1 o
w2, (o) = ”—T(WZEL/U—-J + Reos™ 1-2/u0)4 (1-n)
o2 1
_ dn(y,-1)
Beq(Uo) =Bo + m*)eq(Uo)Uzo

Numerical values for Eq.(4-14) are shown in Fig.4.2 for the parame-

ters n=0.25, 0.50, 0.75, 1.00. The values of the equivalent damping

e
the linear elastic region (1,21.0) are 82 and unity respectively.

coefficient Beq(uo) and the equivalent natural frequency q(uo) within

When the response goes into the plastic region (u,>1.0), Beq grows

large showing its maximum value around W, =24, then decreases gradually

to zero for infinite amplitude. The maximum values of Beq suggest
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Fig.4.1 Nondimensional Representation
of Bilinear Hysteresis Loop
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Fig.4.2 Equivalent Linear Parameters
of Bilinear Hysteresis Loops
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that there exists the optimum ductility factor which would suppress the
response most efficiently due to the largest hysteretic energy dissipation.
The larger value of the nonlinear parameter 7 resulted in the larger value
of Beq’ because the area of the bilinear hysteresis loops is proportional

to n as known from the next equation.

fqdu = dn(u,-1) (4-15)

The equivalent natural frequency shows smaller value with the
increase of 7 which shows the stronger nonlinearity. The values of weq
decreases monotonously and in the limit of infinite amplitude, it is
asymptotic of /i:ﬁ; since the stiffness of the bilinear hysteresis loops

would become almost the same as the second spring constant (1-n).

4-2-3 Equivalanet Linearization Parameters in Random Response

From the analyses in the previous section, the equivalent damping
coefficient and the equivalent natural frequency are obtained as a function
of slowly varying amplitude M, of almost sinusoidal oscillation with
slowly varying phase angle. Direct application of these results to random
response is impossible because of the difficulty to define the amplitude
during random time history. However, if the probability density p(u,) of
the peak amplitude J, in random response can be estimated, the equivalent
linearization parameters in random response would be defined as their

expectations using p(u,), following the suggestion by S.-C. Liulg)and

theoretical result by T.Kobori and R.Min3142

Thus in the case of stationary random response, the equivalent
linearization parameters will be defined as a function of standard deviation

Ou of ductility response U in the following form;

2 _ 2
weq(ou) —J‘:weq(uo)p(uo,ou)duo

. (4-16)
Beq(Ou) =jOBeq(uo)p(uo ou)duo

21)

in which the probability density of U, has been obtained by S.0.Rice for
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narrow band response as

p(uo,ou) = (uo/oi)exp{ -uz/(Zoi)} (4-17)

The values of Beq(du) and weq(ou) have been calculated from Egs.
(4-14), (4-16), (4-17) and plotted in Fig.4.3 with the experimental
results by L.D.Lutesgz The experimental values of equivalent linear
parameters were determined by applying linear theory to the experimentally
simulated response of bilinear systems subjected to white noise excitation
on an analog computer. ‘

For the moderately nonlinear hysteresis loop (n=1/2), B (0 ) and

eq U
w_ (0 ) predicted theoretically in this section show close to these of

eiZerEmental results. This agreement suggests that random response of
the bilinear hysteretic structures with moderate nonlinearity (n=1/2)
could reasonably be predicted without large errors, using equivalent
linear parameters above mentioned.

The discrepancy between theoretically predicted and experimentally
determined equivalent linear parameters of strong nonlinear hysteresis

loop (n=20/21) suggests that applicability of the techniques used herein

is limitted only for structures with moderate nonlinearity.

In the case of nonstationary random response, the probability
density of peak amplitude p(u,,

sP "Oﬁ) which was obtained by T.Kobori
and R.Minai4)

(0]
W UM .
as a function of standard deviation of U and U and the

correlation coefficient between them Duﬁ shall be used. Then we obtain

a3 U/ = 3 K ‘30')d
Beq(ou’ouu Ou) ftBeq(uo)p(uo 9 Pyppe Op) Mo (4-18)
2 .,0.) = 2 .,0.)d
weq(ou’puu’ou) f?weq(uo)p(uo,ou,puu,ou) Yo
where
Ho, Mo pu5
P(Mos0ysPypp0p) = exp( ‘2—0? [afxp{-wéz)—of}

u

2 2
P U P
+ 77T —TZOu(gf -z)erf{77—&)-—2 T3 "ﬁ}] (4-19)
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4-3 Stationary Response

4-3-1 Iterative Method for Stationary Response

In this section, stationary response of structures with bilinear
hysteresis loops subjected to stationary random excitation rsf(t) which
has the predominant frequency wf will be investigated by both analytical
and experimental method3212

In the previous section, equivalent linearization parameters have
been determined analytically as a function of the r.m.s. value of random
response. But stationary r.m.s. response to be predicted is still un-
known. From the experimental methods such as numerical simulations on
digital or analog computers, we would be able to obtain it for specified
cases like the simulation performed by W.D.Iwan and L.D.Lutes72 Analyt-
ical methods to predict the response of hysteretic structures are con-
sidered to be much more important not only to make discussions about the
random response of these structures theoretical and therefore general
but also for practical purposes to estimate accurate structural reliabil-

ity during strong earthquakes.

When the power spectrum density of excitation is constant (white

noise excitation) as,

S = -
f(w) K (4-20)

the mean-square value of ductility response of equivalent linear struc-
tures with parameters of meq and Beq will be obtained after residue

integral as
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op = F Kl 0w, ) e KT e Ky,
o(w eq -w*) +(Beqw) Beqweq

From Eqs. (4-16) and (4-17), Beq and weq have been determined as functions
of Ou. Hence we now have three equations which are sufficient enough

to solve three unknowns Beq’ meq and Ou.

Menwhile it is desirable in earthquake response analyses to consider
the frequency characteristics of the excitation because of following two
reasons: 1) Most of recorded seismograms have their predominant frequency
reflecting local ground conditions. 2) Effects of natural frequency of
hysteretic structures with relative to the predominant frequency of
excitation were found significant in the Chapter 2.

In the study of this chapter, therefore, we take the stationary
excitation of f(t) of which power spectrum density shall be represented
in the following form analogous to the receptance of the relative velocity

of a simple linear structure against acceleration excitation.

(w/w
{1- (w/wa 12 + 4h2(w/wa

ah
S(w = —f (4-22)
"r

f

in which hf is the damping factor and wf is the natural frequency of a
simple system. It is readily verified that Eq.(4-22) satisfies the
condition that f(t) should have the variance of unity.

The stationary mean-square response of the equivalent linear
structure with parameters of Beq and weq subjected to the excitation of
Psf(t) can easily be estimated by using the random vibration theory for

linear structures as

1 o \ r Si(w)(win)"
= ;fosf(w)lH(w)l dw = g J7H (B w) (4-23)

Hence, the following three relations are obtained so far for the estimation

of stationary random response of hysteretic structures including Eq.(4-16).
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w0
1]

func(ou,n,Bo)

eq
weq = func(ou,n,Bo) (4-24)
OU = funC(Beq,weq, N, rs) hf-/‘

Using these three relations, equivalent linear parameters Beq and
weq would be determined as those of the optimum equivalent linear struc-
ture corresponding to the hysteretic structure and the r.m.s. response
0u of it would also be predicted. However it is quite hard to solve the
relations in Eq.(4-24) explicitly. Therefore, an iterative method on
a digital computer was used to find the numerical result of Eq.(4-24).

In this method we first estimate the r.m.s. response of the linear struc-
ture with w, and 8, which correspond to the initial dynamic parameters

of the hysteretic structure, then we obtain the equivalent linear param-
eters weq and Beq for the first approximation from Eq.(4-16) based on

the r.m.s. response just obtained. By substituting these parameters

into Eq.(4-23), we have the r.m.s. response OU' Repeating this iterative
method, the response approaches to a constant value to fix the optimum

equivalent linear structure and its response.

4-3-2 Calculated Results

(i) Frequency Characteristics of Hysteretic Response

The numerical results for the stationary r.m.s. response of struc-
tures with bilinear hysteresis loops and corresponding equivalent linear
parameters are shown in Fig.4.4 for the set of parameters rs=0.5, Bo,=0.1,
n=0.00, 0.25, 0.50, 0.75.

In Fig.4.4 (a), it is apparent that the peaks of r.m.s. response
curves of hysteretic structures are suppressed and shifted to the lower
frequency range with relative to that of linear structures. This tendency
becomes more prominent for larger value of 7 presumably because of strong-
er nonlinearity and larger area of hysteresis loop. It will be found

from close-up observation that the r.m.s. response of the bilinear
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structure with a stronger nonlinearity of hysteresis loop in the frequen-
cy range from n=wf/wo=0.75 to 3.0 is comparatively less than that of

linear structure (n=0.00) of which structural parameters are weq=wo and

Boq™
response is not necessarily smaller than that of the linear structure.

Bo. On the contrary, in the frequency range of n<0.75, the r.m.s.

To discuss these response characteristics of hysteretic structures
in terms of equivalent linear parameters, the variation of weq and Beq
which are shown in Fig.4.4 (b) and (c) should be investigated. The
equivalent natural frequency weq is always less than w, because of the
softening type spring constant characteristics, and for the bigger n,
weq shows the less value. The equivalent damping coefficient Beq is
necessarily greater than B, in consequence of hysteretic energy dissi-

pation. It increases with increasing n.

The effects of such properties of w__ and Beq to the stationary

r.m.s. response 0u would reasonably be exiiained from the concept of

the transition of the receptance of the structure due to its hysteretic
properties schematically illustrated in Fig.4.5 in terms of the spectrum
coordinate. That is to say, as the structure softens due to yielding
behaviour and consequently weq decreases, the receptance of a 'relative-
ly rigid" structure (n=0.5; wo>wf) moves closer to the peak of the
spectrum of the excitation and tends to increase the response. On the
contrary, such shift of the receptance tends to suppress the response of
a "relatively soft" structure (N=2.0; wo<wf). Meanwhile, the increase
of Beq due to hysteretic energy dissipation reduces the peak of the
structural receptance in Fig.4.5 to limit the response over the whole
frequency range. The compound effects of weq and Beq above explained

result in the r.m.s. response shown in Fig.4.4 (a).

(ii) Yielding Level Characteristics of Hysteretic Response

Another significant characteristic of hysteretic response is that
the gain of structures (the normalized response amplitude by the measure
of the input amplitude) changes when the excitation level grows higher.

The existence of the optimum yielding level which lets the gain of
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hysteretic structures minimum was found by J.Penzien and T.Odaka el al
for sinusoidal or earthquake-type excitations as discussed in Chapter 1.
The same characteristic was also pointed out by W.D.Iwan and

L.D.Lutes7)

for the case of random white noise excitation. However, as
stated in the former part of this section, frequency shift of the
receptance of a hysteretic structure has the remarkable effects on its
random response, especially when the excitation has the predominant
frequency. So in the latter part of this section, the yielding level
characteristics of hysteretic structures subjected to the non-white
random excitation are investigated through the iterative linearization

technique.

In Figs.4.6V4.8, shown are the r.m.s. response of bilinear hystere-
tic structures normalized by the r.m.s. response of linear structures in
ductility factor and corresponding equivalent linear parameters against
the r.m.s. response of linear structures for the sets of parameters;
n=0.25, 0.75, n=0.5, 1.0, 2.0, hf;0.9, Bo,=0.2.

Predicted response of 'relatively rigid" (n=0.5) hysteretic struc-
tures is shown in Fig.4.6. The normalized r.m.s. response of n=0.75
shows its minimum value when the linear r.m.s. response OZ is about 1.0
in ductility factor. When the excitation level becomes higher (,which
has the same effects as when the yielding level becomes lower), the
hysteretic r.m.s. response is found much bigger than the linear r.m.s.
response.

This yielding (excitation) level characteristics of 'relatively
rigid" hysteretic structures could also be explained reasonably through
the concept of the transition of the structural receptance. For relatively
high yielding level (OZ<2'O)’ the shift of the equivalent natural frequen-
cy is small although the equivalent damping coefficient approaches to
its maximum value as can be seen in Fig.4.6 (c¢). In this range, therefore,
the energy absorption due to hysteresis loops lets the hysteretic response
less than the corresponding linear response. On the contrary, for lower
yielding level (OZ>2’O)’ the shift of the natural frequency becomes large

and the equivalent damping coefficient decreases gradually to its original
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value. Especially for »n=0.75 in Fig.4.6 (b), meq approaches to the half
of w, to let the peak of the receptance close to the peak of the spectrum
of the excitation. Then the hysteretic r.m.s. response in this range
grows much bigger than that of linear response.

Similar response characteristics of the yielding level are found
for the parameter of 7n=0.25 in Fig.4.6.

In Fig.4.7, shown are the similar results for hysteretic structures
of which natural frequency in small vibration is the same as the pre-
dominant frequency of the excitation (n=1.0). The hysteretic r.m.s.
response is found less than the linear r.m.s. response in wider range of
9, than "relatively rigid" structures in Fig.4.6. This is attributable
to the decrease of weq which lets the peak of the structural receptance
far from the peak of the spectrum of the excitation. The minimum value
of hysteretic response is found when OZ is around 1.5. When the yielding
level becomes lower (OZ>4.0%6.0), the hysteretic response shows a little
larger values than the linear response presumably due to the decrease
of Be to its original value and the excitation which has broad band
spectrum (hfFO.9). These yielding level characteristics of the hysteretic
response agree well with the simulated results on an analog computer
carried out by W.D.Iwan and L.D.Lutes72

When hysteretic structures are 'relatively soft" (n=2.0), the
hysteretic response is found less than the linear response for full
range of the yielding level 9, shown in Fig.4.8. This result is also
attributable to the decrease of the stiffness of the restoring force
which lets weq very far from wf to filter out the random excitations of
which frequencies are around wf. For n=0.75, the minimum value of the
hysteretic response which is about 65% of the corresponding linear

response is found when OZ is around 2.5.

In the latter part of this section, the yielding level characteris-
tics have also been explained by means of variation of equivalent linear
parameters weq and Beq relative to the spectrum of the excitation. Thus

the concept of the transition of the structural receptance could be
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considered reasonable to make theoretical discussions about the random
response characteristics of structures with any kind of hysteresis loops
in terms of equivalently determined linear parameters.

It is noted that the effects of natural period of hysteretic struc-
tures in small oscillation to the plastic deformation discussed in the
Chapter 2 can also be explained from this concept of the transition of

structural receptance.

4~3-3 Numerical Simulations

To check the accuracy of the prediction of the r.m.s. response of
hysteretic structures through the iterative linearization technique
discussed in the previous section, numerical simulations have been
carried out on a digital computer.

Firstly the stationary artificial earthquakes have been generated
by following the procedure precisely explained in Chapter 2. A white
noise random process is made from the summation of 500 sinusoidal time
functions of which circular frequencies and phase angles are random
variables with uniform probability densities. Then the velocity response
of a simple oscillator with natural frequency wf and damping factor hf
subjected to the white noise is calculated by the linear acceleration
method. The stationary part of the relative velocity response is taken
as the excitation f(t) for numerical simulations in this section.

Using the excitation f(¢) above mentioned, response of structures
with bilinear hysteresis loops is calculated through step-by-step
integration of the governing equation of motion. The r.m.s. response
OLl of the ductility factor u is calculated as the time average over the
stationary part of which duration is 20 times as long as the natural

period of infinitesimal vibration.

Both predicted and simulated results for frequency response of
hysteretic structures are shown in Fig.4.9 for the same sets of parame-
ters in Fig.4.4. 1t is observed that the predicted and simulated
results agree well for the parameters of n=0.25, 0.50 and 0.75 from
Figs.4.9 (a), (b) and (c). So within the limits of these parameters of

n, T and B, , 1t could be said that the iterative linearization technique
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investigated in the previous section has satisfactory accuracy to predict
the r.m.s. response of the bilinear structures.

On the other hand, in Fig.4.9 (d), the simulated result shows much
greater values than the predicted result for the structure with perfect
elasto-plastic hysteresis loop (©=1.00). This discrepancy is remarkable
especially for a "relatively rigid" structure (n=0.5). For a "relativeiy
soft" structure, the discrepancy is not found since the response remains
almost in the elastic region (u<1.0). The cause of the discrepancy
between simulated and predicted response is mainly attributable to the
growth of the plastic deformation due to an excessive yielding behavior.
In Chapter 2, it is pointed out by the moving average method that conspic-
uous plastic deformation occurs only for structures with perfect elasto-
plastic hysteresis. Therefore satisfactory estimation of the response
of the perfectly elasto-plastic structures would need the combination of
two techniques. One is a linearization technique to evaluate the elastic
component of the response as discussed in this chapter and the other is

a technique to evaluate the plastic deformation as discussed in Chapter 3.

The yielding level characteristics of predicted bilinear hysteretic
response are also compared with the simulated results in Fig.4.10 for
the same sets of parameters as in Fig.4.6%v4.8. When the nonlinearity
is small (n=0.25), the predicted results show quite good agreement with
the simulated ones, suggesting that the iterative equivalent linearization
technique is applicable and powerful for hysteretic response analyses in
wide range of the yielding level. The discrepancy between predicted and
simulated results is noticed when the nonlinearity becomes strong (n=0.75).
The simulated response shows a little bigger value than predicted one
presumably because of the higher estimation of hysteretic energy dissi-
pation in theoretical analysis than in the real hysteretic history which
does not always enclose the loops.

In spite of the discrepancy found in Fig.4.10, the general trends
of yielding level characteristics of hysteretic response predicted by

the iterative linearization technique agree well with the simulated
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results. From these analyses, it could be concluded that the '"relatively
soft" hysteretic structures show smaller response than that of linear
structures. Response of '"relatively intermediate" (n=1.0) hysteretic
structures show smaller value when the yielding level is high (OZ<4%6)
and becomes larger than corresponding linear response for the lower
yielding level (OZ>4%6). Response of "relatively rigid" (n=0.5) hyster-
etic structures is found larger than that of linear structures in broad

range of yielding level except at OZ<1'5'

4-4 Statistical Properties of Hysteretic Response

4-4-1 Probability Distribution of Hysteretic Response

(i) Simulated Probability Distribution

In the previous section, the equivalent linearization technique
was found applicable and powerful to predict r.m.s. response of moderately
nonlinear structures. From engineering point of view, it is of great
needs to know not only r.m.s. values but also probability distributions
of response amplitude of hysteretic structures for further discussions
of structural reliability during strong earthquakes.

In this section, probability distributions of simulated response
of hysteretic structures are compared with those of equivalent linear
structures of which parameters are determined from the technique proposed
in the previous section. These distributions give the probability that
the response is less than a given level and are plotted in Figs.4.11Vv4.13.
In these figures, the probability distribution of the response of the
linear structures of which natural periods and damping factors are the
same as those of hysteretic structures in the elastic region are also
plotted in order to investigate the difference between the linear and
the hysteretic response. For the estimation of probability distributions,
the stationary portion of the simulated response of which interval is 50
times as long as the natural period of the structures in small oscillation

is taken.
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In Figs.4.11 (a), (b) and (c), shown are the simulated results of
linear and hysteretic structures for the set of parameters »n=0,25, rs=1.2,
hfF0.9, B,~0.2. The distributions of hysteretic response are found very
close to those of the linear responses for a 'relatively rigid" (n=0.5)
and a "relatively soft" (n=2.0) structures, because of the weak nonline-
arity (n=0.25). Hence the discrepancy between the hysteretic and the
equivalent linear response is not found either for these structures.

For a "relatively intermediate" (n=1.0) structure, the probability distri-
bution of the hysteretic response shows greater probability than that of
the linear response in the positive range. On the contrary, the smaller
probability is found in the negative range. This result corresponds to
the fact that the r.m.s. response of the hysteretic structures is less
than that of the linear structure as shown in Fig.4.10 (b). Although

the shift of the receptance is small due to the weak nonlinearity and

the small area of hysteresis loop, the effect of shifting to the hyster-
etic response becomes significant around the predominant frequency of

the excitation. The discrepancy between the hysteretic and the equivalent
linear response is very small to suggest that the probability distribution
of hysteretic response can also be predicted satisfactorily through the
equivalent linearization technique when the nonlinearity of the hysteresis

is weak.

In Fig.4.12 (a), (b) and (c), shown are the results of the hyster-
etic structures with medium nonlinearity (n=0.5). Other parameters are
the same as those in Fig.4.11. For a "relatively rigid" (n=0.5) structure,
the probability distribution of the hysteretic response shows smaller
probability than that of linear response in the positive range of response
amplitude. The greater probability is found in the negative range. This
result corresponds to the fact that the r.m.s. response of a '"relatively
rigid" (n=0.5) structure grows greater than that of linear structure as
discussed in Fig.4.10 (a). For ''relatively intermediate (n=1.0) and
soft (N=2.0)" structures, the characteristics of the probability distri-

butions of the hysteretic response relative to those of linear response
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becomes contrary, which corresponds to the smaller r.m.s. response of
these hysteretic structures as discussed in Fig.4.10 (b) and (c). The
probability distributions of the equivalent linear structures are found
close to those of the hysteretic structures to suggest that the equivalent
linearization technique is still powerful for the medium nonlinearity

(n=0.5).

The simulated results for hysteretic structures with strong non-
linearity (n=0.75) are shown in Fig.4.13 (a), (b) and (c). The charac-
teristics of the probability distributions are almost the same as those
in Fig.4.12 (a), (b) and (c). However the discrepancy is found between
the probability distributions of hysteretic structures and those of
equivalent linear structures. The cause of the difference may be
attributable to the growth of the plastic deformation which lets the
simulated hysteretic r.m.s. response bigger than the equivalent linear
r.m.s. response and also the simulated hysteretic distribution un-
symmetric. Although no plastic deformation is taken into account for
the prediction of r.m.s. response by the equivalent linearization
technique, this amount of discrepancy could be permissible to grasp

general trends of hysteretic response.

(ii) Deviation from the Gaussian Distribution

In order to check the deviation from the Gaussian distributions
which have exactly the same r.m.s. values as the hysteretic response,
the distributions of hysteretic structures with strong nonlinearity
(n=0.75) are again plotted in Fig.4.14 (a), (b) and (c). For a "relative-
ly rigid" (n=0.5) structure, the hysteretic response shows larger
probability than the Gaussian distribution in the positive low range of
response amplitude (u=0v4), and smaller probability in the positive high
range (u>4). This result shows that the probability of being at the
intermediate level (around u¥4) is shifted both to lower and higher level.
The relatively large amplitude (u>4) is enlarged due to strong softening-
type nonlinearity which makes the structure easy to slip toward larger

amplitude. On the contrary, the relatively small amplitude (u<4) is
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suppressed due to hysteretic behavior which absorbs kinetic energy.

Hence, even if the r.m.s. values of hysteretic response are predicted
accurately through the linearization technique, the probability distribu-
tion of it shows the deviation from the Gaussian distribution. When the
assumption of Gaussian distribution is adopted for statistical response
analysis of hysteretic structures, it would conclude the higher estimation
of structural reliability than the real value in the above discussed

"amplitude-enlarging” range.

For "relatively intermediate (u=1.0) and soft (u=2.0)" structures
shown in Fig.4.14 (b) and (c), the hysteretic response shows very close
values to the Gaussian distribution. The nonlinear hysteretic properties
of the restoring force seems to have little effects on the shapes of the
probability distributions. Hence the assumption of the Gaussian distri-
bution would be reasonable for the hysteretic structures with the limited
sets of parameters.

Similar investigations for the structure with moderate (n=0.5) and
weak (n=0.25) nonlinearity have shown little deviation from the Gaussian

distribution.

(iii) Approximate Gaussian Distribution

From the above discussed simulations, probability distributions
of moderately nonlinear hysteretic structures are found not exactly the
same but close to those of equivalent linear structures and they could
be regarded as Gaussian depending on the accuracy of the problem. Hence
for the further discussions of statistical properties of hysteretic
structures, such as probability distribution of maximum response which
will be discussed in the next section, the following Gaussian probability

density of ductility factor M and velocity U in the stationary state will

be used.
R R U TS s 4-25
plu, ) = ZNOUOﬁ xp{-Z(Ou + OQ)} ( )

Where OU is the r.m.s. value of velocity response which will be estimated
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from the next equation.

2 _ 1

. rSSf(w)(Qf/n)“wzgdw
ool (w;q—w2)2+(62qw)Z

(4-26)

Where weq and Beq are determined by the iterative method proposed in

the previous section.

4-4-2 Probability Distribution of Maximum Response

(i) Basic Formulation

Prediction of probability distribution of maximum response (PDMR)
of structures subjected to random excitation is quite essential especially
for reliability analysis, because PDMR is considered as distribution of
dynamic load to structural elements. When distribution of strength of
structural elements is known, reliability of structures in random response
will easily be estimated. From this point of view, the PDMR of linear
structures subjected to earthquake type random excitation has been inten-
sively investigated by H.Kamedalz In this section, effects of hysteretic
restoring force upon PDMR of structures are analytically examined through
the pure-birth-process methodzo)applied to equivalently linearized struc-
tures.

Let the absolute maximum value of hysteretic response U(T) at the
time interval (o, T,) be Moz Then the probability distribution
®(umax,To) of W will be obtained from the pure-birth-process equation

similary as that of the first passage time: i.e.,

)

(<1<
®(“mam’T° P[maxlu(T)ISumax,O_T_To]

= ao(pmax)exp{-j:ao(umax,T)dr} (4-27)

where _ " . "
colu, . T)AT=P[{|u(t+dv) |>u fmax|uct) <y };0<t7<t]

(4-28)
ao(u J=Plluco) |z 1
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It should be noted that P[A] represents the probability of event A and
P[A|B] indicated the conditional probability of event A on the hypothesis
of event B. Hence Co(umax,T)dT is the probability of first crossing of
the level of amplitude M o at the time interval (1, T+dT). It is
almost impossible to obtain the exact solution of Eq.(4-28) for an
explicit form. Assuming the Poisson Process arrival of the maximum
response to the level W ? the first step appromixation of Eq.(4-28)

will be induced as

P[|u(t+dt) |3pmaxn|u(T) Ifumax]
Pllut) s ]

Colh, ., 1T = (4-29)

The probability of crossing the level Mo 2t the time interval (T, T+dt),
which is the numerator of right hand term of Eq.(4-29), is estimated

21)

from the results by S.0.Rice for stationary Gaussian process. From
discussion in the previous section, Gaussian process approximation of
hysteretic response seems to be reasonable unless nonlinearity is strong.
Then substituting Eq.(4-29) for Eq.(4-28), Eq.(4-27) will be approximated
as

U ok 1
u o To) = erf(7é?f£)exp[— %%;exp{-g(

H U
max , » max
5 ) }To/erf(7§8;d] (4-30)

where erf(x) is an error function of x.

(ii) Predicted and Simulated Results

Calculated results of above equation are shown in Figs.4.l5 (a),
(b) and (c) for the sets of parameters; n=0.0, 0.50, 0.75, n=0.5, 1.0,
2.0, rs=1.2, h =0.9, Bo,=0.2. Duration T, of stationary response is set

f

20 times the natural period of linear structures.

The PDMR of "relatively rigid" (n=0.5) hysteretic structures are

found larger than that of a linear structure (7=0.0). The larger mean
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response and variation of distribution is noticed for the stronger non-
linearity of hysteresis loops. On the contrary, hysteretic effects
suppress the PDMR of 'relatively intermediate (n=1.0) and soft (n=2.0)"
structures as seen in Fig.4.15 (b) and (c). These frequency-dependent
characteristics of the PDMR of hysteretic structures can also be explained
from transition of the receptance of equivalently linearized structures

as discussed in previous sections.

Simulated results are also plotted in Fig.4.15 (a), (b) and (c).
Predicted and simulated results show satisfactory agreement for linear
structures, This is due to relatively large damping factor (h,=0.1)
which lets the Poisson Process assumption in Eq. (4-29) reasonable.
Difference between theoretical and experimental results increases with
the nonlinearity parameter. The large discrepancy found in '"relatively
rigid" (n=0.5) bilinear structures with strong nonlinearity (n=0.75)
suggests that the component of plastic deformation can not be neglected
in this case. Frequency and nonlinearity dependent properties of the
PDMR of hysteretic structures are almost consistent with those of r.m.s.

response discussed in the previous section.

4-5 Nonstationary Response

4-5-1 Step-by-Step Method for Linear Structures

(i) Variances and Correlation Coefficient of Linear Response

In the previous section, the equivalnet linear structures and their
response in the stationary state are investigated. It is, however, one of
very important factors in the reliability analysis of strctures in strong
earthquakes to investigate the nonstationarity of response of linear and
hysteretic structures from following reasons. 1) The strength of earthquake
motions varies with time. This time variation seems to depend on the loca-
tion of the observation site relative to the hypocenter and also on the
path characteristics and so on. 2) Even it might be assumed simply that

the earthquake excitation is stationary, structures in the occasion of
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earthquakes start to vibrate from the static state.

In this section, the step-by-step method shall be discussed to
estimate the time depending variances of displacement and velocity
response of linear structures, and the correlation coefficient between
them at each step of time shown in Fig.4.16.

First, consider the response of a simple linear structure under

the initial conditions that

WE |, = e, W(E) |, = u., W(E)],_ =y, (4-31
t=t.” M t=t,” Y t=(t 4t )72 Vi

Then the solution of Eq.(4-2) at any time of t between ti and ti+1 is
obtained by the summation of the free vibration due to the initial
conditions and the forced vibration due to the excitation rswif(t) as

follows.

uit)

~(r 9, )/p JY R(t-t')f(t)dE" + I(tt.)
¢ (4-32)
()

~(r ) /p fzié(t-t')f(t')dt' + I(t-t)

where
p=/6§;?§§;72, I(t)=g, (t)u g, (t)us I(t)=g,(t)u+g, ()0, l
h(t)=exp(—Beqt)sinpt, ﬁ(t)=pexp(—88qt/2){cospt-(Beq/Zp)sinpt}
gl(t)=exp(-Beqt/2){cospt+(86q/2p)sinpt} s

g2(t)=(1/p)exp(—89qt/2)sinpt

ga(t)=—(wéq/p)exp(—Beqt/2)sinpt

— - 3 - t
gk(t)——(Beq/Zp)exp( Beqt/2)51npt+exp( Beqt/2)cosp
From Eqs.(4-32) and (4-33), the variances of displacement and

velocity response and the correlation coefficient between them at any

time ¢ between ti and ti+1 is readily expressed as
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02 (E)=E[U” (¢) 1=(r2V2/p2) ST 1% hit-t"In(t-t"ELF(6")F(£"))dt " db"
1 T 1

~(2r 0 /P)ELT (6=t )L R(t-t")F(t")dt 1+E[I? (t-t )] (4-34)
177t 7

. t ot .
cﬁ(t)—E[uz(t)]=(P;w;/P2)ftiftih(t-t’)h(t—t")E[f(t’)f(t")]dt'dt"

. t . .
—(ZPSwi/p)E[I(t-ti)ftih(t-t’)f(t')dt']+E[Iz(t—ti)] (4-35)

puﬁ(t)ou(t)oﬁ(t)=E[u(t)ﬁ(t)]
t .t 5
=(rsw§/p2)ftiftih(t-t')h(t—t")E[f(t')f(t")]dt'dt"
~(r U, /PELI(t=t ) 1E Re-tm) prem)aem)
1

=0y /PIRLI(t-t ) 1Y h(t-t") f(¢)dE" )
1
#E[L(t-t, )1 (-t ) (4-36)
where
2 - 204 2 _ _ .
BII*(t-t,))= g2 (-t R 142G (t-t,)g (-t JELu,i]
2 -2

I%(t-t.))= g2(t-t.)E[W? -t. -t. Y
E[I(t ti)] ga(t tt)E[U$]+Zg3(t tl)g“(t tl)E[uiui] L om37)
.2
+ gu(t-ti)E[ui]

- - - = — — 2
EUI(t-t,)I(t-t;))= g (t-t,)g (t-t JE[L2]

+ {gl(t-ti)gu(t-ti)+gz(t—ti)ga(t—ti)}E[uiﬂi]

+ gz(t—ti)ga(t-ti)E[ﬁ;]

Expected values of initial conditions at t=ti in above equation will be
determined from the response statistics at the end of the previous time

segment as
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E[ui] O;(ti)

E[ﬁ;] oE(ti) (4-38)

E[“i“i] = puix(ti)au(ti)oﬁ(ti)

These response statistics will be obtained from Eqs.(4-34)~(4-36), if
expected values of initial conditions at t=ti-1 are available.

Repeating this procedure backward on the time axis, one reaches at
the beginning of structural vibration. Hence, when the initial conditions
at t=0 are defined (U(0)={1(0)=0 for most structures in earthquake engi-
neering problems), nonstationary response of linear structures of which
natural frequency and damping factor in Eqs.(4-18) and (4-19) are
changeable at the beginning of any time segment, can be estimated by

applying Eqs. (4-34)~(4-37) and Eq.(4-18) to every one of them.

Following algebraic reductions are used to estimate Egs.(4-34)~
(4-37). Covariances of excitation in Eqs. (4-34)~(4-36) will be expressed
by power spectrum density using fourier transform as

E[f(t')f(t")]=Rf(t'-t")=ffmsf(w)exp{iw(t'-t")}dw (4-39)

From the above relation, the first term of right-hand side of Eq.(4-34)
is reduced to following form after tedious algebra.
oi(t)1=(r;w§/p2)fz I Rt R(-t"ELF(L1) F(£") )dt dt"
i 1

5
_oof
x[1-2exp(—Beq£/2){((Beq/Zp)sinp€+cosp£)cosw€+w/psinw€sinpg}

=(r;w§/p2)f () |H(w)|?

+exp(-Beq€)}{(Beq/Zp)sin2p£+((Beq/2)2+w2)/pzsin2p€+coszp€}]dw
(4-40)

where
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‘ 2 2,2 2 (4_41)
2 _ -
|H(w) |? = 1/{(weq W) (B, ) }

(ii) White-Noise Excitation

When power spectrum density of excitation is constant (white-noise

excitation) as,

Saw) = 5o (4-42)
f
the Eq.(4-40) will be estimated approximately by the integration over
the narrow range in the vicinity of the equivalent natural frequency

weq as T.K.Caughey and H.J.Stumpfzz)have proposed.

mr2y2s, 8, B,
o2ty = = 1 e (B £)(14-DsinsptrLasin?pl)}  (4-43)
p' I 28€qweq eq 2p 2p

Similar calculation was made by H.Goto and H.Kamed323)for the variance

and the correlation coefficient in Egs.(4-35) and (4-36) as

2,2
of(t), = ;7“ s f }{(t-t')li(t-t")E[f(t')f(t")]dt'dt"
npswz
= g {1-exp(-8, & (1 —qs:m2p£ ———g-51n pe)} (4-44)
“ r2y2
81t t S p et ' " ' 70
puu(t)ou(t)oﬁ(t)l = "EY—ft.ftih(t't')h(t t")ELf(E')f(t")]dt'dt
mr wzso
= “—5—7——exp( B E)s1n r& (4-45)
eq

The second terms of the right-hand side of the Eqs. (4-34)~(4-36) are
the covariance between free vibration due to initial conditions at the

beginning of a short time-segment and forced vibration due to excitation
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during the segment. When initial conditions at ¢=0 are all zero as,

u(t) lt=0 =0, U(t) |t=0 =0 (4-46)

initial conditions at the beginning of a short segment are determined
only from forced vibration at the end of the previous segment. Hence,

the covariance is written as

E[I(t—ti)fi‘ h(t-t')f(t')de"]

1
=E[{g1(t—ti)ui+gz(t—ti)ﬁi}fzih(t—t’)f(t’)dt']
=E[{g1(t-ti)fiiﬁgti-t")f(t")dt"+gz(t-ti)fiiﬁgti-t"')f(t"')dtm}
ST (t-t')fE)dL"]
A
= gl(t—ti)fiﬁ_zfiih(ti—t")h(t-t')E[f(t')f(t")]dt'dt"
+g2(t-ti)fié_lfziﬁ(ti-t"')h(t—t')E[f(t')f(t"')]dt'dt"' (4-47)

When the power spectrum density of the excitation is constant,

its correlation function is given by fourier transform as

E[f(t')f(t" )] = S8(t'-t"") (4-48)

where §(t) is the Dirac's delta function. Substitution of the above
relation into Eq.(4-47) lets the integration zero. Similarly all
correlation coefficients between the free vibration and the forced
vibration in Eqs.(4-34)"Vv(4-36) become zero. Therefore, when the exci-
tation is white-noise random process, Eqs.(4-34)V(4-36) will be estimated

relatively easily from the simplified Eqs. (4-43)V(4-45).

To check the accuracy of the step-by-step method discussed herein,
nonstationary response of linear structures subjected to stationary

white-noise excitation is firstly compared in Fig.4.17 with the theoreti-
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23)

cal results obtained by T.K.Caughey and H.J.Steumph ~. The nonstationary
response of the variance predicted by the step-by-step method of which
interval of the time segment is taken as T,/10 (one tenth of natural
period of a structure) shows quite good agreement with the theoretical

result to verify the technique discussed herein.

(iii) Non-White Random Excitation

When power spectrum density of excitation is not white but has
a predominant frequency such as represented by Eq.(4-22), the integration
in Eq.(4-40) can not so easily be reduced to a simple form as Eq.(4-43).
Besides, the covariance between free and forced vibration expressed in
Eq.(4-47) does not vanish to make the calculation of Eqs.(4-34)Vv(4-36)
very complicated. For an approximate estimation, following techniques
are used. First, numerical integration over the limitted range of
frequency around wf and weq is conducted to evaluate ouz(t)l’ Oﬁz(t)l
puﬁ(t)ou(t)cﬁ(t)l' Then from next two reasons, the second terms of the
right-hand side of Egs.(4-34)V(4-36) are expected negligibly small. 1)
if a peak of power spectrum density function of excitation is not so
sharp as receptance of a structure, the covariance between free vibra-
tion due to previous excitation and forced vibration due to present
excitation would be small, and 2) free vibration dies out with time by

virtue of damping coefficient Be hence the covariances would also

q’
become small.,

To check the accuracy of numerical estimation of the linear r.m.s.
response through the step-by-step method ignoring the covariance between
free and forced vibration, the calculated result is compared with the

1)

theoretical result derived by H.Kameda™"in Fig.4.18 (b). After tedious
algebraic treatments, H.Kameda obtained the theoretical r.m.s. response

of a simple linear structure subjected to an earthquake-type nonstationary
excitation represented by product of nonstationary envelope function

y(t) shown in Fig.4.18 (a) and stationary random process f(n, hfg t)

of which power spectrum density function is given by Eq.(4-22) for the

=0.9, h,=0.02, 0.05, 0.20.

set of parameters n=1.0, T/TfFlo, hf
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In Fig.4.18, 7 denotes the equivalent stationary duration for nonstationary
excitation defined by him. Both results are found to coincide well with
each other except at the first and the second step. The cause of discrep-
ancy between the two results at the first step is considered to be the
considerably great time-derivative of the nonstationary envelope function
at the beginning of excitation. From this point, it is desirable that
length of interval of the time step is short. On the contrary, to ignore
the covariance between free and forced vibration, it is desirable to let
the interval long. Since both conditions can not be satisfied simultane-
ously, interval of the section in this study is chosen so as to furnish
the same maximum r.m.s. response as that obtained by the theoretical
method.

Thus the step-by-step method investigated herein seems very powerful
to analyze not only nonstationary linear response but also nonstationary
response of hysteretic structures subjected to earthquake motion from the
following merits. 1) This method can be applied to any kind of nonsta-
tionary envelope function Y(t) of the excitation. 2) The process of
numerical calculation is not complex as long as the intensity of excita-
tion is considered constant during short interval of time segments. 3)
Parameters of equivalent linear structures can be changed at the beginning

of any time segment.

4-5-2 Predicted and Simulated Mean-Square Response

(i) Analytical Prediction

The mean square response of structures with bilinear hysteretic
restoring force subjected to nonstationary excitation is predicted by
using both the equivalent linearization technique investigated in the
section of 4-2-3 and the step-by-step method discussed in the previous
section. Two techniques are used following next procedures. The equiv-
alent linear parameters Beq and weq at the first time segment are taken
to be equal to B, and w, (parameters of linear structure), respectively
and the linear response at the end of the first time segments is calcu-

lated from Eqs.(4-34)v(4-36), since response of structures is considered
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to be in the elastic range at the beginning of vibration. Then equiva-

lent linear parameters Beq and Weg for the second time segment are

determined from Eq.(4-18) according to the response level of Gﬁ: Oﬁ

and Ouﬁ at the end of the first time segment. At the second time segment,
the nonstationary response of the equivalent linear structure with param-
eters Beg and weq is calculated under the initial conditions stipulated
by 0%, of ..
Y S uil

third time segment will be determined in the same manner as those for the

and p Then the equivalent linear parameters for the
second time segment. This process of calculation is schematically

illustrated in Fig.4.19.

In Fig.4.20 (a), (b), (c) and (d), predicted nonstationary mean-

"relatively rigid" hysteretic structures subjected to

square response of
the nonstationary excitation and corresponding amplitude-dependent equiv-
alent linear parameters weq and he are plotted for a set of parameters
rs=2.5, n=0.5, hfFO.9, n=0.00, 0.50, 0.75, h,=0.1. The larger value of mean-
square response is found for the stronger nonlinearity of hysteresis

loops. It is also observed that time lag between the peak of response

and that of the excitation is enlarged due to nonlinearity. It is

obvious that cause of these results is mainly attributable to softening-
type of nonlinearity which lets the equivalent natural period longer and
consequently shifts the structural receptance closer to the peak of
excitation. When nonlinearity parameter n is equal to 0.75, weq is

found to decrease down to almost half of w,. This means that weq is
becoming very close to predominant frequency mf of excitation. Extreme
growth of mean-square response is the consequence of above discussed
"resonance'. As could be expected, heq grows greater as nonlinearity

of hysteresis loop becomes stronger. Increase of equivalent damping

factor heq generally suppresses dynamic response. However,effect of
hysteretic energy absorbing is so less than that of frequency shifting

that the larger mean-square response is predicted inspite of the larger
values of he .

The predicted nonstationary mean-square response of ''relatively

-127~



anbruyoal uoTleEZTIERBUTT JUSTEAINbY daag
-£q-da31s jJo uorieRIISNTIT TeSTIBWaYDIS fT 4% 814
s103dey 3urdueqg JurLATnby (9)

Wws WY W vz W
u_ T | T

Ibay Pﬂ

(3Py

Sbe, mvwa

(P2m

3

/] 1
Vs Wy we Wwe w 0

UOTIBITOXY JO
uorjoung adolsauy Lieuolielsuop (e)

Vs Wy e we (X 0

%

/
(¥

. “h
% L

]
yﬂ|.\£.

$2IN3ON13g AeDUITT JO
asuodsay S WY AaeuorieasuoN g 814

(T3TNSaY Tedr3a109yy pue
poyisy dais-4q-da3ls ussmioq uostiedwo) (q)

1/} 9 S b ¢ 2 1
T B T 77 T

0

022 -

500 S
2000y~ X
o= L AMOIHL HV

O1:*1/] @OHLIW d31S ABJIUS
uoTlelTIXRY Y3
Jo uor3idoung adoTsAug Ki1evuoTieisuoN (®)

9 1/} ¢ v ¢ 2 | 0
T T T T 7 T T

g
(2/4) %

-128-



PEAK OF
1.0 EXCITATION

I
I
3
I
]
b
]
3
1
]
[l
1
[l
I
1

s 2 " l " i I s

1 n
2 50 Dot/T,

(a) Nonstationary Envelope Function
of the Excitation

3

0l LINeAR ~ =u} /w,=0.5
@l - n =05 /'/ N\ Tlt:t:'
wh —_— =0.7 /' \ Q=2.5
/.
2 / \
/ \
2t (/’/,/ ””” ~~ \'
rd \.
10} \
.\~\
. P P UL

(b) Mean-Square Response of Ductility Factor

100 "\\
‘\\\\\ ’_,,———""——-:,/
07 I P
3 ~. -
=4 ~ g
; — — /
6.9
T L " n n 1 L 1 n n 1 L )
0 5 /T,
(¢) Equivalent Natural Frequency
0.2f B S
g ‘/'/ \.\
0.1
" n PR 1 L 1 s 1 1 " )
0 5 v,

(d) Equivalent Damping Factor

Fig.4.20 Nonstationary Mean-Square Response of Ductility
Factor and Transition of Yggy and h,
(Relativley Rigid Bilinear Structures)

-129-



"relatively soft' hysteretic structures is plotted in

intermediate” and
Fig.4.21 (a) and (b). Hysteretic response of 'relatively intermediate"
structures is found sometimes larger and other times smaller than linear
response. This complicated response is a result of combined effects of
frequency and yielding level dependent characteristics of hysteretic
Structures.

In Fig.4.21 (b), it is noticed that hysteretic response of 'rela-
tively soft" structures is limited and time lag between the peaks of
response and excitation is shortened as nonlinearity becomes strong.
Limited mean-square response is attributable both to decrease of weq
which lets the structural receptance far from the peak of excitation and
to increase of heq due to hysteretic energy absorbing. However, shortened
time lag is attributable only to additional damping, because the time lag

1)

is generally enlarged when period of structures becomes long .

(ii) Numerical Simulation

To check the accuracy of analytically predicted mean-square response
of hysteretic structures, a numerical simulation is carried out on a
digital computer. Earthquake type nonstationary random excitations are
generated as product of the nonstationary envelope function Y(t) shown
in Fig.4.20 (a) and stationary random process discussed on the section
of 4-3-3. 50 samples of the artificial earthquake are made using Monte
Carlo method and hysteretic response to each one of them is numerically
calculated by linear acceleration method. The nonstationary mean-square
response plotted in Fig.4-22 is estimated as the ensemble average of 50
samples of calculated response.

Fig.4.22 (a) shows that the predicted and simulated results agree
relatively well when nonlinearity is moderate (n=0.5). Especially at the
beginning of vibration, they coincide fairly well, since the history of
response is similar to elastic respone. When response grows larger, plots
of simulated results fluctuate about theoretically predicted value. This
fluctuation is supposed to be an effect of yielding which lets time his-

tory of response different from that of elastic response. However, it
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would be gradually eliminated by increasing number of additional samples.
When nonlinearity becomes strong (n=0.75), simulated results plotted
in Fig.4.22 (b) shows large fluctuation around peak of response. This
fluctuation may also be a result of yielding. However after experiencing
the peak of response, predicted and simulated results agree well, which
suggests that no significant plastic deformation occurs during course
of vibration as pointed out in the Chapter 2.
The discrepancy between the two results becomes quite clear for the
structures with perfect elasto-plastic hysteresis loop (n=1.0) shown in
Fig.4.22 (c).

4-5-3 Probability Distribution of Maximum Response (PDMR)

As discussed in the section of 4-4-2, estimation of the PDMR of
hysteretic structures is quite significant for assessing structural
reliability during strong earthquakes, because the PDMR represents the
load effects beyond the yielding limit., 1In this section, the PDMR in
nonstationary state is predicted through step-by-step linearization
technique and envelope method. Then accuracy of them is checked by
numerical simulation.

In the prediction of PDMR in stationary state, Cofu t)dt is

>
approximated by the unconditional crossing rate Ini(umax’ Z?xof ductility
factor response U(t) at the level of Myore However it is recently
reported that the assumption of Poisson process arrival of response
envelope to the level of Mg €30 be used more successfully than that

of Ww(t) itself because structural response is not white but narrow band
process, The unconditional crossing rate Nw(u » t) of response

max 24)
envelope W(t) at the level of umax is obtained by H.Kameda as

Nw(umax,t) = IOW¢e(umax,W)dW

H H u
_ max _1 max | 2 B Y2 max , ?
wedjirexp{ ZFTiTJ H E;exp{-ggﬂzird }
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YH YU
max max
+ —-——{2 OU 1+erf(mq)}] (4-49)

where
Y = ou(t)/{weqcu(t)}
(1. 2 2
B =1-(1-8/7) /(Z-heq) (4-50)

-1
§ =t 2 —H? —_9h?
an { heq/l heq/(l 2heq)}

In this study, the PDMR in nonstationary state is predicted by
calculating Nw(umax’ t) for every time segment to conduct the integration
in Eq.(4-27). Predicted results are shown in Fig.4.23 (a), (b) and (c).
In these figures, simulated results using maximum response of 50 samples
calculated in the previous section are also plotted to check the accuracy
of precition. Mean value and coefficient of variation of each PDMR are
listed in Table-l.

In Fig.4.23 (a), it is noticed that "relatively rigid" structures
exhibit larger maximum response for stronger nonlinearity. It is found
in Table-1 that nonlinearity of hysteresis loops makes not only mean
values but also coefficient of variation larger. General trends of
predicted and simulated results agree well except the magnitude of
coefficient of variation. Simulated results show always larger coeffi-
cients of variation than predicted results presumably due to assumptions
in theoretical analysis and also effect of yielding when nonlinearity
is strong. This result suggests that higher estimation of structural
reliability would result in when the theoretically predicted PDMR is
used as distribution of load over structural members during strong
earthquakes. Because structural reliability will be increased when small
coefficient of variation of load distribution is used, even though its
mean value remains unchanged.

Predicted and simulated PDMR of "relatively intermediate (n=1.0)"
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Fig.4.23 Probability Distribution of Maximum Ductility

Factor in Nonstationary Response
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(c) "Relatively Soft" Bilinear Structures

Fig.4.23 Probability Distribution of Maximum Ductility
Factor in Nonstationary Response (cont'd)

Table 1 Mean and Coefficient of Variation of Maximum Ductility
Factor Response of Linear and Bilinear Structures

Period of Predicted Simulation
Hysteretic | Linearity | Mean Max.|Coef. of | Mean Max.|Coef. of
Structures Response |Variation | Response |Variation
Linear 8.31 0.28 7.79 0.39
n=0.5 n=0.50 9.00 0.30 9.60 0.43
n=0.75 12.91 0.33 12.09 0.52
Linear 7.35 0.27 6.92 0.49
n=1.0 n=0.50 7.03 0.28 7.33 0.49
n=0.75 7.22 0.30 7.61 0.50
Linear 4.21 0.27 4.11 0.47
n=2.0 n=0.50 3.94 0.27 4.11 0.47
n=0.75 3.80 0.27 3.95 0.50
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hysteretic structures are shown in Fig.4.23 (b), from which no significant
hysteretic effects are found. However Table-1 shows that mean values of
predicted PDMR are limited due to hysteretic effects, although coeffic-
ients of variation are enlarged. Contrary, both mean values and co-
efficients of variation of simulated PDMR are enlarged with nonlinear
parameter n. The difference between predicted and simulated results
suggests that theoretically expected hysteretic energy absorption has
little effects to suppress simulated response of '"relatively intermediate
hysteretic structures. But simulated hysteretic response does not grow

so large as 'relatively rigid" hysteretic structures, because the peak

of structural receptance is shifting away from the peak frequency of the
excitation.

Predicted and simulated PDMR of "relatively soft (n=2.0)" hysteretic
structures shown in Fig.4.23 (c) and listed in Table-1 indicate that
effect of hysteretic energy absorption can be expected in a sense of
mean values. However coefficients of variation of simulated PDMR show
the larger values for the stronger nonlinearity. Hence it would be
concluded that effects of hysteretic energy absorption in nonstationary
response can little be expected to make structural reliability increase

even if structures are ''relatively soft",

4-6 Conclusions

In this chapter, applicability of linearization techniques to
predict r.m.s. response and probability distribution of maximum response
of bilinear hysteretic structures subjected to stationary and nonstation-
ary excitation is intensively investigated to furnish useful information
for aseismic structural design with emphasis on ductility requirements.

Main conclusions derived from the study are as follows.

(1) Two edquivalent linearization techniques are adopted for theoretical
prediction of earthquake response of hysteretic structures; one

is the least mean-square error method and the other is the energy
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(2)

(3)

(4)

balance method. From the analysis assuming the slowly varying
amplitude and phase angle of response, it is found that the final
expressions of the equivalent damping coefficient and of the
equivalent natural frequency derived from the two methods have

the same form.

From examinations of theoretically predicted stationary r.m.s.
response by the iterative linearization technique, it is found
that hysteretic restoring force has different effects on its
response depending both on yielding level and natural frequency
w, of hysteretic structures relative to intensity and predominant
frequency wf of random excitation. Existence of the optimum
yielding level at which hysteretic energy absorption has the
maximum effect to suppress r.m.s. response is confirmed. Response
of "relatively rigid (n=wawo=0.5)" bilinear structures is
increased with nonlinearity of hysteresis loops although that of

"relatively soft (nN=2.0)" structures is decreased.

Frequency and yielding level dependant r.m.s. response character-
istics of hysteretic structures are examined in terms of equivalent
linear parameters corresponding to predicted response. It is found
that response characteristics can reasonably be explained from the
concept of the transition of the structural receptance with equiv-
alent linear parameters relative to the power spectrum density of
excitation. That is, the receptance of "relatively rigid" struc-
tures moves closer to the peak of spectrum of the excitation due

to nonlinearity of hysteresis loop. On the contrary, that of
"relatively soft'" hysteretic structures shifts away from the peak

frequency.

The step-by-step linearization technique which defines the equiv-
alent linear parameters varying with the response level of pre-
viously determined equivalent linear structures is successfully

applied to predict nonstationary mean-square response of hysteretic
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structures to earthquake-type random excitation.

(5) Probability distribution of maximum ductility factor response of
hysteretic structures in stationary and nonstationary state is
theoretically predicted by applying pure-birth and envelope methods.

"relatively rigid" structures

The mean value of maximum response of
is found to increase with nonlinearity of hysteresis loop, where

as those of "relatively intermediate’ and "relatively soft" hys-
teretic structures are noticed to decrease. This tendency is attrib-
utable to the same reason discussed in prediction of r.m.s. response.
However, effects of hysteretic energy absorbing in nonstationary
maximum response of "relatively intermediate and soft' structures

can not be expected so much as in stationary maximum response.

(6) From error survey made with the aid of numerical simulations on
a digital computer, it is concluded that the equivalent lineariza-
tion techniques dealt with herein are applicable for prediction
of stationary and nonstationary r.m.s. response of bilinear hys-
teretic structures within the nonlinear parameter 0.00<n<0.75.
Simulated probability distribution of maximum ductility factor
response shows much larger values of coefficients of variation
than predicted values to suggest that theoretical analyses discussed
in this study would result in higher estimation of structural
reliability than actual probability of safety during strong earth-

quakes.
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5. EARTHQUAKE RESPONSE OF DETERIORATING HYSTERETIC STRUCTURES

5-1 General Remarks

It is the intent of most modern approaches to earthquake-resistant
design to produce a structure capable of responding to moderate shaking
without damage, and capable to resisting the unlikely event of very strong
shaking without seriously endangering the occupants. In the second case,
however, structural damage and large deflections are permissible provided
collapse is not imminent. To achieve this goal, it is necessary to under-
stand the way buildings and other structures respond to deflections beyond
the elastic limit, and much analytical and experimental work has been
directed in recent years toward developing the required knowledge. In this
effort, the development of analytical models for hysteretic behavior has
been guided almost exclusively by static tests of structural elements and
assemblages because it is not yet possible to excite full-scale structures
significantly into the yielding range, and because the response of struc-
tures that have been heavily damaged under the action of strong earthquake
motion has not yet been recorded. Thus the desired full-scale, dynamic,
confirmation of the approaches to the analysis of earthquake response of
deteriorating hysteretic structures have not been obtained yet.

In many studies of nonlinear response to earthquake motions or other
dynamic forces, the yielding properties of structurs have been modelled
by the well-known elasto-plastic or bilinear force-deflection relations.
References 1) and 2) are among the earliest works, and Reference 3) is
one of the several studies presented at the fifth WCEE which used these

4)

relations. In addition to these simple yielding relations, trilinear
and smoother but more complex models of yielding behaviors) have also
been used in studies of earthquake response. Some of the most recent work
in this area includes the development of models for the deteriorating
hysteresis evidenced by structures that are weakened by excursions beyond

the elastic limit.6)’7)

The occurrence of an earthquake can be viewed as a full-scale

experiment and it is possible to learn much about the properties of

-143-



8)

structures from examination of their response to strong shaking . The
largest collection of data of this type is from the recent San Fernando
earthquakeg)in which responses of about 50 instrumented buildings in

the Los Angeles area were obtained. None of the instrumented buildings
was heavily damaged, but some did show evidence of nonlinear behavior in
the form of lengthening of periods of the lower modes of vibration over
those found from low-level vibration tests. A particular example of
this occurred in the E-W response of the Millikan Library on the campus
of the California Institute of Technology. The earthquake motion was
measured at the basement and at the roof by two RFT-250 accelerographs
which recorded the N-S, E-W and vertical components of the earthquake
motion and building response. During the earthquake, the E-W motion at
the roof reached a peak value of 340.5 cm/sec? (35%g), and clearly showed
the fundamental period to be about one second, which is 507% greater than
the value of 0.66 secs determined from forced vibration tests performed

10),11)

before the earthquake (The N-S response showed about a 20%

reduction in the fundamental natural frequency.) Visual examination of

the E-W accelerogram and Fourier analysis of the recordlz)’IB)

suggested
that the library responded to the earthquake motion as a hysteretic struc-

ture to a degree that might make it an useful object of study.

The only observed effects in the building after the earthquake that
might bear on the E-W response were small cracks at some floors in the
interior plaster at the points of supports of the precast window wall
panels. The exterior of the panels can be seen on the south face of
the building in Fig.5.1. Because the building suffered no observable
structural damage and because only the earthquake response at the top
floor was available, it was not considered justified to make a detailed,
nonlinear model of the structure of the library. It was decided instead
to treat the response of the library in its fundamental mode as a single-
degree-of-freedom (simple) hysteretic structure. The intent of this
approach was to learn in a general way about the response of the building

during the earthquake, and also to develop techniques of analysis that
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may be useful when the response of damaged structures is obtained in the
future. In particular, it was interested in finding out if the response
of the library in its fundamental mode could be satisfactorily described

by one of the simpler models for hysteretic behavior.

As described in this chapter, several methods were tried in the
attempt to find simple descriptions for the nonlinear response of the
building during the earthquake. First, the measured motion of the funda-
mental mode of the structure was examined to see if the hysteretic
relation could be determined from the measured earthquake response. It
was found that, with some care, the dynamic force-deflection relation
of the fundamental mode could be recovered. Another portion of this
analysis was concerned with the nonstationary characteristics of the
response in terms of the parameters of equivalent fundamental frequency
and equivalent viscous damping. The changes of these variables during
the response guided the selection of nonlinear models of the structure.
The second major portion of the study was devoted to a comparison of
the recorded response of the fundamental mode with that predicted by
analyses using various hysteretic models. The models included a station-
ary linear model with damping and frequency characteristics chosen to
match the recorded response, a stationary bilinear model, and two non-
stationary models. The nonstationary models were of two types, an equiva-
lent linear model with damping and fundamental frequency that changed at
selected times during the earthquake, and a nonstationary, bilinear
hysteretic model whose properties also were changed during the response.
A discussion is made for the accuracy of the proposed various methods to

reproduce the recorded response of Millikan Library.

In the final portion of the study, a new simple method to represent
deteriorating bilinear hysteretic structures was proposed. As a basic
measure of structural deterioration, cumulative damage and residual
strength derived from the theory of low-cycle fatigue were adopted. Then
equivalent linear parameters of the hysteretic structures were controlled

to degrade with decreasing residual strength of structures, Effects of
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structural deterioration to earthquake response were examined by compar-
ing nonstationary mean-square response of linear, conventional bilinear

and proposed deteriorating bilinear structures.

5-2 Millikan Library and the Recorded Earthquake Response

5-2-1 Brief Description of Millikan Library

The Millikan Library at the California Institute of Technology is
a nine-story, reinforced concrete building constructed in 1966112 The
lateral load resistance in the N-S direction is provided by reinforced
concrete shear walls and the resistance in the E-W direction is provided
by a central elevator and stairwell core also of reinforced concrete.
In addition, the structure possesses a reinforced concrete frame. The
shear walls comprise the east and west faces of the building, whereas
the north and south faces consist of precast concrete window-wall panels
which are attached three per floor between reinforced concrete columns.
It was determined from forced vibration tests of the structure during
construction that these precast window-wall panels added appreciable
stiffness to the structure for motions in the E-W direction. An exterior
view of the building is shown in Fig.5.1 which also includes sketches

of the foundation. More detailed information about the structure can
be found in References 10) and 11).

5-2-2 Results of Vibration Tests of the Library

During the final stages of construction, the library was subjected
to an extensive series of dynamic tests by P.C.Jennings and J.Kuroiw%o)’llz
In these tests it was found that the fundamental period in the E-W
direction was 0.66 secs. This value increased roughly 3% over the
amplitude range of testing. The mode shape corresponding to this funda-
mental frequency was found from measurements taken at every other floor
of the structure. In the vibration test the damping in the fundamental
E-W mode varied between 0.7 and 1.5 percent of critical, increasing with

the amplitude of response. Measurements of the foundation motions and
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motions on the nearby surface of the ground showed that the building
responded nearly as if it were fixed at the foundation; rocking contrib-
uted less than one percent to the total roof motion of the structure,
and foundation translation less than about two percent.

Within a few days after the earthquake an ambient vibration test
was performed on the structure during which the fundamental E-W period
was observed to be 0.80 secslz)’laz Hence, there appeared to be a perma-
nent change in the fundamental period of small vibrations in the E-W
direction. It has been found that since the post-earthquake test, the
structure has partially recovered and it exhibited a fundamental period

of 0.73 secs in the E-W direction in December, 1972122

5-2-3 Accelerograms Recorded During the Earthquake

Two accelerograms, one at the basement and one at the roof, were
obtained at the Millikan Library during the San Fernando earthquake.
The accelerograms and the calculated velocities and displacements are

shown in Figs.5.2 and 5.315)’16?

In these figures, 80 secs of motion
is shown, but not all of this motion is important to the present study.
The first 40 secs of the accelerogram at the basement may be separated
for discussion into two parts. The first part of the accelerogram (
from O to about 15 secs) has a high acceleration level with a relatively
high predominant frequency, whereas the second part of the record (from
15 to 40 secs) shows a relatively low acceleration level, and a lower
predominant frequency. Comparing Figs.5.2 and 5.3, it seems that the
different character of the response in Fig.5.3 in the early and latter
parts of the record may be due to the different types of excitation that

17)

arrived during these two portions of time ;s there appears to be a larger
fraction of surface waves in the latter portion of the basement accelero-
gram. The first part (0-15 secs) of the accelerogram shown in Fig.5.3
consists of a mixture of the first and second modes of response. The
period of the second mode in the E-W direction is approximately 0.17 sec.
During the second portion of the response (15-40 secs) the motion consists

almost exclusively of the fundamental mode. Comparing the levels of
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measured acceleration at the base and at the roof, it appears that the
ground motion was such as to excite the structure in a quasiresonant
fashion during the latter part of the record.

The displacement record in Fig.5.3 consists of a short-period
(about 1.0 sec) portion and fluctuations at longer periods. Since the
acceleration at the roof records the absolute motion of the structure,
it is considered that the displacement record shows a combination of
the motion of the structure with respect to the base, which is the motion
of shorter period, superimposed upon a longer-period motion which re-

presents the displacement of the foundation seen in Fig.5.2.

There are two major characteristics of the motion which are most
apparent from examination of the records of earthquake response. First,
the fundamental period of the E-W vibration during the strong motion is
about 50% longer than that measured at small amplitudes during vibration
tests; it is clear from Fig.5.3 that the period of the E-W fundamental
mode during the earthquake is near one second. Second, the records
show that the library responded primarily in its fundamental mode in
this direction. Although there is some vibration of the second mode
apparent in the first part of the response, it is generally small with
respect to the response of the fundamental mode. From these observations
it was thought possible to consider the library to be a simple hysteretic
structure responding to the earthquake, filtering or disregarding compo-

nents of higher modes of response.

5-3 Analysis of Recorded Accelerograms

5-3-1 Calculation of Relative Velocity and Displacement

The calculation of relative velocity and displacement is required
to determine the hysteretic character of the restoring force acting on
the structure as a function of amplitude of response. Considering the
library as a simple oscillator, the acceleration, velocity and displace-
ment shown in Fig.5.3 may be considered as the absolute response of the

oscillator, whereas those in Fig.5.2 may be considered as the base motion.
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Therefore, if the two recorded accelerograms have an accurate time cor-
respondence, the relative velocity and displacement of the oscillator
can be obtained by subtracting the calculated ground velocity and dis-
placement from the calculated values of velocity and displacement obtained
from the record measured on the roof.

Fortunately, the two accelerograms were recording a common time
signal and were, in fact, a part of a more extensive networle)which

included accelerographs at the Jet Propulsion Laboratory, Millikan Library

and the Caltech Seismological Laboratory.

When the calculated values and displacement were subtracted from
each other to obtain the relative motion, it was found in preliminary
analyses that the relative displacement included long fluctuations with
a period of about 11 secs. It was subsequently pointed out by T.C.Hanks
that these were due to a processing error in the digitizing of some
accelerograms, which has since been corrected. To eliminate this 11-
second period motion from the records analyzed in this study, a low-pass

19)

filter proposed by Jennings, Housner and Tsai ~‘was employed. The sub-
tracted and corrected relative acceleration, velocity and displacement
are plotted in Fig.5.4. Comparing Figs.5.3 and 5.4 (which are at differ-
ent time scales) it is seen that the changes in the acceleration are
slight, but the smoothing process of the integration, the subtraction
of the long-period ground displacement, and the elimination of the
digitizing error, have led to comparatively smooth curves for relative
velocity and displacement. Some possible contributions of the second
mode to the acceleration and relative velocity can be seen, but the
relative displacement is essentially only that of the fundamental mode.
It should be noted in Fig.5.4 that the motions beyond 40 secs have no

longer been included in the analysis.

5-3-2 Natural Frequencies and Amplitudes From Relative Displacement

From the relative displacement shown in Fig.5.4 and replotted in
Fig.5.5, it is easy to see that the period of the motion is much longer
than the period of vibration exhibited at small amplitudes. To investigate
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the nature of the nonlinearity of the restoring force, the period and
corresponding amplitude of each whole cycle of displacement were measured
from Fig.5.5 and plotted in Fig.5.6. The number of each point in Fig.5.6
corresponds to the number of the cycle as indicated in Fig.5.5. The
results obtained from the vibration tests before and after the earthquake
are also plotted in Fig.5.6. The points in Fig.5.6 show considerable
scatter, which is expected in a measure this crude, and it is hard to
find clear relations in the figure. However, the points numbered 1 to 11
and the results of the tests before the earthquake suggest an approximately
linear relation between the amplitude and period of vibration, with the
larger amplitudes corresponding to the longer-period motion. The
remaining points, numbers 12 to 29, are scattered about one second over

a fairly wide range, but above the approximately linear band shown by
points 1 to 11.

These results suggest that the library may have behaved like one
hysteretic structure up until about 15 secs, and then changed to a
different hysteretic structure. This is also consistent with the observed
loss of structural stiffness indicated by the post-earthquake vibration
test. To investigate this suggestion further, the measured periods of
vibration are plotted on the time axis in Fig.5.7, which also includes,
as lines, the results from the vibration tests before and after the earth-
quake. It is seen from this figure, which also shows considerable scatter,
that the natural period tends to increase gradually until about 14 secs.
Points number 12 and 13 show unusually long periods but these points may
be subject to more error than others as the amplitude of response is
quite small (Fig.5.5). After these points, most of the values fluctuate
around one second. Similar trends were obtained by F.E,Udwadia and
M.D.Trifunac from theilr analysis of the accelerograms using Fourier
transform techniqueslz)’132 The results from their work confirm that
the fundamental period of vibration in the E-W direction increased about
50% during the first part of the strong shaking, and remained at about
one second for the rest of the first 40 secs of response, even though the
amplitude of the response decreased. Their analysis also showed unusual

behavior at about t=15 secs and, in the period of weak response from 40
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to 80 secs, a tendency for the period to shorten from 1.0 sec to values

in the range of 0.8-0.9 secs.

5-3-3 Experimental Force-Deflection Relations of the First Mode

The analysis of the previous section identifies the nonlinearity
of the restoring force as the reason for the lengthening fundamental
period observed during the earthquake. In this section, the time-
dependence of the hysteretic behavior of the library is studied by
plotting the measured values of acceleration against the calculated
values of relative displacement.

Consider the equation of motion of simple system excited by an

earthquake:

Fx,&) = -M(Z+2) (5-1)
in which F(x,%) represents the nonlinear restoring force due to relative
velocity & and displacement x ; M is the mass and z is the ground accelera-
tion. Eq.(5-1) shows that the total restoring force divided by the mass
is the negative of the absolute acceleration. Using this relation, a
preliminary version of the hysteretic response of the library was obtained
by plotting the relative displacement shown in Fig.5.4 vs. the absolute
acceleration shown in Fig.5.3. This trajectory, plotted every 0.02 secs,
gave a reasobable estimate of the first-mode hysteresis of the library
during the second portion of the response, because the first mode of
the vibration predominates at this time. However, the first portion of
the response (0 to 15 secs) showed marked fluctuations along the trajec-
tory of the supposed first-mode hysteresis. This fluctuation was thought
to be the result of the non-negligible contributions of the second mode
of vibration of the library, which is discernible in this part of the

acceleration records.

Because of the assumptions of the study it was considered appropi-
ate to eliminate the effect of the second mode of vibration as well as

any higher modes that may have participated in the response. If this
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could be done, the desired trajectory between the absolute acceleration
and the relative displacement of the fundamental mode would be obtained.
The simple low-pass filterlg) mentioned above was again used to eliminate
these higher mode responses from the absolute acceleration record and
then the relative velocity and displacement were calculated. These
curves are shown in Fig.5.8, which can be compared with the absolute
acceleration in Fig.5.3 and the relative velocity and displacement in
Fig.5.4. It can be seen from this comparison that the response of the
higher modes has been greatly diminished, but not completely eliminated,
especially in the region from about 5 to 8 secs. Using the results shown
in Fig.5.8, the trajectory between the first mode absolute acceleration,
which is proportional to the restoring force by Eq.(5-1), and the
relative displacement was plotted every 0.02 secs and is given in

Fig. 5.9. 1In plotting these trajectories it was found that there was

a small phase error of about .04 to .06 secs between the absolute
acceleration and the relative displacement. This phase error significant-
ly affected the shape of the trajectories and, unless corrected, some of
the trajectories indicated negative hysteretic damping. By close exami-
nation of the digitized data, the amount of this phase error was found

to differ over the first 12 seconds of the response when compared to the
part after 12 secs. The source of this small phase error could not be
identified, but it is small enough that it is a possibility that it is

a phase difference in the digitization, which cannot be expected to be
much more accurate than about .04 to .06 secs. Other possibilities
include instrument malfunction around t=12 secs or a small error in

phase that might have been introduced because of the application of the

filters to the record.

To adjust for the phase error, the time history of the relative
displacement was shifted to match the peak value of the absolute accele-
ration during the two parts of the response. This was done because the
maximum restoring force should occur at the same time as the maximum

relative displacement for the small values of viscous damping associated
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with the library. At the beginning of the response, from 0 to 4 secs

as shown in Fig.5.9 (a), the hysteretic properties of the library are

not clear because of the small amplitudes. As is well known, the tangent
of the trajectory is equal to the square of the fundamental natural
frequency for a structure that responds essentially in the linear range.
The slope of the trajectory from O to 4 secs appears to be close to

that of a linear structure with a natural period of 0.66 secs (for which
the tangent value is 90/sec2), indicating that the library was vibrating
at the beginning of the earthquake with the fundamental period found
during the pre-earthquake vibration tests.

The slope of the trajectory is still steep from 4 to 6 secs as
shown in Fig.5.9 (a). However, the plots show more hysteresis due to the
high response levels. There is a large loop on the minus side of the
trajectory and afterwards there is a sharp drop in the restoring force,
perhaps indicating a sudden change in some structural elements due to
the strong vibration. From 6 to 8 secs the slopes of the hysteresis
loops have become less and the areas of the hysteresis loops have become
larger. There are also some short-period fluctuations along the supposed
first-mode hysteresis loops which are thought to be the results of the
incomplete filtering of the absolute accelerogram as discussed above.

It is also possible that these fluctuations represent small errors in the
calculation, which appears to be a sensitive one. Fig.5.9 (b) shows the
response from 8 to 10 secs, and it is seen that there are still some
fluctuations and sudden changes in the restoring force but, in general,
the loops are becoming smoother. The slopes of the hysteresis loops are
clearly less than during the early part of the earthquake, and the area
of the hysteresis loops is still large. As seen in the same figure, the
slope of the hysteresis loops from 10 to 12 secs are almost as soft as
the stiffness of the linear structure with a natural period of one sec.
(a tangent value of 39/sec?®). There is a suggestion, however, that the
areas of the hysteresis loops during the period from 10 to 12 secs are
less than those for 6 to 8, or 8 to 10 secs. There are still fluctuations

in the trajectory which may be associated with the second mode of response.
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From 12 to 14 secs,the areas of the hysteresis loops have clearly become
smaller, suggesting that the energy dissipation capacity of the library
at this amplitude has decreased because of the previous vibrations.
The hysteresis loops are also noticeably smoother, presumably due to the
predominance of the fundamental mode of vibration. The remaining portion
of the response, from 14 to 32 secs (Figs.9(b), (c), and (d) shows that
the library continues to exhibit a softer restoring force with a relative-
ly smaller energy dissipation capacity, when compared to the earlier
response. This is true even though the response level is decreasing.
Comparing the responses between 4 to 6 secs and between 28 to 30
secs, which have about the same absolute acceleration level, it is seen
that there has been a degradation of the stiffness of the structure.
It is also seen, from comparing the two figures for the periods from 6
to 8 secs, and from 24 to 26 secs, that the energy absorbing capacity

of the library has changed during the earthquake response.

The overall indication gained from Fig.5.9 is that the library lost
not only some of its stiffness, but also some energy dissipation capacity
due to the large amplitude response during the first part of the earth-
quake. This nonstationary characteristic of the hysteretic behavior of
the library agrees, in principle, with those of simple theoretical models
of deteriorating structures, although the details of the hysteretic
behavior are somewhat different from the theoretical models so far

suggested.

5-3-4 Nonstationary Equivalent Linear Parameters

It was thought desirable to estimate more precisely the loss of
stiffness and energy absorbing capacity evidenced during the response.
The stiffness of the library during each full cycle of relatively large
amplitude has already been estimated and is shown in Fig.5.7. To make
a similar study of the nonstationary behavior of the energy absorbing
capacity, the hysteresis loops were used to estimate an equivalent viscous
damping factor for each full cycle of response.

In this study the equivalent viscous damping factor heq was defined
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by equating the energy dissipated by hysteresis to that dissipated by

viscous damping.

, . = ' -2
$F (1) du ﬁ2heqwequu (5-2)
in which F(u,\1) is the restoring force; W, 1 are the relative displace-
ment and velocity, respectively, and meq is the equivalent natural fre-
quency measured from that portion of the response. To evaluate the
right-hand side of Eg.(5-2), it was assumed that over a cycle the

amplitude of the response was a slowly varying sine wave, i.e.

nt) = —wequo(t)sin{weqt + o(t)} (5-3)

in which ¢(¢) is a slowly varying phase angle. (Appendix 2-A)
From Egs.(5-2) and (5-3) the equivalent viscous damping factor
h is obtained as
1 . (5-4)
= F(u,w)du
heq Eﬁﬂﬂr_ii ﬁ
in which Ho is the measured amplitude of the relative displacement and

fpF(u,u)du is evaluated from the hysteresis loops given in Fig.5.9.

The equivalent viscous damping factors calculated this way are
plotted for each full cycle in Fig.5.10. From the nature of the assump-
tions involved and the inherent errors, it is not expected that this
would be a precise calculation. Fig.5.10 indicates that the library
showed about 8 to 10% of critical damping from about 4 to 10 secs at
which time the amplitude of the response reaches a maximum value. After
10 secs the energy absorbing capacity shows a reduction, which is consist-
ent with the suggestion that a relatively sudden change in the energy
absorbing capacity took place at about the time of maximum response.

As pointed out above, the only observable earthquake effects on the
structure were small cracking in the plaster in the vicinity of the
mounts of the precast window wall panels. It is one possibility that

the working loose of these mountings was the cause of the observed behav-

ior.
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5-4 Equivalent Linear and Hysteretic Modeling of the Library

5-4~1 Stationary Equivalent Linear Modeling

Before attempting to model the response by nonlinear hysteretic
behavior, a simple linear model was tried, both to establish a base for
further comparisons and to investigate the capabilities of this simplest
possible approach. In order to model the first mode of the library as a
simple oscillator it was necessary to calculate the participation factor
of the fundamental mode. This was done using the experimentally deter-
mined values obtained in the vibration tests. As indicated in the
Appendix 5-A, the input acceleration level to the equivalent linear
oscillator was adjusted by the participation factor of the fundamental
mode and by the weighting factor for the response of the roof.

The period of the equivalent linear model was taken as 1.0 sec in
agreement with the second part of the response shown in Fig.5.7. The
equivalent damping factor was chosen to be 5% of critical damping, a
representative value taken from Fig.5.10. It might be noted that
approximately 2% out of this 5% can be associated with viscous-like

damping measured in the pre-earthquake vibration tests.

Using this simple linear model, the response of absolute accelera-
tion was calculated and plotted in Fig.5.11. During the early part of
the response, from O to 15 secs, the calculated response shown with a
continuous line does not coincide with the measured first mode response
shown with a broken line which is exactly same as that in Fig.5.8. The
difference is particularly noticeable around 10 secs, where the calculated
response is decreasing, whereas the measured response is growing and
showing its maximum value. The reason for this discrepancy is that in
the beginning of the vibration the library has a fundamental period of
about 0.66 secs, whereas the simple linear model has a period of one
second throughout the response. In addition, the assumed dissipation
value of 5% is less than actually shown by the library during that early
portion of the response. The coincidence of the calculated response

and the measured first mode response is much better during the second
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part of the response, from 15 to 40 secs. In particular, the phase
difference is very small. The simple linear model works well for this
portion of the response, which is consistent with the smooth hysteresis
loops shown in Fig.5.9, and the generally constant value of energy dissi-

pation as indicated by Fig.5.10.

From these results it can be said that this simple linear model of
the structure gives good agreement only for the portion of the response
between 15 and 40 secs, the portion of the response over which structural
parameters do not change significantly. The simple liear model does give
a reasonably good estimate of the maximum response of the structure, and
may therefore be useful from the point of view of design. From the
point of view of research, however, it would seem that much better
agreement could be obtained using a more detailed model of the hysteretic

behavior.

5-4-2 Stationary Hysteretic Modeling

A stationary, bilinear hysteretic model was adopted in this section
to represent the nonlinear hysteretic characteristics of the restoring
force of the structure. Considering the shape of the hysteresis loops
given in Fig.5.9, and the trends in the equivalent linear parameters
shown in Fies.5.7 and 5.10, the bilinear model selected was chosen to
have a small yield displacement with respect to the maximum response,
and a relatively steep second slope. The yield level of this model was
chosen to fit the observed behavior and does not indicate yielding in
the structural frame of the library. A hysteretic model with these
parameters will, for large deflections, show a small amount of energy
dissipation and an equivalent natural frequency which is almost the
same as that indicated by the second slope of the hysteretic diagram.
The first slope of the bilinear hysteretic model was chosen to give a
natural period of 0.66 secs, whereas the second slope was chosen to
correspond to a linear restoring force for a structure with a natural
period of 1.0 secs. The transition point between these two slopes was

set at 0.25 cm, which is only slightly larger than the maximum
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displacement during the vibration experiments. A typical hysteresis loop

for a structure of this type is shown in Fig.5.12.

The calculated response of this bilinear hysteretic structure sub-
jected to the recorded base acceleration is shown in Fig.5.13, which
gives the absolute acceleration of the oscillator. The calculated
hysteretic behavior comparable to Fig.5.9 is plotted in Fig.5.14. The
response value plotted in Fig.5.13 shows very poor agreement with that
from the measured first-mode response, Fig.5-8, except for the phase in
the period from 12 to 17 secs. Comparing the hysteretic response from
4 to 6 secs, as shown in Figs.5-9 (a) and 5-14 (a), it is seen that the
bilinear model gives a stiffness of the restoring force that is too low.
Also it is seen from Figs.5.9 (b), (c) that the bilinear relation shows
too much hysteretic damping from 8 to 24 secs. This is consistent with
the calculated response being smaller than the measured response during
this interval. These comparisons indicate that a satisfactory descrip-
tion of the response by a stationary hysteretic model is unlikely and

that better agreement could be attained using a nonstationary model.

5-4-3 Nonstationary Equivalent Linear Modeling

It was seen previously that stationary models of the fundamental
mode gave only limited agreement with response measured during the earth-
quake. In this section, a nonstationary, equivalent linear model, which
changes its structural parameters at selected points during the response,
was tried to see if the agreement could be improved. This was done both
to check the accuracy of the equivalent linear parameters given in Figs.
5.7 and 5.10 and also to investigate the nonstationary characteristics
of the response. The time-dependent equivalent natural frequency weq
and damping factor heq for the nonstationary model were selected from

examination of the data, and are shown in Fig.5.15.

During the computation of the response, the changes of stiffness
were implemented at times when the relative displacement was zerc so as
not to cause any permanent deformation. The calculated response of this

oscillator, shown in Fig.5.16, agrees quite well with the measured response
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of the first mode shown with a broken line. Thus, very good agreement
with the observed behavior can be obtained by considering the structure
to behave like a linear oscillator whose natural frequency and damping
factor change during the course of the earthquake response. The good
agreement suggests also that the analysis presented above can give
sufficiently accurate nonstationary equivalent linear parameters. It

is seen from Fig.5.15 that the stiffness of the equivalent linear system
degrades to a constant value, whereas the equivalent damping factor of
the system first increases and then decreases to a value somewhat lower

than the peak response, but higher than the initial value.

5-4-4 Nonstationary Hysteretic Modeling

In this section, a nonstationary, deteriorating model of bilinear
hysteresis is proposed to describe the response of the fundamental mode.
The model chosen consists of four different bilinear hysteretic relations
all having the same second slope. The time-dependent characteristics of
the stiffness and energy dissipation capacity of the library are repre-
sented by changing the stiffness of the first slope and the yielding
displacement. Guided by the results of previous analyses, the yielding
displacement for the bilinear model was taken as large as 1.0 cm during
the initial portion of the response; and for the latter portion of the
response, a smaller value of 0.07 cm was used. The four different
bilinear relations employed to model the nonstationary characteristics
of the structure are consistent with the equivalent linear parameters
shown in Fig.5.15, and hysteresis loops for these relations are shown
in Fig.5.17. The loss of stiffness with time and the decreasing

capacity for dissipating energy are apparent from Fig.5.17.

During the computations of response the transition from one hystere-
tic model to another was controlled to avoid jumps in the restoring
force. The calculated values of absolute acceleration for the nonstation-
ary bilinear hysteretic model is plotted in Fig.5.18. Fig.5.19 shows
the calculated hysteretic behavior of the model, and is to be compared

with Fig.5.9. Comparing the responses in Fig.5.18 with that of the
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measured first mode, it is seen that the two results agree very well
except for a few peaks around 8 secs. Comparing the hysteretic diagrams
in Figs.5.9 and 5.19, the calculated hysteretic behavior produced by the
nonstationary bilinear model seems to represent the deteriorating char-
acteristics of the restoring force of the structure fairly well. The
agreement might be improved by the introduction of another, fifth model,
or by changing the properties of the four used, but the main features of
the hysteretic characteristics seem to be represented reasonably well

by the nonstationary model used in the analysis.

5-5 A Model of Deteriorating Bilinear Hysteretic Structures

5~-5-1 Comulative Damage and Residual Strength of Structures

From the investigations in the previous sections, it is clear that
dynamic properties of the building deteriorated during the earthquake
motion. Deterioration of reinforced concrete structures has also been
suggested from laboratory experiments on restoring force characteristics
of structural elementszoz Examination of these data required to intro-
duce a general deteriorating model to explain structural response and
earthquake damages. For this purpose, a simple but general measure is
needed to estimate the deterioration of hysteretic structures in random
response.

In this section cumulative damage function defined in the theory

21)

of low-cycle fatigue is adopted as a basic parameter to measure struc-—
tural deterioration of stiffness and energy absorbing capacity with cyclic
loading. Let us define the increment in cumulative damage Di due to one

cycle loading with amplitude of ) in ductility factor (D,F,) as:
AD, = 4(u/u)” (5-5)
7 v rf

where uf: D.F. at failure under static loading, &: a parameter which
determines the pattern of damage function. It is clear that o depends

on material of structures. In this study, rounded value of 2.0 is used
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for o because of lack of experimental data. Then, the accumulated damage
D(n) after ni cycles of loading with amplitude of ui (£=1,2,.....) is

written as

D(n) = JpD; = (4/u?u J o (5-6)
7 i

When the loading is random as earthquake ground motions, it is
desirable to define the cumulative damage with time t. Using R.W.Lardner's

22) 23)

damage rate function ~, R.Minai proposed the cumulative damage D(t)

over the time interval of (0,t) in the form of

. _] . _
pet) = [Frow|ildt = (a/U?Jfflula luldt (5-7)
0

The expected value of cumulative damage E[D(t)] in nondeterministic
response will be estimated when the joint probability density function

p(u,u,t) of D.F.u and its rate | at time t' (0<t’<t) is known: i.e.,

E(D(t)] = (a/u})f:fw 1% 1 1,y t 1) dicude ! (5-8)

When the value of cumulative damage D(n) or E[D(t)] reaches to 1.0,
it is regarded as complete failure of the structure. Therefore residual

strength R(n) or E[R(t)] of structure is written as

R(n) = 1.0-D(n) , E[R(t)]= 1.0-E[D(t)] (5-9)

5-5-2 Equivalent Linear Parameters of Deteriorating Bilinear Structures

Although there would be many ways to describe deterioration effects
of structures, it will be a simple and practical approach to measure
the degraded capacity of structural strength in terms of the residual
strength discussed in the previous section. In a proposed model, basic
bilinear hysteretic restoring force shown in Fig.5.20 is firstly linear-

ized with equivalent natural frequency weq and equivalant damping co-
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efficient Beq as discussed in the sections of 4-2-2 and 4-2-3, Then

it is assumed that the linearized stiffness (wzeq) degrades proportional
to the residual strength and that the linearized energy absorbing capacity
(Beq) degrades more rapidly in proportion to the square of the residual
strength as shown in Fig.5.21. This is written as

2 2
w eq(ui,R(n)) weq(ui)R(n)

(5-10)

R q(“i’R(n))

2
R B8 q(ui)R (n)

e

Where wzeq(ui) and Beq(ui) are determined from Eq. (4-14). This assump-
tion is made according to experimental results of reinforced concrete
shear walls performed T.Shiga et 31202 In their study, deterioration of
the equivalent rigidity and the equivalent viscous damping under cyclic
loading with constant amplitude is plotted against the number of loading
cycles, which suggests that the present approach is appropriate in

investigating the effects of structural deterioration.

Using Eq.(5-10), residual strength and deteriorated structural
parameters of a model for sinusoidal cyclic loading are calculated
and shown in Fig.5.22. Deterioration effects are shown for 1,5,10 cycles
of loading. It is found that one cycle of loading with D.F. ui=12.5,
five cycles of loading with D.F. “i=5'5 and ten cycles of loading with
D.F. ”i=3'9 lead to complete loss of residual strength. Consequently,
the equivalent stiffness wzeq and the equivalent energy absorbing capacity
Be are reduced to zero. In this figure, no deterioration means equiva-

lent linear parameters of a conventional bilinear hysteretic model.

When loading is random but deterministic like structural response
subjected to recorded earthquake motions, structural damage is calculated
at every half cycle of vibration from Eq.(5-5). According as increasing
damage, deteriorated structural parameters are estimated from Eq.(5-10)
and they are adjusted also at every half cycle of vibration when relative

displacement is zero not to cause any plastic deformation. Fig.5.23
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shows the numerically calculated response of a proposed deteriorating
model subjected to the recorded acceleration at Millikan Library during
the San Fernando earthquake shown in Fig.5.2. Structural parameters of

a model indicated in Fig.5.23 agree with those obtained from pre-earth-
quake vibration test of the library when no damage is considered. The
total restoring force (Beqi +-wzeqx) is plotted against the relative dis-
placement response X to reproduce deterlorating hysteretic loops.
Although some discrepancy is found between Figs.5.9 and 5.23, general
trends of deterioration of slopes and area of hysteresis loops agree

well to suggest usefullness of the proposed model.

5-5-3 Nonstationary Mean-Square Response of Deteriorating Bilinear

Structures

Nonstationary mean-square response of a proposed deteriorating
bilinear model subjected to earthquake-type random excitation is pre-
dicted by the step-by-step linearization technique discussed in the
section of 4-5-1. The equivalent linear parameters of the model are
estimated from the covariances of response OU’ puﬁ’ Oﬁ and the expected
residual strength E[R(%t)] following almost the same idea discussed in

Eq.(5-10). This procedure is expressed as

2 E =w? ( P O3B R(t)
meq(ou i Ou’ [R(t)]) weq o pUl [ ] 511)
Beq(ou e ou E{R(t)]) = Beq( N uu ou)E [R(t)]

2
Where w eq(Ou, Puie 9 ) and Beq(ou’ i

Another procedure to estimate the covariances of nonstationary response

Oﬂ) are determined from Eq.(4-18).

of equivalent linear structures is exactly the same as one used in the

section of 4-5-1.

Deterioration effects of structural stiffness and energy absorbing
capacity during earthquake response are examined by comparing nonstationary
mean-square response of linear, conventional bilinear and proposed dete-
riorating bilinear structures. Calculated results for three models

subjected to moderate and strong excitations are shown in Figs.5.25 and
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5.26. The nonstationary excitation afw(t)f(wf”hf”t) is represented
by the product of nonstationary envelope function Y(%) shown in Fig.5.24
and stationary random process f(wf”hf”t) discussed in the previous

chapter.

In Fig.5.25 (a), a linear structure shows large value of mean-square
response in D.F. with large time-lag between the peaks of response and
excitation. This is due to small value of damping factor h,(=B,/(2w,)=
0.02). The maximum mean square response of the conventional bilinear
structure is found less than 50% of the linear structure and there is
almost no time-lag between the peaks of response and excitation because
of the energy absorbing effects of hysteresis loops. The deteriorating
bilinear structure shows, except at the beginning of response, larger
response than that of conventional bilinear structures due to structural
damage. The cumulative damage shows comparatively rapid growth when
the response attains its maximum value (t/T,=4.0) and then gradually
increases up to 50% of the complete failure value (E[D(%t)]=1.0). Equi-
valent linear parameters of conventional bilinear structures depending
only on response amplitude recover their initial values at the end of
vibration. On the contrary, those of proposed deteriorating bilinear
model calculated from Eq.(5-10) loses their capacity according as the
increasing damage and does not recover their initial values. Deterio-
ration of weq in this figure is found very similar to that in Fig.5.15
to suggest that the propose model can reasonably explain the deteriora-

tion of structural parameters by the measure of residual strength.

In Fig.5.26, square of an intensity parameter af of the nonstation-
ary excitation is increased from 0.75 used in Fig.5.25 up to 1.0 to
represent strong earthquake motions. Other parameters are exactly the

same as those used in Fig.5.25. 1t is a natural result that linear
response in Fig.5-26 is 133% of that in Fig.5-25 from the theory of

linearity between excitation and response. Conventional bilinear
response in Fig.5-26 shows the rate of increase as almost the same as
the linear structure because of a little change between equivalent linear

parameters in Figs.5.25 and 5.26. 1In contrast, response of the deterio-
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rating bilinear model decreases only slightly after its peak value at
t/T,=5 inspite of rapid decrease in excitation level. After t/T,=13,

the response becomes larger than that of a linear structure and finally
shows very rapid growth at t/T,=24, This is the effects of deterioration
of structural stiffness and energy absorbing capacity with increasing
cumulative damage. Extreme loss of structural capacity results in

rapid growth of response to cause the collapse; i.e., E[D(t)]=1.0.

For the purpose of measuring deterioration of structural capacities
and investigating their effects on earthquake response, the proposed
method is much simpler than conventional methods of controlling every
process of deteriorating hysteresis loops. The proposed method can
also cover wide range of deteriorating structures by choosing a suitable
value for the parameter & in Eq.5-5 and by defining appropriate relation
between cumulative damage and equivalent linear parameters. Hence, the
proposed method seems promissing for practical use in earthquake response

analysis of deteriorating hysteretic structures.

5-6 Conclusions

In this chapter, deterioration of dynamic parameters of the Millikan
Library on the campus of California Institute of Techonology during the
San Fernando earthquake is detected from the examination of recorded seis-
mograms. Calculated response of four simple models are compared with the
recorded motion to see whether they could describe the response of the
fundamental mode of the Library. The study also proposes a new simple
model to represent general deteriorating hysteretic structures. Main

results obtained are as follows.

(1) The simultaneous measurement of the ninth floor and basement
motions allowed the calculation of the relative response which, in
this case, could be used to construct an experimental estimate of
the hysteretic response of an oscillator modelling the fundamental
mode of the structure. To this extent it was possible to study
the actual hysteretic behavior of the library and thereby to judge
the type of hysteresis that best described the response. The
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(2)

(3)

(4)

method used in this report appears to be a promising one for study-
ing earthquake response of hysteretic structures, even though some
difficulties exist in obtaining hysteretic trajectories from the
response. To study the hysteretic behavior in more detail, in
particular to determine where in the structure the hysteresis might
be concentrated, would require more instrumentation than is present
in the library. It is concluded that one instrument per floor,

all with a common timing signal, would be the minimum requirement

to give the information needed.

The results of the analysis, and study of the observed E-W response
of the library, clearly indicate a significant decrease in the
stiffness and energy dissipation capability of the building during
the course of the earthquake response. This is perhaps most easily
seen in Fig.5.15. It is not possible to relate the changes, with
confidence, to any observed damage to the building, nor is it
possible to ascertain whether the changes were sudden or gradual.
It seems quite possible, however, that the observed behavior is

at least partly a consequence of the behavior of the precast
concrete panels that contain the windows, and it seems that
relatively rapid or sudden changes in properties are more likely

to have occurred than gradual ones.

Of the four simple models used to describe the E-W response of the
fundamental mode of the library during the San Fernando earthquake,
the best agreement was achieved by the use of the two nonstationary
oscillators. The two stationary models, an equivalent linear model
and a bilinear hysteretic model, also with constant properties,
were not capable of duplicating the earthquake response nearly so
well as the nonstationary oscillators. The simpler, stationary
models did give maximum responses close to that observed in the
earthquake, however, so that their use would have produced valid

information in an analysis intended for design.

The two nonstationary models that gave good agreement were an
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(5)

(6)

equivalent linear model with properties that were changed at four
times during the earthquake, and a bilinear hysteretic model that
also changed properties four times during the response. Equally
good agreement was obtained with either model, and it is concluded
that any of the more common hysteretic models giving the general
trend of equivalent natural frequency and equivalent damping

factor shown in Fig.5.15 probably could be made to give good agree-
ment between observed and calculated responses. In doing any such
analyses, however, it does appear necessary to change the properties
of the model during the course of the response; it seems doubtful
that any of the simple, nondegrading hysteretic models could be
capable of giving the degree of agreement shown by the nonstation-

ary models.

Another new simple model is proposed to represent dynamic properties
of deteriorating hysteretic structures. As a basic measure of
structural deterioration, cumulative damage and residual strength
derived from the theory of low-cycle fatigue were adopted. Then
equivalent stiffness and energy absorbing capacity of hysteretic
structures were controlled to degrade with decreasing residual
strength of structures. The proposed method appears to be much
simpler for practical use than conventional methods of controlling

every process of deteriorating hysteresis loops.

Effects of structural deterioration to earthquake response were
examined by comparing nonstationary mean-square response of linear,
conventional bilinear and proposed deteriorating bilinear structures
subjected to artificial earthquake motions with different intensity.
When excitation level is moderate, deteriorating bilinear structures
show slightly larger response than bilinear response. At the end

of excitation, response level asymptotically approaches to zero,
although structural stiffness and energy absorbing capacity have
permanent damages. When excitation level becomes strong, extreme
loss of structural capacity results in rapid growth of fesponse to

cause the collapse of structures.
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APPENDIX 5-A

Calculation of the Participation Factor and the Weighting Factor

This appendix describes the calculation of the participation factor
of the fundamental mode and the weighting factor for the first mode for
response as measured on the roof. These factors are required to scale the
measured response on the roof to the response of the simple oscillator

that models the fundamental mode of the building.

The equation of motion for earthquake response of a n degree-of-

freedom system such as the library can be written as

m{z} + clz} + k{z} = -M{1}z(¢) (5~A-1)

in which ¥, C and K are the »nx»n mass, damping and stiffness matrices,

respectively. The vector {z}, ({x}T={x1,x .,xn}) denotes the relative

PIETERE
displacement, {1} symbolizes the vector {1}T={1,1,....,1}, and Z(t) is

the acceleration of the base of the structure.

The matrix of mode shapes ¢ is defined by

¢ = [{o 1 {oyheennnn RUNS (5-A-2)
in which the column vectors are the individual mode shapes, i.e., {¢i}T=
(¢1i’¢2i""'°"¢ni) defines the ith mode .

Letting
{z} = ol&) (5-A-3)

and substituting into Eq.(5-A-1), and multiplying by @T gives
T, % T, : T T e (5-A-t)
o MO{E} + & CO{E} + & KO{E} = -0 M{1}z(t)

Under the assumption that the damping matrix C can be diagonalized by the
same transformation ¢ which diagonalizes M and K, the individual equation
in matrix equation (5-A-4) will be uncoupled. A tipical equation will have

the form
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T T T

{¢.} Ccle.}. {6.} K{o.} {¢.} M1}
£+ —— P T -——3—5———— i(t)  (5-A-5)
EERCH N IO IR CR TR {o,} Mo,

The coefficient of Z(t¢) is the participation factor, ai, for the ith

mode, and in paticular
(o, }m(1}
a. = (5-A-6)

RCRLYCS:

Assuming that the solutions to Eq.(5-A-5) are known, the response of
each of the » masses can be found by use of Eq.(5-A-3). If an index of I

corresponds to the roof, the roof displacement is

%, = (5-A-7)

The modal ordinate ¢11 is herein called the weighting factor.

From .the test datalo), the first mode of the nine-story library was

found as

{¢1}T = {1.00,0.87,0.74,0.62,0.51,0.40,0.28,0.20,0.11,0.04} (5-A-8)

where values for intermediate floors have been interpolated from the

measurements. The mass matrix is given in the same reference as

.

1.0 7
0.75
0.75 0
0.75
. 0.75
y = 2600kips 0.75 (5-A-9)
g 0.75
0 0.75
0.94
L 0.88
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Evaluating Eq.(5-A-6), it is found that

a, = 1.44 (5-A-10)

and from Eq. (5-A-8)

¢,, = 1.00 (5-A-11)

The product of these two factors, 1.44, is the desired ratio, i.e.,
the response of an oscillator subjected to the recorded base acceleration
should be multiplied by 1.44 before comparison with the fundamental mode
response, as measured on the roof. For the calculation in this report,

the rounded value of 1.4 has been used.
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6. CONCLUDING REMARKS

This dissertation has presented the results of investigation on
earthquake response properties of stationary and deteriorating simple
hysteretic structures through theoretical analyses, numerical simulations
and examinations of recorded seismograms. In this conclusive chapter,
the objectives of this study and the main results of foregoing chapters
will be reviewed comprehensively to discuss commonly related conclusions
with proposals for earthquake engineers and also in relation to the

prospect for future studies to be continued.

It would be the most reasonable way of earthquake resistant design-
ing to build a structure capable of responding to moderate shaking
without damage, and capable of resisting the unlikely event of very
strong shaking without seriously endangering the occupants. In the
latter case which is the most significant point in earthquake engineering,
it is indispensable for structural response analyses to take account of
the nonlinear hysteretic properties in dynamic force-deflection relations
over yielding limit and also of the randomness found in earthquake ground
motions. Hence, probabilistic evaluation of random response of hysteretic
structures has been strongly needed in order to estimate the reliability
of structures in the occasions of strong earthquakes,.

A large number of studies aiming to achieve this goal have been
devoted to earthquake response analyses of nonlinear hysteretic structures
as reviewed in Chapter 1. However following three crucial issues which
are the main topics of this dissertation are considered not to have been

investigated satisfactory both in experimental and analytical sense.

(1) Effects of types and shapes of hysteresis loops to random response
of yielding structures especially to plastic deformation in search
of dynamic failure mechanisms of structures caused by strong earth-
quake.

(2) General understanding of probabilistic response of nonlinear
hysteretic structures subjected to nonstationary random’excitation,

in concern with establishment of a new aseismic designing code to
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reflect the results of hysteretic response analyses.

(3) Detection and modeling of time and amplitude dependent force-
deflection relations of existing structures in large amplitude for
accurate estimation of their dynamic response due to strong ground

shaking.

In this dissertation, Chapter 2 and 3 are aimed to contribute to
the first issue through simulational and analytical techniques.

Simulated plastic deformation in Chapter 2 is found to increase
rapidly when the stiffness after yielding becomes close to zero. When
the stiffness in the plastic range is greater than one quarter of that
in the elastic region, plastic deformation is noticed to grow little.
Hence it is recommended to earthquake engineers to try to increase the
stiffness of structural members in the plastic range for the purposes
not to cause permanent damages due to plastic deformation and consequent-
ly to guarantee hysteretic energy absorption during earthquake response.

When the stiffness in the plastic range can be anticipated,
reliability of hysteretic structures will be discussed from the probabil-
ity approach developed in Chapter 4. Otherwise, the accumulated plastic
deformation which is proportional to the total energy dissipated by
hysteresis loops would become one of the important parameters which
represent the degree of structural damages due to severe ground motion.
An improved linearization technique proposed in Chapter 3 can be applied
to predict the expected amount of accumulated plastic deformation during

earthquake response.

Chapter 4 has been devoted to development of the second issue with
the aid of linearization techniques which are found powerful to predict
probabilistic response of hysteretic structures except with strong non-
linearity in comparison with simulated results. From examinations of
simulated and predicted results, it should be noted that effects of
hysteresis loops with softening spring let random response of the rela-
tively short-period structures grow larger than corresponding linear

structures. On the contrary, that of the relatively long-period
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structures is found to be suppressed due to hysteretic effects.

When it is required to estimate accurate reliability of structures
in plastic range due to strong ground motions, proposed probability
distribution of maximum response of hysteretic structures can be used
as the distribution of dynamic loads to structural elements. From this
approach, a new designing code which is based on allowable ductility
factor with a specified probability may be developed instead of the
current elastic-designing code., More intensive studies in near future

are of course needed to achieve the goal of a new designing code.

In Chapter 5, the third issue has been discussed from the examina-
tions of recorded seismograms. The proposed method to construct an
experimental estimate of hysteretic response of the structure during
strong earthquakes can be applied to more complex structures if sufficient
number of instruments are installed at the suitable places with a common
timing signal.

Detected deterioration of stiffness and energy absorbing capacity
of a reinforced concrete structure is found to have significant effects
on the earthquake response. Suggested from this results, a new simple
model of which structural parameters degrade with the decreasing residual
strength is proposed to represent general yielding structures. Statisti-
cal response analyses developed in Chapter 4 are applied to the proposed
model to find general effects of structural deterioration. Although
relation between the degree of structural deterioration and the defined
residual strength of a structure should be examined through future
experimental studies, the proposed method of modeling is promissing for

practical use by earthquake engineers because of its simplicity.

Throughout this dissertation, structures are modeled by simple
systems with nonlinear hysteretic restoring force and their fundamental
characteristics of random response are intensively investigated. However
it is evident that existing structures are not simple but complex
systems having many-degree-of-freedom. Hence, future studies should be
devoted to earthquakes response analyses of multi-degree-of-freedom

structures with nonlinear hysteretic restoring forces.
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