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LENGTHS OF EXTREMAL SQUARE-FREE TERNARY

WORDS

LUCAS MOL AND NARAD RAMPERSAD

Abstract. A square-free word w over a fixed alphabet Σ is extremal
if every word obtained from w by inserting a single letter from Σ (at
any position) contains a square. Grytczuk et al. recently introduced
the concept of extremal square-free word and demonstrated that there
are arbitrarily long extremal square-free ternary words. We find all
lengths which admit an extremal square-free ternary word. In particular,
we show that there is an extremal square-free ternary word of every
sufficiently large length. We also solve the analogous problem for circular
words.

1. Introduction

Throughout, we use standard definitions and notations from combina-
torics on words (see [10]). The word u is a factor of the word w if we can
write w = xuy for some (possibly empty) words x, y. A word is square-free
if it contains no factor of the form xx, where x is a nonempty word. Early in
the twentieth century, Norwegian mathematician Axel Thue demonstrated
that one can construct arbitrarily long square-free words over a ternary al-
phabet (see [2]). Thue’s work is recognized as the beginning of the field of
combinatorics on words [3].

Let w be a word over a fixed alphabet Σ. A left (right) extension of
w is a word of the form aw (wa, respectively), where a ∈ Σ. We say
that a square-free word w is maximal if both every left extension of w
contains a square, and every right extension of w contains a square. Bean,
Ehrenfeucht, and McNulty [1] demonstrated that every square-free word
over a fixed alphabet Σ is a factor of a maximal square-free word over Σ.
(In fact, Bean, Ehrenfeucht, and McNulty established this result not only
for square-free words, but for kth-power free words for every integer k ≥ 2.)
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A corollary is that there are arbitrarily long maximal square-free words over
any alphabet of size at least 3.

Grytczuk et al. [7] recently introduced a variant of maximal square-free
words, in which extensions not just at the beginning and the end, but at
any point in the interior of the word, are considered. Let w be a word
over a fixed alphabet Σ. An extension of w is a word of the form w′aw′′,
where a ∈ Σ and w′w′′ = w. We say that w is extremal square-free if w is
square-free, and there is no square-free extension of w.

Grytczuk et al. [7] demonstrated that there are arbitrarily long extremal
square-free ternary words. In this article, we describe exactly those integers
n for which an extremal square-free ternary word of length n exists. In
particular, we find that there is an extremal square-free ternary word of every
sufficiently large length. This confirms a conjecture of Jeffrey Shallit [13].

Theorem 1.1. Let n be a nonnegative integer. Then there is an extremal
square-free word of length n over the alphabet Γ = {a, b, c} if and only if n
is in the set

A = {25, 41, 48, 50, 63, 71, 72, 77, 79, 81, 83, 84, 85} ∪ {m : m ≥ 87}.

We also consider the analogous problem for circular words. The words
u and v are conjugates if there exist words x and y such that u = xy and
v = yx, i.e., if u and v are cyclic shifts of one another. Let w ∈ Σ∗. The
circular word formed from w, denoted 〈w〉, is the set of all conjugates of w.
For a set of words L, the word u is a factor of L if u is a factor of some
word in L, and the set L is square-free if every word in L is square-free. In
particular, the word u is a factor of the circular word 〈w〉 if and only if u is
a factor of some conjugate of w, and the circular word 〈w〉 is square-free if
and only if every conjugate of w is square-free. The following theorem was
first proven by Currie [5], and has since been reproven by several different
methods [6, 14].

Theorem 1.2 (Currie [5]). For every integer n ≥ 18, there is a square-free
circular word of length n over the alphabet {0, 1, 2}.

By Theorem 1.2 and a finite search, the only lengths which do not admit
square-free ternary circular words are 5, 7, 9, 10, 14, and 17.

Let w be a word over a fixed alphabet Σ. An extension of the circular
word 〈w〉 is a circular word of the form 〈w′aw′′〉, where a ∈ Σ is a letter and
w = w′w′′. The circular word 〈w〉 is extremal square-free if 〈w〉 is square-
free, and every extension of 〈w〉 contains a square. We prove the following
theorem concerning the attainable lengths of extremal square-free ternary
circular words. This can be regarded as a strengthening of Theorem 1.2.

Theorem 1.3. Let n be a nonnegative integer. Then there is an extremal
square-free circular word of length n over the alphabet Γ = {a, b, c} if and



10 LUCAS MOL AND NARAD RAMPERSAD

only if n is in the set

B = {4, 6, 8, 13, 15, 16, 18, 20, 21, 22, 23, 24,

28, 30, 32, 33, 34, 35, 36} ∪ {m : m ≥ 38}.

The layout of the remainder of the article is as follows. In Section 2, we
present some preliminaries which are used to prove both of our main results.
In Section 3, we prove Theorem 1.1. In Section 4, we prove Theorem 1.3.
We conclude with a discussion of some related problems.

2. Preliminaries

We will need the following well-known lemma, attributed to Sylvester.
See [11, Section 2.1] for several different proofs.

Lemma 2.1. Let p and q be relatively prime positive integers. For every
integer n ≥ (p−1)(q−1), there exist nonnegative integers a and b such that
n = ap+ bq.

We will also need the following corollary of Lemma 2.1.

Corollary 2.2. Let p and q be relatively prime positive integers, exactly
one of which is even. For every integer n ≥ pq + (p− 1)(q − 1), there exist
nonnegative integers a and b such that n = ap + bq, and the sum a + b is
even.

Proof. Suppose without loss of generality that p is even and q is odd. Let
n ≥ pq+(p−1)(q−1). Then we have n−pq ≥ (p−1)(q−1). By Lemma 2.1,
there are nonnegative integers α and β such that n− pq = αp+βq. If α+β
is odd, then we can write n = (α+ q)p+ βq, and α+ q+ β is even. If α+ β
is even, then we can write n = αp+ (β + p)q, and α+ β + p is even. �

Next, we prove a theorem which essentially extends a result of Grytczuk
et al. [7, Theorem 2] from a morphism to a multi-valued substitution. We
note that many results similar to [7, Theorem 2] have appeared before in the
literature (see [12, Section 4.2.5] for a summary). However, most of these
results give conditions on a morphism f : Σ∗ → ∆∗ which guarantee that
f(w) is square-free for every square-free word w ∈ Σ∗. By contrast, the
result of Grytczuk et al. gives conditions on a morphism f : Σ∗ → ∆∗ and
a square-free word w ∈ Σ∗ which guarantee that the word f(w) is square-
free, i.e., the conditions depend explicitly on the word w. We note that
arguments similar to those used in the proof of the following theorem have
appeared before (see the proof of [9, Lemma 8], for example), but the entire
proof is included for completeness.

Theorem 2.3. Let f : Σ∗ → 2∆∗ be a substitution, and let u ∈ Σ∗ be a
square-free word. Then the set f(u) is square-free if all of the following
conditions are satisfied:

(I) For every factor v of u of length at most 3, the set f(v) is square-free.
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(II) For every a, b, c ∈ Σ, and every A ∈ f(a), B ∈ f(b), and C ∈ f(c):
(i) If A is a factor of B, then a = b and A = B.
(ii) If AB = pCs for some words p, s ∈ ∆∗, then p = ε or s = ε.
(iii) If A = A′A′′, B = B′B′′, and C = A′B′′, then c = a or c = b.

Proof. Suppose towards a contradiction that conditions (I) and (II) are sat-
isfied, but that some word in f(u) contains a square. Let w = a1a2 · · · an
be a minimal factor of u such that some word W = A1A2 · · ·An contains a
square, where Ai ∈ f(ai) for all i ∈ {1, . . . , n}. Write W = XY Y Z. By the
minimality of w, the word X must be a proper prefix of A1, and the word
Z must be a proper suffix of An. By condition (I), we have n ≥ 4.

Suppose that n = 4. Then we can write

W = A′1A
′′
1A
′
2A
′′
2A3A

′
4A
′′
4,

where Ai = A′iA
′′
i for all i ∈ {1, 2, 4}, and Y = A′′1A

′
2 = A′′2A3A

′
4, or we can

write

W = A′1A
′′
1A2A

′
3A
′′
3A
′
4A
′′
4,

where Ai = A′iA
′′
i for all i ∈ {1, 3, 4}, and Y = A′′1A2A

′
3 = A′′3A

′
4. Assume

the former. (The latter is handled similarly.) Then the word A3 is a factor
of A′′1A

′
2, and hence of A1A2. By condition (II)(ii), we must have either

A′1 = A′′2 = ε, or A′4 = ε. Since A′4 = ε is impossible by the minimality of
w, we must have A′1 = A′′2 = ε. Then A1A2 = A3A

′
4, and hence either A1

is a factor of A3, or vice versa. By condition (II)(i), we must have a1 = a3

and A1 = A3. It follows that A2 is a factor of A′4, and hence a2 = a4. But
then w contains the square (a1a2)2, an impossibility.

So we may assume that n ≥ 5. For some j ∈ {2, . . . , n− 1}, we can write

W = A1A2 · · ·An = A′1A
′′
1A2 · · ·Aj−1A

′
jA
′′
jAj+1 · · ·An−1A

′
nA
′′
n,(2.1)

where Ai = A′iA
′′
i for all i ∈ {1, j, n}, X = A′1, Z = A′′n, and

Y = A′′1A2 · · ·Aj−1A
′
j = A′′jAj+1 · · ·An−1A

′
n.

By the minimality of w, we must have |A′′1|, |A′n| > 0, and we may assume
without loss of generality that |A′′j | > 0.

Suppose that |A′′1| > |A′′j |. If j = 2, then A′′1A
′
2 = A′′2A3 · · ·An−1A

′
n. But

since n ≥ 5, we see that either A3 must be a proper factor of A′′1, or A4

must be a proper factor of A′2. By condition (II)(i), this is impossible. So
we may assume that j > 2. By condition (II)(i), we have that A2 is not a
factor of Aj+1, so Aj+1 must be a factor of A′′1A2. In particular, this implies
that j + 1 < n. Write Aj+2 = A′j+2A

′′
j+2 so that A′1A2 = A′′jAj+1A

′
j+2.

By condition (II)(ii), we must have either |A′′j | = 0 or |A′j+2| = 0. Since

|A′′j | > 0 by assumption, we must have |A′j+2| = 0. By condition (II)(i), we

must have A2 = Aj+1, and hence A′′1 = A′′j . This contradicts the assumption

that |A′′1| > |A′′j |.
Now suppose that |A′′j | > |A′′1|. If j = n − 1, then A′′1A2 · · ·An−2A

′
n−1 =

A′′n−1A
′
n. But since n ≥ 5, we see that either A2 must be a proper factor



12 LUCAS MOL AND NARAD RAMPERSAD

of A′′n−1, or A3 must be a proper factor of A′n. By condition (II)(i), this is
impossible. So we may assume that j < n− 1. By condition (II)(i), we have
that Aj+1 is not a factor of A2, so A2 must be a factor of A′′jAj+1. Write

A3 = A′3A
′′
3, where A′′1A2A

′
3 = A′′jAj+1. By condition (II)(ii), we must have

|A′′1| = 0 or |A′3| = 0. Since |A′′1| > 0 by assumption, we must have |A′3| = 0.
By condition (II)(i), we must have A2 = Aj+1, and hence A′′1 = A′′j . This

contradicts the assumption that |A′′j | > |A′′1|.
So we may assume that |A′′1| = |A′′j |, and hence A′′1 = A′′j . Then either

A2 is a factor of Aj+1, or vice versa. By condition (II)(i), we conclude that
a2 = aj+1 and A2 = Aj+1. Applying this argument repeatedly, we find
a2a3 · · · aj−1 = aj+1aj+2 · · · an−1, and A2A3 · · ·Aj−1 = Aj+1Aj+2 · · ·An−1.
Finally, we see that A′j = A′n. But then Aj = A′jA

′′
j = A′nA

′′
1. By condi-

tion (II)(iii), we conclude that aj = a1 or aj = an. But then the word u
contains either the square (a1a2 · · · aj−1)2 or the square (a2a3 · · · aj)2, re-
spectively. �

3. Extremal square-free words

In this section, we prove Theorem 1.1. We first summarize the method
of Grytczuk et al. [7] used to construct arbitrarily long extremal square-free
ternary words. The proof of Theorem 1.1 is obtained by a similar method.
We first introduce some notation and terminology.

Let w be a word over a fixed alphabet Σ. We say that w is nearly extremal
square-free if w is square-free, and there are only two square-free extensions
of w; one left extension, and one right extension. We say that w is left
(right) extremal square-free if every square-free extension of w is a right
(left, respectively) extension.

Let SΓ denote the symmetric group on the alphabet Γ = {a, b, c}. We rep-
resent the permutations of SΓ using cycle notation, but for ease of notation,
we omit the commas. We denote the identity permutation by the empty cy-
cle (). We treat every member of SΓ as both a permutation, and as a letter,
depending on context. For every permutation π ∈ SΓ, we let π̃ be another
letter, which we refer to as the mirror image of π. Let S̃Γ = {π̃ : π ∈ SΓ}.
Since every permutation of Γ can be written as either a single nontrivial
cycle or the empty cycle, the parentheses serve as delimiters for letters in
words over the alphabet SΓ ∪ S̃Γ.

Let D be the digraph with vertex set V (D) = SΓ ∪ S̃Γ that is shown in
Figure 1. Let

N = abacbabcabacbcacbabcabacabcbabcabacbcabcb.

It is easily checked by computer that the word N is nearly extremal square-
free. Now for every permutation π ∈ SΓ, let Nπ denote the word obtained
by permuting the letters of N by π, and let Nπ̃ denote the reversal of Nπ.
Define the morphism f : V (D)∗ → Γ∗ by f(x) = Nx for all x ∈ V (D).
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()

(ab)

(ac)

(bc)

(abc)
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Figure 1. The Digraph D.

First of all, Grytczuk et al. show that if w is a square-free walk in D
(where walks are treated as words over the vertex set), then the word f(w)
is square-free. Next, they show that there are arbitrarily long square-free
walks in D that begin and end at the vertex (). It follows that there are
arbitrarily long nearly extremal square-free words over Γ that have N as
both a prefix and a suffix. Finally, Grytczuk et al. provide two short words
that can be added to the beginning and the end of any such word to form
an extremal square-free word.

In order to prove Theorem 1.1, we replace the morphism f with a multi-
valued substitution δ. Using Lemma 2.1, we can then construct nearly ex-
tremal square-free words of every sufficiently large length. Finally, we find
words of a single fixed length that can be added to the beginning and end of
every such nearly extremal square-free word to form an extremal square-free
word. This guarantees the existence of extremal square-free words of every
sufficiently large length, and the smaller lengths are handled computation-
ally.

Let

P = abacbcabcbacabacbcabcbabcacbcabcbacabacbcabcbacbc,

Q = abacbabcacbacabacbcacbacabcbabcabacbcabcb,

R = abacabcacbacabcbabcacbacabacbcacbacabcbabcabacbcabcb, and

S = acabacbabcacbacabcbacbcabacbabcacbacabcbabcacbaca.

We note that the words P and S have length 49, the word Q has length
41, and the word R has length 52. The word R can be obtained from Q by
inserting the word abcacbacabc after the 4th letter. By computer check,
the words Q and R are both nearly extremal square-free, the words PQ
and PR are left extremal square-free, and the words QS and RS are right
extremal square-free. Although the word Q has the same length as the word
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N used by Grytczuk et al., we note that Q cannot be obtained from N by
permutation of the alphabet and/or reversal, i.e., for every x ∈ V (D), we
have Nx 6= Q.

For every letter x ∈ V (D), let px and sx be two new letters. Let D̂ be
the graph obtained from D by adding, for every x ∈ V (D), the vertices px
and sx, as well as arcs from px to x and from x to sx. For every x ∈ V (D),
define the words Px, Qx, Rx, and Sx analogously to Nx. Now define the
substitution δ : V (D̂)∗ → 2Γ∗ by

• δ(x) = {Qx, Rx} for all x ∈ SΓ ∪ S̃Γ;
• δ(px) = {Px} and δ(sx) = {Sx} for all x ∈ SΓ; and

• δ(px) = {Sx} and δ(sx) = {Px} for all x ∈ S̃Γ.

Since Q and R are nearly extremal square-free, it follows immediately that
Qx and Rx are nearly extremal square-free for every x ∈ V (D). We also
have the following fact.

Lemma 3.1. For every x ∈ V (D), every word in the set δ(pxx) is left ex-
tremal square-free, and every word in the set δ(xsx) is right extremal square-
free.

Proof. Let x ∈ V (D). We show that every word in the set δ(pxx) is left
extremal square-free. The proof that every word in the set δ(xsx) is right
extremal square-free is similar. If x ∈ SΓ, then δ(pxx) = {PxQx, PxRx}.
Since the words PQ and PR are left extremal square-free, so are PxQx and
PxRx. On the other hand, if x ∈ S̃Γ, then write x = π̃. Then δ(pxx) =
{Sπ̃Qπ̃, Sπ̃Rπ̃}. Note that Sπ̃Qπ̃ is the reversal of the word QπSπ. Since
QS is right extremal square-free, so is the word QπSπ. It follows that the
word Sπ̃Qπ̃ is left extremal square-free. The proof that Sπ̃Rπ̃ is left extremal
square-free is analogous. �

Using Theorem 2.3, the next lemma can be verified by a computer check.
(We check condition (I) for all square-free walks of length 3 in D̂.)

Lemma 3.2. If w is a square-free walk in the digraph D̂, then the set δ(w)
is square-free.

Together, Lemma 3.1 and Lemma 3.2 yield the following corollary.

Corollary 3.3. Let w be a square-free walk in D of length at least 2, and
write w = xw′y, where x, y ∈ V (D). Then every word in the set δ(pxwsy)
is extremal square-free.

Proof. Since w is a square-free walk in D (and not D̂), it contains neither
px nor sy, and hence the walk pxwsy is square-free. By Lemma 3.2, the
set δ(pxwsy) is square-free. Note that for every z ∈ V (D), both words in
the set δ(z), namely Qz and Rz, are nearly extremal square-free. It follows
easily that every word in the set δ(w) is nearly extremal square-free. By
Lemma 3.1, every word in δ(pxx) is left extremal square-free, and every
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word in δ(ysy) is right extremal square-free. It follows that every word in
the set δ(pxwsy) is extremal square-free. �

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. If n 6∈ A, then we used a standard backtracking algo-
rithm to show that there is no extremal square-free ternary word of length
n.

Suppose otherwise that n ∈ A. Suppose first that n ≥ 2138. Then
n−98 ≥ 2040, and by Lemma 2.1, we can write n−98 = 41a+52b for some
nonnegative integers a and b. Let w be a square-free walk in D of length
a+ b, and write w = xw′y for some x, y ∈ V (D). Since δ(z) contains a word
of length 41 and a word of length 52 for every z ∈ V (D), it is evident that
there is a word W of length n − 98 in δ(w). Now the unique word W ′ in
δ(px)Wδ(sy) has length n, and by Corollary 3.3, the word W ′ is extremal
square-free.

So we may assume that n < 2138. In this case, we found an extremal
square-free circular word of length n by computer search. �

4. Extremal square-free circular words

In this section, we prove Theorem 1.3. A circumnavigation of a circular
word 〈w〉 is a linear word of the form ava, where a is a letter, and av is a
conjugate of w. We begin with an elementary lemma about the circumnav-
igations of square-free circular words.

Lemma 4.1. Let w ∈ Σ∗ be a word of length at least 2. If 〈w〉 is square-free,
then every circumnavigation of 〈w〉 is square-free.

Proof. Let u be a circumnavigation of 〈w〉. Since |w| ≥ 2, we have |u| ≥ 3.
Suppose towards a contradiction that u contains a square. Write u = ava,
where a is a letter, and av is a conjugate of w. Then va is also a conjugate of
w. Since 〈w〉 is square-free, neither conjugate av nor va contains a square.
Hence, it must be the case that u = xx for some word x. Evidently, the
word x begins and ends in a, and has length at least 2, since |u| ≥ 3. Write
x = ax′a for some word x′. Then u = ax′aax′a, and we conclude that 〈w〉
contains the square aa, a contradiction. �

Define the substitution h : {0, 1, 2}∗ → 2V (D)∗ , where D is the digraph
shown in Figure 1, by

0→
{

() ˜(ab)(acb)(ac) ˜(abc)(bc)
}

1→
{

() ˜(ab) ˜(abc)(bc) ˜(acb) ˜(ac)
}

2→
{

() ˜(ab)(acb) ˜(bc)(abc) ˜(ac), () ˜(ab)(acb) ˜(bc)(abc)(ab)(abc) ˜(ac)
}
.

Let w = w0w1 · · ·wn−1 be a word over the alphabet V (D), where the wi’s
are letters. We say that the circular word 〈w〉 is walkable in D if every



16 LUCAS MOL AND NARAD RAMPERSAD

conjugate of w is a valid walk in D. Equivalently, the circular word 〈w〉 is
walkable in D if there is an arc from wi to wi+1 for every i ∈ {0, 1, . . . , n−1},
with indices taken modulo n.

Lemma 4.2. Let 〈w〉 be a square-free circular word of length at least 2 over
the alphabet {0, 1, 2}, and let W ∈ h(w). Then the circular word 〈W 〉 is
square-free and walkable in the digraph D.

Proof. We first show that 〈W 〉 is square-free. Let U be a conjugate of W .
Then U is a factor of the set h(u) for some circumnavigation u of w. By
Lemma 4.1, the circumnavigation u is square-free. Using Theorem 2.3, we
verify by computer that h(u) is square-free. (We check condition (I) for every
square-free word v ∈ {0, 1, 2}∗ of length 3.) We conclude that the word U
is square-free. Since U was an arbitrary conjugate of W , we conclude that
the circular word 〈W 〉 is square-free.

It remains to show that 〈W 〉 is walkable in D. Note that every word
A ∈ h({0, 1, 2}) begins in the identity permutation (). So it suffices to check
that for all A ∈ h({0, 1, 2}), the word A() is walkable in D, and this is easily
done by inspection. �

Lemma 4.3. For every even positive integer n, there is a square-free circular
word of length n that is walkable in the digraph D.

Proof. Let n be an even positive integer. First suppose that n ≥ 6·18 = 108.
Then we may write n = 6m + r for some m ≥ 18 and r ∈ {0, 2, 4}. By
Theorem 1.2, there is a circular square-free word 〈u〉 of length m over the
alphabet {0, 1, 2}. Since every square-free word on {0, 1}∗ has length at
most 3, we must have |u|2 ≥ 2. Note that for every a ∈ {0, 1, 2}, there is
a word in h(a) of length 6. Further, the set h(2) contains a word of length
8. Thus, there is a word U ∈ h(u) of length n = 6m+ r, obtained by using
the word of length 8 in h(2) exactly 0, 1, or 2 times (for r equal to 0, 2, or
4, respectively). By Lemma 4.2, the circular word 〈U〉 is square-free, and is
walkable in the digraph D.

Now we may assume that n < 108, and in this case we verify the statement
by means of a computer search. �

Let

Q′ = abacabcacbacabcbabcacbacabacbcacbacabcbacbcabacbabcabacbcabcb, and

R′ = abacabcacbacabcbabcacbacabacbcacbacabcbabcacbcabacbabcabacbcabcb.

Note that Q′ has length 61, and R′ has length 64. The word Q′ can
be obtained from the word R by adding the factor cbcabacba after the
40th letter, and the word R′ can be obtained from the word Q′ by adding
the factor bca after the 40th letter. For every x ∈ SΓ ∪ S̃Γ, define Q′x
and R′x analogously to Nx. Define the substitution δ′ : V (D)∗ → 2Γ∗ by

δ′(x) = {Qx, Rx, Q′x, R′x} for all x ∈ SΓ ∪ S̃Γ. So for every x ∈ V (D), the
set δ′(x) contains a word of length m for all m ∈ {41, 52, 61, 64}. The proof



LENGTHS OF EXTREMAL SQUARE-FREE TERNARY WORDS 17

of the following lemma is analogous to the first paragraph of the proof of
Lemma 4.2.

Lemma 4.4. Let 〈w〉 be a square-free circular word that is walkable in the
digraph D, and let W ∈ δ′(w). Then the circular word 〈W 〉 is square-free.

We are now ready to prove Theorem 1.3.

Proof of Theorem 1.3. If n 6∈ B, then we used a standard backtracking al-
gorithm to show that there is no extremal square-free ternary circular word
of length n.

Suppose otherwise that n ∈ B. First suppose that n ≥ 470. Then there
are nonnegative integers a, b, c, and d such that 41a+ 52b+ 61c+ 64d = n,
and the sum a + b + c + d is even. (For n ≥ 4172, this claim follows
from Lemma 2.2, and we verified the remaining cases by computer.) By
Lemma 4.3, there is a square-free circular word 〈w〉 of length a + b + c + d
that is walkable in the digraph D. Evidently, there is a word W in δ′(w)
of length n. By Lemma 4.4, the circular word 〈W 〉 is square-free. Since all
words in the set δ′(x) are nearly extremal square-free for every x ∈ V (D),
it follows that the circular word 〈W 〉 is extremal square-free.

So we may assume that n < 470. In this case, we found an extremal
square-free circular word of length n by computer search. �

Note that the proof of Theorem 1.3 presented in this section can be
adapted to provide yet another alternate proof of Theorem 1.2. (Note that
while Theorem 1.2 was used in the proof of Lemma 4.3, an inductive argu-
ment could be used instead.)

5. Conclusion

We have completely described the attainable lengths of extremal square-
free ternary words and extremal square-free ternary circular words. It is
well-known that the number of square-free ternary words of length n grows
exponentially in n [4]; currently, the best-known bounds on the growth rate
are due to Shur [15]. It is also known that the number of square-free ternary
circular words of length n grows exponentially in n [14]. Using these results
together with the results of this paper, one can show that both the number of
extremal square-free ternary words of length n, and the number of extremal
square-free ternary circular words of length n, grow exponentially in n.

Surprisingly, over larger alphabets, it appears that there are no extremal
square-free words. The following is a minor variant of a conjecture of
Grytczuk et al. [7, Conjecture 2].

Conjecture. Let Σ be a fixed alphabet of size at least 4. Then there are no
extremal square-free words over Σ.

In other words, Conjecture 1 says that every square-free word over an
alphabet Σ of size greater than 3 has at least one square-free extension
over Σ. While it would be most interesting to establish Conjecture 1 in the
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case |Σ| = 4, establishing the conjecture for larger alphabets would also be
interesting.

Finally, we note that Harju [8] recently introduced the related notion of ir-
reducibly square-free words; these are square-free words in which the removal
of any interior letter produces a square. In particular, Harju demonstrated
that there are irreducibly square-free ternary words of every sufficiently large
length, just as we have shown for extremal square-free ternary words. How-
ever, the situation appears to be quite different over larger alphabets. Let
n ≥ 4, and let Σn = {1, 2, . . . , n}. For every 3 ≤ k ≤ n, define uk = k2k.
Then define

wn = 121u3121u4 · · · 121un121 = 121323121424 · · · 121n2n121.
It is straightforward to verify that wn is irreducibly square-free. So there
are irreducibly square-free words over any fixed alphabet, while Conjecture 1
suggests that this is not the case for extremal square-free words.

References

1. D. R. Bean, A. Ehrenfeucht, and G. F. McNulty, Avoidable patterns in strings of
symbols, Pacific J. Math. 85 (1979), 261–294.

2. J. Berstel, Axel Thue’s papers on repetitions in words: A translation, Publications du
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