

Contributions to Discrete Mathematics

Volume 16, Number 1, Pages 138-149 ISSN 1715-0868

A NEIGHBORHOOD CONDITION FOR GRAPHS TO HAVE RESTRICTED FRACTIONAL (g, f)-FACTORS

SIZHONG ZHOU AND ZHIREN SUN

ABSTRACT. Let h be a function defined on E(G) with $h(e) \in [0,1]$ for any $e \in E(G)$. Set $d_G^h(x) = \sum_{e \ni x} h(e)$. If $g(x) \le d_G^h(x) \le f(x)$ for every $x \in V(G)$, then we call the graph F_h with vertex set V(G) and edge set E_h a fractional (g,f)-factor of G with indicator function h, where $E_h = \{e : e \in E(G), h(e) > 0\}$. Let M and N be two sets of independent edges of G with $M \cap N = \emptyset$, |M| = m and |N| = n. If G admits a fractional (g,f)-factor F_h such that h(e) = 1 for any $e \in M$ and h(e) = 0 for any $e \in N$, then we say that G has a fractional (g,f)-factor with the property E(m,n). In this paper, we present a neighborhood condition for the existence of a fractional (g,f)-factor with the property E(1,n) in a graph. Furthermore, it is shown that the neighborhood condition is sharp.

1. Introduction

The graphs considered here will be finite and undirected simple graphs. Let G be a graph. We denote by V(G) the vertex set of G and by E(G) the edge set of G. For a vertex x of G, we use $d_G(x)$ to denote the degree of x in G and use $N_G(x)$ to denote the neighborhood of x in G. For a vertex subset X of G, we denote by G[X] the subgraph of G induced by X, and write $G - X = G[V(G) \setminus X]$ and $N_G(X) = \bigcup_{x \in X} N_G(x)$. If G[X] does not admit edges, then we call X an independent set of G. For $E' \subseteq E(G)$, the graph obtained from G by deleting edges of E' is denoted by G - E' The minimum degree of G is denoted by $\delta(G)$. Let C be a real number. Recall that |C| is the greatest integer with $|C| \le C$.

Let g and f be two integer-valued functions defined on V(G) with $0 \le g(x) \le f(x)$ for every $x \in V(G)$. A (g, f)-factor of a graph G is defined as a spanning subgraph F of G satisfying $g(x) \le d_F(x) \le f(x)$ for any

This work is licensed under a Creative Commons "Attribution-NoDerivatives 4.0 International" license.

Received by the editors April 11, 2019, and in revised form November 29, 2020. 2000 Mathematics Subject Classification. 05C70.

Key words and phrases. graph; neighborhood; fractional (g, f)-factor; restricted fractional (g, f)-factors.

This work is supported by Six Big Talent Peak in Jiangsu Province, China (grant no. JY-022).

 $x \in V(G)$. A (g, f)-factor is called an [a, b]-factor if $g(x) \equiv a$ and $f(x) \equiv b$. A [k, k]-factor is simply called a k-factor.

Let h be a function defined on E(G) with $h(e) \in [0,1]$ for any $e \in E(G)$. Set $d_G^h(x) = \sum_{e \ni x} h(e)$. If $g(x) \le d_G^h(x) \le f(x)$ for every $x \in V(G)$, then we call the graph F_h with vertex set V(G) and edge set E_h a fractional (g, f)-factor of G with indicator function h, where $E_h = \{e : e \in E(G), h(e) > 0\}$. A fractional (g, f)-factor is called a fractional f-factor if g(x) = f(x) for each $x \in V(G)$.

Let M and N be two sets of independent edges of G with $M \cap N = \emptyset$, |M| = m, and |N| = n. If G admits a fractional (g, f)-factor F_h such that h(e) = 1 for any $e \in M$ and h(e) = 0 for any $e \in N$, then we say that G has a fractional (g, f)-factor with the property E(m, n). A fractional (g, f)-factor with the property E(m, n) is called a fractional f-factor with the property E(m, n) if $g(x) \equiv f(x)$. Similarly, we may define a (g, f)-factor with the property E(m, n) of G and an f-factor with the property E(m, n) of G.

Kano [5] showed a neighborhood condition for a graph to admit an [a, b]-factor. Zhou [14] improved and generalized Kano's result, and proved a theorem that is generally stronger than Kano's result. Porteous and Aldred [11] first introduced the concept of 1-factors with the property E(m, n), and obtained some results on the existence of 1-factors with the property E(m, n) in graphs. Plummer and Saito [10] presented a binding number condition for the existence of 1-factors with the property E(m, n) in graphs, and put forward a toughness condition for the existence of 1-factors with the property E(m, n) in graphs. Zhou [17] and Zhou, Sun, and Pan [21] obtained two sufficient conditions for a graph to admit a fractional (g, f)-factor with the property E(1, n). More results on factors and fractional factors in graphs can be found in Piummer [9], Zhou and Sun [19, 20], Wang and Zhang [12], Lv [8], Zhou [16, 18, 15, 13], Cai, Wang and Yan [1], Zhou, Yang and Xu [24], Zhou, Zhang and Xu [25], Gao et al. [2, 3, 4], Zhou, Xu and Sun [23], Zhou, Sun and Ye [22], and Liu and Lu [7].

In this paper, we proceed to study fractional (g, f)-factors with the property E(m, n), and show a neighborhood condition that guarantees a graph admitting a fractional (g, f)-factor with the property E(1, n).

Theorem 1.1. Let $r \ge 0$, $n \ge 0$ and $2 \le a \le b - r$ be four integers, let G be a graph of order p with

$$p \ge \frac{(a+b-1)(a+2b-r-4)+a+r+2}{a+r} + \frac{2n}{a+r-1},$$

and let g, f be two integer-valued functions defined on V(G) such that $a \le g(x) \le f(x) - r \le b - r$ for every $x \in V(G)$. Suppose for any subset $X \subset V(G)$, we have

$$N_G(X) = V(G), \ if |X| \ge \left| \frac{((a+r)(p-1) - 2n - 2)p}{(a+b-1)(p-1)} \right|;$$

or

$$|N_G(X)| \ge \frac{(a+b-1)(p-1)}{(a+r)(p-1)-2n-2}|X|, \text{ if }$$

$$|X| < \left\lfloor \frac{((a+r)(p-1)-2n-2)p}{(a+b-1)(p-1)} \right\rfloor.$$

Then G contains a fractional (g, f)-factor with the property E(1, n).

If n = 0 in Theorem 1.1, then we have the following corollary.

Corollary 1.2. Let $r \geq 0$ and $2 \leq a \leq b - r$ be three integers, let G be a graph of order p with

$$p \ge \frac{(a+b-1)(a+2b-r-4)+a+r+2}{a+r},$$

and let g, f be two integer-valued functions defined on V(G) such that $a \le g(x) \le f(x) - r \le b - r$ for every $x \in V(G)$. Suppose for any subset $X \subset V(G)$, we have

$$N_G(X) = V(G), \text{ if } |X| \ge \left\lfloor \frac{((a+r)(p-1)-2)p}{(a+b-1)(p-1)} \right\rfloor; \text{ or }$$

$$|N_G(X)| \ge \frac{(a+b-1)(p-1)}{(a+r)(p-1)-2}|X|, \ if |X| < \left\lfloor \frac{((a+r)(p-1)-2)p}{(a+b-1)(p-1)} \right\rfloor.$$

Then G contains a fractional (g, f)-factor with the property E(1, 0).

If n = 1 in Theorem 1.1, then we have the following corollary.

Corollary 1.3. Let $r \ge 0$ and $2 \le a \le b - r$ be three integers, let G be a graph of order p with

$$p \ge \frac{(a+b-1)(a+2b-r-4)+a+r+2}{a+r} + \frac{2}{a+r-1},$$

and let g, f be two integer-valued functions defined on V(G) such that $a \le g(x) \le f(x) - r \le b - r$ for every $x \in V(G)$. Suppose for any subset $X \subset V(G)$, we have

$$N_G(X) = V(G), \ if |X| \ge \left\lfloor \frac{((a+r)(p-1)-4)p}{(a+b-1)(p-1)} \right\rfloor; \ or$$

$$|N_G(X)| \ge \frac{(a+b-1)(p-1)}{(a+r)(p-1)-4}|X|, \ \ if \ |X| < \left| \frac{((a+r)(p-1)-4)p}{(a+b-1)(p-1)} \right|.$$

Then G contains a fractional (g, f)-factor with the property E(1, 1).

If r = 0 in Theorem 1.1, then we obtain the following corollary.

Corollary 1.4. Let $n \ge 0$ and $2 \le a \le b$ be three integers, let G be a graph of order p with

$$p \ge \frac{(a+b-1)(a+2b-4)+a+2}{a} + \frac{2n}{a-1},$$

_ _ _

and let g, f be two integer-valued functions defined on V(G) such that $a \le g(x) \le f(x) \le b$ for every $x \in V(G)$. Suppose for any subset $X \subset V(G)$, we have

$$N_G(X) = V(G), \ if |X| \ge \left\lfloor \frac{(a(p-1)-2n-2)p}{(a+b-1)(p-1)} \right\rfloor; \ or$$
$$|N_G(X)| \ge \frac{(a+b-1)(p-1)}{a(p-1)-2n-2} |X|, \ if |X| < \left\lfloor \frac{(a(p-1)-2n-2)p}{(a+b-1)(p-1)} \right\rfloor.$$

Then G contains a fractional (g, f)-factor with the property E(1, n).

2. The proof of Theorem 1.1

The proof of Theorem 1.1 depends heavily on the following lemmas.

Lemma 2.1 (Li, Yan, and Zhang [6]). Let G be a graph, and let g, f be two integer-valued functions defined on V(G) such that $0 \le g(x) \le f(x)$ for every $x \in V(G)$. Then G has a fractional (g, f)-factor with the property E(1,0) if and only if

$$\gamma_G(S,T) = f(S) + d_{G-S}(T) - g(T) \ge \varepsilon(S,T)$$

for any $S \subseteq V(G)$, where $T = \{x : x \in V(G) \setminus S, d_{G-S}(x) \leq g(x)\}$ and $\varepsilon(S,T)$ is defined as follows:

$$\varepsilon(S,T) = \begin{cases} 2, & \text{if } S \text{ is not independent,} \\ 1, & \text{if } S \text{ is independent and there is an edge joining } S \\ & \text{and } V(G) \setminus (S \cup T), \text{ or there is an edge } e = uv \\ & \text{joining } S \text{ and } T \text{ such that } d_{G-S}(v) = g(v) \text{ for } v \in T, \\ 0, & \text{otherwise.} \end{cases}$$

Lemma 2.2. Let G be a graph of order p that satisfies the hypothesis of Theorem 1.1. Then

$$\delta(G) \ge \frac{(b-r-1)p+a+r+2n+2}{a+b-1}.$$

Proof. Let $v \in V(G)$ with degree $\delta(G)$. Let $Q = V(G) \setminus N_G(v)$. Obviously, $v \notin N_G(Q)$, that is, $N_G(Q) \neq V(G)$. Thus we obtain

$$(a+b-1)(p-1)|Q| \le ((a+r)(p-1)-2n-2)|N_G(Q)|$$

 $\le ((a+r)(p-1)-2n-2)(p-1),$

which implies

$$(a+b-1)|Q| \le (a+r)(p-1)-2n-2.$$

Note that $|Q| = p - \delta(G)$. Thus we have

$$(a+b-1)(p-\delta(G)) \le (a+r)(p-1)-2n-2,$$

that is,

$$\delta(G) \ge \frac{(b-r-1)p+a+r+2n+2}{a+b-1}.$$

This finishes the proof of Lemma 2.2

Proof of Theorem 1.1. Suppose that a graph G satisfies the hypothesis of Theorem 1.1, but does not have a fractional (g, f)-factor with the property E(1, n). Then there exist a set of independent edges $\{e_1, e_2, \ldots, e_n\}$ and an edge e of G such that G does not contain a fractional (g, f)-factor F_h with $h(e_i) = 0$ for $1 \le i \le n$ and h(e) = 1. Set $N = \{e_1, e_2, \ldots, e_n\}$ and H = G - N. Obviously, H does not have a fractional (g, f)-factor with the property E(1, 0). By Lemma 2.1, there exists a subset $S \subseteq V(H)$ such that

$$\gamma_H(S,T) = f(S) + d_{H-S}(T) - g(T) \le \varepsilon(S,T) - 1,\tag{1}$$

where $T = \{x : x \in V(H) \setminus S, d_{H-S}(x) \leq g(x)\}$. It is easy to see that $T \neq \emptyset$ by (1). Hence, we may define

$$h = \min\{d_{G-S}(x) : x \in T\}.$$

Claim 2.3. $0 \le h \le b - r + 1$.

Proof. Note that $N = \{e_1, e_2, \dots, e_n\}$ is a set of independent edges of G and H = G - N. Combining these with the definition of T, we have

$$0 \le d_{G-S}(x) \le d_{H-S}(x) + 1 \le g(x) + 1 \le b - r + 1$$

for each $x \in T$. In terms of the definition of h, we get $0 \le h \le b - r + 1$. Claim 2.3 is proved.

Claim 2.4. $d_{H-S}(T) \ge d_{G-S}(T) - \min\{2n, |T|\}.$

Proof. We write $D = V(G) \setminus (S \cup T)$ and $E_G(T) = \{e : e = xy \in E(G), x, y \in T\}$. It is obvious that $2|N \cap E_G(T)| + |N \cap E_G(T, D)| \le \min\{2n, |T|\}$. Thus, we have

$$\begin{array}{lcl} d_{H-S}(T) & = & d_{G-N-S}(T) \\ & = & d_{G-S}(T) - (2|N \cap E_G(T)| + |N \cap E_G(T,D)|) \\ & \geq & d_{G-S}(T) - \min\{2n,|T|\}. \end{array}$$

Claim 2.4 is verified.

We shall consider four cases.

Case 1: h = 0.

Set $\lambda = |\{x : x \in T, d_{G-S}(x) = 0\}|$. It is obvious that $\lambda \geq 1$ by h = 0. We write $X = V(G) \setminus S$. Clearly, $N_G(X) \neq V(G)$ since $\lambda \geq 1$. It follows from the hypothesis of Theorem 1.1 that

$$p - \lambda \ge |N_G(X)| \ge \frac{(a+b-1)(p-1)}{(a+r)(p-1) - 2n - 2} |X|$$

$$= \frac{(a+b-1)(p-1)}{(a+r)(p-1) - 2n - 2} (p-|S|),$$

which implies

$$|S| \ge p - \frac{(p-\lambda)((a+r)(p-1) - 2n - 2)}{(a+b-1)(p-1)}. (2)$$

It follows from (1), (2),

$$p \ge \frac{(a+b-1)(a+2b-r-4)+a+r+2}{a+r} + \frac{2n}{a+r-1},$$

 $\lambda \geq 1$, $|S| + |T| \leq p$, and Claim 2.4 that

$$\begin{split} \varepsilon(S,T)-1 & \geq & \gamma_H(S,T) = f(S) + d_{H-S}(T) - g(T) \\ & \geq & f(S) + d_{G-S}(T) - \min\{2n,|T|\} - g(T) \\ & \geq & (a+r)|S| + |T| - \lambda - 2n - (b-r)|T| \\ & = & (a+r)|S| - (b-r-1)|T| - \lambda - 2n \\ & \geq & (a+r)|S| - (b-r-1)(p-|S|) - \lambda - 2n \\ & = & (a+b-1)|S| - (b-r-1)p - \lambda - 2n \\ & \geq & (a+b-1)\Big(p - \frac{(p-\lambda)((a+r)(p-1) - 2n - 2)}{(a+b-1)(p-1)}\Big) \\ & - (b-r-1)p - \lambda - 2n \\ & = & \frac{p(2n+2)}{p-1} + \Big(\frac{(a+r)(p-1) - 2n - 2}{p-1} - 1\Big)\lambda - 2n \\ & \geq & \frac{p(2n+2)}{p-1} + \frac{(a+r)(p-1) - 2n - 2}{p-1} - 1 - 2n \\ & = & a+r+1 > 2 \geq \varepsilon(S,T), \end{split}$$

which is a contradiction.

Case 2: h = 1.

Case 2:
$$h = 1$$
.
Subcase 2.1: $|T| > \left| \frac{((a+r)(p-1)-2n-2)p}{(a+b-1)(p-1)} \right|$.

It is easy to see that

$$|T| \ge \left| \frac{((a+r)(p-1) - 2n - 2)p}{(a+b-1)(p-1)} \right| + 1.$$
 (3)

Note that h = 1. Hence, there exists $v \in T$ with $d_{G-S}(v) = h = 1$, and so

$$v \notin N_G(T \setminus N_G(v)),$$

which implies

$$N_G(T \setminus N_G(v)) \neq V(G).$$

Combining this with $d_{G-S}(v) = h = 1$ and the hypothesis of Theorem 1.1, we get

$$|T| - 1 \le |T \setminus N_G(v)| < \left\lfloor \frac{((a+r)(p-1) - 2n - 2)p}{(a+b-1)(p-1)} \right\rfloor,$$

that is,

$$|T| < \left| \frac{((a+r)(p-1) - 2n - 2)p}{(a+b-1)(p-1)} \right| + 1,$$

which contradicts (3).

Subcase 2.2:
$$|T| \le \left| \frac{((a+r)(p-1)-2n-2)p}{(a+b-1)(p-1)} \right|$$
.

In terms of h = 1 and Lemma 2.2, we obtain

$$|S| \geq \delta(G) - 1 \geq \frac{(b-r-1)p + a + r + 2n + 2}{a+b-1} - 1$$
$$= \frac{(b-r-1)(p-1) + 2n + 2}{a+b-1},$$

that is,

$$|S| \ge \frac{(b-r-1)(p-1) + 2n + 2}{a+b-1}. (4)$$

Claim 2.5. $|T| \leq \frac{(a+r)(p-1)-2n-2}{a+b-1}$.

Proof. We assume that

$$|T| > \frac{(a+r)(p-1) - 2n - 2}{a+b-1}.$$

In light of (4), we have

$$|S| + |T| > \frac{(b-r-1)(p-1) + 2n + 2}{a+b-1} + \frac{(a+r)(p-1) - 2n - 2}{a+b-1} = p-1.$$

On the other hand, $|S| + |T| \le p$. Thus, we obtain

$$|S| + |T| = p. (5)$$

According to (4), (5).

$$|T| \le \left| \frac{((a+r)(p-1)-2n-2)p}{(a+b-1)(p-1)} \right| \le \frac{((a+r)(p-1)-2n-2)p}{(a+b-1)(p-1)},$$

and Claim 2.4, we obtain

$$\gamma_H(S,T) = f(S) + d_{H-S}(T) - g(T)$$

$$\geq f(S) + d_{G-S}(T) - \min\{2n, |T|\} - g(T)$$

$$\geq (a+r)|S| + |T| - 2n - (b-r)|T|$$

$$= (a+r)|S| - (b-r-1)|T| - 2n$$

$$= (a+r)(p-|T|) - (b-r-1)|T| - 2n$$

$$= (a+r)p - (a+b-1)|T| - 2n$$

$$\geq (a+r)p - (a+b-1) \cdot \frac{((a+r)(p-1) - 2n - 2)p}{(a+b-1)(p-1)} - 2n$$

$$= (a+r)p - \left((a+r)p - \frac{p(2n+2)}{p-1}\right) - 2n$$

$$= \frac{p(2n+2)}{p-1} - 2n$$

> $2n + 2 - 2n = 2 \ge \varepsilon(S, T)$,

which contradicts (1). Claim 2.5 is verified.

We write $\beta = |\{x : x \in T, d_{G-S}(x) = 1\}|$. It is obvious that $\beta \geq 1$ and $|T| \geq \beta$. In light of (4) and Claims 2.4–2.5, we have

$$\gamma_{H}(S,T) = f(S) + d_{H-S}(T) - g(T)$$

$$\geq f(S) + d_{G-S}(T) - \min\{2n, |T|\} - g(T)$$

$$\geq (a+r)|S| + 2|T| - \beta - 2n - (b-r)|T|$$

$$= (a+r)|S| - (b-r-2)|T| - \beta - 2n$$

$$\geq (a+r) \cdot \frac{(b-r-1)(p-1) + 2n + 2}{a+b-1}$$

$$-(b-r-2) \cdot \frac{(a+r)(p-1) - 2n - 2}{a+b-1} - \beta - 2n$$

$$= \frac{(a+r)(p-1) + (a+b-2)(2n+2)}{a+b-1} - \beta - 2n$$

$$= \frac{(a+r)(p-1) - 2n - 2}{a+b-1} + 2n + 2 - \beta - 2n$$

$$\geq |T| - \beta + 2 \geq 2 \geq \varepsilon(S,T),$$

which contradicts (1).

Case 3: $2 \le h \le b - r$.

Note that $h = \min\{d_{G-S}(x) : x \in T\}$. Then there exists $x_1 \in T$ such that $d_{G-S}(x_1) = h$. Hence, we obtain

$$\delta(G) \le d_G(x_1) \le d_{G-S}(x_1) + |S| = h + |S|.$$

Combining this with Lemma 2.2, we have

$$|S| \ge \delta(G) - h \ge \frac{(b-r-1)p + a + r + 2n + 2}{a+b-1} - h. \tag{6}$$

In terms of (6), $|S| + |T| \le p$, and Claim 2.4, we have

$$\gamma_H(S,T) = f(S) + d_{H-S}(T) - g(T)$$

$$\geq f(S) + d_{G-S}(T) - \min\{2n, |T|\} - g(T)$$

$$\geq (a+r)|S| + h|T| - 2n - (b-r)|T|$$

$$= (a+r)|S| - (b-r-h)|T| - 2n$$

$$\geq (a+r)|S| - (b-r-h)(p-|S|) - 2n$$

$$= (a+b-h)|S| - (b-r-h)p - 2n$$

$$\geq (a+b-h) \cdot \left(\frac{(b-r-1)p + a + r + 2n + 2}{a+b-1} - h\right)$$

$$- (b-r-h)p - 2n$$

Let

$$\varphi(h) = (a+b-h) \cdot \left(\frac{(b-r-1)p + a + r + 2n + 2}{a+b-1} - h \right) - (b-r-h)p - 2n.$$

Then we have

$$\gamma_H(S,T) \ge \varphi(h). \tag{7}$$

By $2 \le h \le b - r$ and

$$p \ge \frac{(a+b-1)(a+2b-r-4)+a+r+2}{a+r} + \frac{2n}{a+r-1},$$

we get

$$\varphi'(h) = -\left(\frac{(b-r-1)p + a + r + 2n + 2}{a+b-1} - h\right) - (a+b-h) + p$$

$$= \frac{(a+r)p - a - r - 2n - 2}{a+b-1} + 2h - (a+b)$$

$$\geq a + 2b - r - 4 + 4 - (a+b)$$

$$= b - r > a > 0,$$

and so, $\varphi(h)$ attains its minimum value at h=2 by $2\leq h\leq b-r$. Combining this with (7) and

$$p \ge \frac{(a+b-1)(a+2b-r-4)+a+r+2}{a+r} + \frac{2n}{a+r-1},$$

we obtain

$$\begin{split} \gamma_H(S,T) &\geq \varphi(h) \geq \varphi(2) \\ &= (a+b-2) \cdot \left(\frac{(b-r-1)p+a+r+2n+2}{a+b-1} - 2 \right) \\ &\quad - (b-r-2)p-2n \\ &= \frac{(a+r)p}{a+b-1} + \frac{(a+b-2)(a+r+2n+2)}{a+b-1} \\ &\quad - 2(a+b-2) - 2n \\ &\geq \frac{(a+b-1)(a+2b-r-4) + a+r+2n+2}{a+b-1} \\ &\quad + \frac{(a+b-2)(a+r+2n+2)}{a+b-1} - 2(a+b-2) - 2n \\ &= 2 > \varepsilon(S,T). \end{split}$$

which contradicts (1).

Case 4: h = b - r + 1.

It follows from (1) and Claim 2.4 that

$$\begin{split} \varepsilon(S,T) - 1 &\geq \gamma_H(S,T) = f(S) + d_{H-S}(T) - g(T) \\ &\geq f(S) + d_{G-S}(T) - \min\{2n, |T|\} - g(T) \\ &\geq (a+r)|S| + h|T| - |T| - (b-r)|T| \\ &= (a+r)|S| - (b-r+1-h)|T| \\ &= (a+r)|S| \geq |S| \geq \varepsilon(S,T), \end{split}$$

which is a contradiction. This completes the proof of Theorem 1.1. \Box

3. Remark

In this section, we claim that the assumption on the neighborhood in Theorem 1.1 is the best possible, which cannot be replaced by $N_G(X) = V(G)$ or

$$|N_G(X)| \ge \frac{(a+b-1)(p-1)}{(a+r)(p-1)-2n-2}|X|$$

for any $X \subseteq V(G)$.

Let a, b, r, n be four nonnegative integers such that $2 \le a = b - r$, b is odd and (2n + 2)/b is an integer. We construct a graph

$$G = K_{(a-1)m + \frac{2n+2}{b}} \vee \left(\frac{bm+1}{2}K_2\right)$$

of order p, where m is an enough large positive integer, m is odd, and \vee means "join". It is easy to see that p = (a-1)m + bm + 1 + ((2n+2)/b). We write

$$S = V\left(K_{(a-1)m + \frac{2n+2}{b}}\right)$$

and

$$T = V\left(\frac{bm+1}{2}K_2\right).$$

We first show that the assumption $N_G(X) = V(G)$ or

$$|N_G(X)| \ge \frac{(a+b-1)(p-1)}{(a+r)(p-1)-2n-2}|X|$$

for any $X \subseteq V(G)$ holds. Let any $X \subseteq V(G)$. It is easy to see that if $|X \cap S| \ge 2$, or $|X \cap S| = 1$ and $|X \cap T| \ge 1$, then $N_G(X) = V(G)$. Of course, if |X| = 1 and $X \subseteq S$, then we easily obtain

$$|N_G(X)| = |V(G)| - 1 = p - 1 > \frac{(a+b-1)(p-1)}{(a+r)(p-1) - 2n - 2}|X|.$$

Therefore, we may assume that $X \subseteq T$. Note that

$$|N_G(X)| = |S| + |X| = (a-1)m + \frac{2n+2}{b} + |X|.$$

Hence,

$$|N_G(X)| \ge \frac{(a+b-1)(p-1)}{(a+r)(p-1)-2n-2}|X|$$

holds if and only if

$$(a-1)m + \frac{2n+2}{b} + |X| \ge \frac{(a+b-1)(p-1)}{(a+r)(p-1) - 2n - 2}|X|.$$

This inequality is equivalent to $|X| \leq bm$. Thus if $X \neq T$ and $X \subset T$, then we have

$$|N_G(X)| \ge \frac{(a+b-1)(p-1)}{(a+r)(p-1)-2n-2}|X|$$

for any $X \subset V(G)$. If X = T, then it is obvious that $N_G(X) = V(G)$. Consequently, $N_G(X) = V(G)$ or

$$|N_G(X)| \ge \frac{(a+b-1)(p-1)}{(a+r)(p-1)-2n-2}|X|$$

for any $X \subseteq V(G)$ holds.

Let g, f be two integer-valued functions defined on V(G) with g(x) = a and f(x) = b = a + r for every $x \in V(G)$. Let $N = \{e_1, e_2, \ldots, e_n\} \subseteq E(\frac{bm+1}{2}K_2)$ be a set of independent edges of G. We write H = G - N. Next, we show that H does not have a fractional (g, f)-factor with the property E(1,0). For above S and T, we have |S| = (a-1)m + ((2n+2)/b), |T| = bm + 1, $d_{H-S}(T) = bm + 1 - 2n$ and $\varepsilon(S,T) = 2$. Thus, we have

$$\begin{split} \gamma_H(S,T) &= f(S) + d_{H-S}(T) - g(T) \\ &= b|S| + d_{H-S}(T) - a|T| \\ &= b \cdot \left((a-1)m + \frac{2n+2}{b} \right) + bm + 1 - 2n - a \cdot (bm+1) \\ &= 3 - a \le 1 < 2 = \varepsilon(S,T). \end{split}$$

In light of Lemma 2.1, H does not admit a fractional (g, f)-factor with the property E(1,0), and so, G does not admit a fractional (g, f)-factor with the property E(1,n).

ACKNOWLEDGEMENTS

The authors thank the anonymous referees and the managing editor for their helpful comments and suggestions in improving this paper.

References

- 1. J. Cai, X. Wang, and G. Yan, A note on the existence of fractional f-factors in random graphs, Acta Math. Appl. Sin. Engl. Ser. 30 (2014), no. 3, 677–680.
- 2. W. Gao, J. Guirao, and H. Wu, Two tight independent set conditions for fractional (g, f, m)-deleted graphs systems, Qual. Theory Dyn. Syst. 17 (2018), no. 1, 231–243.
- W. Gao and W. Wang, New isolated toughness condition for fractional (g, f, n)-critical graphs, Colloq. Math. 147 (2017), 55–66.
- ______, A tight neighborhood union condition on fractional (g, f, n', m)-critical deleted graphs, Colloq. Math. 149 (2017), 291–298.
- M. Kano, A sufficient condition for a graph to have [a, b]-factors, Graphs Combin. 6 (1990), 245–251.

- Z. Li, G. Yan, and X. Zhang, On fractional (g, f)-covered graphs, OR Transactions (China) 6 (2002), no. 4, 65–68.
- H. Liu and H. Lu, A degree condition for a graph to have (a, b)-parity factors, Discrete Math. 341 (2018), 244–252.
- 8. X. Lv, A degree condition for fractional (g, f, n)-critical covered graphs, AIMS Mathematics **5** (2020), no. 2, 872–878.
- 9. M. Plummer, Graph factors and factorizations 1985–2003: A survey, Discrete Math. 307 (2007), 791–821.
- M. Plummer and A. Saito, Toughness, binding number and restricted matching extension in a graph, Discrete Math. 340 (2017), 2665–2672.
- 11. M. Porteous and R. Aldred, Matching extensions with prescribed and forbidden edges, Australasian Journal of Combinatorics 13 (1996), 163–174.
- 12. S. Wang and W. Zhang, Research on fractional critical covered graphs, Probl. Inf. Transm. **56** (2020), no. 3, 270–277.
- 13. S. Zhou, Some results on path-factor critical avoidable graphs, Discussiones Mathematicae Graph Theory, doi: 10.7151/dmgt.2364.
- 14. ______, A sufficient condition for a graph to be an (a, b, k)-critical graph, Int. J. Comput. Math. 87 (2010), no. 10, 2202–2211.
- 15. ______, Remarks on orthogonal factorizations of digraphs, International Journal of Computer Mathematics 91 (2014), no. 10, 2109–2117.
- 16. _____, Some results about component factors in graphs, RAIRO-Operations Research 53 (2019), no. 3, 723–730.
- 17. _____, Binding numbers and restricted fractional (g, f)-factors in graphs, Discrete Appl. Math. (2020), doi: 10.1016/j.dam.2020.10.017.
- 18. _____, Remarks on path factors in graphs, RAIRO-Operations Research **54** (2020), no. 6, 1827–1834.
- 19. S. Zhou and Z. Sun, Binding number conditions for $P_{\geq 2}$ -factor and $P_{\geq 3}$ -factor uniform graphs, Discrete Math. **343** (2020), no. 3, doi: 10.1016/j.disc.2019.111715.
- 20. _____, Some existence theorems on path factors with given properties in graphs, Acta. Math. Sin.-English Ser. **36** (2020), no. 8, 917–928.
- 21. S. Zhou, Z. Sun, and Q. Pan, A sufficient condition for the existence of restrict-edfractional (g,f)-factors in graphs, Probl. Inf. Transm. **56** (2020), no. 4, doi: 10.1134/S0032946020040043.
- 22. S. Zhou, Z. Sun, and H. Ye, A toughness condition for fractional (k, m)-deleted graphs, Inform. Process. Lett. **113** (2013), no. 8, 255–259.
- 23. S. Zhou, Y. Xu, and Z. Sun, Degree conditions for fractional (a, b, k)-critical covered graphs, Inform. Process. Lett. 152 (2019), doi: 10.1016/j.ipl.2019.105838.
- 24. S. Zhou, F. Yang, and L. Xu, Two sufficient conditions for the existence of path factors graphs, Scientia Iranica 26 (2019), no. 6, 3510–3514.
- S. Zhou, T. Zhang, and Z. Xu, Subgraphs with orthogonal factorizations in graphs, Discrete Appl. Math. 286 (2020), 29–34.

School of Science, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China

E-mail address: zsz_cumt@163.com, zhousizhong@just.edu.cn

SCHOOL OF MATHEMATICAL SCIENCES, NANJING NORMAL UNIVERSITY, NANJING, JIANGSU 210046, CHINA

E-mail address: 05119@njnu.edu.cn