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SUMMARY 

Aurilide is a potent cytotoxic marine natural product that induces apoptosis in cultured 

human cells at the pM to nM range; however, its mechanism of action has been unknown. 

Results of the present study showed that aurilide selectively binds to prohibitin 1 (PHB1) in 

the mitochondria, activating the proteolytic processing of optic atrophy 1 (OPA1), and 

resulting in mitochondria-induced apoptosis. The mechanism of aurilide cytotoxicity 

suggests that PHB1 is an apoptosis-regulating protein amenable to modulation by small 

molecules. Aurilide may serve as a small-molecule tool for studies of mitochondrion-

induced apoptosis.     
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INTRODUCTION 

Naturally occurring small molecules are an important source of both drug leads and cell 

biology tools. Natural products are particularly valuable as research tools, because they are 

often coevolved with protein targets and, therefore, are likely to exhibit high selectivity to 

the human counterparts of those targets. Determination of the molecular targets of natural 

products has had profound impacts on studies of complex cellular machinery. Such natural 

products include colchicine in the cytoskelton research (Weisenberg et al., 1968), FK506 in 

immune responses (Harding et al., 1989; Liu et al., 1991), rapamycin in nutrient signaling 

(Brown et al., 1994), fumagillin in angiogenesis research (Sin et al., 1997), phorbol diesters 

in the study of a family of protein kinases (Blumberg, 1981), trapoxin B and trichostatin A 

in chromatin remodeling (Laherty et al., 1997; Taunton et al., 1996; Yoshida et al., 1990), 

leptomycin B in nuclear trafficking (Fornerod et al., 1997; Fukuda et al., 1997; Ossareh-

Nazari et al., 1997), capsaisin in nociceptive signal transduction (Caterina et al., 1997), and 

lactacystin in proteasome studies (Fenteany et al., 1995). Thus, despite the difficulties 

involved in isolating and synthesizing natural products, successful identification of their 

targets is likely to stimulate research in basic cell biology and biomedicine.  

Here we report isolation of a protein target of aurilide (Figure 1, structure 1), a potent 

cytotoxic marine natural product. The gross structure of this cyclic depsipeptide was 

initially elucidated through spectroscopic analysis of 0.5 mg of the molecule isolated from 

262 kg of the Japanese seahare, Dolabella auricularia (Suenaga et al., 1996), and the 

absolute stereostructure was subsequently confirmed by enantioselective total synthesis 

(Mutou et al., 1997; Suenaga et al., 2004).  The ability of aurilide to induce apoptosis in 
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human cancer cells at low concentrations has encouraged biological analyses (Suenaga et 

al., 2004) and synthetic studies (Takahashi et al., 2003). However, its mechanism of action 

has remained unknown.  

To identify the target of this potent cytotoxic molecule, we biochemically isolated a 

selective aurilide-binding protein, prohibitin 1 (PHB1). Our mechanistic analyses indicate 

that the interaction of aurilide with PHB1 in mitochondria activates the proteolytic 

processing of optic atrophy 1 (OPA1), leading to mitochondrial fragmentation and 

apoptosis. Our results suggest that PHB1 plays a pivotal role in maintaining mitochondrial 

integrity and cell survival. 

 

RESULTS AND DISCUSSION 

To isolate the protein target(s) of aurilide, we prepared its affinity matrix. Structure-

activity relationship studies have shown that modifications at the C35 hydroxyl group had 

limited impact on biological activity of aurilide (Suenaga et al., 2008).  The hydroxyl group 

was conjugated with a biotin molecule through a protease-cleavable polyproline linker, an 

extended linker we recently developed to boost biochemical purification of target proteins 

(Sato et al., 2007). The resulting molecule (3) was bound to avidin beads, which were 

treated with nuclear, cytosolic, and membrane extracts of HeLa cells.  Bound proteins were 

eluted with HRV-3C protease. The sample treated with membrane extracts exhibited a 30 

kDa protein band selective to the beads with aurilide, but not to the beads with 6-epi-

aurilide (Figure 1B), a >1000-fold less active epimer of aurilide (Suenaga et al., 2004) 

(Figure 1A, molecule 2 and conjugate 4). Microsequencing analysis of the band showed 12 
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tryptic peptide sequences, all of which matched the amino-acid sequence of human 

prohibitin 1 (PHB1) (Figure S2). We also noticed a seemingly selective weaker band with a 

lower molecular weight on the SDS gel. Microsequencing analysis of these minor bands 

showed that the bands consist of a mixture of abundant proteins: only one or two tryptic 

peptide sequences were identified for each protein. In our experience of biochemical target 

isolation using a protease-cleavable polyproline linker, we had never isolated PHB1 either 

with empty beads, beads with the polyproline linker, or beads with bioactive molecules. We 

therefore decided to focus our efforts on PHB1 for further investigation.  

Recombinant, bacterially expressed GST-PHB1 bound to the beads with aurilide, but 

not to the beads with 6-epi-aurilide (Figure 1C). We also examined if aurilide binds to 

PHB2, a closely related protein that forms a heterodimer with PHB1 (Tatsuta et al., 2005). 

Aurilide or 6-epi-aurilide had no detectable affinity to bacterially expressed GST-PHB2 

(Figure 1C). These results indicate that aurilide binds selectively and directly to PHB1. 

PHB1 has been identified as a putative negative regulator of cell proliferation (Nuell et 

al., 1991) and is highly conserved in all animal species, as well as in yeasts and plants 

(Loukas and Maizels, 1998; McClung et al., 1992; Snedden and Fromm, 1997). PHB1 

localizes in the inner membrane of the mitochondria, where it is complexed with PHB2. 

Although a number of potential functions have been proposed for PHB1 (Nijtmans et al., 

2000; Rastogi et al., 2006a; Rastogi et al., 2006b; Snyder et al., 2005), its precise cellular 

function has been elusive.  

To evaluate the involvement of PHB1 in aurilide-induced cell death, we examined the 

effects of overexpression and siRNA knockdown of PHB1 on the sensitivity of cells to 
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aurilide. For overexpression, PHB1 cDNA was stably transfected into HeLa cells, and the 

resulting three stable cell lines that overexpressed PHB1 at different levels were analyzed. 

The cells with higher levels of PHB1 were more resistant to aurilide than the parental cells 

(Figure 2A). For siRNA knockdown, three stable cell lines with lower PHB1 levels were 

similarly prepared. Partial knockdown of PHB1 apparently rendered cells viable, permitting 

establishment of cell lines. The cells in which PHB1 was partially knocked down were 

more sensitive to aurilide (Figure 2B).  In these experiments, we also checked the protein 

levels of endogenous PHB2, which forms a heterodimer with PHB1. The results showed 

that PHB2 expression was up- or down-regulated when PHB1 was overexpressed or 

knocked down, respectively (Figure S3). The dependence of aurilide sensitivity on the 

expression levels of PHBs suggests that aurilide exerts its cytotoxicity by inhibiting a 

function of the PHB complex. 

It has been reported that complete silencing of PHB1 causes morphological alteration of 

mitochondria from tubular to fragmented forms, followed by mitochondria-induced cell 

death (Kasashima et al., 2006). In fact, we were able to reproduce the mitochondrial 

phenotype in our hands when the PHB1 expression was silenced by transiently transfecting 

its siRNA (Figure S4). If aurilide is an inhibitor of PHB1, treatment with aurilide should 

produce a phenotype similar to that of the siRNA knockdown. As predicted, HeLa cells 

treated with aurilide and then stained with MitoTracker Red exhibited fragmented 

mitochondria, while DMSO-treated control cells had tubular mitochondria without 

morphological alterations (Figure 3A). The mitochondrial fragmentation was also 

confirmed in the cells transfected with a gene encoding RFP-mito, a mitochondrial targeted 
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red fluorescent protein (Figure S5). The inactive epimer of aurilide, 6-epi-aurilide, failed to 

induce mitochondrial fragmentation (data not shown). Mitochondrial fragmentation was 

evidently not a result of apoptotic cell death, because fragmentation occurred prior to the 

appearance of apoptotic phenotypes, including condensed nuclei, round cell shapes (Figure 

4A), caspase 3-mediated processing of poly (ADP-ribose) polymerase (Figure 4B), loss of 

membrane potential (Figure 4C and S6), phosphatidylserine detection (Annexin V-FACS 

experiment) (Figure S7), and cytochrome c release (Figure S8), all of which were observed 

~16 hr after aurilide treatment.  

To further confirm that aurilide selectively targets PHB1 in mitochondria, we examined 

the subcellular localization of aurilide-fluorescein conjugate 5 (Figure 3C). When HeLa 

cells were treated with this conjugate, intense fluorescence signals were observed in 

mitochondria undergoing fragmentation (Figure 3D). In contrast, cells treated with 6-epi-

aurilide-fluorescein conjugate 6 showed neither clear fluorescent accumulation nor 

morphological changes in the mitochondria (Figure 3D and S9). These results supported the 

hypothesis that aurilide induces mitochondrial fragmentation by binding to PHB1 in the 

mitochondria. 

Mitochondria constantly fuse and divide, and an imbalance of these two processes 

dramatically alters overall mitochondrial morphology. The disruption of fission generates 

the excessively elongated filaments in the perinuclear space (Smirnova et al., 2001; Yoon et 

al., 2003). In contrast, the disruption of fusion causes the morphological change from 

tubular to fragmented mitochondria (Detmer and Chan, 2007; Suen et al., 2008). The 

proteins essential to the fusion process are mitofusins (Mfns) and optic atrophy 1 (OPA1), 
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both of which work together to achieve controlled mitochondrial fusion (Chen et al., 2005; 

Cipolat et al., 2004; Griparic et al., 2004). Mfns are outer membrane proteins that induce 

mitochondrion-mitochondrion contacts through dimerization. The dimerization of Mfns is 

controlled by OPA1, a dynamin-like GTPase anchored on the inner membrane of 

mitochondria. Human OPA1 exists as eight transcript variants encoding different isoforms, 

each of which is proteolytically processed to yield two isoforms with different chain 

lengths: the long (L) isoform and the short (S) isoform. The L-isoforms activate 

mitochondrial fusion by interacting with Mfns; the S-isoforms arrest fusion and generate 

mitochondrial fragments (Duvezin-Caubet et al., 2006; Duvezin-Caubet et al., 2007; 

Ishihara et al., 2006). 

To determine the mechanism by which aurilide induces mitochondrial fragmentation, 

we investigated the effects of aurilide on OPA1 and Mfn, as well as on PHB1 and PHB2. 

Western blot analyses showed that aurilide treatment decreased the size of OPA1 bands on 

the SDS gel, while no detectable changes were observed in the Mfn, PHB1, PHB2, and 

actin bands (Figure 5A). Note that endogenous OPA1 proteins are usually detected as 

multiple bands in western blot analyses, due to the eight different transcript variants and 

their L- and S-isoforms (Ishihara et al., 2006). Aurilide treatment of cells caused these 

bands to converge into the faster migrating bands that correspond to S-isoforms of OPA1. 

The inactive epimer of aurilide, 6-epi-aurilide, failed to induce such a band shift (data not 

shown). These results suggest that aurilide accelerates the proteolytic processing of OPA1 

L-isoforms to S-isoforms.  
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To further examine the role of the OPA1 processing in the cytotoxic activity of aurilide, 

we prepared a stable HeLa cell line that expresses the deletion mutant of OPA1 in which an 

11-amino acid processing site is deleted (variant1-∆S1) (Ishihara et al., 2006). The 

overexpression of the proteolysis-resistant mutant rendered the cells more resistant to 

aurilide than neo cells and cells overexpressing wild-type OPA1 (Figure 5B). These results 

supported the hypothesis that the enhanced OPA1 processing initiates aurilide-induced 

apoptosis. 

Our results suggest that aurilide stimulates OPA1 processing, ultimately leading to 

mitochondrial fragmentation and apoptotic cell death. Recent studies indicate that the 

OPA1 processing in mitochondria plays important roles in various biological functions of 

mitochondria (Westermann, 2002). It has been proposed that the OPA1 processing activates 

mitochondrial cristae remodeling as well as mitochondrial fragmentation, leading to 

cytochrome-c release and cell death (Cipolat et al., 2006; Frezza et al., 2006). Prolonged 

fragmentation of mitochondria has also been reported to be a trigger for loss of membrane 

potential in HeLa cells (Olichon et al., 2003), eventually leading to apoptotic cell death 

(Olichon et al., 2003; Yang et al., 2001).  

We monitored mitochondrial membrane potential in the cells treated with aurilide for 0, 

4, and 16 hrs, by using JC-1, a fluorescent indicator of membrane potential (Figure 4C). 

The aggregation pattern of JC-1 and its color changes indicated that prolonged treatment of 

cells with aurilide for 16 hrs lowered mitochondrial membrane potential in the treated HeLa 

cells during the course of cell death, while 4-hr treatment or treatment with DMSO had no 

significant effects on membrane potential. Quantitative analysis by FACS (Figure S6) 
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revealed that 16-hr incubation with aurilide lowered membrane potential in 60% of the 

treated cells, while 4-hr incubation with aurilide or 16-hr incubation with DMSO alone 

exhibited only 7.9% or 1.9%. Taken together, our results suggest that aurilide induces 

prolonged-mitochondrial fragmentation through enhanced OPA1 processing, which results 

in loss of membrane potential and induction of apoptotic cell death. 

During our studies, an independent research group recently reported a role of prohibitin 

in regulating OPA1-dependent cristae morphogenesis and apoptosis in mitochondria 

(Merkwirth et al., 2008). In this report, knockdown of prohibitin indeed induced the OPA1 

processing.  Our identification of PHB1 as a target protein of aurilide provides chemical 

genetic evidence in support of this newly discovered role of PHB1 in the OPA1 processing. 

The remaining question is how the inactivation of PHB1, either by siRNA knockdown or 

aurilide, activates the OPA1 processing. One possible explanation is that membrane-bound 

PHB1 might directly regulate the processing or localization of OPA1 by binding with each 

other. This possibility is unlikely because we failed to detect such interaction in a co-

immunoprecipitation experiment (Figure 6). 

Another possibility is that OPA1-processing proteases might be sequestered by 

membrane-bound PHB1 and released by the PHB1-aurilide interaction. In yeast, the 

protease that specifically processes the yeast homolog of OPA1, Mgm1, has been identified 

to be the m-AAA protease, a hetero-oligomeric proteolytic complex in the mitochondrial 

inner membrane. Although the human homolog of the m-AAA protease may partially be 

involved in the processing of OPA1 (Ishihara et al., 2006), identity of such a OPA1-
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processing protease in mammalian cells has been elusive, making it difficult to test this 

mechanistic hypothesis in human cells.  

A previous report suggests that the activity of the yeast homolog of m-AAA protease 

interacts with and is negatively regulated by yeast prohibitin in mitochondria (Steglich et al., 

1999). To examine if the human m-AAA protease, which is composed of multiple ATP-

dependent proteases such as spastic paraplegia 7 (SPG7), binds to PHB1, we performed co-

immunoprecipitation experiments using FLAG-tagged PHB1. The results showed that 

spastic paraplegia 7 (SPG7), a component of the human m-AAA protease, was co-

immunoprecipitated with FLAG-tagged PHB1 as well as endogenous PHB1 and PHB2. 

Treatment with aurilide reduced the interaction of PHB1 with SPG7, while aurilide had no 

detectable effects on the PHB1-PHB2 interaction (Figure 6 and S10), suggesting that 

aurilide selectively disrupts the PHB1-m-AAA protease interaction. Nevertheless, it is 

unlikely that the release of the human m-AAA protease from the membrane-bound PHB1-

PHB2 complex is the sole factor that drives the aurilide-induced OPA1 processing. In fact, 

siRNA knockdown of the m-AAA protease in human cells by others and us had limited 

impacts on the OPA1 processing (Wu et al., 2007). Other as-yet-unrecognized proteases 

may also bind to PHB1 and participate in the aurilide-induced OPA1 processing. Aurilide 

may be useful in isolating and identifying these proteases in future studies. 

Another protein that influences OPA1 processing has recently been found to be the 

mitochondrial rhomboid protein PARL (Cipolat et al., 2006). However, the relationship of 

PARL with PHB1 in regulating OPA1 has not been addressed. PARL and PHB1 may play 

separate roles in controlling OPA1 processing, because our immunoprecipitation 
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experiments failed to detect any physical interactions between PHB1 and PARL (data not 

shown). Further studies are needed to clarify this issue. A search for proapoptotic and 

antiapoptotic factors relevant to PHB1 is currently underway, and aurilide may serve as a 

pharmacological probe for studies of mitochondrion-induced apoptosis. 

PHB1 has been reported to be overexpressed in 84% of bladder cancers (Wu et al., 

2007), and its mutations have been implicated in breast cancers (Sato et al., 1993). Our 

results indicate that aurilide induces apoptosis by inhibiting the function of this cancer-

related protein, unlike other known antiproliferative and proapoptotic molecules. Naturally 

occurring aurilide analogs, kulokekahilides (Kimura et al., 2002; Nakao et al., 2004) and 

aurilides B and C (Han et al., 2006), have recently been isolated from other marine 

organisms. These highly cytotoxic analogs are also likely to exert their proapoptotic 

activity through the inhibition of PHB1. Aurilide and its analogs may ultimately prove to be 

candidates for further evaluation as anticancer drug leads.    

 

SIGNIFICANCE 

One way to use bioactive small molecules for biological investigation is to identify 

their protein targets, although target identification has always been a technical hurdle in the 

field. In this study, we isolated a target protein of aurilide, a cytotoxic marine natural 

product. Biochemical and molecular biological experiments revealed that the interaction of 

aurilide with PHB1 activates the proteolytic processing of OPA1, which has been shown to 

play a central role in mitochondria-induced apoptosis. Aurilide represents the first small 
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molecule that inhibits the function of prohibitin in the regulation of OPA1 and 

mitochondria-induced apoptosis. The molecular biology of OPA1 and mitochondrial 

remodeling has recently became a target of intensive research in the field of apoptosis 

(Cipolat et al., 2006; Frezza et al., 2006). Aurilide may serve as a chemical tool to 

investigate the prohibitin-mediated regulation of apoptosis.  

 

EXPERIMENTAL PROCEDURES 

Materials 

Human HeLa cells were maintained in DMEM supplemented with 10% fetal bovine serum 

at 37 °C under humidified 5% CO2. Conjugates 3-6 were chemically synthesized either on a 

solid support or in a solution, and purified by a reverse-phase HPLC as described in the 

supporting information. 

 

Antibodies 

Following primary antibodies were used: anti-PHB1 and anti-PARP (Cell Signaling 

Technology), anti-PHB2 (Upstate Biotechnology), anti-OPA1 (BD Bioscience), anti-MFN1 

(Novus Biologicals), anti-cytochrome c and anti-FLAG (Sigma Chemical Co.), and anti-

actin (Santa Cruz). 

 

Synthesis of 3 and 4 

A polyproline linker was synthesized on Rink-Amide MBHA resin (0.6 mmol/g, Nova 

Biochem) by coupling N-α-Fmoc-protected amino acids (Nova Biochem), N-ε-Fmoc-ε-
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aminocaproic acid (Nova Biochem), and D-biotin (Sigma-Aldrich), purified by a reversed 

phase HPLC, and characterized by mass spectrometry. The linker was then coupled with 

the active ester (succinate) of molecule 1 or 2 (Figure S11). After removal of protective 

groups by 2%(v/v) hydrazine treatment, conjugates 3 and 4 were purified by a reversed 

phase HPLC, and characterized by mass spectrometry. Polyproline linker: calcd for 

C79H128N19O15S+ requires 3412.2. Found (MALDI-TOF-MS) 3434.0 [M+Na]+. Conjugate 

3: calcd for C79H128N19O15S+ requires 3784.7. Found (MALDI-TOF-MS) 3785.3 [M+H]+. 

Conjugate 4: calcd for C53H79ClN11O9S+ requires 3784.7. Found (MALDI-TOF-MS) 

3784.6  [M+H]+. 

 

Synthesis of 5 and 6 

To a solution of molecule 1 (9.3 mg, 0.009 mmol) and triethylamine (0.011 mmol) in 

DCM-DMF were added mono-Fmoc 1,6-diaminohexane hydrochloride (0.011 mmol), 

HOBt (0.013 mmol) and 1-Ethyl-3-(3-dimethyllaminopropyl) carbodiimide hydrochloride 

(0.027 mmol) at 0 °C. This solution was stirred at room temperature overnight, diluted with 

CHCl3, washed with HCl (0.01 N), saturated NaHCO3, and brine, and dried over anhydrous 

Na2SO4. The combined extract was concentrated in vacuo and the residue was purified by 

column chromatography on silica gel with CHCl3-methanol mixtures to give the Fmoc-

amino hexanamide derivative of aurilide (11.7 mg, 97%). The Fmoc group of the conjugate 

was then removed by 20% piperidine in DMF, and the deprotected sample was purified by 

column chromatography on silica gel with CHCl3-methanol (4:1) and coupled with FITC 

(0.021 mmol) in the presence of triethylamine (0.086 mmol) at room temperature for 20 hr. 
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The reaction mixture was concentrated in vacuo, and the residue was purified by a column 

chromatography on silica gel with CHCl3-methanol mixtures to give conjugate 5 (Figure 

S12). Further purification was performed by HPLC for biological assay. The corresponding 

6-epi-aurilide conjugate 6 was similarly synthesized from molecule 2 (Figure S12).  

 

Target identification of Aurilide using affinity matrix 

Nuclear extracts were prepared as previously described (Meisterernst and Roeder, 1991). 

Cytosolic extracts were obtained by disrupting the cell membrane with a French press in 

PBS and by centrifugating the sample to remove the cell debris. The removed insoluble cell 

debris was suspended in PBS containing 0.1% Nonidet-P40, and the solubilized fraction 

was used as membrane extracts. Each of the extracts prepared from an 8-L culture was 

incubated with slurry of Neutravidine-agarose beads (1 mL) saturated with biotin 

conjugates 3 or 4 on ice for 24 h. After extensive wash with PBS, the beads were treated 

with 6His-tagged HRV-3C protease (30 units/mL) in PBS at 4 °C for 16 h. The sample was 

then filtered with an empty polypropylene chromatography column (Biorad). After removal 

of the protease by 100 µL of His-Bind resin (Novagen), proteins in the flowthrough were 

separated by SDS-PAGE. The 32-kDa band specific to conjugate 3 was excised from the 

gel and subjected to in-gel digestion using trypsin. The resulting tryptic peptides are 

extracted and subjected to LC-MS/MS analysis. 

 

Overexpression and knockdown of PHB1 
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For the generation of the cell lines in which PHB1 is overexpressed or knockdowned, 

pcDNA3.1His(B) or pSuper-siRNA expression vector of PHB1 were transfected into HeLa 

cells using Lipofectamine 2000 reagent (Invitrogen). Stable transfectants were selected by 

G418. Expression levels of PHB1 were estimated by western blot analysis using an 

antibody for human PHB1. 

 

Mutant production of OPA1 

The OPA1-deletion mutant (∆190-200; variant 1-∆S1) was created from the wild-type 

construct by overlap PCR. The primers for the mutation were (underlines indicate the site 

of mutation): N-termOPA1m: 5'-CAC CTT TCT AAA ATG CTT GTC ACT TTC TTC 

CGG AGA ACC TGA GGT AAA AAA GTC CTT C-3', C-termOPA1m: 5'-CCT CAG 

GTT CTC CGG AAG AAA GTG ACA AGC ATT TTA GAA AGG TGT CAG AC-3', 

OPA1fwd and OPA1rev. The first amplified PCR product was used as a template of the 

second PCR. The second amplified PCR product was cloned into the pCMV-3Tag-3 vector 

(Stratagene) and fully sequenced. 

 

Cytotoxicity assay 

Aurilide was dissolved in DMSO before being diluted to its working concentrations in a 

culture medium. HeLa cells were seeded at 2000 cells per well in 96-well plates, and 

aurilide was added on day 2. Three days after the aurilide addition, cell viability was 

evaluated by using WST-1 reagent. 
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Immunoprecipitation 

The HeLa cells overexpressing FLAG-tagged PHB1 were treated with aurilide (100 nM) or 

DMSO alone (1%(v/v)) for 16 hrs, and then homogenized with a Dounce homogenizer in 

buffer A (a 10-mM HEPES buffer containing 1.5 mM MgCl2, 10 mM KCl and 0.5 mM 

DTT). Soluble fractions were removed by centrifugation, and remaining samples were 

extracted with PBS containing 0.1% NP-40 by using a Dounce homogenizer on ice. The 

membrane extract was centrifuged at 4 °C for 60 min at 15,000g, and the supernatant was 

filtrated. For immunoprecipitation, the filtered sample was incubated with M2-agarose 

beads (Sigma Chemical Co.) at 4 °C for overnight. Bound fractions were eluted by SDS-

PAGE sample buffer, separated by SDS-PAGE, and blotted onto a nitrocellulose membrane 

for western analyses. For the analyses of SPG7, the HeLa cells stably expressing FLAG-

tagged PHB1 were transiently transfected with an expression vector of Myc-tagged SPG7 

(pCMV-SPG7), and their membrane extracts were used for immunoprecipitation. pCMV-

SPG7 was constructed by inserting a cDNA of SPG7 into the pCMV-3Tag-9 vector 

(Stratagene) and fully sequenced. The primers used for the cloning of the SPG7 cDNA 

were N-termPara: 5'-AAG GAA AAA AGC GGC CGC CAC CAT GGC CGT GCT GCT 

GCT GCT GCT CCG TGC CCT GCG-3' and C-termPara: 5'-GAT CCT CGA GCT TGG 

GCC AAG TCG GCT CTT CGC CTC CAA GTG GAG GC-3'.  
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FIGURE LEGENDS 

Figure 1.   

Isolation of prohibitin 1 (PHB1) as an aurilide-binding protein. (A) Structures of aurilide 

derivatives 1-4. A recognition sequence of HRV-C3 protease is shown in italics. (B) 

Isolation of PHB1 by a biotinylated proline-rod aurilide (3). Conjugates 3 and 4 were 

bound to avidin beads, and each sample was incubated with membrane cell extracts. Bound 

proteins were separated on an SDS gel and visualized by silver staining. The results of 

isolation from nuclear and cytosolic extracts are shown in supplemental Figure S1. (C) 

Direct association of aurilide with PHB1. Conjugates 3 and 4 were bound to avidin beads, 

and each sample was incubated with recombinant, bacterially expressed GST-PHB1 or 

GST-PHB2. After extensive wash, bound proteins were separated by an SDS gel and 

visualized by silver staining. It was evident that GST-PHB1 bound to the beads with 

aurilide but not to the beads with 6-epi-aurilide. GST-PHB2 had no detectable affinity to 

the beads either with aurilide or 6-epi-aurilide.  

 

Figure 2.   

Effects of PHB1 overexpression and knockdown on aurilide sensitivity. (A) Effects of 

PHB1 overexpression in HeLa cells. Three stable cell lines that overexpress PHB1 at 

different levels were used (I, II, and III). HeLa cells were treated with 6 nM of aurilide. The 

expression levels of PHB1 in each cell line were estimated by western blot analysis (middle 

panel) and quantified by densitometric analysis (lower panel). (B) Effects of PHB1 
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knockdown on aurilide sensitivity in HeLa cells. Three stable cell lines in which PHB1 is 

knockdowned at different levels were used (I, II, and III). HeLa cells were treated with 3 

nM of aurilide. The expression levels of endogenous PHB1 were analyzed by western blots 

with an antibody against human PHB1 (upper panel). ~60% knockdown of PHB1 was 

observed in siRNA-transfected cells (lower panel). The data are means ± SD for a 

minimum of three experiments. Different concentrations of aurilide were used in 

overexpression (6 nM) and knockdown (3 nM) experiments due to the lower sensitivity of 

PHB1-overexpressiong cell lines to aurilide. 

 

Figure 3.  

Effects of aurilide on mitochondria. (A) Effects of treatment with aurilide on mitochondrial 

morphology in HeLa cells.  Treatment with 100 nM aurilide induced mitochondrial 

fragmentation (left panel); treatment with DMSO showed tubular mitochondria with no 

morphological change (right panel). Mitochondria were stained by MitoTracker Red. (B) 

Quantification of mitochondrial fragmentation in HeLa cells treated with aurilide (100 nM) 

or DMSO alone (1%(v/v)). The numbers of tubular (white bars) or fragmented (gray bars) 

mitochondria were counted. (C) Chemical structures of aurilide-FITC and 6-epi-aurilide-

FITC conjugates (5, 6). (D) Subcellular localization of conjugate 5 in HeLa cells. 

Mitochondria were visualized with MitoTracker. Conjugate 5 (green) and MitoTracker 

(red) were co-localized. In these experiments, the relatively high concentration (100 nM) of 

aurilide was used for the observation of clear morphological images. 
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Figure 4.  

Effects of aurilide on the mitochondrial morphology and apoptosis induction in HeLa cells. 

(A) Mitochondrial fragmentation was observed 4 hours after aurilide treatment, while any 

apoptotic phenotypes including nuclear condensation and round cell shapes were 

undetectable. (B) Effects of aurilide on the PARP cleavage. After 4 hours of treatment with 

aurilide, when the mitochondrial fragmentation is observed, we failed to detect an 85-KDa-

breakdown product of PARP. The breakdown product became apparent after 16 hours of 

treatment with aurilide. (C) Effects of aurilide on mitochondrial potential in HeLa cells. 

HeLa cells were treated with aurilide (100 nM) or DMSO alone (1%(v/v)), and stained by 

JC-1. Most of DMSO-treated cells had strong J-aggregates (red). In contrast, aurilide-

treated cells exhibited only green fluorescence due to lowered mitochondrial membrane 

potential after 16 hrs. 

 

Figure 5.  

Activation of OPA1 processing by aurilide. (A) Western blot analysis of endogenous OPA1, 

PHB1, PHB2, Mfn1, and actin proteins after treatment with aurilide. Treatment of cells 

with aurilide (100 nM) for 16 hrs stimulated the processing of OPA1 from large isoforms to 

short isoforms; the other proteins tested exhibited no detectable effects. (B) Overexpression 

of a processing-resistant OPA1 protein rendered cells resistant to aurilide. The full-length 

OPA1 and OPA1-∆S1 variant 1 were overexpressed in HeLa cells. The processing site is 

indicated in yellow, and the numbers represent amino-acid residues of OPA1 (upper panel) 

and OPA1-∆S1 (lower panel). The HeLa cells and controls were treated with 6 nM of 
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aurilide. The cell survival data are means ± SD for a minimum of three experiments. 

Expression of OPA1-∆S1 rescued the cells from the aurilide-induced cell death; expression 

of full-length OPA1 (Full) had little effect. 

 

Figure 6.  

Co-immunoprecipitation experiments of FLAG-tagged PHB1. HeLa cells stably expressing 

FLAG-tagged PHB1 were treated with aurilide (100 nM) or DMSO alone (1%(v/v)) for 16 

hrs, and their membrane extracts from the cells were then prepared for immunoprecipitation 

with anti-FLAG antibody. Immunoprecipitated samples and the input sample were resolved 

by 10% SDS-PAGE and analyzed by western blotting with the anti-Myc, anti-OPA1, anti-

PHB1, or anti-PHB2 antibodies. For the analyses of SPG7, the HeLa cells stably expressing 

FLAG-tagged PHB1 were transiently transfected with an expression vector of Myc-tagged 

SPG7 (pCMV-SPG7), and their membrane extracts were used for immunoprecipitation. 

Immunoprecipitated proteins are indicated by arrowheads. Treatment with aurilide reduced 

the interaction of PHB1 with Myc-tagged SPG7, whereas aurilide had no detectable effects 

on the PHB1-PHB2 interaction. OPA1 exhibited no detectable interaction with prohibitin. 
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