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Abstract

High accuracy is paramount when predicting biochemical characteristics using Quantita-
tive Structural-Property Relationships (QSPRs). Although existing graph-theoretic kernel
methods combined with machine learning techniques are efficient for QSPR model construc-
tion, they cannot distinguish topologically identical chiral compounds which often exhibit
different biological characteristics. In this paper, we propose a new method that extends the
recently developed tree pattern graph kernel to accommodate stereoisomers. We show that
Support Vector Regression (SVR) with a chiral graph kernel is useful for target property
prediction by demonstrating its application to a set of human vitamin D receptor ligands
currently under consideration for their potential anti-cancer effects.

Keywords: Kernel method; graph kernel; QSAR; QSPR; support vector machine.

1 Introduction

Drug design is one of the main practical and industrial targets of bioinformatics and chemoin-
formatics. When searching for lead compounds in the development of new pharmaceuticals, re-
searchers must often select a small subset of compounds from a vastly larger set that satisfies design
requirements. After compound selection, high-throughput screening is a method for the synthesis
and evaluation of compounds, though it requires considerable time and cost. Hence, it is advan-
tageous to reduce screening to only those candidates which have been filtered by computational
prediction.

A common approach to property prediction is to quantitatively analyze the structural features
of a compound and find a connection between the target property and features analyzed, i.e., to
derive

target property = f(structural features).

This methodology is known as a Quantitative Structure-Activity/Property Relationship (QSAR
or QSPR). Spatial QSPRs such as Comparative Molecular Field Analysis[1] (CoMFA) and 4D-
QSAR[2] can produce predictions with high accuracy, but at the expense of a large increase in
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computational time. In contrast, two-dimensional (2D) analysis techniques such as graph kernels[3]
or topological descriptors[4] offer QSPRs that generally are easier to implement and are faster,
while still maintaining good accuracy.[4]

A great number of compounds feature “handedness”, which emerges when topologically iden-
tical molecules contain carbon atoms bound to four different substituents. The carbon atoms are
referred to as stereocenters. In the most simple case where a structure contains a single stereocen-
ter, two chiral forms of the molecule are possible. Much like human hands, the chiral forms are
mirror images of each other but cannot be perfectly superimposed on each other because they are
different molecules. Chemists refer to the “right-handed” version of the pair as the R-form and
the “left-handed” version as the S-form, and below we will give an algorithm for discriminating
the handedness of a compound (Section 2.5). An example where basic two-dimensional topology
alone cannot separate the R/S forms of a chiral molecule is simple bromochlorofluoromethane
(CHBrClF).

Separation of chiral molecules is important because it is well known that enantiomers can
have completely different biological responses. The S enantiomer of ibuprofen is an active anal-
gesic, while the R enantiomer is inactive.[5] The analgesic (+)-3S, 4R-stereoisomer of picenadol
has the opposite effect of the (−)-3R, 4S-stereoisomer which is an antagonist.[6] Without correct
stereochemistry, cyclic urea HIV protease inhibitors are ineffective.[7]

Improved planar analysis must specify not only the connectivity relationships amongst atoms
(topology or configuration) in their 2D structure, but also spatial relationships (conformation).
This paper addresses this issue. We formulate a new graph kernel method that includes additional
stereo configuration information in topology analysis. Though it is an extension of a previous ker-
nel development, the proposed kernel actually constrains the amount of computation to perform.
Classification and regression experiments show that the additional considerations for stereochem-
istry produce an improvement, suggesting a new alternative for drug screening and design. The
work herein is an important step in the advancement of kernel methods for QSPR research.

2 Methods

In Sections 2.1 and 2.2 we describe tree patterns and graph kernels, and thereafter in remaining
sections we explain the stereoisomer extensions.

2.1 Tree-patterns

Let us assume that we are given a graph G = (VG, EG, labelG) and a tree t = (Vt, Et, labelt), where
labelG is the mapping of labels to each vertex VG and edge EG of the graph, and labelt is analogous
for the tree.1 For chemical compounds, V(·) and E(·) correspond to atoms and inter-atomic bonds,
respectively. Let t’s size be |t|, and (n1, n2, ..., n|t|) be an enumeration of its vertices. If there is
a sequence (v1, v2, ..., v|t|) of vertices in G that satisfy the requirements below, then the sequence
(v1, v2, ..., v|t|) is a tree-pattern of the graph G with respect to tree t:











∀i ∈ [1, |t|], labelG(vi) = labelt(ni)

∀(ni, nj) ∈ Et, (vi, vj) ∈ EG ∧ labelG(vi, vj) = labelt(ni, nj)

∀(ni, nj), (ni, nk) ∈ Et, j 6= k ⇐⇒ vj 6= vk

. (1)

In other words, this definition means that a structural pattern (tree) t corresponds to an
identical pattern in the graph G, including identical labels. The third condition in (1) enforces
that sibling nodes in t must correspond to different vertices in G.

1label(·)’s behavior is clear from input context.
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2.2 Tree-pattern graph kernels

We represent the collection of trees to use as patterns, the tree space, by T = {t1, t2, . . .}, let weight
w(t) be a weighting for each tree t, and define the function ψt(G) which counts the frequency of
tree-pattern t in graph G. The Tree-Pattern Graph Kernel[3], is then defined as:

K(G1, G2) =
∑

t∈T

w(t)ψt(G1)ψt(G2) . (2)

If |T | 6= ∞, theoretically we can perform explicit calculation of the Tree-Pattern Graph Kernel by
creating a feature vector

φ(G) =
(

√

w(t1)ψt1(G),
√

w(t2)ψt2(G), . . . ,
√

w(t|T |)ψt|T |
(G)

)

, (3)

whose inner product between two graphs gives us K(G1, G2) = 〈φ(G1), φ(G2)〉, and hence K is a
valid kernel.

Mahé and Vert have defined several types of tree spaces, with appropriate weightings described
here.[3] The balanced tree-pattern kernels require that all leaves in the tree space have the same
depth, where the depth of a node is defined as the number of edges connecting it to the root plus
one.2 Then, for determining weight w(t) = λµ in Eq. (2), the size-based kernel takes the general
size of the tree and its depth3 into account, µ = |t|−depth(t), whereas the branching-based kernel
considers only the number of leaf nodes4, µ = branch(t) = | leaves(t) |−1. The Until-N Branching
extension removes the restriction that all trees be balanced. Kernels (2) are calculated efficiently
by dynamic programming rather than by using feature vectors (3).

2.3 Adding support for chirality

Based on convolution kernels, the graph kernels are defined by incorporating a more fundamental
kernel (similarity) KS(s1, s2) between substructures s1, s2 ∈ S existing inside of graphs. Removing
coefficients and constants, essentially K(G1, G2) =

∑

s1,s2∈G1,G2
KS(s1, s2).

Our proposed kernel is also achieved via convolution, by defining a more fundamental tree
kernel which additionally includes spatial information in parent-child relationships. The previous
kernel for tree-patterns [3] was defined such that if trees t1, t2 ∈ T have matching substructures,
then KT (t1, t2) > 0; otherwise, KT (t1, t2) = 0. At the most basic level, t1 and t2 are simply two
leaves (atoms); with identical labels, KT (t1, t2) > 0, but with different labels, KT (t1, t2) = 0.

Here, we set KT (t1, t2) > 0 only when t1 and t2 have matching substructures with identical
stereo bonding information; otherwise 0 is analogously assigned. Figure 1 shows an example of a
stereocenter with four different substituents a, b, c, and d. On the left of the chiral pair (center) is
the existing tree-pattern graph kernel computation, where two tree patterns t1 and t2 are given,
resulting in the same feature vector (

√

w(t1)×1,
√

w(t2)×1) for the enantiomer pair in the center
of the figure, which prevents a learning method from distinguishing the two compounds. The right
side of Figure 1 shows how we have included stereo information by expanding the tree space. The
extension produces two different feature vectors for the pair of enantiomers, hence allowing them
to be differentiated. The application of the extension to a dataset with many stereoisomers is
demonstrated in Figure 2.

2.4 Simultaneous enantiomerism and cis-trans isomerism

If we were interested in distinguishing compounds containing only cis-trans isomers, then it would
be sufficient to simply add E/Z labels to the chemical structures in question. For double bonds,
the E notation indicates that the higher ordered substituents of each carbon atom are on opposite
sides (thus forming a diagonal between them and the double bond), and the Z notation indicates

2depth(root(t)) = 1
3depth(t) is the maximum number of edges from the root of t to one of its leaf nodes plus one.
4leaves(t) is the set of leaves in tree t.
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Figure 1: Difference in feature vectors by accounting for chirality. Atoms correspond to labeled
graph nodes, and a bond corresponds to two oppositely directed graph edges with identical labels
indicating the bond order. w(ti) is the weighting given to a specific tree pattern, as defined in
Section 2.2.

that the substituents are on the same side (thus forming an arc shape). However, substituents of
an alkene may be stereocenters (e.g., Cl(OH)CHCH=CHCH(OH)Cl ) or additional alkenes (e.g.,
Hex-2,4-diene), forcing the need to also consider cis-trans isomers in a systematic way. To handle
this possibility, we process cis-trans isomers with the same concept as that for processing of chiral
stereocenters. Our approach is to add planar configuration information to the area around the
double bond. As a result, KT (t1, t2) > 0 for tree patterns t1, t2 that include cis-trans isomerism
only when both t1 and t2 have matching substructures including matching planar configuration.
Details for cis-trans isomerism can be found in the references.[8] 5

2.5 Computational algorithm including chirality

Kernel function values are computed by a dynamic programming (“DP”) algorithm that accom-
plishes the calculation of equation (2). The details of the DP are already published[3]; therefore,
we limit this section to the extensions to accommodate stereoisomers.

For each vertex pair (u ∈ G1, v ∈ G2), the neighborhood matching set (NMS)[3] M(u, v) lists
all of the label-matching parent-child relationships that are possible from (u, v).6 Denote the set
of children of vertex u by δ+(u), and let label(·) be defined as before.7 The non-chiral NMS is:

M(u, v) =
{

R ⊆ δ+(u) × δ+(v) | R 6= ∅
∧ ∀(a, b), (c, d) ∈ R : a = c ⇔ b = d .

∧ [∀(a, b) ∈ R : label(a) = label(b) ∧ label(u, a) = label(v, b)] }
5Ref. 8 is a Ph.D. dissertation, and not a peer-reviewed journal paper.
6G1 and G2 are general graphs, but since our pattern space is limited to tree structures, we can define a local

parent-child relationship.
7We abbreviate labelG(u) to label(u) to simplify notation.
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Figure 2: The concepts of kernel methods and support vector machines (SVMs), as applied to the
human vitamin D receptor ligand dataset used in this paper. Four ligands are used to generate a
similarity matrix. The existing graph kernel method Kprev produces the same similarity value for
any two ligands (kernel matrix abbreviated). Our proposed method, Kprop, solves this problem by
using stereo information when calculating similarity. (Bottom left) A support vector machine can
use our kernel matrix to derive a hyperplane for separating the data into two classes, for example
to isolate stereoisomers 29 and 33 which have relative activity > 1000. (Bottom right) Because of
identical kernel values, a hyperplane cannot be derived from Kprop to separate the hVDR ligands
into two classes. The kernel matrices were generated by a size-based tree kernel with pattern tree
depth set to 4 and λ set to 1 (parameter details in Graph Kernel Definition), and thus each kernel
value corresponds to the number of matching substructures in a pair of hVDR ligands.
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R denotes a set of matching pairs of descendants of u and v.8 For example, let δ+(u) = {a, c},
δ+(v) = {b, d}, and assume that all atoms are carbons that are singly bonded. Then, M(u, v) =
{

{(a, b)}, {(a, d)},{(c,b)}, {(c,d)}, {(a,b),(c,d)},
{(a, d), (c, b)}

}

, and R refers to any one of the singleton pair sets or 2-pair sets.

We introduce stereo information into the formulation. Let v be a carbon atom singly-bonded
to v1, v2, v3, and v4. Define CH(v) = 1 when stereo bond information is present in one of v’s
bonds and CH(v) = 0 otherwise. Also, define chiral(v1, v2, v3, v4) = 1 if v2, v3, and v4 are
arranged in clockwise order when looking from child v1 to parent v (R-configuration). Assign
chiral(v1, v2, v3, v4) = −1 when the arrangement is counter-clockwise (S-configuration).9 Then,
when CH(u) = CH(v) = 1 and |δ+(u)| = |δ+(v)| = 3,10 both parent atoms u, v contain stereo
bonding information each with four substituents - they possibly are stereocenters. The NMS is
constrained as follows:

M(u, v) =
{

R ⊆ δ+(u) × δ+(v) | R 6= ∅
∧ ∀(a, b), (c, d) ∈ R : a = c ⇔ b = d

∧
[

∀(a, b) ∈ R : label(a) = label(b) ∧ label(u, a) = label(v, b)
]

∧
[

|R| 6= 3 ∨ CH(u) = 0 ∨ CH(v) = 0 ∨
( chiral(u0, a, c, e) = chiral(v0, b, d, f) )

] }

(4)

where u0 and v0 correspond to parent vertices of u and v, respectively.
If the NMS is created from R using our extended definition, then the DP algorithm[3] can

be applied in its original design, and the chiral constraint reduces the size of M(u, v) to lower
computation time.

The neighborhood matching set for the cis-trans extension is slightly more complex, with details
in ref. 8. Finally, to incorporate both the chiral and cis-trans formulations simultaneously, graphs
are extended to G1 = (VG1

, EG1
, labelG1

, CHG1
, CTG1

) and G2 = (VG2
, EG2

, labelG2
, CHG2

, CTG2
),

with a NMS that incorporates Eq. (4).

3 Experimental Setup and Results

3.1 Datasets

Three datasets are used to evaluate the proposed kernel methods.
The ecdysteroid dataset is a collection of 20-hydroxyecdysone agonists that are involved in

the control of ecdysis (shedding) and metamorphosis in arthropods. The EC50 value, that is, the
effective concentration necessary of an ecdysteroid to bind to the ecdysteroid receptor and trigger
the biological response 50% of the time, is expressed as a numerical value. Dinan et al.[9] and
Hormann et al.[10] have provided the EC50 values of 108 ecdysis hormones. There are a total of
11 stereoisomer groups, where a group contains two or more stereoisomers. Using the negative
decadic logarithm, the dataset average value is 6.40, with a standard deviation of 1.34.

Cramer’s steroids is a dataset of 31 steroids where EC50 values represent concentrations re-
quired for a steroid to bind to corticosteroid binding globulin (CBG).[1] There are two small
stereoisomer groups. The dataset average value is 6.15, with a standard deviation of 1.17.

The final dataset used is synthetic vitamin D derivatives. 1α,25-dihydroxyvitamin D3 [1α,25(OH)2D3]
is an endogenous cellular ligand of the human vitamin D receptor (hVDR) in the nucleus. Among
the many important roles of 1α,25(OH)2D3 are HL-60 (human promyelocytic leukemia cell) differ-
entiation induction, and antiproliferation or apoptosis induction in malignant cancer cells. Many

8It is common to misinterpret R as containing only 2-tuples of direct children of u, v. Up to n-tuples are possible,
where n = min(δ+(u), δ+(v)).

9If chiral(v1, v2, v3, v4) = 1, then chiral(v1, v2, v4, v3) = −1 and chiral(v1, v3, v4, v2) = 1.
10u is a child of a parent in a tree structure, which is why |δ+(u)| 6= 4.

6



derivatives of 1α,25(OH)2D3 with different stereochemistry and/or substituents have been synthe-
sized and evaluated for their biological activities. The majority of this dataset can be found in a
textbook.[11] To the 56 unique structures with differentiation data available in the textbook, we
have added 13 other published stereochemical modifications to the 1α,25(OH)2D3 structure.[12, 13]
There are 18 stereoisomer groups (see ref. 8 for group details). This dataset is highly valuable for
QSPR research because it provides an abundant number of stereoisomers with large differences in
activity levels. The dataset is available upon request from the authors.

3.2 Graph kernel and support vector learning parameters

Here, we group the various parameters that affect the system performance of chiral tree pattern
graph kernels.

1. Tree-pattern kernel types : { Size-based, Branching-based, Until-N Branching-based }
A description of these different tree types is in the “Tree-Pattern Graph Kernels” section
(2.2).

2. Kernel extensions : {CH, CT}
The kernel option which adds the chiral requirement to the neighborhood matching set is
labeled CH, and similar accounting for cis-trans isomerism is an option we label CT.

3. Depth of tree : h ∈ {3, 4, 5, 6}
h specifies the maximum depth of subtrees constituting the tree pattern space. As a simple
example, we may consider methanol as an unbalanced tree of depth h = 3, where the carbon
atom is the root of the tree, and the hydroxyl group extends the depth of the tree from 2 to
3. Our range is chosen by considering results in the literature [3].

4. Weight factor : λ ∈ {0.1, 0.2, 0.3, 0.4, 0.5}
This parameter has a large influence on performance. For each tree t, its weight w(t) in (2)
is calculated as w(t) = λµ, where λ is a free parameter such that larger values emphasize
similarity of complex substructures and de-emphasize linear chains of atoms. Calculation
of µ is done as explained in Section 2.2. This range of values tested is also influenced by
previous results [3].

5. Normalization : { on, off } Before input to SVM/SVR, we can normalize all of the kernel

matrix values to the unit ball: Knorm(a, b) = K(a,b)√
K(a,a)K(b,b)

.

6. RBF kernel parameter : γ ∈ {off, 0.01, 0.05, 0.1, 0.5, 1, 2}
The RBF kernel measures the similarity of two feature vectors a and b using the function

KRBF (a,b) = exp
(

−‖a−b‖2

2γ2

)

, where the free parameter γ controls the learning balance

between possibly over-fitting (low γ) and over-generalizing (high γ). The RBF kernel can
effectively describe similarity of points in feature space, and can be highly useful when the
decision boundary to be learned is non-linear (an extreme case would be a colored chess
board). To apply the RBF kernel to a matrix of real values, we can use the RBF kernel

in the rewritten form: KRBF (a, b) = exp
(

−‖a−b‖2

2γ2

)

= exp
(

−K(a,a)−2K(a,b)+K(b,b)
2γ2

)

. It is

straightforward to show that Knorm

(

KRBF (a, b)
)

6= KRBF

(

Knorm(a, b)
)

, and as a result,
when normalization and RBF kernels are both applied, the normalization must be done
before applying the RBF kernel. The parameter range selected is appropriate for dealing
with normalized kernels. The “off” option means that we alternatively do not apply the
RBF kernel to a kernel matrix as a post-processing step.

7. SVM/SVR trade-off parameter : C ∈ {0.1, 1, 10, 100, 1000, 10000}
The soft-margin formulations of the support vector learning algorithm include a specified
maximum tolerance for mistakes during learning in exchange for maximizing the learning
margin, which can considerably impact performance.
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8. SVR tube width : ǫ ∈ {0.1, 1, σtr/5, σtr/10}
The tube width is an important setting for preventing overfitting of training data when the
variance of target properties is large. Therefore, we expanded on SVMlight’s default value
of 0.1 because the variance of the hVDR dataset is much larger than this. By using the
standard deviation of the target property in the known training data σtr and scaling it
appropriately, we can set a tube width appropriate to the application at hand.

3.2.1 Support vector learning implementations

Since the explicit feature vector representation of our proposed kernel may be in an infinite-
dimensional space, it is necessary to use a SVM implementation that can take the kernel matrix
directly as input. The GIST [14] SVM implementation allows us to do such. For 2-class SVM
experiments, we normalize the kernel matrix, after which GIST uses heuristics to set the γ and
C parameters. GIST also features tools for automatic calculation of metrics (sensitivity, etc.) to
gauge how well the support vector algorithm learned from the training data.

Unfortunately, the GIST software used for SVM experiments does not support SVR, so we use
the SVMlight package[15] for SVR experiments. Though SVMlight requires vectorial input, we have
built a small extension that enables direct input of the kernel matrices produced by our method.
In SVR experiments using SVMlight, we test the grid of γ, C, and ǫ values above both with and
without normalization.

3.3 Performance metrics

3.3.1 SVM experiments

For each classification experiment, we use leave-one-out cross-validation (LOO-CV) on the training
set. We generate ROC curves by using the range of scores output by the SVM algorithm, and
calculate each parameter set’s ROC curve area (AUC).

3.3.2 SVR experiments

Two measures are used for assessing QSPR prediction performance. The first of these, q2, is
the cross-validated version of the standard residual R2 for the training set. Let yi be sample
(compound) i’s known experimental value (activity level or target property), and let ŷi be its
value output by a predictor during cross-validation. Using the known experimental average value

ȳ, q2 is calculated as: q2 = 1 −
P

(yi−ŷi)
2

P

(yi−ȳ)2 .

The second metric is the correlation R between the predicted and known experimental values
for a test dataset after a model has been constructed using the full training dataset. Labeling the

average of the predicted values as ¯̂y, R is defined as: R =
P

(yi−ȳ)(ŷi−¯̂y)√
P

(yi−ȳ)2
P

(ŷi−¯̂y)2
.

Good prediction performance is signaled when the values of both metrics are close to 1. A
perfect predictor would have a [q2, R] vector with length

∣

∣[1, 1]
∣

∣

2
=

√
2.

3.4 SVM experiments using steroid datasets

For SVM experiments with ecdysteroids, the first 71 compounds are used for training data.[9]
Four of the 37 test set ecdysteroids (77, 78, 83, 90) have inexact EC50 values reported, and were
excluded in a previous analysis[10]; we accordingly exclude them for SVM experiments using the
train-test split in ref. 10. For Cramer steroid SVM experiments, compounds 1-21 are for training
and compounds 22-31 are for testing.[1] The activity levels of the hVDR ligands cover a large range
[0.1, 9688], and dividing this data into two classes based on a single value for SVM experiments
is nonsensical. For both steroid datasets, we separate test and training datasets into two classes
using EC50 thresholds of 6, 6.5, and 7, based on EC50 averages.

Detailed tabular results of the different kernel extensions are deferred to ref. 8, where our
proposed methods show clear improvements for the ecdysteroid dataset. Calculated averages of
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Figure 3: Ecdysteroid classification performance, where each point is the per-parameter set AUC
pair of the previous graph kernel (horizontal axis) and our proposed extension (vertical axis).
Values in parentheses indicate the percentage of superior performance over all parameter sets for
a particular threshold. Left: training data; Right: test data.

optimal tree depth and weight validate our belief that complex subtree patterns are more useful
in compound recognition. We plot the ecdysteroid AUC scores for each of 3 ∗ 4 ∗ 5 = 60 (tree
space/depth/weight) parameter sets along non-chiral (horizontal) and chiral-cis-trans (vertical)
axes in Figure 3. A majority of points located above the even performance line confirms the
improvement that chirality contributes to tree pattern graph kernels.

3.5 Results with SVR

3.5.1 SVR experiment datasets

The hVDR dataset has no defined test dataset, and hence no value of R can be calculated. To
circumvent this problem, we created five experiment datasets by selecting 30% of the data to serve
as a test set. The test set is uniformly drawn at random independently for each experiment. We
also created randomized training and test sets of the Cramer steroid and ecdysteroid datasets, to
evaluate our proposed methods more completely. Including train-test splits from the literature,
we created 18 experiments to perform (6 Cramer[1], 7 ecdysteroid[9, 10], 5 hVDR).

If a particular kernel matrix contains little or no variance, time will be wasted trying to learn
from data. We transform each kernel matrix value by dividing it by the matrix mean, and then
calculate the matrix variance σ2

x̄. SVR experiments are aborted if σ2
x̄ < 0.1 for a parameter set

matrix; otherwise the grid of (ǫ, C) pairs are then applied to SVR experiments for each matrix.
To compensate for the large range of hVDR dataset values, an adjustment

activityadj =

{

⌊100 ∗ ln(activityorig)⌋ activityorig ≥ 1

0 activityorig < 1
(5)

is used to scale down the range of activity values.11 The bottom case of Eq. (5) is necessary to
prevent activity values less than 1 from stretching the scaled range. The result is a reduction in
standard deviation from 1773.11 to 236.71, and this standard deviation is useful as a heuristic for
the SVR tube width ǫ.

3.5.2 Assessing results using q2 and R

We compare our proposed extensions to the results published using CoMFA and a 2D topological
descriptor extension. We also use the fingerprints from PubChem, which can be extracted for any

11activityorig refers to the unscaled hVDR differentiation induction activity value in reference 11.
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Table 1: Comparison of the graph kernels. For train-test splits as defined in the literature,
references are given. For random train-test splits, the split number is given after the dataset name
(e.g., hVDR ligand-1). Format: vopt =

∣

∣vopt

∣

∣

2
, where vopt = [q2, R] is as selected by Eq. (6). The

top performing method per dataset is highlighted in bold.

Methodology Cramer steroid[1] Ecdysteroid[9] hVDR ligand-1

Reference 4 [0.830,0.940]=1.254 [0.750,0.900]=1.172 -
Reference 8-B - [0.690,0.350]=0.774 -
PubChem SVR [0.258,0.398]=0.475 [0.055,0.718]=0.720 [0.028,0.443]=0.444

No CH/CT [0.848,0.621]=1.051 [0.297,0.731]=0.789 [0.019,0.335]=0.336
CH [0.722,0.707]=1.011 [0.323,0.900]=0.956 [0.721,0.610]=0.944

CH+CT [0.722,0.707]=1.011 [0.320,0.902]=0.957 [0.706,0.676]=0.977

Cramer steroid-4 Ecdysteroid[10] hVDR ligand-3
No CH/CT [0.822,0.835]=1.172 [0.311,0.614]=0.688 [0.000,0.223]=0.223

CH [0.784,0.863]=1.166 [0.378,0.660]=0.761 [0.632,0.805]=1.023
CH+CT [0.784,0.863]=1.166 [0.373,0.675]=0.771 [0.565,0.868]=1.036

compound by using the CACTVS software package.[16] QSPRs that are useful for real application
should meet or exceed mq2 = 0.50 and mR =

√
0.60 = 0.774. The results of the comparison are in

Table 1. In the table, “optimal” models vopt = [q2, R] per extension are given (along with resulting
L2 norm), where optimal is defined by the following criteria12:

vopt = argmin
v

‖v − w‖

s.t.

{

w = [1, 1] ∃ v | vq2 ≥ mq2 or vR ≥ mR

w = [mq2 ,mR] otherwise

. (6)

The goal of Eq. (6) is to select the model which represents the best balance between training and
test results.

3.5.3 Assessing improvement graphically using q2 and R

In Figure 4, we visualize the performances of the QSPRs by plotting q2 values on the horizontal
axis and R values on the vertical axis. Vertical and horizontal bars are placed at mq2 and mR.

In each plot of Figure 4, the number of parameter set models (q2 > 0, R > 0) is listed per
extension. On average, approximately 25% (10000/40000) of the parameter set models (using
all three extensions) met this requirement, meaning that 75% of models were discarded for the
figures. Though this may seem rather high, it is important to remember that the large majority
of optimal models are from parameter sets with larger values for the tree depth setting, and most
of the parameter sets with smaller values for the tree depth are discarded. For the hVDR dataset,
many more models were discarded because of the original graph kernel’s formulation that did not
consider stereocenters.

The results in Figure 4 show again that chiral graph kernels are an important and useful ex-
tension for 2D-QSPR research, especially considering the hVDR ligand data. A graphical example
of experiments using PubChem fingerprints is shown in Figure 5, where comparison with Figure
4 demonstrates that the proposed methods outperform by a considerable margin. We emphasize
the importance of randomizing the dataset, as without such our methods might appear insufficient
for the Cramer steroid reference set (Table 1 and Figure 4). Also, the use of heuristics for setting
the value of ǫ is validated, as most of the optimal models in Figure 4 and ref. 8 use one of the two
heuristic values.

12‖x − y‖ is the standard Euclidean distance of x and y.

10



 0.6
 0.65

 0.7
 0.75

 0.8
 0.85

 0.9
 0.95

 1

 0.5  0.6  0.7  0.8  0.9  1

Cramer steroid data random split 4, loo CV

 q2

 R
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Key: Extension(s); Opt [q2,R] model and parameters (t,h,λ,N,γ,ε,C)
3777 points: ch-0 ct-0;[0.822,0.835]=1.172;(u,4,0.5,-,-,0.100,10)
3367 points: ch-1 ct-0;[0.784,0.863]=1.166;(b,6,0.5,+,-,0.100,10000)
3366 points: ch-1 ct-1;[0.784,0.863]=1.166;(b,6,0.5,+,-,0.100,10000)
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differentiation adjusted random-3, loo CV
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Key: Extension(s); Opt [q2,R] model and parameters (t,h,λ,N,γ,ε,C)

3965 points: ch-1 ct-0;[0.632,0.805]=1.023;(b,5,0.3,-,-,49.482,100)
3953 points: ch-1 ct-1;[0.565,0.868]=1.036;(u,5,0.4,-,-,24.741,10)

314 points: ch-0 ct-0;[0.000,0.223]=0.223;(s,5,0.5,+,0.1,0.100,10)

Figure 4: Plots of q2 and R performance for selected experiments. Each plot includes all possible
parameter combinations and is trimmed to the region q2 ≥ 0, R ≥ 0. For each extension, the
model selected by criteria (6) is shown along with its L2-norm and parameter set. “ch/ct-0/1”
refers to disabling(0)/enabling(1) of each chiral/cis-trans extension. Top : A randomized Cramer
steroid dataset; Bottom : A randomized hVDR ligand dataset.
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Figure 5: A q2/R plot similar to Figure 4 using the PubChem fingerprints as the features for
QSPR model construction. The graph kernels are considerably more effective than the PubChem
fingerprints.

3.5.4 Comparison to other models

As Table 1 shows, the proposed extensions produce an improvement in QSPR accuracy over the
existing non-chiral kernel. This is extremely clear for the two hVDR datasets shown in Table 1;
the conclusion is the same for other hVDR random train-test splits not shown in the table.

For the Cramer steroid dataset, ref. 4 produces better results for the published training-
test split[1], though we found that by shuffling the training and test datasets, we could produce
comparable performance. Notice in Table 1 that the shuffled performance compared to the original
Cramer steroid train-test split is improved. Though q2 performance for the Cramer steroid datasets
without the proposed extensions was marginally higher than the chiral kernel, this is simply due
to a lack of stereoisomer pairs in the dataset. For the ecdysteroid dataset, we could achieve
performance close to but unfortunately not quite as good as ref. 4. Like the hVDR dataset, the
extensions produce an improvement in ecdysteroid QSPR performance when ample stereoisomers
exist. There are a number of points which merit further discussion.

First, the method herein using kernels is easier to understand than the highly complex topolog-
ical extension in ref. 4. We have included no specific chemical knowledge in our methodology yet
we have provided comparable performance using only the information contained in the datasets.

Second, the proposed method is a new alternative available when other QSPR methods are
unsuccessful. When tested with cross validation (CV), the new kernel’s performance improved
as more data became available. For example, in the hVDR 5th random train-test split exper-
iment (not shown in Table 1), the chiral methodology developed increasingly better models of
the dataset, as the 2-fold to 5-fold to LOO-CV performance transited

∣

∣[0.238, 0.673]
∣

∣

2
= 0.714 →

∣

∣[0.359, 0.832]
∣

∣

2
= 0.906 →

∣

∣[0.515, 0.854]
∣

∣

2
= 0.997, satisfying mq2 and mR.13 The CH+CT ex-

tension had similar results for the experiment using the 5th shuffling of ecdysteroid data (results
not shown in Table 1). Future datasets with large numbers of enantiomers should exhibit similar
performance improvements. This is particularly relevant in situations such as drug design and
refinement where more data becomes available over time.

Third, because the proposed method is a kernel method, it is not restricted to use in Sup-

13Though the 2-fold results are for a preliminary version of the kernel, results with the current kernel should be
almost the same.
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port Vector Machines. It can be conveniently inserted into other kernel-based pattern analysis
techniques, a considerable merit.[18]

Fourth, the results show that complex tree patterns are important for property prediction. The
optimal tree depths both with and without chirality are in the larger range of values tested. Mahé
and Vert’s non-chiral tree-pattern kernel has already been sufficiently shown to be effective[3], and
our results enhance performance.

Fifth, additional assessment using y-randomization[19], where the target properties of the train-
ing dataset were randomized by shuffling, concluded that the proposed methodology is learning
from the input examples. Abbreviating detailed results, in a number of experiments, no model
such that [q2 > 0, R > 0] could be derived using the full range of parameters tested, even with
the stereoisomer extensions. Especially in the case of the hVDR dataset, the greatly boosted
performance as a result of the proposed extensions is not attributable to chance correlation.

4 Conclusion

In this paper, we have extended the tree-pattern graph kernel method to account for stereoiso-
merism, such that stereoisomers with multiple stereocenters and/or multiple cis-trans double bonds
can be systematically accounted for. If the number of stereocenters was limited to a small number,
manual assignment of R/S and E/Z labels would be sufficient, but in reality there are many cases
in which a compound contains a non-trivial number of stereocenters. Drug design is very depen-
dent on chirality[6], and being able to accommodate this situation is one of the major advantages
of our method. As far as the authors are aware, this is the first method that does such using a
portable kernel method. By judiciously selecting chemical knowledge to design further customized
kernel functions, we anticipate that we can boost performance beyond what we have achieved thus
far.
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