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Acute kidney injury (AKI) is a common public health problem and has a significant impact on cardiovascular disease, mortality 
and increased hospital costs. Also, AKI can progress to chronic kidney disease (CKD). Therefore, early diagnosis is very important 
for AKI. Serum creatinine (SCr) is a well-known biomarker in the diagnosis of AKI. However, changes in SCr levels are insufficient 
in early diagnosis so, new biomarkers are needed. Because of that, the search for biomarkers for the early detection of AKI is 
an ongoing process. In recent years, early diagnosis, prognostic and predictive biomarkers have been discovered to replace or 
support SCr in the diagnosis of AKI. New biomarkers can help early diagnosis and effective management of AKI. Since there 
are many biomarkers, when and under which condition these biomarkers should be used cause confusion. In this review, we 
aimed to construct and ease to use classification of these AKI biomarkers and summarize the current literature. We have divided 
the biomarkers into two main categories: renal and non-renal origin. Then, we have classified the biomarkers of renal origin 
as glomerular, tubular and unknown renal site. We have also described the clinical use of these biomarkers for diagnosis and 
prognosis.
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R e v i e w

INTRODUCTION

Acute kidney injury (AKI) is a common public health prob-
lem that often occurs in patients followed up in the hospital. 
Although a significant proportion of those affected reside in 
low- and middle-income countries, they are linked to short-

term mortality and increased healthcare costs in high-income 
countries too (1). A systematic review of 312 cohort studies 
covering 49 million patients showed that 1 in 5 adults and 1 
in every 3 children had AKI during hospital care. Mortality 
associated with AKI has been reported to be 23.9% in adults 



12

Biomed Rev 31, 2020

Deġer et al.

and 13.8% in children (2). In the United States, about 300,000 
people die annually due to AKI, and 1.2 million people develop 
AKI during their hospitalization, resulting in an average 3.5-
day increase in hospitalization. The annual cost of inpatient 
care for AKI is estimated at 1.02 billion GBP, slightly above 
1% of the total budget of the National Health System in the 
UK. The lifetime cost of post-discharge care for people who 
have undergone AKI in the hospital between 2010 and 2011 
is estimated to be 179 million GBP (2).
 Although AKI is considered to be a self-limiting condition 
in the early stages, it is known to be associated with long-term 
consequences such as progression to chronic kidney injury 
or end-stage renal failure, cardiovascular diseases and death 
(1,3). International criteria for the diagnosis and staging of 
acute kidney injury have facilitated the characterization of 
short and long-term health consequences of AKI.
 Early diagnosis is very important for AKI with specific 
treatment chances to reverse the damaging process in kidneys 
(4). In the mild damage period, intact nephrons compensate 
and protect glomerular filtration rate (GFR). Only when this 
compensation is exceeded, GFR begins to decrease. This 
subclinical stage cannot be diagnosed with creatinine level. 
Creatinine level can be affected by many non-kidney factors 
and increases after a significant part of the nephrons are af-
fected (5). Additional tools may be required to diagnose AKI, 
especially since creatinine and urine output values can be 
misleading in situations such as excessive fluid overload or 
decreased circulation volume, muscle loss, and sepsis (4).
 Recently, significant progress has been made in the detection 
and validation of new biomarkers to replace or support serum 
creatinine (SCr) in the diagnosis of AKI. In this review, we 
aimed to summarize these markers that indicate kidney injury, 
and that have diagnostic and prognostic values.

BIOMARKERS WITH RENAL GLOMERULAR ORIGIN

Soluble urokinase plasminogen activator receptor (su-
PAR) is a circulating glycosyl-phosphatidylinositol-bound 
membrane protein, the soluble form of the urokinase-type 
plasminogen activator receptor (uPAR). It is expressed in 
endothelial cells, podocytes and immunological cells such as 
monocyte-lymphocyte (6). Circulating suPAR play a role in 
the immune activation, inflammation and physiopathology of 
kidney disease (7, 8). SuPAR causes podocyte dysfunction, 
glomerular damage and proteinuria with the pathological 
activation of vß3 integrin expressed in podocytes as a result 
of high levels of long-term circulation (9-11). It also plays a 

role in the development of AKI pathogenesis, by changing the 
proximal tubular mitochondrial energy metabolism, making 
the kidney susceptible to damage through increased oxidative 
stress.  SuPAR increases before AKI and predicts that the risk 
of increased AKI. It is thought to have a pathogenic role in 
the development of AKI. SuPAR may serve as a marker of 
infection and was used for therapeutic purposes in several 
studies (6, 12, 13).

BIOMARKERS WITH RENAL TUBULAR ORIGIN

KIM-1 is a transmembrane protein, which is secreted at low 
levels in the physiologically healthy kidney, increasing propor-
tionally with age and released from the proximal tubule after 
renal tubular injury (14). It provides kidney recovery and tubu-
lar regeneration with its apoptotic body clearance mechanism 
(15, 16). Its increase in tubular damage is detected within 24 
hours (17) and its expression reaches its peak after 2-3 days 
(18). This early increase of KIM-1 is precious in the early 
diagnosis of AKI since it is before creatinine elevation (19).
 Liver-type fatty acid binding protein (L-FABP) is a cyto-
solic protein that binds long chain fatty acids and transports 
them to the mitochondria or peroxisomes, where the fatty acids 
are metabolized through beta-oxidation. Because it binds to 
long-chain fatty acids and oxidation products, it acts as an 
antioxidant against the toxic effects of oxidative intermedi-
ates on the cell. It is expressed in the liver, pancreas, stomach, 
intestine, lung and kidney (20). It is expressed in the proximal 
tubule in the kidney, thrown into the tubular lumen together 
with the toxic peroxisomal products to which it is attached and 
absorbed through the proximal tubule through megalin medi-
ated endocytosis (21); it is not normally detected in urine. Its 
expression increases with the degree of acute kidney damage 
and appears in urine. Increased L-FABP expression is thought 
to protect the kidney against tubular and oxidative damage 
(22). Hence, it is a biomarker with therapeutic potential that 
can be used in the early diagnosis of AKI (23, 24).
 NAG (N-acetyl-β-D-glucosaminidase) is an enzyme pro-
duced by lysosomes of high molecular weight renal proximal 
tubular cells. Due to the large molecular weight (>130-kDa), 
it cannot be filtered from glomeruli. Therefore, an increase in 
urine indicates proximal tubule damage (23). It can be used in 
early diagnosis of AKI since the post-injury increase is before 
the microalbumin begins to appear in the urine and increase 
in SCr (25, 26).
 Tissue Inhibitor of Metalloproteinases-2 (TIMP-2) and 
Insulin-like Growth Factor – Binding Protein 7 (IGFBP7), 
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known as NephroCheck, are G1 cell cycle arrest markers. 
TIMP-2 proteins are endogenous inhibitor of the matrix 
metalloproteinases and suppress proliferation of endothelial 
cells in response to angiogenic factors. IGFBP7 regulates 
the binding of IGF to its receptors and the availability of 
insulin-like growth factors in tissues. TIMP-2 and IGFBP7 
are expressed in the early stages of cellular stress after acute 
injury, from the TIMP-2 distal tubule and IGFBP7 proximal 
tubule (although various parts of the nephron can produce 
both markers) in response to DNA damage and other dam-
age. As a protective mechanism, they stop the cell cycle by 
increasing and activating p53, p21 and p27. In this way they 
block the division of damaged cells (24, 27). They undergo 
glomerular filtration and appear in urine (28). The increase 
in its expression indicates the stress of the kidney rather than 
damage (29). After exposure to stressors (e.g., nephrotoxins), 
rapid increase long before creatinine increase has an important 
role in identifying individuals at risk of AKI (30, 31). Urinary 
TIMP-2 and IGFBP7 combination, NephroCheck, is a FDA-
approved biomarker useful for early identification of acute 
kidney damage, predicting irreversible AKI, kidney healing 
and long-term kidney outcome (32).
 Alpha-glutathione S-transferase (α-GST) is a member 
of the family of cytoplasmic enzymes that detoxify various 
compounds by conjugating them with glutathione. It increases 
tubular cells’ resistance to stressful conditions. The α-GST pro-
duced in the proximal tubule accumulates when the integrity of 
the kidney tubules is impaired and becomes detectable in the 
urine (22, 33). Due to it is urinary proximal tubule enzyme and 
its increase after AKI, α-GST can be used in early diagnosis 
in combination with other biomarkers, if not alone.
 IL-18 is a proinflammatory cytokine that plays a role in in-
nate and acquired immunity. IL-18 is produced by renal tubular 
cells, macrophages, keratinocytes, osteoblasts, dentritic cells 
and intestinal epithelial cells (24). Expression from proximal 
tubules increases after acute kidney injury, and urine IL-18 
increases within the first 6 hours, 1 day before SCr increase 
(34). Urine IL-18 is useful for predicting the early diagnosis 
and prognosis of AKI (22, 35, 36).
 Na+/H+ exchange regulatory factor 1 (NHERF1) is a 
member of PDZ scaffolding protein family which anchors it 
to the cytoskeleton in the subapical plasma membrane region 
(37). NHERF1 is expressed in all epithelial cells, but is an 
important scaffold protein for transport proteins, especially in 
proximal tubule cells. NHERF1 plays a major role in regulating 
ion transport and defining the proximal tubule brush border 

membrane composition (37, 38). In NHERF1 deficiency, a 
modified transcription pattern and worse survival have been 
observed in proximal tubule cells, and this deficiency or loss 
has been shown to increase susceptibility to acute kidney 
injury (39). Bushau-Sprinkle et al (39) published the first 
study investigating the role of NHERF1 in cisplatin-induced 
AKI, and reported that NHERF1 expression can be used as a 
biomarker for susceptibility to AKI or as an innovative treat-
ment to protect against cisplatin-induced AKI.
 Netrin-1 plays a role in the regulation of angiogenesis, cell 
migration, tissue morphogenesis and inflammation and is a 
multifunctional laminin-related protein known as a neuronal 
guidance protein (40). It is expressed in many tissues, including 
kidney tubule cells, primarily in the nervous system (41). Its 
expression increases in proximal tubular epithelial cells after 
acute kidney injury and can be used in the early diagnosis of 
AKI since this increase is prior to SCr (20). However, more 
studies are needed to use this biomarker in the early diagnosis 
of AKI.
 Matrix metalloproteinases (MMPs) are a large family 
of proteinases containing neutral endopeptidases that play a 
role in various cellular processes and in the remodeling of the 
extracellular matrix. Its activities are regulated by endogenous 
tissue inhibitors of metalloproteinases (TIMPs) and various 
mechanisms. Abnormal expressions cause kidney patholo-
gies (42). Although many MMPs (such as MMP-2, MMP-8, 
MMP-7, MMP-9, MMP-10) have been associated with AKI, 
MMP-7 stands out. MMP-7, is the smallest matrix metallopro-
teinase, predominantly localized in renal tubular epithelium, 
is synthesized as an inactive zymogen, it is secreted zinc- and 
calcium-dependent endopeptidase and can be easily excreted 
in urine (43, 44). It takes part in processes such as tissue 
remodeling, apoptosis and inflammation. It is generally not 
detected in normal renal renal tubular epithelium. MMP-7 is 
induced in injured tubules (in predominantly proximal tubules) 
by activation of intrarenal Wnt / beta-catenin after AKI and 
relieves apoptosis by breaking FasL (45, 46). It has a protec-
tive role in AKI by alleviating kidney damage and promoting 
tubular regeneration (46, 47). It is a new biomarker that can 
be used in the early diagnosis and prognosis of AKI because 
it increases after AKI and is useful in predicting the risk of 
AKI (43, 46-48).
 Midkine (MK) is a multifunctional heparin-binding growth 
factor, induced by oxidative stress. It has biological roles such 
as cell growth and survival, migration and chemotaxis (49). 
Along with many kidney pathologies, cancer development is 



14

Biomed Rev 31, 2020

Deġer et al.

associated with tissue inflammation and neuronal development. 
It does not undergo glomerular filtration as it is found in serum 
as high molecular weight complexes (250 kD) with MK bind-
ing proteins. Therefore, it is rarely seen in urine in healthy in-
dividuals (50). Expressed from low levels of proximal tubules 
in the healthy kidney, MK is induced from damaged tubules 
in the early phase after acute kidney injury, with one of the 
mechanisms of endothelial dysfunction involving inflamma-
tion, oxidative stress and activation of the renin-angiotensin 
system mechanisms. As a result of MK induction, AKI is 
exacerbated by an increase in leukocyte infiltration into the 
tubules (50-52). It is a biomarker that can be used in the early 
diagnosis and as a preventive drug target due to the increase 
in the early phase, high sensitivity and specificity before SCr 
increase after AKI (26, 50, 53, 54).
 MicroRNAs (miRNAs, miR) are small endogenous mol-
ecules belonging to the non-coding RNA class, about 18-25 
nucleotides in length, that combine with transcriptional levels 
of messenger RNAs to regulate various gene expression. They 
control the expression of a large number of proteins through 
many targets and play a role in apoptosis, proliferation, angio-
genesis and inflammatory processes (55). It also participates 
in many physiological and pathological processes such as 
embryonic development, epithelial cell polarity, hematopoietic 
system differentiation and nervous system development (56). 
Dysregulation of miRNAs are associated with many kidney 
diseases; kidney carcinoma, nephropathies, acute and CKD, 
graft rejection (57). Abnormally expressed miRNAs play an 
important role in the development and progression of AKI. 
Hence, many miRNA are being studied. Especially urinary 
and plasma miRNA-21 concentrations after renal tubular 
injury have an important potential in detecting AKI and their 
progression (58, 59). MiRNAs that can be detected in urine, 
serum, plasma and kidney tissue are considered as potential 
biomarkers because they show an appropriate change in the 
degree of injury (60).
 Angiotensinogen (AGT) is an amino acid that plays an 
important role in the renin - angiotensin system (RAS) and 
leads to the formation of angiotensin I. It is produced in the 
kidney by proximal tubule cells and thick ascending limb of 
Henle (61). Due to its high molecular weight (65 kD), it is 
not filtered (62). Detection in urine is due to intra-renal RAS 
origination rather than systemic RAS activation and it oc-
curs by being released to the tubular lumen (62, 63). uAGT 
is upregulated in tubular cells after AKI and correlated with 
intra-renal RAS activation and severity of kidney damage (61, 

64). uAGT is a biomarker indicating kidney damage that can 
be used for early detection of AKI and prediction of chronic 
kidney disease earlier than SCr and proteinuria (65-67), as 
well as to estimate the probability of recovery from AKI (61).
 Sodium/Hydrogen exchanger isoform (NHE3) is the most 
abundant sodium transporter in renal tubule and it is localized 
in cortical proximal tubules and medullary thick ascending 
limb of Henle. NHE3 is in charge of proximal reabsorbtion 
of 60–70% of filtered sodium from the urine (68). Normally, 
NHE3 is not found in the urine; however, abnormal eleva-
tions have been identified in critically ill patients with AKI 
(69). Du Cheyron et al (69) also reported that urinary NHE3 
protein may be useful to differentiate acute tubular necrosis, 
prerenal azotemia, and intrinsic AKI other than acute tubular 
necrosis. In addition, NHE3 was shown that is more valuable 
than to RBP to differentiate pre-renal AKI and ATN and cor-
related positively with SCr concentration (70). In conclusion, 
according to AKI studies, urine NHE3 protein may be a new, 
sensitive and specific marker of AKI (71).
 Neutrophil gelatinase-associated lipocalin (NGAL) is a 
member of the lipocalin superfamily, which was first discov-
ered in neutrophil granules. Also known as lipocalin 2. It is 
found in a large number of human tissues -e.g. kidney epithe-
lium, liver, respiratory tract, salivary gland, stomach, colon, 
prostate and uterus. It is found at a higher level in women 
than men and increases with age (21). It is found in proximal 
and distal tubular epithelial cells in the kidney and is respon-
sible for iron traffic within these epithelium (72). The plasma 
NGAL level increases as it is released from neutrophils during 
inflammation or infection. Therefore, the urine level should be 
used to assess acute kidney damage. It detects kidney damage 
before serum urea-creatinine increases. It also appears before 
the increase of NAG and β-2 microglobulin used in the early 
diagnosis of AKI. Thus, it diagnoses early stage AKI, in which 
kidney damage is reversible (24, 73).
 Clusterin is a glycosylated protein found in apoptotic 
and antiapoptotic pathways in many organ systems (24). It 
has various cellular biological activities; lipid recycling, cell 
protection, cell adhesion and aggregation (74). It is found in 
tubules in the kidney and has an antiapoptotic effect. Increased 
gene expression occurs after acute tubular damage (24). It is 
important in detecting tubule damage due to it is not being 
found in glomeruli and free filter. Although it is also associ-
ated with distal tubule and collecting duct damage besides 
proximal tubule damage, it is more valuable than BUN and 
SCr in early detection of proximal tubule damage. Clusterin 
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levels are proportional to the degree of proximal tubule dam-
age (75, 76). Thus, clusterin, like KIM-1, is one of the early 
markers in detecting proximal tubular damage.
 Uromodulin is a glycoprotein, also known as Tamm-
Horsfall protein, located in the thick ascending limb of the 
loop of Henle and distal tubule of the kidneys. Uromodulin is 
secreted into urine, which is also the most abundant excreted 
urine protein (77). One of the most important functions of uro-
modulin in the kidney is its protective role in the experimental 
models of AKI (78, 79). This protective effect against AKI 
results from the immunomodulatory function of uromodulin. 
Therefore, it downregulates inflammation both systemically 
and in the kidney. At the begining of injury in experimental 
models of AKI, the expression of uromodulin significantly 
decreased. Decreased uromodulin suggests that early AKI 
causes uromodulin deficiency in the kidney (80).
 Osteopontin (OPN) is a phosphorylated glycoprotein which 
is identified in bone tissue. It is expressed in several tissues 
but produced in kidneys (especially distal tubule and loop of 
Henle) and secreted into the urine (81). Osteopontin is reported 
in lots of human studies that it could be a novel biomarker for 
several kidney diseases (82). It has been found to be a promis-
ing marker in patients with acute kidney injury who need renal 
replacement therapy and it is related with sepsis and renal 
replacement in these patients (83). Clinical and experimental 
studies have enounced that OPN can supply survival signals  
and prevent apoptosis in tubular epithelial cells in humans. In 
AKI patients, OPN is strongly upregulated and demonstrates 
both its role as a marker of injury and its relationship with 
outcome and severity (84).
 π-Glutathione S-transferase (π -GST) is a cytosolic en-
zyme that catalyzes the conjugation of glutathione for transport 
out of the cell. It acts a main role in keeping of cells from on-
cogenic and cytotoxic agents (85). The 35th week of pregnancy 
is important for the localization of π-GST. Until this time, it 
has been found in the proximal tubules and Bowman capsule, 
after that time it is expressed in the distal tubule and collect-
ing tubules (86). Therefore, π-GST is released from damaged 
proximal tubules in preterm newborns and released from 
damaged distal tubules in adults and older children. π-GST is 
released in urine in kidney injury which is expressed a early 
marker of tubular injury (87). In several studies urinary GST 
has assessed as a biomarker of AKI in  children and adults. 
Also, π-GST could be a significant factor for early diagnosis 
of severe AKI (88).
 Calbindin is a cytosolic vitamin-D-dependent calcium 

binding protein. It exists in several cells and tissues such as 
peripheral and central nervous systems, enteric neuroendocrine 
cells (89), distal tubular cells and proximal part of collecting 
duct in kidney (90). Calbindin is considered a biomarker 
in the prediction of kidney injury, as it is released from the 
distal tubule of the injured kidney where Ca+2 reabsorption is 
involved (91). After renal injury, urinary calbindin concentra-
tions increase rapidly peaked at 6 hours and it return to baseline 
values by 24 hours (92).
 Calprotectin is an antimicrobial protein that originates from 
neutrophils and monocytes. It is produced by epithelial cells of 
collecting duct in kidney. Calprotectin consists of two units: 
S100A8 and S100A9. They are activators of toll-like receptor 
4 (TLR4) which mediates innate immunity by calprotectin 
(93). Calprotectin and TLR4 amplify the inflammatory cas-
cade and calprotectin acts as a damage-associated molecular 
pattern protein. This characteristic role has been observed in 
the pathophysiology of various diseases even in the cellular 
mechanism of AKI, innate immunity is activated by TLR4 
(94). Chang et al (94) also reported that urine calprotectin 
is highly useful for diagnosis of AKI. Urinary calprotectin 
is also important in discrimination of intrinsic and prerenal 
AKI. Consequently, calprotectin displays in higher levels in 
intrinsic AKI than prerenal AKI makes it valuable marker in 
the differential diagnosis of AKI both in pediatric and adult 
patients (93, 95).
 Trefoil factor (TFF)-3 is a small (13.1 kD)  peptide that 
is a member of the trefoil factor family. It is expressed by 
epithelial cells within gastrointestinal tract (especially goblet 
cells of the intesine and colon) and the kidneys. In the kidney, 
TFF-3 is produced by cells of cortical collecting ducts and 
proximal and distal tubules. It plays a main role in the repair 
and protection of epithelial cells and tubular regeneration early 
after kidney injury (96). Urinary levels of TFF-3 is correlated 
with renal function after AKI (97). As a result, TFF3 is part of 
the kidney’s regenerative defense and has also been recognized 
as a biomarker of acute and chronic kidney injury (89).
 Galectin-3 (GAL-3) is a protein from the leptin family 
that binds to ß-galactosides. It is expressed in many tissues, 
including kidney. It has many functions in the kidney, such 
as regulating cell growth, proliferation, differentiation, and 
inflammatory response (98). Its expression in tubular inflam-
matory cells increases in response to acute damage to the 
kidneys (99). Therefore, it may be useful to determine acute 
inflammatory kidney damage.
 Dickkopf-3 (DKK-3) is a glioprotein expressed from renal 
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tubular epithelial cells and one of the regulators of the Wnt/ß-
catenin pathway (100). Its secretion to urine increases with 
tubular stress. Although there is no decrease in GFR, its rise 
in urine indicates tubular stress (101). Therefore, it can predict 
AKI and kidney function loss in patients showing a GFR value 
within normal limits without albuminuria (102). DKK-3 makes 
AKI risk predictable.
 C-C motif chemokine ligand 14 (CCL14, HCC-1) is 
members of the chemokine family. CCL-14 is an important 
chemokine in monocyte / macrophage recruitment. It takes part 
in tissue injury and repair processes. The release of inflam-
matory mediators after injury causes the release of CCL-14 
from tubular epithelial cells. The released CCL-14 induces 
chemotaxis of monocytes to the injury site. As monocyte / 
macrophage recruitment causes kidney tissue damage and 
dysfunction (103), CCL-14 is thought to play a mediating role 
in AKI (104). The amount of CCL-14 secreted may indicate 
the degree of tissue damage. Urine CCL-14 level predicts AKI 
prognosis and can also be a therapeutic target in AKI (104).
 Chitinase 3-like protein 1 (CHI3L1, YKL-40) is a low 
molecular weight (39 kDa) glycoprotein secreted from active 
macrophages, neutrophils and fibroblasts and various cell types 
in response to inflammation. It is also produced by tubular cells 
in healthy kidney tissue. It is freely filtered by glomeruli due 
to its low molecular weight. Its secretion from macrophages 
in the kidney increases after tubular damage or tubular stress 
(105, 106). CHI3L1 levels are associated with tubular injury 
and repair, inflammation, hemolysis, endothelial activation 
(107-109). Urinary CHI3L1 levels are associated with the 
severity of AKI and increased cystatin C, suggesting that it is 
a biomarker that can be used to diagnose AKI (108-111).

BIOMARKERS WITH UNKNOWN SPECIFIC RENAL SITE

Hepcidin-25 are iron-retaining antimicrobial proteins that 
regulate the circulating iron by breaking down the iron carrier 
ferroportin (112). Although the origin of urinary hepcidin-25 
is unknown, it undergoes glomerular filtration and is partially 
absorbed from the proximal tubules (113). After renal ischemia 
reperfusion injury, hepcidin-25 increase is observed to regulate 
ferroportin regulation to alleviate the effects of circulating 
iron release. This increase is thought to be a renoprotective 
response to reduce kidney damage (114-116). The combined 
use of Hepcidin-25 with other biomarkers may ease detection 
of the newly started AKI (117).

Beta-trace protein (BTP) is a protein from the lipocalin 
family known as prostaglandin D2 synthase. It is synthesized 

in many organs including kidney, especially central nervous 
system glial cells. Since it has low molecular weight and 
does not bind to plasma proteins, it is freely filtered by the 
glomerulus and reabsorbed by the proximal tubule (118). BTP, 
seen as the determinant of GFR, can be used to predict AKI, 
but its diagnostic accuracy is lower than serum cystatin C or 
serum and urine NGAL (119-121).

Proenkefalin (PENK) is an endogenous opioid polypeptide 
hormone expressed in many tissues, including the kidney 
(122). It is a biomarker that shows kidney function (not dam-
age) closely related to GFR (123, 124). It is a predictor of the 
development of AKI because it increases before SCr (125).

BIOMARKERS WITH NON-RENAL ORIGIN

Albumin is a high molecular weight protein (66.5 kD)  that 
is rarely detected in the urine due to its filtration barrier and 
its reabsorption in the proximal tubules. Albumin can be seen 
in the urine when there is glomerular and/or tubular kidney 
injury (126). However, serum  albumin is a negative acute 
phase protein in acute inflammation that associated with de-
creased albumin synthesis and increased catabolism that has 
also been associated with AKI (127). Normally, albumin is 
silent in the kidney but it can be induced by AKI and after 
that renal cortical mRNA expression increases. Albumin has 
been used as a biomarker in both glomerular and tubular inju-
ry. As an indicator of glomeruler injury, abnormal change of 
urine albumin can further damage the nephron tissue (128). 
On the other hand in acute tubular injury, urinary albumin has 
been shown to be superior to urea and SCr (129, 130). As a 
result, albumin is used as a biomarker in the early diagnosis 
of AKI and has many advantages such as using clinical rou-
tine, commercial availability and cost-effective (129).

Ischemia Modified Albumin (IMA) occurs as a result of the 
production of reactive oxygen species after ischemia. It is the 
form of albumin formed by impaired ability to bind to certain 
metal ions such as copper and nickel, especially cobalt. It is 
a nonspecific biomarker that can be measured in a short time 
after ischemic injury (131). Studies have been shown to be 
used after renal ischemic injury (132, 133). Although not alone, 
it can be used with other biomarkers in the diagnosis of AKI.

Alpha1 microglobulin (a1-MG) is a low molecular weight 
protein that is synthetized in liver, freely filtered by the glo-
merulus and almost completely reabsorbed by the proximal 
tubular cells. Lower levels of α1-MG is associated with pre-
served tubular reabsorptive capacity (134). In the presence of 
proximal tubule cell dysfunction, renal absorption decreases, 
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and urinary excretion increases so, in the urine, α1-MG con-
centration is elevated. Higher α1-MG has been found to be a 
greater risk factor for AKI, regardless of GFR, albumin con-
centration, other risk factors, and markers of tubular cell injury. 
As a result, α1-MG is cost-effective and valuable biomarker 
for the early diagnosis of AKI (135, 136).

β-microglobulin (β2-MG)  is low molecular weight pro-
tein that exists in all nucleated cells. Because of its low mo-
lecular weight, β2-MG is freely filtered by the glomerulus, 
and completely reabsorbed and catabolized in the renal tu-
bules. Urinary β2-MG concentration elevates when the re-
nal tubular damage or AKI (135, 137). These properties can 
make an ideal endogenous biomarker to estimate the glomer-
ular filtration rate. Many studies have found that β2-MG is a 
useful and early predictor of AKI in liver transplant patients 
and kidney allograft patients (138). Barton et al also showed 
that urine and serum β2-MG correlates with severity of AKI 
(139). Therefore, β2-MG can be used more frequently as it 
has relatively low cost and wider clinical availability com-
pared to other biomarkers (139).

Cystatin C is a cysteine protease inhibitory protein produced 
by all nucleated cells. Due to its low molecular weight (13.3 
kD), it is freely filtered by the glomeruli and is fully absorbed 
by the proximal tubules and catabolized; however, it is not se-
creted from tubules. Therefore, detection of cystatin C in urine 
indicates tubular dysfunction (34). Although serum cystatin C 
is a functional marker of GFR, it is not affected by extrarenal 
factors such as diet, sex, age, muscle mass, or tubular secre-
tion; its concentration is almost entirely dependent on GFR 
(140, 141). Serum cystatin C increases 24-48 hours after AKI, 
this increase is prior to SCr (142, 143). Therefore, in the early 
diagnosis of AKI, it is more sensitive and specific than SCr 
affected by non-renal factors (24, 144).

RBP (retinol binding protein) is a low molecular weight 
protein that is synthesized in the liver and is responsible for 
carrying vitamin A from the liver to other tissues. It is freely 
filtered in the glomerulus and almost completely absorbed from 
the proximal tubule. Therefore, sensitive indication of tubular 
damage is accepted. Although its sensitivity is lower than β2M, 
it is higher than NAG (26). Detection of RBP in urine without 
microalbuminuria and without decreasing GFR is an important 
biomarker for early detection of tubular damage (145, 146).

Hepatocyte growth factor (HGF) plays a role in tubular cell 
proliferation. HGF causes mitosis in tubular cells through the 
C - Met receptor tyrosine kinase (147). Tubular cell apoptosis 
is facilitated by downregulating fibroblast HGF expression 

(e.g. by activating fibroblast ß-catenin signal), blocking tubu-
lar cell c-met signaling or mTOR signal in kidney fibroblasts 
(148, 149). Although it is not expressed in proximal renal 
cells, HGF gene expression increases at the onset of AKI and 
expression decreases with the recovery phase (150). With this 
upregulation, it protects tubular cells against death and plays 
an important role in alleviating kidney dysfunction after AKI. 
Therefore, it has a renoprotective role in AKI and can be used 
in the early diagnosis of AKI (151).

Chemokine C-C ligand-2 (CCL-2; Monocyte chemotactic 
protein-1 [MCP-1]) is a member of the chemokine family. 
CCL-2 is responsible for monocyte recruitment in acute in-
flammation, recruits them to inflammatory sites and regulates 
inflammation through the production of proinflammatory 
cytokines (152, 153). It is also a chemotactic cytokine that 
supports adhesion in the vascular endothelium and releases 
growth factors (23). CCL-2, which plays an important role in 
the proinflammatory response, is associated with glomerular 
filtration, glomerular lesion and renal perfusion (154, 155). 
Since increased plasma CCL-2 levels show high AKI risk, 
it may be a biomarker that can be used to identify high-risk 
patients for potential AKI (156-158).

INTERIM SUMMARY

In the section up to now, biomarkers that can be used in 
the early diagnosis of AKI are classsified according to their 
anatomical origin, i.e. tubular, glomerular, unknown site of 
kidney (Table 1). In addition, biomarkers according to the 
biological materials from where they can be detected (urine, 
blood, kidney tissue) are shown in Table 2. In next section, 
the management of AKI and clinical use of biomarkers will 
be discussed.

CLINICAL IMPORTANCE OF RENAL INJURY BIOMARKERS

Definition of AKI
AKI is a multifactorial complex disease with different clinical 
manifestations, from a minimal rise in SCr to anuric kidney 
failure (159). AKI occurs in 10-20% of hospitalized patients, 
and 10% of them require kidney replacement therapy (RRT). 
This rate rises to 50% in intensive care units. In the USA, AKI 
caused high hospitalization costs ranging from $5.4 to $24.0 
billion (160). The total mortality rate can reach up to 24% on 
the 30th day after AKI.

Three AKI definitions are used frequently:
• RIFLE, SCr >50% increase from baseline, and/or urine 

volume <0.5 ml/kg/h for 6 h.
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• AKIN, SCr >50% increase or by 0.3 mg/dl from base-
line in 48 h, and/or urine volume <0.5 ml/kg/h for 6 h.

• KDIGO, SCr >50% increase within the prior 7 d or by 
0.3 mg/dl from baseline in 48 h, and/or urine volume 
<0.5 ml/kg/h for 6 h.

SCr is a low sensitive and specific for AKI since it occurs 
up to 48-72 hours from damage. It stays up normal to less than 
50% of the reduction in healthy nephrons, misses subclinical 
damage and is not diagnostic among prerenal, parenchymal, 
and obstructive nephropathy. There are also problems in 
measuring baseline SCr. The Acute Dialysis Quality Initiative 
(ADQI) recommended the ‘modification of diet in renal dis-
ease’ (MDRD) formula for patients without existing baseline 
SCr; Provides a strong GFR prediction based on SCr by age, 
race and gender. European Renal Best Practice (ERBP) sug-
gested that the SCr value at the first admission to the hospital 
should be accepted to the baseline (161). Considering that 
age-related GFR decrease, perioperative and intensive care 
patients may have an excessive volume load and SCr levels 
may be increased before hospital admission, the reliability of 
these measurements decreases.

ETIOLOGY

Glomerular filtration consists of the pressure difference be-
tween the bowman capsule and the glomerule. This pressure 
is under the control of renal blood flow, the resistance of af-
ferent and efferent vessels. In general, AKI occurs due to a 
decrease in renal blood flow. It is examined in 3 main groups 
as prerenal, renal and postrenal.

Prerenal AKI occurs because of a decrease in kidney blood 
flow due to any reason. Bleeding, nausea, vomiting, cardiogen-
ic shock, acute coronary syndrome, septic shock, anaphylaxis, 
hepatorenal syndrome, and anesthesia administration may lead 
to prerenal AKI due to hypovolemia and hypotension. NSAID, 
hepatorenal syndrome and ionized contrast; they cause prere-
nal AKI by renal vasoconstriction. Also, angiotensin receptor 
blockers and ACE inhibitors may cause AKI by vasodilation 
in efferent arterioles.

Renal AKI is caused by the release of vasoconstrictors 
from afferent arteriole due to glomerule and tubule injuries.  
Prolonged renal ischemia, intravascular hemolysis, rhabdomy-
olysis and aminoglycosides can cause renal AKI by leading 
acute tubular necrosis (ATN). Infections, autoimmune reac-
tions, beta-lactam antibiotics, penicillin and NSAIDs can cause 
acute interstitial nephritis and renal AKI. Autoimmune diseases 
and vasculitis leading to glomerulonephritis and intratubular 

Table 1. Acute kidney injury markers

Renal origin Non-renal 
origin

Tubular Glomerular

KIM-1 NGAL suPAR Albumin

L-FABP Clusterin IMA

NAG Uromodulin Unknown α1- MG

NephroCheck OPN Hepcidin-25 β2- MG

α -GST π -GST BTP Cystatin C

IL-18 Calbindin PENK RBP

NHERF-1 Calprotectin HGF

Netrin-1 TFF-3 CCL-2

MMP-7 GAL-3

MK DKK-3

miRNAs CCL-14

AGT CHI3L1

NHE-3

Table 2. Sampling for measurements of biomarkers

Urine Plasma Urine&Plasma

L-FABP OPN suPAR KIM-1

NAG π -GST BTP miRNAs

NephroCheck Calbindin GAL-3 Albumin

α -GST Calprotectin PENK

IL-18 TFF-3 IMA Kidney Tissue

NHERF-1 DKK-3 Cystatin C miRNAs

Netrin-1 CCL-14 CCL-2

MMP-7 CHI3L1

MK Hepcidin-25

AGT α1- MG

NHE-3 β2- MG

NGAL RBP

Clusterin HGF

Uromodulin
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obstruction are also the cause of renal AKI.
Postrenal AKI occurs because of a change in glomerular 

filtration pressure due to partial or complete blockage in the 
urinary passage for any reason. The most common causes 
include ureter-kidney stones, bladder outlet obstruction, tumor 
compression to the ureter and blood clot. AKI clinic may not 
always be seen due to the compensatory effect of the contralat-
eral kidney in unilateral ureteral obstruction.

RISK FACTORS

Older age, DM, HT, sepsis, anemia, high-risk surgery, periph-
eral vascular diseases, nephrotoxic drug use, heart failure, 
hemodynamic instability, and CKD are factors that increase the 
risk for AKI. Scoring systems have been developed to identify 
high-risk patients before surgery Cleveland Clinic score, Mehta 
score, and Simplified Renal Index (SRI) score are the most 
frequently used for cardiac operations (162). Also, clinical 
studies have been conducted for some predictive biomarkers. 
suPAR, PENK, CCL-2, hepcidin-25, GAL-3, uromodulin gave 
promising results (12, 117, 163, 164). The researchers think 
that these predictive biomarkers will be integrated into the 
scoring systems so that more specific results will be obtained.

MANAGEMENT OF AKI

The most important step in AKI patients is to identify the 
underlying cause and understand its etiology. In the first plan, 
the fluid taken and urine extracted should be monitored, blood 
parameters should be checked; hypo-hyperkalemia, acidosis 
and other electrolyte imbalances should be examined. All 
nephrotoxic drugs such as NSAID, ACE / ARB inhibitor, 
ionized contrast should be avoided. Fluid replacement should 
be initiated and hypotension should be avoided. If necessary, 
a vasopressor can be used. Prerenal AKI generally responds 
very well to fluid replacement therapy. Renal AKI is resistant 
and the clinic may take months to recover. There is no effec-
tive pharmacotherapy for ATN treatment leading to renal AKI 
(161). Immunosuppressive drugs can be used for autoimmune 
causes. Elimination of the obstruction that causes postrenal 
AKI is sufficient for treatment. In all these diagnostic and 
treatment processes, dialysis can be performed to prevent 
acute AKI complications. Hyperkalemia, acidosis, anuria, 
uremic pericarditis and pulmonary edema that do not respond 
to treatment are indications for dialysis.

LONG TERM EFFECTS OF AKI

Patients who have survived the AKI episode; face increased 

risk of death, cardiovascular event, hypertension, CKD, stroke 
and decreased quality of life in the long term. Advanced 
age and comorbid diseases increase the rate of these effects 
(165). Patients should be checked for 3-6 month periods due 
to possible complications and risk of CKD. Keeping blood 
glucose and blood pressure at normal values, regulating weight 
control and fluid intake, minimizing proteinuria and avoiding 
nephrotoxic drugs are methods that reduce possible long-term 
complications.

CLINICAL USAGE OF BIOMARKERS

AKI is an important complication that increases mortality and 
morbidity for clinical applications AKI increases perioperative 
morbidity, as well as postoperative mortality, complications, 
length of hospital stay, and increased hospital costs (166).

The three classifications created for AKI criteria and diag-
nosis are based on the increase in SCr levels and a decrease 
in urine output on a weight basis. However, it is known that 
SCr level is affected by age and muscle mass and rises in the 
late period. Also, differences in urine measurement method 
prevent these classifications from being made healthy (167). 
Therefore, the need to develop new biomarkers for predicting 
and diagnosing AKI among high-risk patients is very obvious. 
An AKI patient subgroup was identified that did not meet the 
functional criteria used conventionally for the diagnosis of 
AKI, but exhibits high levels of new biomarkers that probably 
reflect tubular damage, and these patients were diagnosed as 
“subclinical AKI” (168). Biomarkers that rise within a few 
hours after the occurrence of tubular damage and give early 
warning in the diagnosis and progression of AKI include 
NGAL, KIM-1, L-FABP, IL-18, NefroCheck, Calprotectin, 
AGT, miRNAs, NAG, uMMP-7, GST, uMMP-7, Netrin-1, 
MK (Table 3). In addition, it has been determined that some 
biomarkers examined before the procedure may predict the 
risk of AKI. Some of these predictive biomarkers are: suPAR, 
PENK, CCL-2, hepcidin-25, GAL-3, uromodulin. 

    These biomarkers with multifactorial biochemical activi-
ties have different limitations. First of all, biomarkers have 
specific patient groups and no fixed cut-off values. NGAL is 
one of the most studied biomarkers and has given promising 
results for diagnosis and prognosis in studies conducted in 
various patient groups. Increased levels of bacterial infection 
and sepsis, which are common in the AKI patient group, were 
determined (169). Another important biomarker in diagnosis 
and prognosis, KIM-1, has been found to be increased with 
proteinuria, which is common in the AKI patient group (170). 
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L-FABP was found to be elevated with anemia in nondiabetic 
patients (171). The effectiveness of IL-18 in AKI prediction in 
adults is controversial. It was observed that NefroCheck levels 
increased with chronic diseases and DM. Increased levels of 
calprotectin in urinary infections, urinary malignancies and 
inflammatory diseases have been determined (172).

Table 3. Clinical usage of biomarkers

Diagnostic Prognostic

KIM-1 Nephrotoxic drugs 
Cardiac Surgery
ICU

Nephrotoxic 
drugs 
ICU

L-FABP Emergency department
Nephrotoxic drugs 
ICU
Cardiac Surgery

ICU
Cardiac Surgery

NAG ICU
Emergency department

Emergency 
department

NephroCheck ICU
Coronary bypass
Major Surgery
Cardiac Surgery

ICU

GST ICU

IL-18 Emergency department
Pediatric Cardiac Surgery
ICU
Kidney Transplant 
Recipients

ICU
Cardiac Surgery
Acute 
cardiorenal 
syndrome

Netrin-1 Liver transplantation

uMMP-7 Cardiac Surgery Cardiac Surgery

MK Cardiac Surgery
Nephrotoxic drugs 

miRNAs Cardiac Surgery ICU
Cardiac Surgery

AGT Acute decompensated 
heart failure

Acute 
cardiorenal 
syndrome

NGAL Nephrotoxic drugs 
Cardiac Surgery
Preeclampsia
Liver-Kidney Transplant 
Recipients

Nephrotoxic 
drugs
Cardiac Surgery
ICU
Acute 
cardiorenal 
syndrome

Calprotectin All hospitalized patients 
ICU
Cardiac Surgery

Cystatin C Cardiac Surgery Cardiac Surgery

CONCLUSION

Although there are biomarkers approved in some countries, 
their use could not be universal due to difficulties in their clini-
cal uses, cost effective properties and widespread limitations. 
In order to increase the diagnostic value, most researchers 
think that biomarker combinations would be more appropriate. 
Before suggesting new biomarkers for acute kidney injury, we 
need to organize the existing ones in more useful manner to 
support clinicians who need a timely diagnosis and manage-
ment of this clinical condition.
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