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We present the theory of the in-plane magnetoresistance in two-dimensional massless Dirac fermion systems
including the Zeeman splitting and the electron-electron interaction effect on the Landau level broadening
within a random phase approximation. With the decrease in temperature, we find a characteristic temperature
dependence of the in-plane magnetoresistance showing a minimum followed by an enhancement with a pla-
teau. The theory is in good agreement with the experiment of the layered organic conductor �-�BEDT-TTF�2I3

under pressure. In-plane magnetoresistance of graphene is also discussed based on this theory.
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I. INTRODUCTION

Since the discovery of unconventional integer quantum-
Hall effect in graphene,1,2 which is a single atomic sheet of
graphite, massless Dirac fermions realized in condensed-
matter systems have attracted much attention. Under mag-
netic field, a remarkable difference between conventional
two-dimensional electron systems and two-dimensional
Dirac fermion systems appears in the Landau-level structure.
In conventional electrons, the Landau-level energies are
equally spaced. Meanwhile the Landau-level energies in
Dirac fermions with the Fermi velocity v are given by

En = sgn�n�
�v
�B

�2�n� , �1�

where n=0, �1, �2, . . . and �B=�� /eB is the magnetic
length.3 For the case of Dirac fermions, the Landau levels are
unevenly spaced. What makes a crucial difference compared
to the case of conventional electrons is the existence of the
zero-energy Landau level that plays a central role for the
unconventional integer quantum-Hall effect.4

Massless Dirac fermion systems are not restricted to a
purely two-dimensional system. The layered organic conduc-
tor �-�BEDT-TTF�2I3 under pressure shows remarkable
physical properties associated with a Dirac fermion
spectrum.5 Theoretically it has been predicted that this sys-
tem is a massless Dirac fermion system,6,7 where the Fermi
energy is at the Dirac point and the Dirac cone is tilted.8–10

This massless Dirac fermion spectrum is supported by first-
principles calculations.11,12 Experimentally the observation
of the negative interlayer magnetoresistance13 supports the
massless Dirac fermion spectrum. Application of the mag-
netic field decreases the interlayer resistivity. This negative
interlayer magnetoresistance is consistent with the existence
of the zero-energy Landau level.14 The interlayer resistance
decreases in proportion to the inverse of the applied mag-
netic field. This magnetic field dependence arises from the
zero-energy Landau-level degeneracy.

In this organic Dirac fermion system, an intriguing in-
plane magnetoresistance was observed.5 Under magnetic
field, the in-plane resistivity decreases gradually as the tem-
perature T is decreased for T�100 K. After reaching a
broad minimum around 100 K, the resistivity increases and

then shows a narrow plateau region around several Kelvin.
After that the resistivity increases again as the temperature is
decreased further.

In this paper, we present the theory of the in-plane mag-
netoresistance in massless Dirac fermion systems including
the Landau-level broadening effect due to the Coulomb in-
teraction between Dirac fermions and the Zeeman energy
splitting. We compute the in-plane longitudinal conductivity
by the Kubo formula using the Landau-level wave functions
for massless Dirac fermions. The Coulomb interaction effect
on the Landau-level broadening is computed by the random-
phase approximation. The result is consistent with the in-
plane magnetoresistance observed in �-�BEDT-TTF�2I3.5

The theory is also applied to graphene.

II. MODEL

For the description of two-dimensional Dirac fermions in
the x-y plane, we introduce two component spinor field op-
erator ���x ,y�, where �=� denotes the spin. In graphene
and �-�BEDT-TTF�2I3, there are two Dirac points in the
Brillouin zone. We assume that Dirac fermions are degener-
ate with respect to these valley degrees of freedom. We do
not consider intervalley interaction and focus on the single-
valley properties. The Hamiltonian is given by H=H0+VC,
where

H0 = �
�
� dx� dy��

†�x,y��v�k̂x�x + k̂y�y����x,y� �2�

with k̂x,y =−i�x,y and �x,y the Pauli matrices. The term VC
describes the Coulomb interaction between Dirac fermions,
VC= �1 /2��qVq�q�−q, where Vq=2	e2 / �4	
0
�q�� with 
 the
dielectric constant. Throughout this paper, we assume that
the Fermi energy is at the Dirac point. We do not include the
effect of the Dirac cone tilt in �-�BEDT-TTF�2I3 �Ref. 8�
because it turns out that tilt is unimportant for understanding
the main features of the in-plane magnetoresistance of
�-�BEDT-TTF�2I3 as we shall see below.

In a magnetic field, the kinetic energy of Dirac fermions is
quantized into Landau levels, Eq. �1�. Taking the Landau
gauge A= �0,Bx�, the Landau-level wave functions are rep-
resented by �n,k�x ,y�=exp�iky��n,k�x� /�Ly, where Ly is the
system size in the y direction and
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�n,k�x� =
Cn

��B
��− i sgn n

0
	h�n�−1� x

�B
+ k�B	

+ �0

1
	h�n�� x

�B
+ k�B	
 �3�

with C0=1 and Cn=1 /�2 for n�0, and sgn n=1�−1� for
n�0�n0� and sgn n=0 for n=0.

Here hn��� are the eigenstates of the harmo-
nic oscillator Hamiltonian −��

2 /2+�2 /2, hn���
=Hn���exp�−�2 /2� / �2n/2	1/4�n!�, with Hn��� the Hermite
polynomial.

In terms of the Landau-level wave functions, the field
operator ���x ,y� is represented by ���x ,y�
=�n,k�n,k�x ,y�cn,k,�. Using this form, we find that
the Fourier transform of the density operator ��x ,y�
=����

†�x ,y����x ,y� is

�q = e−q2�B
2 /4ei/2qxqy�B

2 �
n1,n2,k,�

eiqxk�B
2
Fn1,n2

�q�cn1,k,�
† cn2,k+qy,�,

�4�

where the function Fn1,n2
�q� is defined by15

Fn1,n2
�q� = Cn1

Cn2
�J�n1�,�n2��q� + sgn�n1n2�J�n1�−1,�n2�−1�q�� .

�5�

For n1�n2, the function Jn1,n2
�q� has the following form:

Jn1,n2
�q� =�n1!

n2!�− iqx − qy

�2
�B	n1−n2

Ln2

n1−n2�q2�B
2

2 	 �6�

and Jn2,n1
�q�= �Jn1,n2

�q���. Here Ln
m�x� are the associated La-

guerre polynomials.

III. COULOMB INTERACTION EFFECT
ON THE LANDAU-LEVEL BROADENING

Now we compute the Coulomb interaction effect on the
scattering rate of Dirac fermions that leads to the Landau-
level broadening. As we shall show below the temperature
dependence of the Landau-level broadening gives rise to
a broad minimum in the in-plane resistivity that appears
around T=Tmin. �For the case of �-�BEDT-TTF�2I3, it has
been reported5 that Tmin100 K.� Although it is easy to
include the Zeeman splitting in the calculation of the
Landau-level broadening, we present the calculation for the
spinless case because the interaction effect plays an impor-
tant role at high temperatures where many Dirac fermions
are excited from the zero-energy Landau level while the Zee-
man spin-splitting effect is negligible.

The single-particle Matsubara Green’s function for the
Landau level with the index n is Gn�i���=1 / �i��−En
−�n�i����, where ��= �2�+1�	kBT is the fermion Matsub-
ara frequency. Within the random phase approximation, the
self-energy �n�i��� is described by

�n�i��� = −
kBT

2	�B
2 �

q,n�,i���

Vq

1 − VqDq�i����

� Fn,n��q�Fn�,n�− q�Gn��i�� + i���� , �7�

where

Dq�i��� = −
e−q2�B

2 /2

2	�B
2 �

n1,n2

Fn1,n2
�q�Fn2,n1

�− q�

�
f�En1

� − f�En2
�

i�� − En1
+ En2

. �8�

The summation over the boson Matsubara frequency ��� in
Eq. �7� is carried out by using the spectral representation of
Vq�i����Vq / �1−VqDq�i����. Performing the analytic con-
tinuation i��→�+ i� with � an infinitesimal number and
after some algebra, we obtain

�n�� + i�� = −
1

4	3�B
2�

−�

�

d��
0

�

dqq Im�Vq�� + i���

� �
n�

Fn,n��q�Fn�,n�− q�
n��� + f�En��

� + i� − En� + �
.

�9�

The imaginary part of the self-energy, −Im �n��+ i��, leads
to the Landau level broadening. Instead, we use an approxi-
mate form, �n

C�−Im �n�En+ i��. We do not attempt to com-
pute this quantity in a self-consistent manner. The Coulomb
interaction plays an important role if there are large numbers
of excited Dirac fermions. However, the number of the ex-
cited Dirac fermions is suppressed at temperatures less than
the Landau-level energy gap. In such a regime, we may treat
the Coulomb interaction perturbatively.

Figure 1�a� shows �n
C for different Landau levels where

we set16 �2 /B�v /�B=10 K /T−1/2 and 
=300 that were
estimated17 from the analysis of the interlayer magnetoresis-
tance in �-�BEDT-TTF�2I3. �Note that at ambient pressure a
large dielectric constant that is the same order of magnitude
as our value has been reported.18�

In the numerical calculation, we used the recursion for-
mula for the function �n ! / �n+k�!xk/2 exp�−x /2�Ln

k�x� in-
stead of the recursion formula for the associated Laguerre
polynomials because Ln

k�x� and the factorials can be huge for
Landau levels with �n��1. The summation with respect to
the Landau levels is taken from n=−50 to 50. At tempera-
tures below 10 K, �n

C remain constant. This behavior is
understood from the energy gaps created by the Landau-level
structure: the Coulomb interaction plays an important role
when there are excited Dirac fermions to higher Landau lev-
els. In order to excite Dirac fermions to higher Landau lev-
els, the temperature should be larger than the energy gap
created by the Landau levels. Thus, the characteristic tem-
peratures are determined from the energy gaps between the
Landau levels. As shown in Fig. 1�a�, �0

C behaves remark-
ably differently while the other �n

C�n�0� behaves similarly.
At low temperature below 30 K the effect of the electron-
electron interaction is rapidly suppressed because of the large
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energy gap between the zero-energy Landau level and the
�n�=1 Landau level. Reflecting this fact, �n

C decreases as we
increase the magnetic field because the Landau-level energy
gaps increase.

Figure 1�b� shows �n
C for graphene where we take


=2.5 for the dielectric constant19 and �2 /B�v /�B
=400 K /T−1/2 for the Landau-level structure parameter.4 Al-
though the temperature dependence of �n

C is different from
Fig. 1�a� because of the parameter differences, it is common
that the n=0 Landau-level component behaves differently as
compared with the n=0 Landau level. Since the Landau-
level energy gaps between the n=0 Landau level and the n
=1 Landau level for graphene is about 1000 K, the value of
�0

C is negligible in the temperature range shown in Fig. 1�b�.
This result is consistent with the experiment20 suggesting

that the zero-energy Landau level is quite sharp in shape
compared with the other Landau levels. Compared to
�-�BEDT-TTF�2I3, the almost temperature independent re-
gion extended until 120 K. This is because the Landau-
level energy spacing in graphene is larger than that in
�-�BEDT-TTF�2I3. As shown in Fig. 1�b� the interaction ef-
fect on �n

C is negligible for T100 K due to the large sepa-
ration between the Landau levels.

IV. IN-PLANE MAGNETORESISTANCE

Now we compute the in-plane longitudinal conductivity
�xx using the Kubo formula21

�xx =
e2

� ��v
�B
	2

�
n,�

Cn�
−�

�

dE�−
� f

�E	
�

�n/	
�E − En,��2 + �n

2� ��n�+1/	

�E − E�n�+1,��2 + ��n�+1
2

+
�−�n�−1/	

�E − E−�n�−1,��2 + �−�n�−1
2 
 , �10�

where f is the Fermi distribution function and the Zeeman
energy splitting is included as En,�=En+g�B�B /2. Here �B
is the Bohr magnetron and we set g=2. The scattering rate is
assumed to be �n=�0+�n

C, where �0 is associated with im-
purity scattering. In the following calculation we take �0
=2 K that was estimated from analysis of the interlayer
magnetoresistance data13 at low temperatures.16 To reduce
the numerical computation time we use Páde approximants
for the temperature dependence of �n

C. For Landau levels
with n�0 we used the same Páde approximant for �1

C be-
cause �n

C with n�0 behave similarly as shown in Fig. 1�a�.
Figure 2 shows the in-plane resistivity, �xx=1 /�xx for dif-

ferent magnetic fields. Note that �xy =0 because the Fermi
energy is at the Dirac point. Here we assume particle-hole
symmetry so that the Fermi energy is fixed to the Dirac point
even at finite temperatures. The minima appear around Tmin
�100 K. These minima appear because of the onset of the
Landau-level splitting effect: The Landau levels with �n�
10 are well separated each other. But those separations are
unimportant for T100 K because of the temperature
broadening effect due to the derivative of the Fermi distribu-
tion function in Eq. �10�. For T�100 K, Landau levels with
�n��10 are almost continuously distributed because �En+1
−En��n+1+�n. For T100 K, we find that �E10�1−E10�
��10�1+�10 from the temperature dependence of �n

C. So the
Landau level splitting effect appears for T100 K. We
computed �xx without including �n

C, and confirmed that the
temperature dependence of �xx for T�100 K mainly arises
from the temperature dependence of �n

C.
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FIG. 1. �Color online� �a� Temperature dependence of �n
C at

B=10 T for different Landau levels with �=0.1 for
�-�BEDT-TTF�2I3. �b� Temperature dependence of �n

C at B=10 T
for graphene.
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FIG. 2. �Color online� The in-plane resistivity for different mag-
netic fields with �0=2 K. The normalization parameter �0 is taken
as �0=�xx�100 K� at B=10 T to compare with the experiment in
Ref. 5.
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The appearance of a minimum at a characteristic tempera-
ture Tmin in the in-plane magnetoresistance suggests that Tmin
is a crossover temperature from the interaction dominant re-
gime to the almost noninteracting regime: for T�Tmin, the
Landau-level broadening smears out the Landau-level energy
spectrum. In this regime, the Landau-level spacing is unim-
portant, and the electron-electron interaction, which requires
the excitations from one Landau level to higher Landau lev-
els, plays an important role. By contrast for TTmin, the
Landau-level broadening is less than the Landau-level spac-
ing. Thus, the excitations from one Landau level to higher
Landau levels are suppressed. The characteristic temperature
Tmin depends on 
, v, and B. Although there is no simple
analytical formula for Tmin, one can determine Tmin from the
in-plane magnetoresistance measurement. The same analysis
can be applied to the surface states of three dimensional to-
pological insulators.22,23

With decreasing the temperature from 100 K the resis-
tivity increases because the number of Landau levels contrib-
uting to �xx decreases. Below 10 K a narrow plateau region
appears. If we compute �xx omitting the Zeeman energy split-
ting, we have a peak instead of the plateau and �xx ap-
proaches a universal curve that is independent of the mag-
netic field. The peak position is scaled by �B. So the
presence of the plateau is associated with the Landau-level
splitting between n=0 and n= �1. Namely, including the
Zeeman energy splitting transforms the peak to the plateau.
For T2�0, �xx turns to increase again, and then �xx ap-
proaches a temperature-independent value. We note that for a
conventional parabolic dispersion case �xx monotonically in-
creases with decreasing the temperature because the Landau
levels are equally spaced.

All features stated above are consistent with the
experiment5 except for T2�0. In the experiment, �xx does
not approach a temperature-independent value for T1 K
but increases further with decreasing temperature changing
the slope at a characteristic temperature Texp. This behavior
suggests that there is an another Landau level splitting prob-
ably associated with valley splitting. In Ref. 24, a Kosterlitz-
Thouless transition scenario was proposed. We will investi-
gate this point further in a future publication.

Now we comment on the tilt of the Dirac cone. In
�-�BEDT-TTF�2I3, theoretical calculations suggest that the
Dirac cone is tilted.8 In the presence of the tilt of the Dirac
cone, the Landau-level wave functions are deformed10 that
leads to anisotropy of the resistivity. However, the features of
the in-plane magnetoresistance are unaffected by the tilt. The
temperature dependence of the in-plane magnetoresistance is
determined by the Landau-level structure. Since the tilt of
the Dirac cone just leads to a modification of the overall
factor of the Landau-level energies and does not affect the
Landau-level structure qualitatively,10 the tilt is unimportant
for the temperature dependence of the in-plane magnetore-
sistance.

Using the theory, we are able to understand some results
about �xx in graphene. Figure 3 shows �xx for different �0 at

B=10 T. We computed �xx for B�10 T as well �not
shown� and found similar behaviors. The results with �0
�10 K are in good agreement with the experiment25 for B
8 T. Experimentally �0 is estimated19 as �030 K. For
clean samples with �0, we should observe a peak associated
with the Zeeman splitting around T=2�0−�BB. For �0
=5 K, the peak appears around 2�0−�BB3 K as shown
in Fig. 3. In the experiment reported in Ref. 25, �xx decreases
at low temperatures for B�10 T. To understand this behav-
ior, we need to assume that a valley splitting occurs as dis-
cussed in the literature.26

V. CONCLUSION

In conclusion, we have investigated the in-plane resistiv-
ity of Dirac fermions under magnetic field. We have included
the Landau-level structure, the Zeeman energy splitting, and
the Coulomb interaction effect between Dirac fermions. The
Coulomb interaction plays an important role at high tempera-
tures, where Dirac fermions are excited from the zero-energy
Landau level. We found that the n=0 Landau level behaves
differently compared to the other Landau levels. The features
observed in �-�BEDT-TTF�2I3 are consistent with our result
except for T1 K where a valley splitting may play an
important role. This theory has also been applied to
graphene. We have found a consistent behavior with an ex-
isting experimental data and have predicted the presence of a
peak structure of conductivity in clean samples.
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