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Optical homodyne detection is examined in view of the joint probability distribution. The usual view is that
the relative phase between independent laser fields is localized by photon-number measurements in interference
experiments such as homodyne detection. This is why operationally coherent states for laser fields are used in the
description of homodyne detection and optical quantum-state tomography. Here, we elucidate these situations
by considering the joint probability distribution and the invariance of homodyne detection under the phase
transformation of optical fields.
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I. INTRODUCTION

Laser technology plays an essential role in a wide variety
of fields in physics. Since the first observation of interference
fringes between two independent laser fields [1], it has been
common to employ a coherent state [2]

|α〉 = e−|α|2/2
∞∑

n=0

αn

√
n!

|n〉 (1)

to describe the quantum state of a laser field; it involves a coher-
ent superposition of photon-number states |n〉 with a definite
phase in the complex amplitude α. This quantum coherence
provides indispensable resources for quantum information and
communication. On the other hand, it is widely accepted [3,4]
that from consideration of the driving mechanism the steady
state of field inside a laser cavity should be a mixed state like

ρ̂|α| = e−|α|2
∞∑

n=0

|α|2n

n!
|n〉〈n| =

∫
dϕ

2π
|αeiϕ〉〈αeiϕ |, (2)

which has no coherence, lacking a definite phase. It is,
however, shown by a numerical simulation [5] that two cavity
fields without definite phases even exhibit interference when
continuously monitored by photon detectors. This provides a
typical example of the apparent relevance of the coherent state
as the laser field. Then, there has been much debate concerning
the quantum state of a laser and optical coherence (see [5–13],
and references therein). The essential problem is whether the
use of the coherent state of Eq. (1) in various applications is
valid or not, instead of the mixed state of Eq. (2) inside the
laser cavity.

In quantum optics with the rotating wave approximation,
which is usually employed when describing matter-field
interactions, one can implement only the photon-number
measurement, without observing the absolute phases of the
fields. U(1) invariance appears naturally in quantum optics [8],
namely, the photon number operator n̂ = â†â of each optical
mode is invariant under the phase transformation â† → â†eiϕ

and â → âe−iϕ for the creation and annihilation operators â†

and â, respectively, inducing |α〉 → |αeiϕ〉 for the coherent
state. This phase transformation has an intimate relation to
the fact that the phase of a single mode has no physical
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relevance, that is, there is no absolute reference frame for
the optical phases [13]. In this sense, it is trivial that there
appears no significant difference between the coherent state of
Eq. (1) and the mixed state of Eq. (2) as long as U(1)-invariant
operations and measurements are performed starting only with
a single-mode optical field.

The real issue to be clarified is rather the interference
between two independent optical fields, which are mutually
incoherent without definite phases as seen in Eq. (2). It is
known that photon-number measurements induce localization
of the relative phase when two mutually incoherent fields
interfere [8,11,12]. Actually, after many photons are detected
in an interference experiment, the relative phase is eventually
localized around a certain value, and the remaining state gets
projected to have some definite relative phase. Thus, the later
measurement outcomes exhibit an interference pattern.

The aim of this paper is to elucidate these situations in
optical interference experiments, where laser fields are treated
operationally as coherent states. Specifically, we consider
homodyne detection and quantum-state tomography. In order
to illustrate the apparent relevance for the use of coherent
states, we consider the joint probability distribution of the
measurement outcomes and the resultant empirical measure
determining the quadrature distribution. In this examination
we adopt the proper description of the output field of the
laser [7]. We also note that homodyne detection or generally
photon-number detections are invariant under the rotation of
the phase frame over optical fields.

This paper is organized as follows. In Sec. II, we consider
repeated homodyne detections for independent signal and local
oscillator fields to see the localization of the relative phase.
In Sec. III, we introduce the joint probability distribution of
the outcomes of the homodyne detections, and discuss the
apparent relevance of using the coherent state as the laser
field in the description of homodyne detection. In Sec. IV,
we consider optical quantum-state tomography based on these
arguments about the homodyne detection and examine the
quantum states of laser fields. Sec. V is devoted to a summary.

II. PHASE LOCALIZATION BY HOMODYNE DETECTION

It has been argued [8,11,12] that the relative phase gets
localized by measurements when two mutually incoherent
fields interfere. Here, we consider the homodyne detection as a
typical example of an interference experiment to discuss phase
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FIG. 1. Schematic diagram of homodyne detection. PD repre-
sents a photodetector, BS a beam splitter, and PS a phase shifter.

localization, which provides a reason why a coherent state may
be adopted operationally for the local oscillator (LO) field as
the reference.

Homodyne detection is a scheme to measure the field
quadratures and their probability distribution (see Fig. 1). A
signal field and a local oscillator are injected together into a
50 : 50 beam splitter, and then the difference of the photon
counts in the output modes is measured. The quadrature of the
signal field is given with a coherent state LO |α〉 (α ≡ eiθ |α|)
by

x̂θ = (âe−iθ + â†eiθ )/
√

2, (3)

which is approximately proportional to the photon-number
difference �n̂ � √

2|α|x̂θ for |α| � 1 [18]. This quantity is
sensitive to the relative phase between the signal and the LO.

In the usual homodyne experiments, the signal and LO are
derived from a common laser field to compensate the phase
fluctuation. In such a case, the laser field can be regarded as
a coherent state since its absolute phase, which is inherited
equally by the signal and LO, is irrelevant (or unobservable)
in homodyne detection sensitive to the relative phase. Instead,
we here consider the case where the signal and LO come from
independent sources, which are thus mutually incoherent.

We adopt an ideal continuous-wave (cw) laser as the LO.
The quantum state of the cw laser field is described properly
according to a formalism in Ref. [7]. [A pulsed-wave (pw) laser
(not a phase-locked one) will also be considered in Sec. IV to
discuss the optical quantum-state tomography, although phase
localization is unavailable for the pw case.] Specifically, the
output field of the laser is separated into a sequence of wave
packet modes, each with the same duration. By assuming
the mixed state as given in Eq. (2) for the field inside the
laser cavity and linear coupling between the modes inside
and outside the cavity, the sequence of N output packets is
described as

ρ̂cw =
∫

dϕ

2π
P (ϕ) (|αeiϕ〉〈αeiϕ |)⊗N, (4)

where α > 0 is determined in terms of the field intensity
inside the cavity, the cavity leakage rate, and the packet
duration. This is a mixture of tensor products of coherent
states over their unknown phases. Here, the phase distribution
P (ϕ), which may be nonuniform, is introduced generally while
the Poissonian photon-number distribution is maintained. As

discussed in Ref. [7], this form for the output state of the
laser is exchangeable among the packets to meet the quantum
de Finetti theorem [14,15]. The phase distribution changes
apparently as P (ϕ) → P (ϕ − θ ) under the phase rotation
Uθ ρ̂cwU†

θ .
We may take a tensor product of N packets as ρ̂⊗N for the

signal field. That is, many identical copies of ρ̂ are prepared
and measured repeatedly in the homodyne detection. Then the
initial state of the system is given by

ρ̂⊗N ⊗ ρ̂cw =
∫

dϕ

2π
P (ϕ) (ρ̂ ⊗ |αeiϕ〉〈αeiϕ |)⊗N. (5)

[A similar argument is also applicable for a phase-mixture
signal, as given in Eq. (4), as long as the relative phase between
the signal and LO is concerned. This case will be considered
explicitly in Sec. IV.] After the first packet is measured, the
remaining packets are projected to∫

dϕ

2π
P (ϕ)qϕ(x) (ρ̂ ⊗ |αeiϕ〉〈αeiϕ |)⊗(N−1) (6)

up to the normalization. The quadrature value x is determined
from the detected photon-number difference �n by

x = �n/(
√

2α). (7)

The quadrature distribution qϕ(x) for the signal ρ̂ with a pure
coherent state LO |αeiϕ〉 is given by

qϕ(x)[ρ̂]√
2α

=
∑

n−m=�n

〈n,m|B(ρ̂ ⊗ |αeiϕ〉〈αeiϕ |)B†|n,m〉, (8)

where B represents the unitary transformation by the 50 : 50
beam splitter. Specifically, for the strong LO field we have
approximately [18]

qϕ(x) = 〈x̂ϕ = x|ρ̂|x̂ϕ = x〉 (α → ∞), (9)

where |x̂ϕ = x〉 is an eigenstate of the quadrature x̂ϕ with an
eigenvalue x.

Repetition of M detections with outcomes x1, . . . ,xM leads
the state of the LO field to be∫

dϕ

2π

(
P (ϕ)

M∏
i=1

qϕ(xi)

)
(|αeiϕ〉〈αeiϕ |)⊗(N−M). (10)

Typically, for a coherent state signal ρ̂ = |β〉〈β| (β > 0), we
have the quadrature distribution (α → ∞)

qϕ(x) = 1√
π

exp

[
−2β2

(
cos ϕ − x√

2β

)2
]

. (11)

Then, the phase distribution of the LO field after the M

detections is modified from P (ϕ) by the factor

M∏
i=1

qϕ(xi) ∝
{

exp

[
−2β2

(
cos ϕ − x̄M√

2β

)2
]}M

, (12)

where x̄M is the average over the M outcomes. This provides
a sharp Gaussian distribution around cos ϕ = x̄M/(

√
2β)

with the standard deviation 1/(2β
√

M) for M � 1. That
is, the phase of the LO field gets localized to ϕ0 =
± arccos(x̄M/

√
2β) by the repeated homodyne detections.

Generally, as long as qϕ(x) is nonuniform with respect to the
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phase ϕ of the LO (more precisely the relative phase between
the signal and LO), the phase localization takes place after a
large number of detections as (up to the normalization)

M∏
i=1

qϕ(xi) ≈ δ(ϕ − ϕ0). (13)

The phase localization is usually discussed in the case of a
single measurement (M = 1) with detection of large numbers
of photons under strong sources (α,β → ∞) [8,11,12]. Here,
we note that the phase localization takes place by repeated
measurements (M � 1) even for source packets with weak
amplitudes (α,β ∼ 1). This indeed provides a process for
aligning the reference frames between the signal and LO [13]
by updating the relative phase according to the Bayesian rule in
Eq. (10) [7,12,16,17]. The localized phase ϕ0 may apparently
take multiple values, reflecting a specific symmetry of the sig-
nal state, although they are physically equivalent. For example,
in the case of ρ̂ = |β〉〈β| we have ϕ0 = ± arccos(x̄M/

√
2β)

for qϕ(x) = q−ϕ(x) under the phase reflection ϕ → −ϕ.
Once the phase of the LO field is localized to a particular

value ϕ0 in Eq. (13), the state of the LO field conditioned on
the outcomes x1, . . . ,xM gets projected as

ρ̂(x1,...,xM )
cw ≈ (|αeiϕ0〉〈αeiϕ0 |)⊗(N−M). (14)

Thus, we may conclude that the pure coherent state |αeiϕ0〉
is provided as the LO for the subsequent detections in the
same way as in the usual homodyne detection. The apparent
exception to the phase localization is the case that the
signal state ρ̂ is invariant under the phase transformation,
including the number states and their mixtures. Nevertheless,
the quadrature distributions for such a state with the pure
coherent state LO |αeiϕ〉 in Eq. (1) and the mixed state LO
in Eq. (2) are identical, as qϕ(x) = q(x) independently of ϕ.
Thus, even in this case without phase localization, the laser
field can be regarded as the coherent state. This point will be
clarified further in view of the joint probability distribution in
the following sections.

III. JOINT PROBABILITY DISTRIBUTION IN
HOMODYNE DETECTION

We have seen that, after repeated detections, the state of the
LO field turns into the product of coherent states in Eq. (14)
due to the phase localization. This provides a reason to use
the coherent state in the standard description of homodyne
detection. In order to get further understanding of this point
from the viewpoint of probability theory, we here consider the
joint probability distribution of homodyne detections.

In quantum theory, measurements of a physical quantity
yield probabilistic outcomes. Then, from the relative frequency
of outcomes we can infer the probability distribution for the
physical quantity. This argument is based on the assumption
that the outcomes are independent and identically distributed
(i.i.d.) in repeated measurements for an ensemble of iden-
tically prepared quantum states. Specifically, in the optical
quantum-state tomography [20] the quadrature distributions
are determined from the outcomes of homodyne detections.
In the standard description, a product of pure coherent states
(|αeiϕ0〉〈αeiϕ0 |)⊗N with a common phase ϕ0 is adopted as the

LO packets when the homodyne detections are performed
repeatedly for an ensemble of signal states as ρ̂⊗N . Then,
the joint probability distribution of the outcomes x1, . . . ,xM is
given by

p(x1, . . . ,xM ) =
M∏
i=1

qϕ0 (xi), (15)

where qϕ0 (x) is the quadrature distribution of the signal in
Eq. (8). In this case the outcomes are really i.i.d., namely,
they are obtained probabilistically according to the product
of identical quadrature distributions. Thus, owing to the
Glivenko-Cantelli theorem, the original distribution qϕ0 (x) is
properly inferred as the relative frequency of outcomes for
M → ∞.

This argument for the standard homodyne detection with
the pure coherent state LO can be extended for the case of
the real output field of a cw laser whose quantum state is the
mixture as given in Eq. (4). The (unnormalized) state of the
LO field after M detections is given in Eq. (10). By tracing
out the remaining packets as Tr[(|αeiϕ〉〈αeiϕ |)⊗(N−M)] =
1, the joint probability distribution of the outcomes is
calculated as

p(x1, . . . ,xM ) =
∫

dϕ

2π
P (ϕ)

M∏
i=1

qϕ(xi). (16)

Even in this extended case, where the joint probability
distribution in Eq. (16) appears as a phase mixture of the
i.i.d. products in Eq. (15), we can infer the original quadrature
distributions from the measurement outcomes as described in
the following.

Consider a sequence of random real variables (measure-
ment outcomes)

x̃M ≡ (x1,x2, . . . ,xM ). (17)

The empirical measure 	x̃M
, or relative frequency of the M

outcomes, is defined as a probability measure on R by

	x̃M
= 1

M

M∑
i=1

δxi
, (18)

where δx denotes the Dirac measure on R:

δx(A) =
{

1 if x ∈ A ⊂ R,

0 otherwise.
(19)

That is, if the number of xi’s that have values in A is
k, then 	x̃M

(A) = k/M . In the i.i.d. case of Eq. (15), the
Glivenko-Cantelli theorem ensures that the empirical measure
	x̃M

converges to the original distribution qϕ0 (x) for M → ∞.
As for the actual homodyne detection with the LO of a cw laser
field, the joint probability distribution in Eq. (16) represents a
mixture of the i.i.d. variables (or i.i.d.’s for brevity). Even in
this case, by repeating the detection many times (M � 1), the
empirical measure provides the quadrature distribution with a
certain random phase ϕ0,

lim
M→∞

	x̃M
(x) = qϕ0 (x) (20)

(see Ref. [19] for the mathematical details). This implies
that the outcomes x1, . . . ,xM appear as if they were i.i.d.,
in the same way as the case with the pure coherent state
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LO. Therefore, in each sequence of homodyne detections we
may regard the LO of the cw laser field as a coherent state
|αeiϕ0〉 while the phase ϕ0 is determined a posteriori by the
localization.

We have made numerical simulations for the joint probabil-
ity distributions of homodyne detections, confirming Eq. (20).
A sequence of M outcomes are obtained according to
Eq. (16) representing the mixture of i.i.d.’s. Specifically, the
ith outcome xi is generated under the conditional probability
distribution,

p(xi |x1, . . . ,xi−1) = p(x1, . . . ,xi)

p(x1, . . . ,xi−1)

=
∫

dϕ

2π
P(x1,...,xi−1)(ϕ)qϕ(xi) (21)

with

p(x1, . . . ,xi) =
∫

dxi+1 · · · dxMp(x1, . . . ,xM ). (22)

(A similar analysis is made for the spatial interference of Bose-
Einstein condensates [21].) Here, the phase distribution is
updated by the Bayesian rule [7,12,16,17] upon the preceding
quadrature outcomes x1, . . . ,xi−1 as

P(x1,...,xi−1)(ϕ) =
i−1∏
j=1

qϕ(xj )

/∫
dϕ

2π

i−1∏
j=1

qϕ(xj ) (23)

with the U(1)-invariant initial P (ϕ) = 1 for definiteness. The
empirical measure 	x̃M

(x) is then calculated from the M

outcomes with Eq. (18). In this numerical analysis, the original
quadrature distribution qϕ(x) is calculated precisely from
Eq. (8) without taking the limit of strong laser intensity.
Statistically, a large number of detections should be made to
infer the quadrature distribution. Thus, we realize in Eq. (23)
that in the early portion of the M detections (M � 1) the phase
ϕ is almost localized to ϕ0, giving Eq. (20).

Figure 2 shows typical results of the empirical measure
	x̃M

(x) (solid lines) for the squeezed state signal ρ̂ =
|r,β〉〈r,β|, where M = 10 000 outcomes are generated for
each operation of repeated homodyne detections. The parame-
ters for the LO and signal are taken as α = √

15, βe−r = √
3,

and r = −1. The resolution of the quadrature x is given by
�x = 1/(

√
2α) in Eq. (7) with �n = 1. We note that the

expectation value of the quadrature is calculated with qϕ(x) as√
2βe−r cos ϕ independently of α > 0 for the coherent state

LO. Since it should agree with the average x̄M of the outcomes
for M → ∞, the resultant random phases ϕ0 are estimated as
ϕ0 = 3.05, 1.94, and 0.43 rad from the left to right in Fig. 2.
Then, the quadrature distributions qϕ0 (x) (dashed lines) are
plotted for these values of ϕ0 for comparison. These results
really show good agreement of 	x̃M

(x) and qϕ0 (x), as expected
in Eq. (20).

IV. OPTICAL QUANTUM-STATE TOMOGRAPHY

In view of the joint probability distribution for homodyne
detection, as described in the previous section, we now
consider the optical quantum-state tomography and discuss the
quantum state of a laser field. The signal state (e.g., Wigner
function) is reconstructed from the quadrature distributions

 0

 0.02

 0.04

 0.06

 0.08

 0.1

-8 -6 -4 -2  0  2  4  6  8

Λ
~ x M

 a
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FIG. 2. Typical results of the empirical measure 	x̃M
(x) (solid

lines) for the squeezed state signal ρ̂ = |r,β〉〈r,β|, where M = 10 000
outcomes are generated for each operation of repeated homodyne
detections. The parameters for the LO and signal are taken as α =√

15, βe−r = √
3, and r = −1. The resolution of the quadrature is

given by �x = 1/(
√

2α) = 1/
√

30. The resultant random phases ϕ0

are estimated from the average x̄M of the outcomes as ϕ0 = 3.05,
1.94, and 0.43 rad from left to right. The quadrature distributions
qϕ0 (x) (dashed lines) are also plotted for these values of ϕ0, showing
good agreement with 	x̃M

(x).

qθ (x) for various phase shifts θ , which are obtained as empiri-
cal measures from the outcomes of homodyne detections. The
change of θ is realized by applying a phase shifter on the LO.

A. Tomography with a common source oscillator

We first consider the usual setup for optical tomography,
where the signal and LO are supplied by splitting a single
oscillator, as done in many actual experiments. The output
state of a cw laser for the original oscillator (α,β > 0) is
given as

ρ̂0
cw =

∫
dϕ

2π
P (ϕ)[|(α + β)eiϕ〉〈(α + β)eiϕ |]⊗N. (24)

The signal and LO, which share the common random phase ϕ,
are derived from this laser field as

ρ̂SL
cw =

∫
dϕ

2π
P (ϕ)[ρ̂(ϕ) ⊗ |αei(ϕ+θ)〉〈αei(ϕ+θ)|]⊗N (25)

with

ρ̂(ϕ) = E |βeiϕ〉〈βeiϕ |E† = Uϕρ̂(0)U†
ϕ. (26)

Here, the phase of the LO is shifted by θ , and an operation E
such as squeezing is applied for the signal, which commutes
with the phase transformation Uϕ . We see below that this setup
reproduces the standard description of homodyne tomography
with a pure coherent state |α〉 as the LO. The joint probability
distribution of the quadrature outcomes (x1, . . . ,xM ) ≡ x̃M

(M � 1) for M packets is calculated as

p(x̃M )
[
ρ̂SL

cw

] =
∫

dϕ

2π
P (ϕ)

M∏
i=1

qϕ+θ (xi)[ρ̂(ϕ)]

=
M∏
i=1

qθ (xi)[ρ̂(0)]. (27)
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Here, we have considered the fact that homodyne detection is
an invariant operation under the simultaneous phase rotation
Uϕ for the signal and LO as |αei(ϕ+θ)〉 → |αeiθ 〉 and |βeiϕ〉 →
|β〉, which implies

qϕ+θ (x)[ρ̂(ϕ)] = qθ (x)[ρ̂(0)], (28)

that is, it is sensitive only to the relative phase θ . This p(x̃M )
turns out to be independent of the phase distribution P (ϕ) for
the LO, that is, the possible U(1) violation in the laser field is
not observable in this scheme. The quadrature outcomes are
i.i.d. in Eq. (27), and the LO appears as if it is the coherent
state |αeiθ 〉 with ϕ = 0. Thus, by repeating independently the
sequence of M detections on ρ̂SL

cw from the common source
with the varying phase shift θ for the LO, the set of quadrature
distributions qθ (x)[ρ̂(0)] is obtained to reconstruct the signal
state through tomography as

ρ̂rec = ρ̂(0) = E(|β〉〈β|)E†, (29)

which is irrespective of the unknown phase ϕ.
Alternatively, we may adopt a pw laser for the original

oscillator, providing N copies of a phase mixture of coherent
states,

ρ̂0
pw =

(∫
dϕ

2π
P (ϕ)|(α + β)eiϕ〉〈(α + β)eiϕ |

)⊗N

. (30)

The combination of signal and LO is derived as

ρ̂SL
pw =

(∫
dϕ

2π
P (ϕ)ρ̂(ϕ) ⊗ |αei(ϕ+θ)〉〈αei(ϕ+θ)|

)⊗N

. (31)

Then, the same joint probability distribution is obtained as
Eq. (27) for the cw case,

p(x̃M )
[
ρ̂SL

pw

] =
M∏
i=1

∫
dϕi

2π
P (ϕi)qϕi+θ (xi)[ρ̂(ϕi)]

=
M∏
i=1

qθ (xi)[ρ̂(0)], (32)

providing again the reconstruction of the signal state as
ρ̂(0) = E(|β〉〈β|)E†. Therefore, as long as the common laser
field is used for the signal and LO, we find no actual difference
between the cw and pw cases. In either case, the use of a
pure coherent state as the LO is relevant for the standard
description of the optical quantum-state tomography, without
need to discuss the phase localization. The tomography with
a common source just characterizes the process given by the
operation E rather than the signal state [8].

B. Tomography with independent signal and LO

We next consider the case that the signal and LO are
prepared independently, which may be more faithful in the
sense of tomography to reconstruct an “unknown” quantum
state. The LO is supplied with the output state ρ̂cw of a cw
laser as given in Eq. (4). An ensemble of repeatedly prepared
identical states for the signal may be given generally as

ρ̂S =
∫

dϕ′

2π
PS(ϕ′)ρ̂(ϕ′)⊗N, (33)

where

ρ̂(ϕ′) ≡ Uϕ′ ρ̂(0)U†
ϕ′ (34)

with a certain ρ̂(0). The phase distributions P (ϕ) and PS(ϕ′)
(with period 2π ) may not be invariant under rotation of the
phase frame. In the case of a U(1)-invariant state ρ̂(0) = ρ̂(ϕ′)
for any ϕ′, namely, a mixture of number states [8], we simply
have ρ̂S = ρ̂(0)⊗N without PS(ϕ′).

The joint probability distribution of homodyne detections
is calculated as

p(x̃M )[ρ̂S ⊗ ρ̂cw] =
∫

dϕ

2π
P̄S(ϕ)

M∏
i=1

q(0)
ϕ (xi) (35)

with a convoluted phase distribution

P̄S(ϕ) =
∫

dϕ′

2π
PS(ϕ′)P (ϕ + ϕ′). (36)

Here, we have considered the invariance of homodyne de-
tection under phase transformation, implying the following
relation for the quadrature distributions:

qϕ(x)[ρ̂(ϕ′)] ≡ q(ϕ′)
ϕ (x) = q

(0)
ϕ−ϕ′ (x) (37)

with the periodicity qϕ+2π (x) = qϕ(x). We find that this p(x̃M )
represents a mixture of i.i.d.’s, as discussed in Sec. III.
Then, a quadrature distribution q(0)

ϕ0
(x) is obtained as the

empirical measure with the probability distribution P̄S(ϕ0) for
the random phase ϕ0. Here, we note that the U(1)-invariant LO
with P (ϕ) = 1 provides P̄S(ϕ) = 1, irrespective of any PS(ϕ)
for the original signal. In contrast, if any deviation of P̄S(ϕ)
from the uniform distribution is found for the various values of
ϕ = ϕ0 in experiments (provided ϕ0 is determined in a certain
situation, e.g., from the average of outcomes for the coherent
or squeezed state signal), that is,

P̄S(ϕ) �= 1 → P (ϕ), PS(ϕ) �= 1, (38)

then it might indicate the violation of U(1) symmetry, or the
presence of some implicit phase reference common to the
signal and LO.

The measurement of the M-packet sequence may be
repeated independently. Then, the quadrature distributions
q(0)

ϕ0
(x) are obtained with various random phases ϕ0. It is,

however, impossible in general to know the actual values of
ϕ0 without some prior knowledge about the signal state. These
unknown random phases ϕ0 for q(0)

ϕ0
(x) thus cannot substitute

for the phase shift θ of the LO in tomography. The phase shift
θ of the LO in each of the independent M-packet sequences
is actually ineffective since it is hidden in the random
phase ϕ0.

Instead, in order to realize effectively the phase shift of the
LO, we should extend the single M-packet sequence to (K ×
M)-packet sequences in a single operation of tomography:

ρ̂cw →
∫

dϕ

2π
P (ϕ)

K∏
k=1

[(|αei(ϕ+θk )〉〈αei(ϕ+θk )|)⊗M ], (39)
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where the phase shift θk is applied for the LO in each M-packet
sequence. Then, the joint probability distribution is given as

p
(
x̃

(1)
M , . . . ,x̃

(K)
M

) =
∫

dϕ

2π
P̄S(ϕ)

K∏
k=1

(
M∏
i=1

q
(0)
ϕ+θk

(xi)

)
. (40)

This provides the sequence of empirical measures upon
homodyne detections, determining the quadrature distributions
for tomography with varying phases θk (M � 1):

	
x̃

(1)
M

= q
(0)
ϕ0+θ1

(x), . . . ,	
x̃

(K)
M

= q
(0)
ϕ0+θK

(x), (41)

where the original phase of the LO is fixed to a certain value
ϕ0 according to the localization.

Provided there is no way to know the value of ϕ0, we may
set ϕ0 = 0 operationally (as a convenient choice of the phase
frame), or consider the relation

q
(0)
ϕ0+θk

(x) = q
(−ϕ0)
θk

(x). (42)

Then, the set of quadrature distributions q
(−ϕ0)
θk

(x) for the pure
coherent states LO |αeiθk 〉 with the phase shifts θk (α > 0 and
ϕ = 0) provides the tomographic reconstruction as

ρ̂rec = ρ̂(−ϕ0). (43)

In each operation of tomography, the reconstructed state
ρ̂(−ϕ0) appears probabilistically as a random rotation of ρ̂(0).
Due to the lack of the absolute phase reference, however,
ρ̂(0) and ρ̂(−ϕ0) should be regarded as equivalent, and the
ensemble of signal states is properly inferred as ρ̂S in Eq. (33)
with P̄S(ϕ′). These arguments illustrate the actual relevance
for the use of the pure coherent state as the LO in the
description of optical quantum-state homodyne tomography.
The relative random phases ϕ0 and their distribution P̄S(ϕ0)
may be estimated by comparing the rotations for the resultant
Wigner functions obtained from many runs of tomography
for the same ρ̂S . Note, however, that P̄S(ϕ0) = 1 for the
U(1)-invariant LO with P (ϕ) = 1, irrespective of the actual
PS(ϕ′).

C. cw field versus pw field

We also consider the case that the quantum state of LO is
given by a product of mixed states, which may be prepared
with a simple pw laser (not a phase-locked one):

ρ̂pw =
(∫

dϕ

2π
P (ϕ)|αeiϕ〉〈αeiϕ |

)⊗N

. (44)

In the case where the LO is pw, the joint probability distribution
is calculated for the signal state in Eq. (33) as

p(x̃M )[ρ̂S ⊗ ρ̂pw] =
∫

dϕ′

2π
PS(ϕ′)

M∏
i=1

q̄ϕ′ (xi), (45)

where

q̄ϕ′ (x) ≡
∫

dϕ

2π
P (ϕ)q(ϕ′−ϕ+ϕ′)

ϕ′ (x) (46)

with the relation q(ϕ′)
ϕ (x) = q

(ϕ′−ϕ+ϕ′)
ϕ′ (x) under the phase

rotation U−ϕ+ϕ′ . This smeared quadrature distribution q̄ϕ′(x)
is reproduced with the LO state |αeiϕ′ 〉 for the signal of a
phase-mixed state

ρ̂mix =
∫

dϕ

2π
P (ϕ)ρ̂(ϕ′ − ϕ + ϕ′), (47)

which generally does not coincide with ρ̂(0) or its phase
rotation ρ̂(ϕ′), except for the U(1)-invariant ρ̂(0). Thus, we
find that the optical quantum-state tomography does not work
correctly when the pw field ρ̂pw in Eq. (44) is used as the
independent LO. The phase mixture of product coherent states
ρ̂cw in Eq. (4), which is derived from a cw laser, is required
for successful tomography. As an interesting case, we may
implement homodyne tomography for the cw and pw fields
with the independent cw field as the LO. Then we will obtain in
the reconstruction the coherent state in Eq. (1) for the cw signal,
and the mixed state in Eq. (2) for the pw signal, respectively. In
this way, we can distinguish the quantum states of laser fields.

V. Summary

We have examined repeated optical homodyne detections
and quantum-state tomography in view of the joint probability
distribution of the measurement outcomes. By adopting the
real output state of a cw laser as the LO, which is independent
of the signal field, the joint probability distribution represents
a mixture of i.i.d.’s. Then, the original quadrature distribution
of the signal is obtained as the empirical measure, or relative
frequency of the outcomes, with a random phase for the co-
herent state LO determined a posteriori by phase localization
according to the Bayesian rule. This justifies the operational
use of the coherent state as the LO in the standard description of
homodyne detection and tomography. We have also discussed
the distinguishability of the quantum states of cw and pw lasers
by quantum-state tomography with the independent cw field
as the LO. That is, the cw and pw lasers will appear as the
coherent state and the mixed state, respectively. On the other
hand, both of them will be recognized indistinguishably as
the coherent state if the tomography is implemented with the
signal and LO derived from a common source oscillator, as
usually made in optical experiments.
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