
Title Lagrangian Floer theory on compact toric manifolds, I

Author(s) Fukaya, Kenji; Oh, Yong-Geun; Ohta, Hiroshi; Ono, Kaoru

Citation Duke Mathematical Journal (2010), 151(1): 23-175

Issue Date 2010-01

URL http://hdl.handle.net/2433/131748

Right 2010 © Duke University Press

Type Journal Article

Textversion publisher

Kyoto University

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Kyoto University Research Information Repository

https://core.ac.uk/display/39260684?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


LAGRANGIAN FLOER THEORY ON COMPACT
TORIC MANIFOLDS, I

KENJI FUKAYA, YONG-GEUN OH, HIROSHI OHTA, and KAORU ONO

Abstract
We introduced the notion of weakly unobstructed Lagrangian submanifolds and con-
structed their potential function (PO) purely in terms of A-model data in [FOOO3].
In this article, we carry out explicit calculations involving PO on toric manifolds
and study the relationship between this class of Lagrangian submanifolds with the
earlier work of Givental [G1], which advocates that the quantum cohomology ring
is isomorphic to the Jacobian ring of a certain function, called the Landau-Ginzburg
superpotential. Combining this study with the results from [FOOO3], we also apply
the study to various examples to illustrate its implications to symplectic topology of
Lagrangian fibers of toric manifolds. In particular, we relate it to the Hamiltonian
displacement property of Lagrangian fibers and to Entov-Polterovich’s symplectic
quasi-states.
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1. Introduction
The Floer theory of Lagrangian submanifolds has played an important role in sym-
plectic geometry since Floer’s invention [Fo] of the Floer cohomology and subsequent
generalization to the class of monotone Lagrangian submanifolds [O1]. After the in-
troduction of A∞-structure in Floer theory [F1] and Kontsevich’s homological mirror
symmetry proposal [K], it has also played an essential role in a formulation of mirror
symmetry in string theory.

In [FOOO1], we analyzed the anomaly ∂2 �= 0 and developed an obstruction the-
ory for the definition of Floer cohomology and introduced the class of unobstructed
Lagrangian submanifolds for which one can deform Floer’s original definition of the
“boundary” map by a suitable bounding cochain denoted by b. Expanding the discus-
sion in [FOOO1, Section 7] and motivated by the work of Cho and Oh [CO], we also
introduced the notion of weakly unobstructed Lagrangian submanifolds in [FOOO3,
Chapter 3] which turns out to be the right class of Lagrangian submanifolds to look
at in relation to the mirror symmetry of Fano toric A-model and Landau-Ginzburg B-
model proposed by physicists (see [H], [HV]). In this article, we study the relationship
between this class of Lagrangian submanifolds and the earlier work of Givental [G1],
which advocates that the quantum cohomology ring is isomorphic to the Jacobian ring
of a certain function, which is called the Landau-Ginzburg superpotential. Combining
this study with the results from [FOOO3], we also apply this study to symplectic
topology of Lagrangian fibers of toric manifolds.

While the appearance of bounding cochains is natural from the point of view of
deformation theory, explicit computation thereof has not been carried out. One of the
main purposes of this article is to perform this calculation in the case of fibers of toric
manifolds and to draw its various applications. Especially, we show that each fiber L(u)
at u ∈ t∗ is weakly unobstructed for any toric manifold π : X → t∗ (see Proposition
4.3), and we then show that the set of the pairs (L(u), b) of a fiber L(u) and a weak
bounding cochain b with nontrivial Floer cohomology can be calculated from the
quantum cohomology of the ambient toric manifold, at least in the Fano case. Namely,
the set of such pairs (L(u), b) is identified with the set of ring homomorphisms from
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quantum cohomology to the relevant Novikov ring. We also show by a variational
analysis that for any compact toric manifold there exists at least one pair of (u, b)’s
for which the Floer cohomology of (L(u), b) is nontrivial.

We call a Lagrangian fiber (that is, a T n-orbit) balanced, roughly speaking, if
its Floer cohomology is nontrivial (see Definition 4.11 for its precise definition). The
main result of this article can be summarized as follows.
(1) When X is a compact Fano toric manifold, we give a method to locate all the

balanced fibers.
(2) Even when X is not Fano, we can still apply the same method to obtain a

finite set of Lagrangian fibers. We prove that this set coincides with the set
of balanced Lagrangian fibers under certain nondegeneracy condition. This
condition can be easily checked when a toric manifold is given.

Now, a more precise statement of the main results is in order.
Let X be an n-dimensional smooth compact toric manifold. We fix a T n-

equivariant Kähler form on X, and we let π : X → t∗ ∼= (Rn)∗ be the moment
map. The image P = π(X) ⊂ (Rn)∗ is called the moment polytope. For u ∈ Int P ,
we denote L(u) = π−1(u). The fiber L(u) is a Lagrangian torus that is an orbit of
the T n-action (see Section 2; we refer readers to, e.g., [Au], [Fu] for the details on
toric manifolds). We study the Floer cohomology defined in [FOOO3]. According to
[FOOO1] and [FOOO3], we need extra data, the bounding cochain, to make the defi-
nition of Floer cohomology more flexible to allow a more general class of Lagrangian
submanifolds. In the current context of Lagrangian torus fibers in toric manifolds, we
use weak bounding cochains. Denote by Mweak(L(u); �0) the moduli space of (weak)
bounding cochains for a weakly unobstructed Lagrangian submanifold L(u) (see the
end of Section 4).

In this situation, we first show that each element in H 1(L(u); �0) gives rise to a
weak bounding cochain, that is, there is a natural embedding

H 1
(
L(u); �0

)
↪→ Mweak

(
L(u); �0

)
(1.1)

(see Proposition 4.3). Here we use the universal Novikov ring

� =
{ ∞∑

i=1

aiT
λi

∣∣∣ ai ∈ Q, λi ∈ R, lim
i→∞

λi = ∞
}
, (1.2)

where T is a formal parameter. (We do not use the grading parameter e used in
[FOOO3] since it does not play much of a role in this article.) Then �0 is a subring of
� defined by

�0 =
{ ∞∑

i=1

aiT
λi ∈ �

∣∣∣ λi ≥ 0
}
. (1.3)



26 FUKAYA, OH, OHTA, and ONO

We also use another subring

�+ =
{ ∞∑

i=1

aiT
λi ∈ �

∣∣∣ λi > 0
}
. (1.4)

We note that � is the field of fractions of �0 and that �0 is a local ring with maximal
ideal �+. Here we take the universal Novikov ring over Q, but we also use the universal
Novikov ring over C or other ring R, which we denote �C, �R , respectively. (In case
R does not contain Q, Floer cohomology over �R is defined only in the Fano case.)

Remark 1.1
If we strictly follow the way taken in [FOOO3], we get only the embedding
H 1(L(u); �+) ↪→ Mweak(L(u)), not (1.1). Here

Mweak

(
L(u)

) = Mweak

(
L(u); �+

)
is defined in [FOOO3, Definitions 3.6.29, 4.3.21]. (We note that Mweak(L(u); �+) �=
Mweak(L(u); �0), where the right-hand side is defined at the end of Section 4.)

However, we can modify the definition of weak unobstructedness so that (1.1)
follows, using the idea of Cho [Cho, Section 2.1] (see Section 12).

For the rest of this article, we use the symbol b for an element of Mweak(L(u); �+)
and x for an element of Mweak(L(u); �0).

We next consider the quantum cohomology ring QH (X; �) with the universal
Novikov ring � as a coefficient ring (see Section 6). It is a commutative ring for
the toric case, since QH (X; �) is generated by cohomology classes of even degree.

Definition 1.2
(1) We define the set Spec(QH (X; �))(�C) to be the set of �-algebra homomor-

phisms ϕ : QH (X; �) → �C. (In other words, it is the set of all �C-valued
points of the scheme Spec(QH (X; �)).

(2) We next denote by M(Lag(X)) the set of all pairs (x, u), u ∈ Int P , x ∈
H 1(L(u); �C

0 )/H 1(L(u); 2π
√−1Z) such that

HF
(
(L(u), x), (L(u), x); �C

) �= {0}.

THEOREM 1.3
If X is a Fano toric manifold, then

Spec
(
QH (X; �)

)
(�C) ∼= M

(
Lag(X)

)
.
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If QH (X; �) is semisimple in addition, then we have∑
d

rankQHd(X; Q) = #
(
M(Lag(X))

)
. (1.5)

We remark that a commutative ring that is a finite-dimensional vector space over a
field (e.g., � in our case) is semisimple if and only if it does not contain any nilpotent
element. We also remark that a compact toric manifold is Fano if and only if every
nontrivial holomorphic sphere has positive Chern number.

We believe that (1.5) still holds in the non-Fano case, but we have been unable
to prove it to date. However, we can prove that there exists a fiber L(u) whose Floer
cohomology is nontrivial, by a method different from the proof of Theorem 1.3. Due
to technical reasons, we can only prove the following slightly weaker statement.

THEOREM 1.4
Assume that the Kähler form ω of X is rational. Then there exists u ∈ Int P such that
for any N ∈ R+ there exists x ∈ H 1(L(u); �R

0 ) with

HF
(
(L(u), x), (L(u), x); �R

0 /(T N)
) ∼= H (T n; R) ⊗R �R

0 /(T N).

We suspect that the rationality assumption in Theorem 1.4 can be removed. It is also
likely that we can prove M(Lag(X)) is nonempty, but its proof at the moment is a
bit cumbersome to write down. We can, however, derive the following theorem from
Theorem 1.4, without rationality assumption.

THEOREM 1.5
Let X be an n-dimensional compact toric manifold. There exists u0 ∈ IntP such that
the following holds for any Hamiltonian diffeomorphism ψ : X → X,

ψ
(
L(u0)

) ∩ L(u0) �= ∅. (1.6)

If in addition ψ(L(u0)) is transversal to L(u0), then

#
(
ψ(L(u0)) ∩ L(u0)

) ≥ 2n. (1.7)

Theorem 1.5 is proved in Section 13.
We wish to point out that (1.6) can be derived from a more general intersection

result, [EP1, Theorem 2.1], obtained by Entov and Polterovich with a different method
using a very interesting notion of partial symplectic quasi-state constructed out of
the spectral invariants defined in [Sc] and [O3] (see also [V] and [O2] for similar
constructions in the context of exact Lagrangian submanifolds).
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Remark 1.6
Strictly speaking, [EP1, Theorem 2.1] is stated under the assumption that X is semi-
positive and ω is rational because the theory of spectral invariant was developed in
[O3] under these conditions. The rationality assumption was removed in [O4] and
[Us], and the semipositivity assumption of ω was removed in [Us]. Thus the spectral
invariant satisfying all the properties listed in [EP1, Section 5] is now established for
an arbitrary compact symplectic manifold. By the argument of [EP1, Section 7], this
implies the existence of a partial symplectic quasi-state. Therefore, the proof of [EP1,
Theorem 2.1] goes through without these assumptions (semipositivity and rationality),
and hence it implies (1.6) (see the introduction of [Us]). But the result (1.7) is new.

Our proof of Theorem 1.5 gives an explicit way of locating u0, as we show in
Section 9. (The method of [EP1] is indirect and does not provide a way of finding
such u0; see [EP2]. Below, we make some remarks concerning the Entov-Polterovich
approach in the perspective of homological mirror symmetry.) In various explicit
examples we can find more than one element u0 that have the properties stated in
this theorem. Following terminology employed in [CO], we call any such torus fiber
L(u0) as in Theorem 1.4 a balanced Lagrangian torus fiber (see Definition 4.11 for its
precise definition).

A criterion for L(u0) to be balanced, for the case x = 0, is provided by Cho
and Oh [CO] and Cho [Cho] under the Fano condition. Our proofs of Theorems 1.4
and 1.5 are largely based on this criterion, and on the idea of Cho [Cho] of twisting
nonunitary complex line bundles in the construction of Floer boundary operator. This
criterion in turn specializes to the one predicted by physicists (see [HV], [H]), which
relates the location of u0 to the critical points of the Landau-Ginzburg superpotential.

A precise description of balanced Lagrangian fibers including the data of bounding
cochains involves the notion of a potential function. In [FOOO3], the authors have
introduced a function

PO
L : Mweak(L) → �0

for an arbitrary weakly unobstructed Lagrangian submanifold L ⊂ (X, ω). By varying
the function PO

L over L ∈ {π−1(u) | u ∈ Int P }, we obtain the potential function

PO :
⋃

L∈{π−1(u)|u∈Int P }
Mweak(L) → �0. (1.8)

This function is constructed purely in terms of A-model data of the general symplectic
manifold (X, ω) without using mirror symmetry.

For a toric (X, ω), the restriction of PO to H 1(L(u); �+) (see (1.1)) can be
made explicit when combined with the analysis of holomorphic discs attached to torus
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fibers of toric manifolds carried out in [CO], at least in the Fano case. (In the non-Fano
case, we can make it explicit modulo “higher order terms.”) This function extends to
H 1(L(u); �0).

Remark 1.7
In [EP3], some relationships between quantum cohomology, quasi-state, spectral in-
variant and displacement of Lagrangian submanifolds are discussed. Consider an
idempotent i of quantum cohomology. The (asymptotic) spectral invariants associated
to i give rise to a partial symplectic quasi-state via the procedure concocted in [EP3],
which in turn detects nondisplaceability of certain Lagrangian submanifolds. (The
assumption of [EP1] is weaker than ours.)

In the current context of toric manifolds, we could also relate them to Floer
cohomology and mirror symmetry in the following way. Quantum cohomology
is decomposed into indecomposable factors (see Proposition 7.7). Let i be the
idempotent corresponding to one of the indecomposable factors. Let L = L(u(1, i))
be a Lagrangian torus fiber whose nondisplaceability is detected by the par-
tial symplectic quasi-state obtained from i. We conjecture that Floer cohomology
HF (L(u(1, i), x), (L(u(1, i), x))) is nontrivial for some x (see Remark 5.8). This
bounding cochain x in turn is shown to be a critical point of the potential function PO

defined in [FOOO3].
On the other hand, i also determines a homomorphism ϕi : QH (X; �) → �. It

corresponds to some Lagrangian fiber L(u(2, i)) by Theorem 1.3. Then this implies
via Theorem 4.10 that the fiber L(u(2, i)) is nondisplaceable.

We conjecture that u(1, i) = u(2, i). We remark that u(2, i) is explicitly calculable.
Hence in view of the way u(1, i) is found in [EP1], u(1, i) = u(2, i) gives some
information on the asymptotic behavior of the spectral invariant associated with i.

We fix a basis of the Lie algebra t of T n which induces a basis of t∗ and hence a coor-
dinate of the moment polytope P ⊂ t∗. This in turn induces a basis of H 1(L(u); �0)
for each u ∈ Int P and so identification H 1(L(u); �0) ∼= (�0)n. We then regard the
potential function as a function

PO(x1, . . . , xn; u1, . . . , un) : (�0)n × Int P → �0

and prove in Theorem 4.10 that Floer cohomology HF ((L(u), x), (L(u), x); �) with
x = (x1, . . . , xn), u = (u1, . . . , un) is nontrivial if and only if (x, u) satisfies

∂PO

∂xi

(x; u) = 0, i = 1, . . . , n. (1.9)
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To study (1.9), it is useful to change the variables xi to

yi = exi .

In these variables, we can write potential function as a sum

PO(x1, . . . , xn; u1, . . . , un) =
∑

T ci (u)Pi(y1, . . . , yn),

where Pi are Laurent polynomials which do not depend on u, and ci(u) are positive
real valued functions. When X is Fano, we can express the right-hand side as a finite
sum (see Theorem 4.5).

We define a function PO
u of yi’s by

PO
u(y1, . . . , yn) = PO(x1, . . . , xn; u1, . . . , un)

as a Laurent polynomial of n-variables with coefficient in �. We denote the set of
Laurent polynomials by

�[y1, . . . , yn, y
−1
1 , . . . , y−1

n ]

and consider its ideal generated by the partial derivatives of PO
u, namely,(∂PO

u

∂yi

; i = 1, . . . , n
)
.

Definition 1.8
We call the quotient ring

Jac(PO
u) = �[y1, . . . , yn, y

−1
1 , . . . , y−1

n ]

(∂PO
u
/∂yi ; i = 1, . . . , n)

the Jacobian ring of PO
u.

We prove that the Jacobian ring is independent of the choice of u up to isomorphism
(see the end of Section 6), and so we just write Jac(PO) for Jac(POu) when there is
no danger of confusion.

THEOREM 1.9
If X is Fano, then there exists a �-algebra isomorphism

ψu : QH (X; �) → Jac(PO)
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from quantum cohomology ring to the Jacobian ring such that

ψu

(
c1(X)

) = PO
u
.

Theorem 1.9 (or Theorem 1.12 below) enables us to explicitly determine all the pairs
(x, u) with HF ((L(u), x), (L(u), x); �) �= 0 out of the quantum cohomology of X.
More specifically, Batyrev’s presentation of quantum cohomology in terms of the
Jacobian ring plays an essential role for this purpose; we explain how this is done in
Sections 7 and 8.

Remark 1.10
(1) The idea that the quantum cohomology ring coincides with the Jacobian ring begins
with a celebrated article by Givental (see [G1, Theorem 5(1)]). There it was claimed
also that the D-module defined by an oscillatory integral with the superpotential as its
kernel is isomorphic to S1-equivariant Floer cohomology of the periodic Hamiltonian
system. When one takes its WKB limit, the former becomes the ring of functions on
its characteristic variety, which is nothing but the Jacobian ring. The latter becomes
the (small) quantum cohomology ring under the same limit. Assuming the Ansatz
that quantum cohomology can be calculated by fixed-point localization, these claims
are proved in a subsequent article [G2] for, at least, toric Fano manifolds. Then the
required fixed-point localization is made rigorous later in [GP] (see also Iritani [I1]).

In physics literature, it has been advocated that the Landau-Ginzburg model of
superpotential (that is, the potential function PO in our situation) calculates quantum
cohomology of X. A precise mathematical statement thereof is our Theorem 1.9 (see,
e.g., [HKKP, page 473]).

Our main new idea in the proof of Theorem 1.3 (other than those already in
[FOOO3]) is the way we combine them to extract information on Lagrangian sub-
manifolds. In fact, Theorem 1.9 itself easily follows if we use the claim made by
Batyrev that the quantum cohomology of a toric Fano manifold is a quotient of a
polynomial ring by the ideal of relations, called the quantum Stanley-Reisner relation
and the linear relation (this claim is now well established). We include this simple
derivation in Section 6 for completeness, since it is essential to take the Novikov ring
� as the coefficient ring in our applications. This version does not seem to have been
proven in the literature in the form that we need.

(2) The proof of Theorem 1.9 given in this article does not contain a serious study
of pseudoholomorphic spheres. The argument we outline in Remark 6.15 is based on
open-closed Gromov-Witten theory, and it is different from other various methods that
have been used to calculate Gromov-Witten invariants in the literature. In particular,
this argument does not use the method of fixed-point localization. We will present this
conceptual proof of Theorem 1.9 in a future sequel to this article.
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(3) The isomorphism in Theorem 1.9 may be regarded as a particular case of the
conjectural relation between quantum cohomology and Hochschild cohomology of
Fukaya category (see Remark 6.15).

(4) In this article, we only involve small quantum cohomology rings but we
can also include big quantum cohomology rings. Then, we expect, Theorem 1.9
can be enhanced to establish a relationship between the Frobenius structure of the
deformation theory of quantum cohomology (see, e.g., [M]) and the Landau-Ginzburg
model (which is due to K. Saito [S]). This statement (and Theorems 1.3 and 1.9) can
be regarded as a version of mirror symmetry between the toric A-model and the
Landau-Ginzburg B-model. In various literature on mirror symmetry, such as [Ab],
[AKO], and [U], the B-model is dealt with for Fano or toric manifolds in which
the derived category of coherent sheaves is studied, while the A-model is dealt with
for Landau-Ginzburg A-models where the directed A∞-category of Seidel [Se2] is
studied.

(5) In [Ar], Auroux discussed a mirror symmetry between the A-model side of
toric manifolds and the B-model side of Landau-Ginzburg models. The discussion
of [Ar] uses Floer cohomology with C-coefficients. In this article, we use Floer
cohomology over the Novikov ring, which is more suitable for the applications to
symplectic topology.

(6) Even when X is not necessarily Fano, we can still prove a similar isomorphism

ψu : QHω(X; �) ∼= Jac(PO0) (1.10)

where the left-hand side is the Batyrev quantum cohomology ring (see Definition 6.4)
and the right-hand side is the Jacobian ring of some function PO0; it coincides with
the actual potential function PO “up to higher order terms” (see (4.9)). In the Fano
case PO0 = PO; (1.10) is Proposition 6.8.

(7) During the final stage of writing this article, another article, [CL] by Chan
and Leung, appeared in which the above isomorphism was studied via SYZ transfor-
mations. Chan and Leung give a proof of this isomorphism for the case where X is
a product of projective spaces and use the coefficient ring C, not the Novikov ring.
Leung presented their result [CL] in a conference held at Kyoto University in January
2008, where Fukaya also presented the content of this article.

From our definition, it follows that the leading-order potential function PO0 (see
(4.9)) can be extended to the whole product (�C

0 )n × Rn so that they are invariant
under the translations by elements in (2π

√−1Z)n ⊆ (�C
0 )n. Hence we may regard

PO0 as a function defined on(
�C

0 /(2π
√−1Z)

)n × (Rn)∗ ∼= (
�C

0 /(2π
√−1Z)

)n × Rn.
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In the non-Fano case, the function PO is invariant under the translations by elements
in (2π

√−1Z)n ⊆ (�C
0 )n but may not extend to �C

0 /(2π
√−1Z))n × Rn. This is

because the infinite sum appearing in the right-hand side of (4.7) may not converge in
non-Archimedean topology for u /∈ Int P .

Definition 1.11
We denote by

Crit(PO0), (respectively, Crit(PO))

the subset of pairs

(x, u) ∈ (
�C

0 /(2π
√−1Z)

)n×Rn, (respectively, (x, u) ∈ (
�C

0 /(2π
√−1Z)

)n×Int P )

satisfying the equation

∂PO0

∂xi

(x; u) = 0,
(

respectively,
∂PO

∂xi

(x; u) = 0
)
,

i = 1, . . . , n.

We define M(Lag(X)) in Definition 1.2. (We use the same definition in the
non-Fano case.) In view of Theorem 1.12(2) below, we also introduce the subset

M0

(
Lag(X)

) = {(x, u) ∈ Crit(PO0) | u ∈ Int P }.

We also note that PO0 = PO in case X is Fano. The following is a more precise
form of Theorem 1.3.

THEOREM 1.12
(1) There exists a bijection

Spec
(
QHω(X; �)

)
(�C) ∼= Crit(PO0).

(2) There exists a bijection

M
(
Lag(X)

) ∼= Crit(PO).

(3) If X is Fano and x is a critical point of PO
u
0 , then u ∈ Int P .

(4) If QHω(X; �) is semisimple, then∑
d

rank�QHω(X; �) = #
(
Crit(PO0)

)
.
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Remark 1.13
(1) Theorem 1.12(3) does not hold in the non-Fano case. We give a counterexample
(Example 8.2) in Section 8. In fact, in the case of Example 8.2 some of the critical
points of PO0 correspond to a point u ∈ Rn which lies outside the moment polytope.

(2) In the Fano case, Theorem 1.12(3) implies that

M
(
Lag(X)

) = Crit(PO) ∼= Crit(PO0).

We note that PO0 is explicitly computable. But we do not know the explicit form
of PO. However, we can show that elements of Crit(PO0) and of Crit(PO) can be
naturally related to each other under a mild nondegeneracy condition (see Theorem
10.4). So we can use PO0 in place of PO in most of the cases. For example, we can
use it to prove the following.

THEOREM 1.14
For any k, there exists a Kähler form on X(k), the k-points blow-up of CP 2, that is
toric and has exactly k + 1 balanced fibers.

Balanced fiber satisfies conclusions (1.6), (1.7) of Theorem 1.5 (see Definition 4.11
for the definition of balanced fibers). We prove Theorem 1.14 in Section 10.

Remark 1.15
The cardinality of x ∈ H 1(L(u); �C

0 )/H 1(L(u); 2π
√−1Z) with nonvanishing Floer

cohomology is an invariant of Lagrangian submanifold L(u). This is a consequence
of [FOOO3, Theorem G] (equivalent to [FOOO2, Theorem G]).

The organization of this article is now in order. In Section 2, we gather some basic
facts on toric manifolds and fix our notation. Section 3 is a brief review of Lagrangian
Floer theory in [FOOO1] and [FOOO3]. In Section 4, we describe our main results on
the potential function PO and on its relation to the Floer cohomology. We illustrate
these theorems by several examples and derive their consequences in Sections 5–10.
We postpone their proofs until Sections 11–13.

In Section 5, we illustrate explicit calculations involving the potential functions
in such examples as CP n, S2 × S2, and the 2-point blow-up of CP 2. We also discuss
a relationship between displacement energy of Lagrangian submanifolds (see Defini-
tion 5.9) and Floer cohomology. In Sections 6 and 7, we prove the results that mainly
apply to the Fano case; in particular, we prove Theorems 1.3, 1.9, and 1.12 in those
sections. Section 7 contains some applications of Theorem 1.9, especially to the case
of monotone torus fibers and to the Q-structure of the quantum cohomology ring. In
Section 8, we first illustrate usage of (the proof of) Theorem 1.3 to locate balanced
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fibers by the example of the 1-point blow-up of CP 2. We then turn to the study of
non-Fano cases and discuss Hirzebruch surfaces. Section 8 also contains some dis-
cussion on the semisimplicity of quantum cohomology.

In Sections 9 and 10, we prove the results that can be used in all toric cases,
whether they are Fano or not. In Section 9, using variational analysis, we prove
existence of a critical point of the potential function, which is an important step
toward the proof of Theorems 1.4 and 1.5. Using the arguments of this section, we can
locate a balanced fiber in any compact toric manifold, explicitly solving simple linear
equalities and inequalities finitely many times. In Section 10, we prove that we can
find solutions of (1.9) by studying its reduction to C = �C

0 /�C
+, which we call the

leading-term equation. This result is purely algebraic. It implies that our method of
locating balanced fibers, which is used in the proof of Theorem 1.3, can also be used
in the non-Fano case under certain nondegeneracy condition. We apply this method to
prove Theorem 1.14. We also discuss an example of blow-up of CP n along the high-
dimensional blow-up center CP m in Section 10, giving several other examples and
demonstrating various interesting phenomena that occur in Lagrangian Floer theory.
For example, we provide a sequence ((X, ωi), Li) of pairs that have nonzero Floer
cohomology for some choice of bounding cochains, while its limit ((X, ω), L) has
vanishing Floer cohomology for any choice of bounding cochain (Example 10.17).
We also provide an example of Lagrangian submanifold L such that it has a nonzero
Floer cohomology over �C for some choice of bounding cochain, but vanishing Floer
cohomology for any choice of bounding cochain over the field �F with a field F of
characteristic 3 (Example 10.19).

In Section 11, we review the results on the moduli space of holomorphic discs
from [CO] which are used in the calculation of the potential function. We rewrite
them in the form that can be used for the purpose of this article. We also discuss
the non-Fano case in this section. (Our result is less explicit in the non-Fano case,
but still can be used to explicitly locate balanced fibers in most of the cases.) In
Section 12, we use the idea of Cho [Cho] to deform Floer cohomology by an element
from H 1(L(u); �0) rather than from H 1(L(u); �+). This enhancement is crucial to
obtain an optimal result about the nondisplacement of Lagrangian fibers. In Section
13, we use those results to calculate Floer cohomology and complete the proof of
Theorems 1.4 and 1.5.

We attempted to make this article largely independent of our book (see [FOOO1],
[FOOO3]) as much as possible and also to make the relationship of the contents of
the article with the general story transparent. Here are a few examples.

(1) Our definition of the potential function for the fibers of toric manifolds in this
article is given in a way independent of that of [FOOO3] except for the statement
on the existence of compatible Kuranishi structures and multisections on the moduli
space of pseudoholomorphic discs, which provides a rigorous definition of Floer
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cohomology of single Lagrangian fiber. Such details are provided in [FOOO3, Section
7.1] (equivalent to [FOOO2, Section 29]).

(2) Similarly, the definition of A∞-algebra in this article on the Lagrangian fiber of
toric manifolds is also independent of the book except for the process going from An,K -
structure to A∞-structure, for which we refer to [FOOO3, Section 7.2] (equivalent
to [FOOO2, Section 30]). However, for all the applications in this article, only the
existence of An,K -structures is needed.

(3) The property of the Floer cohomology HF (L, L) detecting the Lagrangian
intersection of L with its Hamiltonian deformation relies on the fact that Floer coho-
mology of the pair is independent under the Hamiltonian isotopy. This independence
is established in [FOOO3]. In the toric case, its alternative proof based on the de Rham
version is given in [FOOO5] in a more general form than we need here.

2. Compact toric manifolds
In this section, we summarize basic facts on the toric manifolds and set up our notations
to be consistent with those in [CO], which in turn closely follow those in Batyrev [B1]
and Audin [Au].

2.1. Complex structure
In order to obtain an n-dimensional compact toric manifold X, we need a combinatorial
object 
, a complete fan of regular cones, in an n-dimensional vector space over R.

Let N be the lattice Zn, and let M = HomZ(N, Z) be the dual lattice of rank n.
Let NR = N ⊗ R, and let MR = M ⊗ R.

Definition 2.1
A convex subset σ ⊂ NR is called a regular k-dimensional cone (k ≥ 1) if there exist
k linearly independent elements v1, . . . , vk ∈ N such that

σ = {a1v1 + · · · + akvk | ai ∈ R, ai ≥ 0},

and the set {v1, . . . , vk} is a subset of some Z-basis of N . In this case, we call
v1, . . . , vk ∈ N the integral generators of σ .

Definition 2.2
A regular cone σ ′ is called a face of a regular cone σ (we write σ ′ ≺ σ ) if the set of
integral generators of σ ′ is a subset of the set of integral generators of σ .

Definition 2.3
A finite system 
 = σ1, . . . , σs of regular cones in NR is called a complete n-
dimensional fan of regular cones if the following conditions are satisfied:
(1) if σ ∈ 
 and σ ′ ≺ σ , then σ ′ ∈ 
;
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(2) if σ, σ ′ are in 
, then σ ′ ∩ σ ≺ σ and σ ′ ∩ σ ≺ σ ′;
(3) NR = σ1 ∪ · · · ∪ σs .

The set of all k-dimensional cones in 
 is denoted by 
(k).

Definition 2.4
Let 
 be a complete n-dimensional fan of regular cones. Denote by G(
) =
{v1, . . . , vm} the set of all generators of 1-dimensional cones in 
 (m = Card 
(1)).
We call a subset P = {vi1, . . . , vip} ⊂ G(
) a primitive collection if {vi1, . . . , vip}
does not generate p-dimensional cones in 
, while for all k (0 ≤ k < p) each
k-element subset of P generates a k-dimensional cone in 
.

Definition 2.5
Let Cm be an m-dimensional affine space over C with the set of coordinates z1, . . . , zm

which are in one-to-one correspondence zi ↔ vi with elements of G(
). Let P =
{vi1, . . . , vip} be a primitive collection in G(
). Denote by A(P) the (m − p)-
dimensional affine subspace in Cn defined by the equations

zi1 = · · · = zip = 0.

Since every primitive collection P has at least two elements, the codimension of A(P)
is at least 2.

Definition 2.6
Define the closed algebraic subset Z(
) in Cm as follows:

Z(
) =
⋃

P

A(P),

where P runs over all primitive collections in G(
). Put

U (
) = Cm \ Z(
).

Definition 2.7
Let K be the subgroup in Zm consisting of all lattice vectors λ = (λ1, . . . , λm) such
that

λ1v1 + · · · + λmvm = 0.

Obviously, K is isomorphic to Zm−n, and we have the exact sequence

0 → K → Zm π→ Zn → 0, (2.1)

where the map π sends the basis vectors ei to vi for i = 1, . . . , m.
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Definition 2.8
Let 
 be a complete n-dimensional fan of regular cones. Define D(
) to be the
connected commutative subgroup in (C∗)m generated by all 1-parameter subgroups

aλ : C∗ → (C∗)m,

t �→ (tλ1, . . . , tλm),

where λ = (λ1, . . . , λm) ∈ K.

It is easy to see from the definition that D(
) acts freely on U (
). Now we are ready
to give a definition of the compact toric manifold X
 associated with a complete
n-dimensional fan of regular cones 
.

Definition 2.9
Let 
 be a complete n-dimensional fan of regular cones. Then the quotient

X
 = U (
)/D(
)

is called the compact toric manifold associated with 
.

There exists a simple open covering of U (
) by affine algebraic varieties.

PROPOSITION 2.10
Let σ be a k-dimensional cone in 
 generated by {vi1, . . . , vik }. Define the open subset
U (σ ) ⊂ Cm as

U (σ ) = {
(z1, . . . , zm) ∈ Cm

∣∣ zj �= 0 for all j /∈ {i1, . . . , ik}
}
.

Then the open sets U (σ ) have the properties
(1)

U (
) =
⋃
σ∈


U (σ );

(2) if σ ≺ σ ′, then U (σ ) ⊂ U (σ ′);
(3) for any two cone σ1, σ2 ∈ 
, one has U (σ1) ∩ U (σ2) = U (σ1 ∩ σ2); in

particular,

U (
) =
∑

σ∈
(n)

U (σ ).
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PROPOSITION 2.11
Let σ be an n-dimensional cone in 
(n) generated by {vi1, . . . , vin}, which spans the
lattice M . We denote the dual Z-basis of the lattice N by {ui1, . . . , uin}, that is,

〈vik , uil 〉 = δk,l , (2.2)

where 〈·, ·〉 is the canonical pairing between lattices N and M .
Then the affine open subset U (σ ) is isomorphic to Cn × (C∗)m−n, the action

of D(
) on U (σ ) is free, and the space of D(
)-orbits is isomorphic to the affine
space Uσ = Cn whose coordinate functions yσ

1 , . . . , yσ
n are n Laurent monomials in

z1, . . . , zm: ⎧⎪⎪⎨⎪⎪⎩
yσ

1 = z
〈v1,ui1 〉
1 · · · z〈vm,ui1 〉

m

...

yσ
n = z

〈v1,uin 〉
1 · · · z〈vm,uin 〉

m

(2.3)

The last statement yields a general formula for the local affine coordinates yσ
1 , . . . , yσ

n

of a point p ∈ Uσ as functions of its “homogeneous coordinates” z1, . . . , zm.

2.2. Symplectic structure
In Section 2.1, we associated a compact manifold X
 to a fan 
. In this section,
we review the construction of symplectic (Kähler) manifolds associated to a convex
polytope P .

Let M be a dual lattice; we consider a convex polytope P in MR defined by{
u ∈ MR

∣∣ 〈u, vj 〉 ≥ λj for j = 1, . . . , m
}
, (2.4)

where 〈·, ·〉 is a dot product of MR
∼= Rn; namely, vj ’s are inward normal vectors to

the codimension 1 faces of the polytope P . We associate to it a fan in the lattice N as
follows. With any face 
 of P , fix a point u0 in the (relative) interior of 
 and define

σ
 =
⋃
r≥0

r · (P − u0).

The associated fan is the family 
(P ) of dual convex cones

σ̌
 = {
x ∈ NR

∣∣ 〈y, x〉 ≥ 0 ∀y ∈ σ


}
(2.5)

= {
x ∈ NR

∣∣ 〈u, x〉 ≤ 〈p, x〉 ∀p ∈ P, u ∈ 

}
, (2.6)

where 〈·, ·〉 is dual pairing MR and NR. Hence we obtain a compact toric manifold
X
(P ) associated to a fan 
(P ).
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Now we define a symplectic (Kähler) form on X
(P ) as follows. Recall the exact
sequence

0 → K
i→ Zm π→ Zn → 0.

It induces another exact sequence:

0 → K → Rm/Zm → Rn/Zn → 0.

Denote by k the Lie algebra of the real torus K . Then we have the exact sequence of
Lie algebras

0 → k → Rm π→ Rn → 0.

We also have the dual of the exact sequence above:

0 → (Rn)∗ → (Rm)∗
i∗→ k∗ → 0.

Now, consider Cm with symplectic form i/2
∑

dzk ∧ dzk . The standard action
T n on Cn is hamiltonian with the moment map

μ(z1, . . . , zm) = 1

2
(|z1|2, . . . , |zm|2). (2.7)

For the moment map μK of the K-action is then given by

μK = i∗ ◦ μ : Cm → k∗.

If we choose a Z-basis of K ⊂ Zm as

Q1 = (Q11, . . . , Qm1), . . . , Qk = (Q1k, . . . , Qmk)

and {q1, . . . , qk} be its dual basis of K∗. Then the map i∗ is given by the matrix Qt ,
and so we have

μK (z1, . . . , zm) = 1

2

( m∑
j=1

Qj1|zj |2, . . . ,
m∑

j=1

Qjk|zj |2
)
∈ Rk ∼= k∗ (2.8)

in the coordinates associated to the basis {q1, . . . , qk}. We denote again by μK the
restriction of μK on U (
) ⊂ Cm.

PROPOSITION 2.12 ([Au, Chapter VII])
Then for any r = (r1, . . . , rm−n) ∈ μK (U (
)) ⊂ k∗, we have a diffeomorphism

μ−1
K (r)/K ∼= U (
)/D(
) = X
. (2.9)
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And for each (regular) value of r ∈ k∗, we can associate a symplectic form ωP on the
manifold X
 by symplectic reduction (see [MW]).

To obtain the original polytope P that we started with, we need to choose r as follows.
Consider λj for j = 1, . . . , m which we used to define our polytope P by the set of
inequalities 〈u, vj 〉 ≥ λj . Then, for each a = 1, . . . , m − n, let

ra = −
m∑

j=1

Qjaλj .

Then we have

μ−1
K (r1, . . . , rm−n)/K ∼= X
(P ),

and for the residual T n ∼= T m/K-action on X
(P ) and for its moment map π , we have

π(X
(P )) = P.

Using Delzant’s theorem [D], one can reconstruct the symplectic form out of the
polytope P (up to T n-equivariant symplectic diffeomorphisms). In fact, Guillemin
[Gu] proved the following explicit closed formula for the T n-invariant Kähler form
associated to the canonical complex structure on X = X
(P ).

THEOREM 2.13 ([Gu, Theorem 4.5])
Let P , X
(P ), ωP be as above, and let

π : X
(P ) → (Rm/k)∗ ∼= (Rn)∗

be the associated moment map. Define the functions on (Rn)∗

�i(u) = 〈u, vi〉 − λi for i = 1, . . . , m (2.10)

�∞(u) =
m∑

i=1

〈u, vi〉 =
〈
u,

m∑
i=1

vi

〉
.

Then we have

ωP = √−1∂∂

(
π∗

( m∑
i=1

λi(log �i) + �∞
))

(2.11)

on Int P .

The affine functions �i play an important role in our description of potential function
as in [CO] since they also measure symplectic areas ω(βi) of the canonical generators
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βi of H2(X, L(u); Z). More precisely, we have

ω(βi) = 2π�i(u) (2.12)

(see [CO, Theorem 8.1]). We also recall that

P = {
u ∈ MR

∣∣ �i(u) ≥ 0, i = 1, . . . , m
}

(2.13)

by definition (2.4).

3. Deformation theory of filtered A∞-algebras
In this section, we provide a quick summary of the deformation and obstruction theory
of Lagrangian Floer cohomology developed in [FOOO1] and [FOOO3] for the reader’s
convenience. We also refer the reader to Ohta’s survey article [Oh] for a more detailed
review and to [FOOO3] for complete details of the proofs of the results described in
this section.

We start our discussion with the classical unfiltered A∞-algebra. Let C be a graded
R-module where R is the coefficient ring. We denote by C[1] its suspension defined
by C[1]k = Ck+1. Define the bar complex B(C[1]) by

Bk(C[1]) = C[1] ⊗ · · · ⊗ C[1]︸ ︷︷ ︸
k

, B(C[1]) =
∞⊕

k=0

Bk(C[1]).

Here B0(C[1]) = R by definition. B(C[1]) has the structure of graded coalgebra.

Definition 3.1
The structure of A∞-algebra is a sequence of R-module homomorphisms

mk : Bk(C[1]) → C[1], k = 1, 2, . . . ,

of degree +1 such that the coderivation d̂ = ∑∞
k=1 m̂k satisfies d̂ d̂ = 0, which is

called the A∞-relation. Here we denote by m̂k : B(C[1]) → B(C[1]) the unique
extension of mk as a coderivation on B(C[1]), that is

m̂k(x1 ⊗ · · · ⊗ xn) =
k−i+1∑
i=1

(−1)∗x1 ⊗ · · · ⊗ mk(xi, . . . , xi+k−1) ⊗ · · · ⊗ xn, (3.1)

where ∗ = deg x1 + · · · + deg xi−1 + i − 1.
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The relation d̂ d̂ = 0 can be written as

n−1∑
k=1

k−i+1∑
i=1

(−1)∗mn−k+1(x1 ⊗ · · · ⊗ mk(xi, . . . , xi+k−1) ⊗ · · · ⊗ xn) = 0,

where ∗ is the same as above. In particular, we have m1m1 = 0 and so it defines a
complex (C,m1).

A weak (or curved) A∞-algebra is defined in the same way, except that it also
includes the m0-term m0 : R → B(C[1]). The first two terms of the A∞-relation for
a weak A∞-algebra are given as

m1

(
m0(1)

) = 0, m1m1(x) + (−1)deg x+1m2

(
x,m0(1)

)+ m2

(
m0(1), x

) = 0.

In particular, for the case of weak A∞-algebras, m1 does not satisfy boundary property,
that is, m1m1 �= 0 in general.

We now recall the notion of unit in A∞-algebra.

Definition 3.2
An element e ∈ C0 = C[1]−1 is called a unit if it satisfies
(1) mk+1(x1, . . . , e, . . . , xk) = 0 for k ≥ 2 or k = 0,
(2) m2(e, x) = (−1)deg xm2(x, e) = x for all x.

Combining this definition of unit and (3.1), we have the following immediate lemma.

LEMMA 3.3
Consider an A∞-algebra (C[1],m) over a ground ring R for which m0(1) = λe for
some λ ∈ R. Then m1m1 = 0.

Now we explain the notion of the filtered A∞-algebra. We define the universal Novikov
ring �0,nov by

�0,nov =
{ ∞∑

i=1

aiT
λi eni

∣∣∣ ai ∈ R, ni ∈ Z, λi ∈ R≥0, lim
i→∞

λi = ∞
}
.

This is a graded ring by defining deg T = 0, deg e = 2. Let �+
0,nov be its maximal

ideal, which consists of the elements
∑∞

i=1 aiT
λi eni with λi > 0.

Let
⊕

m∈Z Cm be the free graded �0,nov-module over the basis {vi}. We define
a filtration

⊕
m∈Z F λCm on it such that {T λvi} is a free basis of

⊕
m∈Z F λCm. Here

λ ∈ R, λ ≥ 0. We call this filtration the energy filtration. (Our algebra
⊕

m∈Z Cm

may not be finitely generated, so we need to take completion.) We denote by C the
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completion of
⊕

m∈Z Cm with respect to the energy filtration. The filtration induces a
natural non-Archimedean topology on C.

A filtered A∞-algebra (C,m) is a weak A∞-algebra such that A∞-operators m

have these properties:
(1) mk respect the energy filtration;
(2) m0(1) ∈ F λC1 with λ > 0;
(3) the reduction mk mod �+

0,nov : BkC[1] ⊗ R[e, e−1] → C ⊗ R[e, e−1] does
not contain e; more precisely, it has the form mk ⊗ RR[e, e−1], where mk :
BkC[1] → C is an R-module homomorphism (here C is the free R-module
over the basis vi).

For further details, see [FOOO3, Definition 3.2.20], which is equivalent to [FOOO2,
Definition 7.20].

Remark 3.4
(1) In [FOOO3], we assume that m0 = 0 for the (unfiltered) A∞-algebra. On the other
hand, m0 = 0 is not assumed for the filtered A∞-algebra. The filtered A∞-algebra
satisfying m0 = 0 is said to be strict.

(2) In this section, to be consistent with the exposition given in [FOOO3], we
use the Novikov ring �0,nov which includes the variable e. In [FOOO3], the variable
e is used so that the operations mk come to have degree 1 for all k (with respect to
the shifted degree). But for the applications of this article, it is enough to use the
Z2-grading and so encoding the degree with a formal parameter is not necessary.
Therefore, we use the ring �0 in other sections, which do not contain e. An advantage
of using the ring �0 is that it is a local ring while �0,nov is not. This makes it easier to
use some standard results from commutative algebra in later sections. We note that a
Z-graded complex over �0,nov is equivalent to the Z2-graded complex over �0.

Next we explain how one can deform the given filtered A∞-algebra (C,m) by an
element b ∈ F λC[1]0 with λ > 0, by re-defining the A∞-operators as

mb
k(x1, . . . , xk) = m(eb, x1, e

b, x2, e
b, x3, . . . , xk, e

b).

This defines a new weak A∞-algebra for arbitrary b.
Here we simplify notation by writing eb = 1+b+b⊗b+· · ·+b⊗· · ·⊗b+· · · .

Note that each summand in this infinite sum has degree zero in C[1]. When the ground
ring is �0,nov, the infinite sum converges in the non-Archimedean topology since
b ∈ F λC[1]0 with λ > 0.
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PROPOSITION 3.5
For A∞-algebra (C,mb

k), mb
0 ≡ 0 mod �0,nov{e} if and only if b satisfies

∞∑
k=0

mk(b, . . . , b) ≡ 0 mod �0,nov{e}. (3.2)

We call the equation (3.2) the A∞-Maurer-Cartan equation.

Definition 3.6
Let (C,m) be a filtered A∞-algebra in general, and let BC[1] be its bar-complex. An
element b ∈ F λC[1]0 (λ > 0) is called a weak bounding cochain if it satisfies the
equation (3.2). If the b satisfies the strict equation

∞∑
k=0

mk(b, . . . , b) = 0,

then we call it a (strict) bounding cochain.

For the rest of this article, we also call a weak bounding cochain just a bounding
cochain since we mainly focus on weak bounding cochains. In general, a given A∞-
algebra may or may not have a solution to (3.2).

Definition 3.7
A filtered A∞-algebra is called weakly unobstructed if the equation (3.2) has a solution
b ∈ F λC[1]0 with λ > 0.

One can define a notion of gauge equivalence between two bounding cochains as
described in [FOOO3, Section 4.3] (equivalent to [FOOO2, Section 16]).

The way a filtered A∞-algebra is attached to a Lagrangian submanifold L ⊂
(M, ω) arises as an A∞-deformation of the classical singular cochain complex includ-
ing the instanton contributions. In particular, when there is no instanton contribution, as
in the case π2(M, L) = 0, it reduces to an A∞-deformation of the singular cohomology
in the chain level including all possible higher Massey products.

We now describe the basic A∞-operators mk in the context of A∞-algebra of La-
grangian submanifolds. For a given compatible almost complex structure J , consider
the moduli space Mk+1(β; L) of stable maps of genus zero. It is a compactification of{(

w, (z0, z1, . . . , zk)
) ∣∣ ∂J w = 0, zi ∈ ∂D2, [w] = β in π2(M, L)

}
/ ∼,

where ∼ is the conformal reparameterization of the disc D2. The expected dimension
of this space is given by n + μ(β) − 3 + (k + 1) = n + μ(β) + k − 2.
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Now given k singular chains [P1, f1], . . . , [Pk, fk] ∈ C∗(L) of L, we put the
cohomological grading degPi = n− dim Pi , and we regard the chain complex C∗(L)
as the cochain complex Cdim L−∗(L). We consider the fiber product

ev0 : Mk+1(β; L) ×(ev1,...,evk ) (P1 × · · · × Pk) → L,

where evi([w, (z0, z1, . . . , zk)]) = w(zi).
A simple calculation shows that we have the expected degree

deg
[
Mk+1(β; L) ×(ev1,...,evk) (P1 × · · · × Pk), ev0

] = n∑
j=1

(degPj − 1) + 2 − μ(β).

For each given β ∈ π2(M, L) and k = 0, . . . , we define

mk,β(P1, . . . , Pk) = [
Mk+1(β; L) ×(ev1,...,evk) (P1 × · · · × Pk), ev0

]
(3.3)

and mk = ∑
β∈π2(M,L) mk,β · T ω(β)eμ(β)/2.

Now we denote by C[1] the completion of a suitably chosen countably gener-
ated (singular) chain complex with �0,nov as its coefficients with respect to the non-
Archimedean topology. (We regard C[1] as a cochain complex.) Then by choosing a
system of multivalued perturbations of the right-hand side of (3.3) and a triangulation
of its zero sets, the map mk : Bk(C[1]) → C[1] is defined, has degree 1, and is con-
tinuous with respect to non-Archimedean topology. We extend mk as a coderivation
m̂k : BC[1] → BC[1] by (3.1). Finally, we take the sum

d̂ =
∞∑

k=0

m̂k : BC[1] → BC[1]. (3.4)

A main theorem proven in [FOOO1] and [FOOO3] then is the following coboundary
property.

THEOREM 3.8 ([FOOO3, Theorem 3.5.11], [FOOO2, Theorem 10.11])
Let L be an arbitrary compact relatively spin Lagrangian submanifold of an arbitrary
tame symplectic manifold (M, ω). The coderivation d̂ is a continuous map that satisfies
the A∞-relation d̂d̂ = 0.

The A∞-algebra associated to L in this way has the homotopy unit, not a unit. In
general, a filtered A∞-algebra with homotopy unit canonically induces another filtered
unital A∞-algebra called a canonical model of the given filtered A∞-algebra. In
the geometric context of the A∞-algebra associated to a Lagrangian submanifold
L ⊂ M of a general symplectic manifold (M, ω), the canonical model is defined
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on the cohomology group H ∗(L; �0,nov). (See [FOOO4] for a quick explanation of
construction by summing over trees of this canonical model.)

Once the A∞-algebra is attached to each Lagrangian submanifold L, we then
construct a filtered A∞-bimodule C(L, L′) for the transversal pair of Lagrangian
submanifolds L and L′. Here C(L, L′) is the free �0,nov-module such that its basis is
identified with L ∩ L′. The filtered A∞-bimodule structure is by definition a family
of operators

nk1,k2 : Bk1

(
C(L)[1]

) ⊗̂�0,nov C(L, L′) ⊗̂�0,nov Bk2

(
C(L′)[1]

) → C(L, L′)

for k1, k2 ≥ 0. (Here ⊗̂�0,nov is the completion of the algebraic tensor product.) Let
us briefly describe the definition of nk1,k2 . A typical element of the tensor product
Bk1 (C(L)[1]) ⊗̂�0,nov C(L, L′) ⊗̂�0,nov Bk2 (C(L′)[1]) has the form

P1,1 ⊗ · · · ⊗ P1,k1 ⊗ 〈p〉 ⊗ P2,1 ⊗ · · · ⊗ P2,k2

with p ∈ L ∩ L′. Then the image nk1,k2 thereof is given by∑
q,B

T ω(B)eμ(B)/2#
(
M(p, q; B; P1,1, . . . , P1,k1 ; P2,1, . . . , P2,k2 )

)〈q〉.
Here B denotes homotopy class of Floer trajectories connecting p and q, the summa-
tion is taken over all (q, B) with

vir.dim M(p, q; B; P1,1, . . . , P1,k1 ; P2,1, . . . , P2,k2 ) = 0,

and #(M(p, q; B; P1,1, . . . , P1,k1 ; P2,1, . . . , P2,k2 )) is the “number” of elements in the
“zero”-dimensional moduli space M(p, q; B; P1,1, . . . , P1,k1 ; P2,1, . . . , P2,k2 ). Here
the moduli space M(p, q; B; P1,1, . . . , P1,k1 ; P2,1, . . . , P2,k2 ) is the Floer moduli space
M(p, q; B) cut down by intersecting with the given chains P1,i ⊂ L and P2,j ⊂ L′.

THEOREM 3.9 ([FOOO3, Theorem 3.7.21], [FOOO2, Theorem 12.21])
Let (L, L′) be an arbitrary relatively spin pair of compact Lagrangian submanifolds.
Then the family {nk1,k2} defines a left (C(L),m) and right (C(L′),m′) filtered A∞-
bimodule structure on C(L, L′).

What this theorem means is explained below as Proposition 3.10.
Let B(C(L)[1]) ⊗̂�0,nov C(L, L′) ⊗̂�0,nov B(C(L′)[1]) be the completion of the di-

rect sum of Bk1 (C(L)[1]) ⊗̂�0,nov C(L, L′) ⊗̂�0,nov Bk2 (C(L′)[1]) over k1 ≥ 0, k2 ≥ 0.
We define the boundary operator d̂ on it by using the maps nk1,k2 and mk , m′

k , as in
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the following:

d̂
(
(x1 ⊗ · · · ⊗ xn) ⊗ x ⊗ (x ′

1 ⊗ · · · ⊗ x ′
m)
)

= d̂(x1 ⊗ · · · ⊗ xn) ⊗ x ⊗ (x ′
1 ⊗ · · · ⊗ x ′

m)

+ (−1)deg x1+···+deg xn+deg x+n+1(x1 ⊗ · · · ⊗ xn) ⊗ x ⊗ d̂(x ′
1 ⊗ · · · ⊗ x ′

m)

+
∑
k1≤n

∑
k2≤m

(−1)deg x1+···+deg xn−k1+n−k1 (x1 ⊗ · · · ⊗ xn−k1 )

⊗ nk1,k2

(
(xn−k1+1 ⊗ · · · ⊗ xn) ⊗ x ⊗ (x ′

1 ⊗ · · · ⊗ x ′
k2

)
)

⊗ (x ′
k2+1 ⊗ · · · ⊗ x ′

m).

Here d̂ in the second and the third lines are induced from m and m′ by Formula (3.4),
respectively.

PROPOSITION 3.10
The map d̂ satisfies d̂ d̂ = 0.

The A∞-bimodule structure, which defines a boundary operator on the bar complex,
induces an operator δ = n0,0 on a much smaller, ordinary free �0,nov-module C(L, L′)
generated by the intersections L∩L′. However, the boundary property of this Floer’s
“boundary” map δ again meets obstruction coming from the obstructions cycles of
either L, L′, or of both. We need to deform δ using suitable bounding cochains of
L, L′.

In the case where both L, L′ are weakly unobstructed, we can carry out this
deformation of n using weak bounding chains b and b′ of fibered A∞-algebras
associated to L and L′, respectively, in a way similar to mb; namely, we define
δb,b′ : C(L, L′) → C(L, L′) by

δb,b′(x) =
∑
k1,k2

nk1,k2 (b
⊗k1 ⊗ x ⊗ b′⊗k2 ) = n̂(eb, x, eb′

).

We can generalize the story to the case where L has clean intersection with L′,
especially to the case L = L′. In the case L = L′, we have nk1,k2 = mk1+k2+1. So in
this case, we have δb,b′(x) = m(eb, x, eb′

).
In general, δb,b′ does not satisfy the equation δb,b′δb,b′ = 0. It turns out that there

is an elegant condition for δb,b′δb,b′ = 0 to hold in terms of the potential function
introduced in [FOOO3], which we explain in Section 4. In the case δb,b′δb,b′ = 0, we
define Floer cohomology by

HF
(
(L, b), (L′, b′); �0,nov

) = Ker δb,b′/Im δb,b′ .
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Let �nov be the field of fractions of �0,nov. We define HF ((L, b), (L′, b′); �nov)
by extending the coefficient ring �0,nov to �nov. Then HF ((L, b), (L′, b′); �nov) is
invariant under the Hamiltonian isotopies of L and L′. Therefore, we can use it to
obtain the following result about nondisplacement of Lagrangian submanifolds.

THEOREM 3.11 ([FOOO3, Theorem G], [FOOO2, Theorem G])
Assume that δb,b′δb,b′ = 0. Let ψ : X → X be a Hamiltonian diffeomorphism such
that ψ(L) is transversal to L′. Then we have

#
(
ψ(L) ∩ L′) ≥ rank�novHF

(
(L, b), (L′, b′); �nov

)
.

The Floer cohomology HF ((L, b), (L′, b′); �0,nov) with coefficient �0,nov is not in-
variant under the Hamiltonian isotopy. However, we can prove the following Theorem
3.12. There exists an integer a and positive numbers λi (i = 1, . . . , b) such that

HF
(
(L, b), (L′, b′); �0,nov

) = �⊕a
0,nov ⊕

b⊕
i=1

(�0,nov/T λi �0,nov)

(see [FOOO3, Theorem 6.1.20], [FOOO2, Theorem 24.20]). Let ψ : X → X be a
Hamiltonian diffeomorphism; ‖ψ‖ is its Hofer distance (see [Ho]) from the identity
map.

THEOREM 3.12 ([FOOO3, Theorem J], [FOOO2, Theorem J])
If ψ(L) is transversal to L′, then we have an inequality:

#
(
ψ(L) ∩ L′) ≥ a + 2 #{i | λi ≥ ‖ψ‖}.

In later sections, we apply Theorems 3.11, 3.12 to study nondisplacement of La-
grangian fibers of toric manifolds.

4. Potential function
The A∞-structure defined on a countably generated chain complex C(L, �0) itself
explained in the previous section is not suitable for explicit calculations as in our
study of toric manifolds. For this computational purpose, we work with the filtered
A∞-structure on the canonical model defined on H (L; �0) which has a finite rank
over �0. Furthermore, this has a strict unit e given by the dual of the fundamental
class PD([L]). Recall that C(L, �0) itself has only a homotopy-unit.
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An element b ∈ H 1(L; �+) is called a weak bounding cochain if it satisfies the
A∞-Maurer-Cartan equation

∞∑
k=0

mk(b, . . . , b) ≡ 0 mod PD([L]) (4.1)

where {mk}∞k=0 is the A∞-structure associated to L, [L] ∈ Hn(L) is the fundamental
class, and PD([L]) ∈ H 0(L) is its Poincaré dual. We denote by M̂weak(L) the set of
weak bounding cochains of L. We say L is weakly unobstructed if M̂weak(L) �= ∅.
The moduli space Mweak(L) is then defined to be the quotient space of M̂weak(L) by
suitable gauge equivalence (see [FOOO3, Chapters 3, 4] for more explanations).

LEMMA 4.1 ([FOOO3, Lemma 3.6.32], [FOOO2, Lemma 11.32])
If b ∈ M̂weak(L), then δb,b ◦ δb,b = 0, where δb,b is the deformed Floer operator
defined by

δb,b(x) = mb
1(x) =:

∑
k,�≥0

mk+�+1(b⊗k, x, b⊗�).

For b ∈ M̂weak(L), we define

HF
(
(L; b), (L; b)

) = Ker(δb,b : C → C)

Im(δb,b : C → C)
,

where C is an appropriate subcomplex of the singular chain complex of L. When L

is weakly unobstructed (i.e., M̂weak(C) �= ∅), we define a function

PO : M̂weak(C) → �+

by the equation

m(eb) = PO(b) · PD([L]).

This is the potential function introduced in [FOOO3].

THEOREM 4.2 ([FOOO3, Proposition 3.7.17], [FOOO2, Proposition 12.17])
For each b ∈ M̂weak(L) and b′ ∈ M̂weak(L′), the map δb,b′ defines a continuous map
δb,b′ : CF (L, L′) → CF (L, L′) that satisfies δb,b′δb,b′ = 0, provided that

PO(b) = PO(b′). (4.2)
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Therefore, for each pair (b, b′) of b ∈ M̂weak(L) and for b′ ∈ M̂weak(L′) that satisfy
(4.2), we define the (b, b′)-Floer cohomology of the pair (L, L′) by

HF
(
(L, b), (L′, b′); �nov

) = Kerδb,b′

Im δb,b′
.

In the rest of this section, we state the main results concerning the detailed
structure of the potential function for the case of Lagrangian fibers of toric manifolds.

For the later analysis of examples, we recall from [FOOO1] and [FOOO3] that
mk is further decomposed into

mk =
∑

β∈π2(M,L)

mk,β ⊗ T ω(β)eμ(β)/2.

Here μ is the Maslov index.
First, we remove the grading parameter e from the ground ring. Second, to

eliminate many appearances of 2π in front of the affine function �i in the exponents
of the parameter T later in this article, we redefine T as T 2π . Under this arrangement,
we get the formal power series expansion

mk =
∑

β∈π2(M,L)

mk,β ⊗ T ω(β)/2π , (4.3)

which we use throughout this article.
Now we restrict to the case of the toric manifold. Let X = X
 be associated

to a complete regular fan 
 (in other words, 
 is the normal fan of X), and let
π : X → t∗ be the moment map of the action of the torus T n ∼= T m/K . We make the
identifications

t = Lie(T n) ∼= Nn
R
∼= Rn, t∗ ∼= MR

∼= (Rn)∗.

We use NR and MR exclusively instead of t (or Rn) and t∗ (or (Rn)∗), as much as
possible to be consistent with the standard notation in toric geometry.

Denote the image of π : X → MR by P ⊂ MR, which is the moment polytope
of the T n-action on X.

We prove the following in Section 11.

PROPOSITION 4.3
For any u ∈ IntP , the fiber L(u) is weakly unobstructed. Moreover, we have the
canonical inclusion

H 1
(
L(u); �+

)
↪→ Mweak

(
L(u)

)
.
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Choose an integral basis e∗i of N , and let ei be its dual basis on M . With this choice
made, we identify MR with Rn as long as its meaning is obvious from the context.
Identifying H1(T n; Z) with N ∼= Zn via T n = Rn/Zn, we regard ei as a basis of
H 1(L(u); Z). The following immediately follows by definition.

LEMMA 4.4
We write π = (π1, . . . , πn) : X → MR using the coordinate of MR associated to the
basis ei . Let S1

i ⊂ T n be the subgroup whose orbit represents e∗i ∈ H1(T n; Z). Then
πi is proportional to the moment map of S1

i -action on X.

Let

b =
∑

xiei ∈ H 1
(
L(u); �+

) ⊂ Mweak

(
L(u)

)
.

We study the potential function

PO : H 1
(
L(u); �+

) → �+.

Once a choice of the family of bases {ei} on H 1(L(u); Z) for u ∈ Int P is made
as above starting from a basis on N , then we can regard this function as a function
of (x1, . . . , xn) ∈ (�+)n and (u1, . . . , un) ∈ P ⊂ MR. We denote its value by
PO(x; u) = PO(x1, . . . , xn; u1, . . . , un). We put

yi = exi =
∞∑

k=0

xk
i

k!
∈ �0.

Let

∂P =
m⋃

i=1

∂iP

be the decomposition of the boundary of the moment polytope into its faces of
codimension one. (∂iP is a polygon in an (n − 1)-dimensional affine subspace of
MR.)

Let �i be the affine functions

�i(u) = 〈u, vi〉 − λi for i = 1, . . . , m

appearing in Theorem 2.13. Then the following hold from construction:
(1) �i ≡ 0 on ∂iP ;
(2) P = {u ∈ MR | �i(u) ≥ 0, i = 1, . . . , m};
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(3) the coordinates of the vectors vi = (vi,1, . . . , vi,n) satisfy

vi,j = ∂�i

∂uj

(4.4)

and are all integers.

THEOREM 4.5
Let L(u) ⊂ X be as in Theorem 1.5, and let �i be as above. Suppose that X is Fano.
Then we can take the canonical model of A∞-structure of L(u) over u ∈ Int P so that
the potential function restricted to⋃

u∈Int P

H 1
(
L(u); �+

) ∼= (�+)n × Int P

has the form

PO(x; u) =
m∑

i=1

y
vi,1

1 · · · yvi,n

n T �i (u) (4.5)

=
m∑

i=1

e〈vi ,x〉T �i (u), (4.6)

where (x; u) = (x1, . . . , xn; u1, . . . , un) and vi,j is as in (4.4).

Theorem 4.5 is a minor improvement of a result from [CO] (see [CO, (15.1)] and
[Cho]): the case considered in [CO] corresponds to the case where yi ∈ U (1) ⊂ {z ∈
C | |z| = 1}, and the case in [Cho] corresponds to the one where yi ∈ C \ {0}. The
difference of Theorem 4.5 from those is that yi is allowed to contain T , the formal
parameter of the universal Novikov ring encoding the energy.

For the non-Fano case, we prove the following slightly weaker statement. The
proof is given in Section 11.

THEOREM 4.6
Let X be an arbitrary toric manifold, and let L(u) be as above. Then there exist
cj ∈ Q, ei

j ∈ Z≥0, and ρj > 0, such that
∑m

i=1 ei
j > 0 and

PO(x1, . . . , xn; u1, . . . , un) −
m∑

i=1

y
vi,1

1 · · · yvi,n

n T �i (u)

=
∑
j=1

cjy
v′

j,1

1 · · · yv′
j,n

n T �′j (u)+ρj , (4.7)
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where

v′
j,k =

m∑
i=1

ei
j vi,k, �′

j =
m∑

i=1

ei
j �i .

If there are infinitely many nonzero cj ’s, then we have

lim
j→∞

�′
j (u) + ρj = ∞.

Moreover, ρj = [ω] ∩ αj for some αj ∈ π2(X) with nonpositive first Chern number
c1(X) ∩ [αj ].

We note that although PO is defined originally on (�C
+)n × P , Theorems 4.5 and

4.6 imply that PO extends to a function on (�C
0 )n × P in general, and to one on

(�C
0 )n×MR for the Fano case. Furthermore, these theorems also imply the periodicity

of PO in xi’s,

PO(x1, . . . , xi + 2π
√−1, . . . , xn; u) = PO(x1, . . . , xn; u). (4.8)

We write

PO0 =
m∑

i=1

y
vi,1

1 · · · yvi,n

n T �i (u) (4.9)

to distinguish it from PO. We call PO0 the leading-order potential function.
We focus on the existence of the bounding cochain x for which the Floer coho-

mology HF ((L(u), x), (L(u), x)) is not zero, and prove that critical points of the PO
u

(as a function of y1, . . . , yn) have this property (see Theorem 4.10).
This leads us to study the equation

∂PO
u

∂yk

(y1, . . . , yn) = 0, k = 1, . . . , n, (4.10)

where yi ∈ �0 \ �+.
We regard PO

u as either a function of xi or of yi . Since the variable (xi or yi) is
clear from the situation, we do not always mention it.

PROPOSITION 4.7
We assume that the coordinates of the vertices of P are rational. Then there exists
u0 ∈ IntP ∩ Qn such that for each N there exists y1, . . . , yn ∈ �0 \ �+ satisfying

∂PO
u0

∂yk

(y1, . . . , yn) ≡ 0, mod T N k = 1, . . . , n. (4.11)
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Moreover, there exists y′
1, . . . , y

′
n ∈ �0 \ �+ such that

∂PO
u0
0

∂yk

(y′
1, . . . , y

′
n) = 0, k = 1, . . . , n. (4.12)

We prove Proposition 4.7 in Section 9.

Remark 4.8
(1) While u0 is independent of N, yi may depend on N. (We believe it does not

depend on N but are unable to prove it at this time.)
(2) If [ω] ∈ H 2(X; R) is contained in H 2(X; Q), then we may choose P so that

its vertices are rational.
(3) We believe that rationality of the vertices of P is superfluous. We also believe

there exists not only a solution of (4.11) or (4.12) but also of (4.10). However,
then the proof seems to become more cumbersome. Since we can reduce the
general case to the rational case by approximation in most of the applications,
we are content here to prove the above weaker statement.

We put

xi = log yi ∈ �0,

and we write

x =
∑

i

xiei ∈ H 1
(
L(u0); �0

)
. (4.13)

Since yi ∈ �0 \ �+, log yi is well defined (by using non-Archimedean topology on
�0) and is contained in �0.

We note that xi is determined from yi up to addition by an element of 2π
√−1Z.

It follows from (4.8) that changing xi by an element of 2π
√−1Z does not change

corresponding Floer cohomology. So we take, for example, Im xi ∈ [0, 2π) mod �+
(see also Definition 1.2(2)).

Let yi,0 ∈ C \ {0} be the zero-order term of yi , that is, the complex number such
that

yi − yi,0 ≡ 0 mod �C
+.

If we make an additional assumption that yi,0 = 1 for i = 1, . . . , n, then x lies in

H 1
(
L(u0); �+

) ⊂ H 1
(
L(u0); �0

)
.
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Therefore, Proposition 4.3 implies that the Floer cohomology HF ((L(u0), x),
(L(u0), x); �0) is defined. Then (4.11), combined with the argument from [CO] (see
Section 13), implies that

HF
(
(L(u0), x), (L(u0), x); �C

0 /(T N)
) ∼= H

(
T n; �C

0 /(T N)
)
. (4.14)

We now consider the case when yi,0 �= 1 for some i. In this case, we follow the
idea of Cho [Cho] of twisting the Floer cohomology of L(u) by a nonunitary flat line
bundle and proceed as follows.

We define ρ : H1

(
L(u); Z

) → C \ {0} by

ρ(e∗i ) = yi,0. (4.15)

Let Lρ be the flat complex line bundle on L(u) whose holonomy representation is
ρ. We use ρ to twist the operator mk in the same way as in [F2], [Cho] to obtain a
filtered A∞-algebra, which we write

(
H (L(u); �0),mρ

)
. It is weakly unobstructed

and Mweak

(
H (L(u); �0),mρ

) ⊇ H 1(L(u); �+) (see Section 12).
We deform the filtered A∞-structure mρ to mρ,b using b ∈ H 1(L(u); �+) for

which m
ρ,b

1 m
ρ,b

1 = 0 holds. Denote by HF
(
(L(u0), ρ, b), (L(u0), ρ, b); �C

0

)
the

cohomology of m
ρ,b

1 . We denote the potential function of
(
H (L(u); �0),mρ

)
by

PO
u
ρ : H 1

(
L(u); �+

) → �+,

which is defined in the same way as PO
u by using mρ instead of m.

Let x be as in (4.13), and put

xi,0 = log yi,0, b =
∑

(xi − xi,0)ei ∈ H 1
(
L(u); �+

)
. (4.16)

Based on the definition, we can easily prove the following.

LEMMA 4.9
We have

PO
u
ρ(b) = PO

u(x).

As we note in the paragraph following Theorem 4.6, PO
u has been extended to a

function on (�C
0 )n and hence the right-hand side of the identity in this lemma has a

well-defined meaning. (Lemma 4.9 is proved in Section 13.)
Now we have the following.
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THEOREM 4.10
Let xi , yi = exi , and let ρ satisfy (4.10), (4.13), and (4.15). Let xi,0 and b be as in
(4.16). Then we have

HF
(
(L(u0), ρ, b), (L(u0), ρ, b); �C

0

) ∼= H (T n; �C
0 ). (4.17)

If (4.11), (4.13), (4.15), and (4.16) are satisfied instead, then we have

HF
(
(L(u0), ρ, b), (L(u0), ρ, b); �C

0 /(T N)
) ∼= H

(
T n; �C

0 /(T N)
)
. (4.18)

Theorem 4.10 is proved in Section 13. Using this, we prove Theorem 1.5 in Section 13;
more precisely, we also discuss there the following two points.
(1) We need to study the case where ω is not necessarily rational.
(2) We have only (4.18) instead of (4.17).

Definition 4.11
Let (X, ω) be a smooth compact toric manifold, and let P be its moment polytope. We
say that a fiber L(u0) at u0 ∈ P is balanced if there exists a sequence ωi , ui satisfying
the following:
(1) ωi is a T n-invariant Kähler structure on X such that limi→∞ ωi = ω.
(2) ui is in the interior of the moment polytope Pi of (X, ωi), and we make an

appropriate choice of moment polytope Pi so that they converge to P and then
limi→∞ ui = u0.

(3) For each N, there exist a sufficiently large i and xi,N ∈ H 1(L(ui); �C
0 ) such

that

HF
(
(L(ui), xi,N), (L(ui), xi,N); �C/(T N)

) ∼= H (T n; C) ⊗ �C/(T N).

We say that L(u0) is strongly balanced if there exists x ∈ H 1(L; �C
0 ) such that

HF
(
(L(u0), x), (L(u0), x); �C

0

) ∼= H (T n; Q) ⊗ �C
0 .

Obviously “strongly balanced” implies “balanced.” The converse is not true, in general
(see Example 10.17). We also refer the reader to Remark 13.9 for other characteriza-
tions of being balanced (or strongly balanced).

Theorem 4.10 implies that L(u0) in Proposition 4.7 is balanced (see Proposition
13.2). We next prove the following intersection result in Section 13. Theorem 1.5 then
is a consequence of Propositions 4.7 and 4.12.

PROPOSITION 4.12
If L(u0) is a balanced Lagrangian fiber, then the following holds for any Hamiltonian
diffeomorphism ψ : X → X:

ψ
(
L(u0)

) ∩ L(u0) �= ∅. (4.19)
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If, in addition, ψ(L(u0)) is transversal to L(u0), then

#
(
ψ(L(u0)) ∩ L(u0)

) ≥ 2n. (4.20)

Denoting x = b +∑
xi,0ei , we sometimes write HF

(
(L(u0), x), (L(u0), x); �0

)
for

HF
(
(L(u0), ρ, b), (L(u0), ρ, b); �0

)
from now on. We also define

Mweak

(
L(u); �0

)
:= {

(ρ, b)
∣∣ ρ : π1L(u) → C \ {0}, b ∈ Mweak

(
H (L(u)),mρ

)}
.

Namely, it is the set of pairs (ρ, b) where ρ is a holonomy of a flat C-bundle over
L(u) and b ∈ H (L(u); �+) is a weak bounding cochain of the filtered A∞-algebra
associated to L(u) and twisted by ρ. With this definition of Mweak(L(u); �0), we have
the following:

H 1
(
L(u); �0

) ⊆ Mweak

(
L(u); �0

)
.

5. Examples
In this section, we discuss various examples of toric manifolds that illustrate the results
of Section 4.

Example 5.1
Consider X = S2 with standard symplectic form with area 2π . The moment polytope
of the standard S1-action by rotations along an axis becomes P = [0, 1] after a
suitable translation. We have �1(u) = u, �2(u) = 1 − u, and

PO(x; u) = exT u + e−xT 1−u = yT u + y−1T 1−u.

The zero of

∂PO
u

∂y
= T u − y−2T 1−u

is y = ±T (1−2u)/2. If u �= 1/2, then

log y = 1 − 2u

2
log(±T )

is not an element of the universal Novikov ring. In particular, there is no critical point
in �C

0 \ �C
+.

If u = 1/2, then y = ±1. The case y = 1 corresponds to x = 0. We have

HF
(
(L(1/2), 0), (L(1/2), 0); �0

) ∼= H (S1; �C
0 ).

The other case, y = −1, corresponds to a nontrivial flat bundle on S1.
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Example 5.2
We consider X = CP n. Then

P = {
(u1, . . . , un)

∣∣ 0 ≤ ui, u1 + · · · + un ≤ 1
}
,

is a simplex. We have

PO(x1, . . . , xn; u1, . . . , un) =
n∑

i=1

exi T ui + e−∑
xi T 1−∑

ui .

We put u = u0 = (1/(n + 1), . . . , 1/(n + 1)). Then

PO
u0 = (y1 + · · · + yn + y−1

1 y−1
2 · · · y−1

n )T 1/(n+1).

Solutions of the equation (4.10) are given by

y1 = · · · = yn = e2πk
√−1/(n+1), k = 0, . . . , n.

Hence the conclusion of Theorem 1.5 holds for our torus. The case k = 0 corresponds
to b = 0. The other cases correspond to appropriate flat bundles on T n.

Remark 5.3
The critical values of the potential function is (n + 1)e2π

√−1k/(n+1), k = 0, . . . , n.
We consider the quantum cohomology ring

QH (CP n; �0) ∼= �0[z, T ]/(zn+1 − T ).

The first Chern class c1 is (n + 1)z. The eigenvalues of the operator

c : QH (CP n) → QH (CP n), α �→ c1 ∪Q α

are (n + 1)e2π
√−1k/(n+1), k = 0, . . . , n. It coincides with the set of critical values.

Kontsevich announced this statement at the Vienna conference on homological
mirror symmetry in 2006. (According to some physicists, this statement had been
known to them before; see [Ar].) In our situation of Lagrangian fiber of compact toric
manifolds, we can prove it by using Theorem 1.9.

In the rest of this section, we discuss 2-dimensional examples.
Let e1, e2 be the basis of H 1(T 2; Z) as in Lemma 4.4. We put e12 = e1 ∪ e2 ∈

H 2(T 2; Z). Let e∅ be the standard basis of H 0(T 2; Z) ∼= Z. (The proof of Proposition
5.4 is found in Section 13.)
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PROPOSITION 5.4
Let x = ∑

xiei ∈ H 1(L(u); �0), yi = exi . Then the boundary operator m
x

1 is given
as ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

m
x

1(ei) = ∂PO
u

∂yi

(y)e∅,

m
x

1(e12) = ∂PO
u

∂y1
(y)e2 − ∂PO

u

∂y2
(y)e1,

m
x

1(e∅) = 0.

(5.1)

We note that we do not use the grading parameter e, which was introduced in [FOOO3].
So the boundary operator m

x

1 is of degree −1 rather than +1. (Note that we are using
cohomology notation.) In other words, our Floer cohomology is only Z2-graded.

With (5.1) at our disposal, we examine various examples.

Example 5.5
We consider M = CP 2 again. We put u1 = ε + 1/3, u2 = 1/3 (ε > 0). Using
(5.1), we can easily find the following isomorphism for the Floer cohomology with
�0-coefficients:

HF odd
(
(L(u), 0), (L(u), 0)

) ∼= HF even
(
(L(u), 0), (L(u), 0)

) ∼= �0/(T 1/3−ε).

Let us apply [FOOO3, Theorem J] (equivalent to Theorem 3.12 above) in this situation
(see also Theorem 5.11 below). We consider a Hamiltonian diffeomorphism ψ :
CP 2 → CP 2. We denote by ‖ψ‖ the Hofer distance of ψ from identity. Then we
have

#
(
ψ(L(u)) ∩ L(u)

) ≥ 4

if ‖ψ‖ < 2π(1/3− ε) and ψ(L(u)) is transversal to L(u). We note that ω∩ [CP 1] =
2π by (2.12).

We note that this fact was already proved by Chekanov [Che, main theorem].
(Actually, the basic geometric idea behind our proof is the same as Chekanov’s.)

Example 5.6
Let M = S2(a/2) × S2(b/2), where S2(r) denotes the 2-sphere with radius r . We
assume that a < b. Then B = [0, a] × [0, b], and we have

PO(x1, x2; u1, u2) = y1T
u1 + y2T

u2 + y−1
1 T a−u1 + y−1

2 T b−u2 .
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Let us take u1 = a/2, u2 = b/2. Then

∂PO
u

∂y1
= (1 − y−2

1 )T a/2,
∂PO

u

∂y2
= (1 − y−2

2 )T b/2.

Therefore, y1 = ±1, y2 = ±1 are solutions of (4.10). Hence, we can apply Theorem
4.10 to our torus.

We next put u1 = a/2, a < 2u2 < b. Then

∂PO
u

∂y1
= (1 − y−2

1 )T a/2,
∂PO

u

∂y2
= T u2 − y−2

2 T b−u2 .

We put y1 = y2 = 1. Then ∂POu

∂y1
= 0, ∂POu

∂y2
�= 0. We find that

HF odd
(
(L(u), 0), (L(u), 0)

) ∼= HF even
(
(L(u), 0), (L(u), 0)

) ∼= �0/(T u2 ).

Let ψ : CP 2 → CP 2 be a Hamiltonian diffeomorphism. Then, [FOOO3, Theorem J]
(equivalent to Theorem 3.12 above) implies that

#
(
ψ(L(u)) ∩ L(u)

) ≥ 4

if ‖ψ‖ < 2πu2 and ψ(L(u)) is transversal to L(u). Note that there exists a pseudo-
holomorphic disc with symplectic area πa (< 2πu2). Hence, our result improves a
result from [Che, main theorem].

Example 5.7
Let X be the 2-point blow-up of CP 2. We may take its Kähler form so that the moment
polytope is given by

P = {
(u1, u2)

∣∣ − 1 ≤ u1 ≤ 1,−1 ≤ u2 ≤ 1, u1 + u2 ≤ 1 + α
}
,

where −1 < α < 1 depends on the choice of Kähler form. We have

PO(x1, x2; u1, u2) = y1T
1+u1 + y2T

1+u2 + y−1
1 T 1−u1

+ y−1
2 T 1−u2 + y−1

1 y−1
2 T 1+α−u1−u2 .

(5.2)

Note X is Fano in our case.

Case 1: α = 0. In this case, X is monotone. We put u0 = (0, 0). L(u0) is a monotone
Lagrangian submanifold. We have

∂PO
u0

∂y1
= (1 − y−2

1 − y−2
1 y−1

2 )T ,
∂PO

u0

∂y2
= (1 − y−2

2 − y−1
1 y−2

2 )T .
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The solutions of (4.10) are given by y2 = 1/(y2
1 − 1), y5

1 + y4
1 − 2y3

1 − 2y2
1 + 1 = 0

in C. (There are 5 solutions.)

Case 2: α > 0. We put u0 = (0, 0). Then

∂PO
u0

∂y1
= (1 − y−2

1 )T − y−2
1 y−1

2 T 1+α,
∂PO

u0

∂y2
= (1 − y−2

2 )T − y−1
1 y−2

2 T 1+α.

We consider, for example, the case y1 = y2 = τ . Then (4.10) becomes

τ 3 − τ − T α = 0. (5.3)

The solution of (5.3) with τ ≡ 1 mod �+ is given by

τ = 1 + 1

2
T α − 3

8
T 2α + 1

2
T 3α +

∞∑
k=4

ckT
kα.

Let us put x = x1e1 + x2e2 with

x1 = x2 = log
(

1 + 1

2
T α − 3

8
T 2α + 1

2
T 3α + · · ·

)
∈ �+.

Then by Theorem 4.10 we have

HF
(
(L(u0), x), (L(u0), x); �0

) ∼= H (T 2; �0).

We point out that in this example it is essential to deform Floer cohomology using
an element x of H 1(L(u0); �+) containing the formal parameter T to obtain nonzero
Floer cohomology.

At u0, there are actually four solutions such that

(y1, y2) ≡ (1, 1), (1,−1), (−1, 1), (−1,−1) mod �+,

respectively.
In the current case, there is another point u′

0 = (α, α) ∈ P at which L(u′
0) is

balanced.∗ In fact at u′
0 = (α, α), the equation (5.3) becomes

0 = −(y−2
1 y−1

2 + y−2
1 )T 1−α + T 1+α, 0 = −(y−1

1 y−2
2 + y−2

2 )T 1−α + T 1+α.

∗Using the method of spectral invariants and symplectic quasi-states, Entov and Polterovich discovered some
nondisplaceable Lagrangian fiber which was not covered by the criterion given in [CO] (see [EP1, Section 9]).
Recently this example, among others, was explained by Cho [Cho] via Lagrangian Floer cohomology twisted by
nonunitary line bundles.
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We put τ = y1 = y2 to obtain

τ 3T 2α − τ − 1 = 0.

This equation has a unique solution with τ ≡ −1 mod �+ (the other solution is
T 2ατ 3 ≡ 1 mod �+, for which Theorem 4.10 is not applicable).

The total number of the solutions (x, u) is 5.

Case 3: α < 0. We first consider u0 = (0, 0). Then

∂PO
u0

∂y1
= −y−2

1 y−1
2 T 1+α + (1−y−2

1 )T ,
∂PO

u0

∂y2
= −y−1

1 y−2
2 T 1+α + (1−y−2

2 )T .

We assume that yi satisfies (4.10). It is then easy to see that y−1
1 ≡ 0 or that y−1

2 ≡ 0
mod �+. In other words, there is no (y1, y2) to which we can apply Theorem 4.10.
Actually, it is easy to find a Hamiltonian diffeomorphism ψ : X → X such that
ψ(L(u0)) ∩ L(u0) = ∅.

We next take u′
0 = (α/3, α/3). Then

∂PO
u′

0

∂y1
= (1 − y−2

1 y−1
2 )T 1+α/3 − y−2

1 T 1−α/3,

∂PO
u′

0

∂y2
= (1 − y−1

1 y−2
2 )T 1+α/3 − y−2

2 T 1−α/3.

By putting y1 = y2 = τ , for example, (4.10) becomes

τ 3 − T −2α/3τ − 1 = 0. (5.4)

Let us put x = x1e1 + x2e2 with

x1 = x2 = log τ = log
(

1 + 1

3
T −2α/3 − 1

81
T −6α/3 + · · ·

)
∈ �+,

where τ solves (5.4). Theorem 4.10 is applicable. (There are actually three solutions
of (4.10) corresponding to the three solutions of (5.4).)

There are two more points u = (−α, α), (α,−α) where (4.10) has a solution in
(�0 \ �+). Each u has one solution b.

Thus, the total number of the pair (x, u) is again 5. We note that

5 =
∑

rank Hk(X; Q).

This is not just a coincidence but an example of general phenomenon stated as in
Theorem 1.3.
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We note that, as α → 1, our X blows down to S2(1)×S2(1). On the other hand, as
α → −1, our X blows down to CP 2. The situation of the case α > 0 can be regarded
as a perturbation of the situation of S2(1) × S2(1), by the effect of exceptional curve
corresponding to the segment u1 + u2 = 1 + α. The situation of the case α < 0
can be regarded as a perturbation of the situation of CP 2 by the effect of the two
exceptional curves corresponding to the segments u1 = 1 and u2 = 1. An interesting
phase change occurs at α = 0.

We note that H 2(X; R) is 2-dimensional. So there is actually a 2-parameter family of
symplectic structures. We study the 2-point blow-ups of CP 2 more in Example 10.17.

The discussion of this section strongly suggests that Lagrangian Floer theory
([FOOO3, Theorems G, J] (equivalent to Theorems 3.11, 3.12 above) gives the optimal
result for the study of nondisplacement of Lagrangian fibers in toric manifolds.

Remark 5.8
Let X be a compact toric manifold, and let L(u) = π−1(u), u ∈ IntP . We consider
the following two conditions.
(1) There exists no Hamiltonian diffeomorphism ψ : X → X such that ψ(L(u))∩

L(u) = ∅.

(2) L(u) is balanced.
Here, (2) ⇒ (1) follows from Proposition 4.12. In many cases, (1) ⇒ (2) can be
proved by the method of [Mc]. However, there is a case in which (1) ⇒ (2) does not
follow, as we explain in Remark 10.18 and will prove in a future article using the bulk
deformation of Lagrangian Floer cohomology. We conjecture that after including this
wider class of Floer cohomology, we can detect all the nondisplaceable Lagrangian
fibers in toric manifolds, by Floer cohomology.

Using the argument employed in Example 5.6, we can discuss the relationship between
the Hofer distance and displacement. First, we introduce some notation for this pur-
pose. We denote by Ham(X, ω) the group of Hamiltonian diffeomorphisms of (X, ω).
For a time-dependent Hamiltonian H : [0, 1] × X → R, we denote by φt

H the time
t-map of Hamilton’s equation ẋ = XH (t, x). The Hofer norm of ψ ∈ Ham(X, ω) is
defined to be

‖ψ‖ = inf
H ;φ1

H=ψ

∫ 1

0
(max Ht − min Ht ) dt

(see [Ho]).
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Definition 5.9
Let Y ⊂ X. We define the displacement energy e(Y ) ∈ [0,∞] by

e(Y ) := inf
{‖ψ‖ ∣∣ψ ∈ Ham(X, ω), ψ(Y ) ∩ Y = ∅}.

We put e(Y ) = ∞ if there exists no ψ ∈ Ham(X, ω) with ψ(Y ) ∩ Y = ∅.

Let us consider PO(y1, . . . , yn; u1, . . . , un) : (�0 \ �+)n × P → �+ as in Theo-
rem 4.5.

Definition 5.10
We define the number E(u) ∈ (0,∞] as the supremum of all λ such that there exists
y1, . . . , yn ∈ (�0 \ �+)n satisfying

∂PO

∂yi

(y1, . . . , yn; u) ≡ 0 mod T λ (5.5)

for i = 1, . . . , n (here we consider universal Novikov ring with C-coefficients). We
call E(u) the PO-threshold of the fiber L(u). We put

E(u) = lim sup
ωi→ω,ui→u

E(ui).

Here limsup is taken over all sequences ωi and ui such that ωi is a sequence of
T n-invariant symplectic structures on X with limi→∞ ωi = ω and ui is a sequence
of points of moment polytopes Pi of (X, ωi) such that Pi converges to P and ui

converges to u.

Clearly, E(u) ≥ E(u). We give an example where E(u) �= E(u) in Example 10.17
(10.16).

THEOREM 5.11
For any compact toric manifold X and L(u) = π−1(u), u ∈ IntP , we have

e
(
L(u)

) ≥ 2πE(u). (5.6)

We prove Theorem 5.11 in Section 13.

Remark 5.12
The equality in (5.6) holds in various examples. However, there are cases in which
the equality in (5.6) does not hold. The situation is the same as in Remark 5.8.

We note that E(u), E(u) can be calculated in most of the cases once the toric manifold
X is given explicitly. In fact, the leading-order potential function PO0 is explicitly
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calculated by Theorem 4.5. We can then find the maximal value λ for which the
polynomial equation

∂PO0

∂yi

(u; y1, . . . , yn) ≡ 0 mod T λ

has a solution yi ∈ �0 \ �+. In a weakly nondegenerate case, this value of λ for
PO(u; . . .) is the same as the value for PO0(u; . . .) (see Section 10).

Remark 5.13
The appearance of a new family of pseudoholomorphic discs with Maslov index 2
after blow-up, which we observed in Examples 5.7, can be related to the operator q

that we introduced in [FOOO3, Section 3.8] and [FOOO2, Section 13] in the following
way.

We denote by Mmain
k+1,l(β) the moduli space of stable maps f : (
, ∂
) → (X, L)

from bordered Riemann surface 
 of genus zero with l interior and k + 1 boundary
marked points and in homology class β (see [FOOO1, Section 3] and [FOOO3, Section
2.1.2]). The symbol main means that we require the boundary marked points to respect
the cyclic order of ∂
. Let us consider the case when the Maslov index of β is 2n.
More precisely, we take the following class β. We use the notation introduced at the
beginning of Section 11. We put β = βi1 +· · ·+βin , where ∂i1P ∩· · ·∩∂inP = p is a
vertex of P . We assume that [f ] ∈ Mmain

0+1,1(β) and that Mmain
0+1,1(β) is Fredholm-regular

at f . The virtual dimension of Mmain
0+1,1(β) is 3n. Let us take the unique point p ∈ X

such that π(p) = p. p is a T n-fixed point. Moreover, we assume that f (0) = p.
We blow up X at a point p = f (0) ∈ X and obtain X̂. Let [E] ∈ H2n−2(X̂) be
the homology class of the exceptional divisor E = π−1(p). Now f induces a map
f̂ : (
; ∂
) → (X̂, L). The Maslov index of the homology class [f̂ ] ∈ H2(X̂, L)
becomes 2. We put β̂ = [f̂ ].

Since p is a fixed point of T n-action, a T n-invariant perturbation lifts to a per-
turbation of the moduli space Mmain

0+1,0(̂β). Then any T n-orbit of the moduli space
Mmain

0+1,0(X; β) of holomorphic discs passing through p corresponds to a T n-orbit of
Mmain

0+1,0(X̂; β̂) and vice versa. Namely, we have an isomorphism:

Mmain
0+1,1(β) ev ×X {p} ∼= Mmain

0+1,0(̂β). (5.7)

Here ev in the left-hand side is the evaluation map at the interior marked point.
(Actually we need to work out the analytic details of gluing construction and so forth.
It seems very likely that we can do it in the same way as the argument of [FOOO2,
Chapter 10]; see [LR].)

Using (5.7) we may prove that

q1,k;β(PD([p]); b, . . . , b) = mk,̂β(b, . . . , b),
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where

q1,k;β(Q; P1, . . . , Pk) = ev0∗
(
Mmain

k+1,1(β) ×(X×Lk ) (Q × P1 × · · · × Pk)
)

is defined in [FOOO3, Section 3.8] and [FOOO2, Section 13]. (Here Q is a chain in
X and Pi are chains in L(u), and ev0 : Mmain

k+1,1(β) → X is the evaluation map at
the zeroth boundary marked point. In the right-hand side, we take fiber product over
X × Lk .) This is an example of a blow-up formula in Lagrangian Floer theory.

6. Quantum cohomology and Jacobian ring
In this section, we prove Theorem 1.9. Let PO0 be the leading-order potential func-
tion. (Recall that if X is Fano, we have PO0 = PO.) We define the monomial

zi(u) = y
vi,1

1 · · · yvi,n

n T �i (u) ∈ �0[y1, . . . , yn, y
−1
1 , . . . , y−1

n ]. (6.1)

Compare this with (2.3). It is also suggestive to write zi also as

zi(u) = e〈x,vi 〉T �i (u), x = (x1, . . . , xn), yi = exi . (6.2)

By definition, we have

PO
u
0 =

m∑
i=1

zi(u), (6.3)

yj

∂zi

∂yj

= vi,j zi(u). (6.4)

The following is a restatement of Theorem 1.9. Let zi ∈ H 2(X; Z) be the Poincaré
dual of the divisor π−1(∂iP ).

THEOREM 6.1
If X is Fano, there exists an isomorphism

ψu : QH (X; �) ∼= Jac(PO)

such that ψu(zi) = zi(u).

Since c1(X) = ∑m

i=1 zi (see [Fu]) and since PO
u
0 = ∑m

i=1 zi(u) by definition,
Theorem 1.9 follows from Theorem 6.1.

In the rest of this section, we prove Theorem 6.1. We note that zi (i = 1, . . . , m)
generates the quantum cohomology ring QH (X; �) as a �-algebra (see Theorem
6.6). Therefore, it is enough to prove that the assignment ψ̃u(zi) = zi(u) extends to
a homomorphism ψ̃u : �[z1, . . . , zm] → Jac(PO

u
0) that induces an isomorphism in
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QH (X; �). In other words, it suffices to show that the relations among the generators
in �[z1, . . . , zm] and in Jac(PO

u
0) are mapped to each other under the assignment

ψ̃u(zi) = zi(u). To establish this correspondence, we now review Batyrev’s description
of the relations among zi’s.

We first clarify the definition of quantum cohomology ring over the universal
Novikov rings �0 and �. Let (X, ω) be a symplectic manifold, and let α ∈ π2(X). Let
M3(α) be the moduli space of stable map with homology class α of genus 0 with 3
marked points. Let ev : M3(α) → X3 be the evaluation map. We can define the virtual
fundamental class ev∗[M3(α)] ∈ Hd(X3; Q), where d = 2(dimC X + c1(X) ∩ α).
Let ai ∈ H ∗(X; Q). We define a1 ∪Q a2 ∈ H ∗(X; �0) by the following formula.

〈a1 ∪Q a2, a3〉 =
∑

α

T ω∩α/2πev∗[M3(α)] ∩ (a1 × a2 × a3). (6.5)

Here 〈·, ·〉 is the Poincaré duality. Extending this linearly, we obtain the quantum
product

∪Q : H (X; �0) ⊗ H (X; �0) → H (X; �0).

Extending the coefficient ring further to �, we obtain the (small) quantum cohomology
ring QH (X; �).

Now we specialize to the case of compact toric manifolds and review Batyrev’s
presentation of quantum cohomology ring. We consider the exact sequence

0 −→ π2(X) −→ π2

(
X; L(u)

) −→ π1

(
L(u)

) −→ 0. (6.6)

We note that π2(X; L(u)) ∼= Zm, and we choose its basis adapted to this exact sequence
as follows. Consider the divisor π−1(∂iP ), and take a small disc transversal to it. Each
such disc gives rise to an element

[βi] ∈ H2

(
X; π−1(IntP )

) ∼= H2

(
X; L(u)

) ∼= π2

(
X, L(u)

)
. (6.7)

The set of [βi] with i = 1, . . . , m forms a basis of π2(X; L(u)) ∼= Zm. The boundary
map [β] �→ [∂β] : π2(X; L(u)) → π1(L(u)) is identified with the corresponding map
H2(X; L(u)) → H1(L(u)). Using the basis chosen in Lemma 4.4 on H1(L(u)), we
identify H1(L(u)) ∼= Zn. Then this homomorphism maps [βi] to

[∂βi] ∼= vi = (vi,1, . . . , vi,n), (6.8)

where vi,j is as in (4.4). By the exactness of (6.6), we have an isomorphism:

H2(X) ∼= {
β ∈ H2(X; L(u))

∣∣ [∂β] = 0
}
. (6.9)
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LEMMA 6.2
We have

ω ∩
[∑

kiβi

]
= 2π

∑
ki�i(u). (6.10)

If
[∑

ki∂βi

] = 0, then ∑
ki

d�i

duj

= 0. (6.11)

In particular, the right-hand side of (6.10) is independent of u.

Proof
Here (6.10) follows from the area formula (2.12), ω(βi) = 2π�i(u). On the other
hand, if

[∑
ki∂βi

] = 0, we have

m∑
i=1

kivi = 0.

By the definition of �i , �i(u) = 〈u, vi〉 − λi , from Theorem 2.13, this equation is
precisely (6.11), and hence the proof. �

Let P ⊂ {1, . . . , m} be a primitive collection (see Definition 2.4). There exists a
unique subset P′ ⊂ {1, . . . , m} such that

∑
i∈P vi lies in the interior of the cone

spanned by {vi ′ | i ′ ∈ P′}, which is a member of the fan 
. (Since X is compact, we
can choose such P′; see [Fu, Section 2.4].) We write∑

i∈P

vi =
∑
i ′∈P′

ki ′vi ′ . (6.12)

Since X is assumed to be nonsingular, ki ′ are all positive integers (see [Fu, page 29]).
We put

ω(P) =
∑
i∈P

�i(u) −
∑
i ′∈P′

ki ′�i ′(u). (6.13)

It follows from (6.10) that 2πω(P) is the symplectic area of the homotopy class

β(P) =
∑
i∈P

βi −
∑
i ′∈P′

ki ′βi ′ ∈ π2(X). (6.14)

LEMMA 6.3
Let P be any primitive collection. Then ω(P) > 0.
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Proof
Since the cone spanned by {vi ′ |i ′ ∈ P′} belongs to the fan 
, we have⋂

i ′∈P′
π−1(∂i ′P ) �= ∅.

Then for any u′ ∈ ⋂
i ′∈P′ ∂i ′P , we have �i ′(u′) = 0. By the choice of ki ′ in (6.12), we

have ∂β(P) = 0. Therefore, by Lemma 6.2 and by the continuity of the right-hand
side of (6.13), we can evaluate ω(P) at a point u′ ∈ ⋂

i ′∈P′ π
−1(∂i ′P ). Then we obtain

ω(P) =
∑
i∈P

�i(u
′).

Since P is a primitive collection, and in particular does not form a member of the fan,
there must be an element vi ∈ P such that �i(u′) > 0, and so ω(P) > 0. This finishes
the proof. �

Now we associate the formal variables, z1, . . . , zm, to v1, . . . , vm, respectively.

Definition 6.4 ([B1, Definition 5.1, Theorem 5.3])
(1) The quantum Stanley-Reisner ideal SRω(X) is the ideal generated by

z(P) =
∏
i∈P

zi − T ω(P)
∏
i ′∈P′

z
ki′
i ′ (6.15)

in the polynomial ring �[z1, . . . , zm]. Here P runs over all primitive collec-
tions.

(2) We denote by P (X) the ideal generated by

m∑
i=1

vi,j zi (6.16)

for j = 1, . . . , n. In this article, we call P (X) the linear relation ideal.
(3) We call the quotient

QHω(X; �) = �[z1, . . . , zm]

(P (X) + SRω(X))
(6.17)

the Batyrev quantum cohomology ring.

Remark 6.5
We do not take closure of our ideal P (X) + SRω(X) here (see Proposition 8.6).

THEOREM 6.6 (see Batyrev [B1], Givental [G2])
If X is Fano, then there exists a ring isomorphism from QHω(X; �) to the quantum
cohomology ring QH (X; �) of X such that zi is sent to the Poincaré dual to π−1(∂iP ).
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The main geometric part of the proof of Theorem 6.6 is the following.

PROPOSITION 6.7
The Poincaré dual to π−1(∂iP ) satisfies the quantum Stanley-Reisner relation.

(We do not prove Proposition 6.7 in this article; see Remarks 6.15 and 6.16.) However,
since our choice of the coefficient ring is different from other literature, we explain
here for the reader’s convenience how Theorem 6.6 follows from Proposition 6.7.

Proposition 6.7 implies that we can define a ring homomorphism h :
QHω(X; �) → QH (X; �) by sending zi to PD(π−1(∂iP )). Let F kQH (X; �)
be the direct sum of elements of degree ≤ k. Let F kQHω(X; �) be the submodule
generated by the polynomial of degree at most k/2 on zi . Clearly, h(F kQHω(X; �)) ⊂
F kQH (X; �).

Since X is Fano, it follows that

x ∪Q y − x ∪ y ∈ F deg x+deg y−2QH (X; �).

We also recall the cohomology ring H (X; Q) is obtained by putting T = 0 in a
quantum Stanley-Reisner relation. Moreover, we find that the second product of the
right-hand side of (6.15) has degree strictly smaller than the first since X is Fano.

Therefore, the graded ring

gr
(
QH (X; �)

) = ⊕
k

F k
(
QH (X; �)

)
/F k−1

(
QH (X; �)

)
is isomorphic to the (usual) cohomology ring (with �-coefficient) as a ring. The same
holds for QHω(X; �). It follows that h is an isomorphism.

In the rest of this section, we prove Proposition 6.8 (Theorem 6.1 follows immediately
from Proposition 6.8 and Theorem 6.6).

PROPOSITION 6.8
There exists an isomorphism

ψu : QHω(X; �) ∼= Jac(PO
u
0)

such that ψu(zi) = zi(u).

Note that we do not assume that X is Fano in Proposition 6.8. Note also that, for
our main purpose of calculating M0(Lag(X)), Proposition 6.8 suffices. Proposition
6.8 is a rather simple algebraic result, and its proof does not require the study of
pseudoholomorphic discs or spheres.
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Proof of Proposition 6.8

We start with the following proposition.

PROPOSITION 6.9
The assignment

ψ̂u(zi) = zi(u) (6.18)

induces a well-defined ring isomorphism

ψ̂u :
�[z1, . . . , zm]

SRω(X)
→ �[y1, . . . , yn, y

−1
1 , . . . , y−1

n ]. (6.19)

Proof
Let P be a primitive collection and P′, ki ′ be as in (6.12). We calculate∏

i∈P

zi(u) =
∏
i∈P

y
vi,1

1 · · · yvi,n

n T �i (u) (6.20)

by (6.1). On the other hand,∏
i ′∈P′

z
ki′
i ′ (u) =

∏
i ′∈P′

y
ki′vi′ ,1
1 · · · yki′vi′ ,n

n T ki′ �i′ (u)

=
∏
i∈P

y
vi,1

1 · · · yvi,n

n

∏
i ′∈P′

T ki′ �i′ (u)

by (6.12). Moreover, ∑
i∈P

�i(u) −
∑
i∈P′

ki ′�i ′(u) = ω(P)

by (6.13). Therefore, ∏
i∈P

zi(u) = T ω(P)
∏
i ′∈P′

z
ki′
i ′ (u)

in �[y1, . . . , yn, y
−1
1 , . . . , y−1

n ]. In other words, (6.18) defines a well-defined ring
homomorphism (6.19).

We now prove that ψ̂u is an isomorphism. Let

pr : Zm ∼= π2

(
X; L(u)

) −→ Zn ∼= π1

(
L(u)

)
be the homomorphism induced by the boundary map pr([β]) = [∂β] (see (2.1)). We
note that pr(c1, . . . , cm) = (d1, . . . , dn) with dj = ∑

i civi,j . Let A = ∑
i ciβi be an
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element in the kernel of pr. We write it as∑
i∈I

aiβi −
∑
j∈J

bjβj ,

where ai , bj are positive and I ∩ J = ∅. We define

r(A) =
∏
i∈I

z
ai

i − T
∑

i ai �i (u)−∑
j bj �j (u)

∏
j∈J

z
bj

j . (6.21)

We note that a generator of quantum Stanley-Reisner ideal corresponds to r(A), for
which I is a primitive collection P and J = P′. We also note that the case I = ∅ or
J = ∅ is included.

LEMMA 6.10
We have

r(A) ∈ SRω(X).

Proof
This lemma is proved in [B1, Theorem 5.3]. We include its proof (which is different
from the one in [B1]) here for the reader’s convenience. We prove the lemma by an
induction over the values

E(A) =
∑
i∈I

ai�i(u0) +
∑
j∈J

bj�j (u0).

Here we fix a point u0 ∈ IntP during the proof of Lemma 6.10.
Since I ∩J = ∅, at least one of {vi | i ∈ I }, {vj | j ∈ J } cannot span a cone that

is a member of the fan 
. Without loss of generality, we assume that {vi | i ∈ I } does
not span such a cone. Then it contains a subset P ⊂ I that is a primitive collection.
We take P′, ki ′ as in (6.12), and we define

Z =
∏
i∈I

z
ai

i − T ω(P)
∏

i∈I\P

z
ai

i

∏
i∈P

z
ai−1
i

∏
i ′′∈P′

z
ki′′
i ′′ . (6.22)

Then Z lies in SRω(X) by construction. We recall from Lemma 6.2 that the values∑
i∈P

�i(u) −
∑
i∈P′

ki�i(u) = ω(P)
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are independent of u and positive. By the definitions (6.21) and (6.22) of r(A) and Z,
we can express

r(A) − Z = T ω(P)+c
(∏

h∈K

z
nh

h

)
r(B)

for an appropriate B in the kernel of pr and a constant c. Moreover, we have

E(B) + 2
∑
h∈K

nh�h(u0) + ω(P) = E(A).

Since u0 ∈ Int P , it follows that �h(u0) > 0, which in turn gives rise to E(B) < E(A).
The induction hypothesis then implies that r(B) ∈ SRω(X). The proof of the lemma
is now complete. �

COROLLARY 6.11
The element zi is invertible in

�[z1, . . . , zm]

SRω(X)
.

Proof
Since X is compact, the vector −vi is in some cone spanned by vj (j ∈ I ). Namely,

−vi =
∑
j∈I

kjvj ,

where kj are nonnegative integers. Then

T �i (u)+∑
j kj �j (u) = zi

∏
j∈I

z
kj

j mod SRω(X)

by Lemma 6.10. Since T �i (u)+∑
j kj �j (u) is invertible in the field �, it follows that∏

j∈I z
kj

j defines the inverse of zi in the quotient ring. �

We recall from Lemma 6.2 that �i(u) +∑
j kj �j (u) is independent of u. We define

z−1
i = T −�i (u)−∑

j kj �j (u)
∏
j∈I

z
kj

j . (6.23)

(Note that we have not yet proved that �[z1, . . . , zm]/SRω(X) is an integral domain;
this comes later in the proof of Proposition 6.9.)

Since v1, . . . , vm generate the lattice Zn, we can always assume the following by
changing the order of vi , if necessary.
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Condition 6.12
The determinant of the (n × n)-matrix (vi,j )i,j=1,...,n is ±1.

Let (vi,j ) be the inverse matrix of (vi,j ), namely,
∑

j vi,j vj,k = δi,k. Condition 6.12
implies that each vi,j is an integer. Inverting the matrix (vi,j ), we obtain

yi = T −ci (u)
n∏

j=1

zvi,j

i (6.24)

from (6.20), where ci(u) = ∑
vi,j �j (u). Using Corollary 6.11, we define

φ̂u(y±1
i ) = T −±ci (u)

n∏
j=1

z±vi,j

j ∈ �[z1, . . . , zm]

SRω(X)
.

More precisely, we plug (6.23) here if ±vi,j is negative.
The identity ψ̂u ◦ φ̂u = id is a consequence of (6.24). We next calculate (̂φu ◦

ψ̂u)(zh) = φ̂u(zh(u)), and we prove that

(̂φu ◦ ψ̂u)(zh) = T �h(u)φ̂u(yvh,1

1 · · · yvh,n

n ) = T e(h;u)
n∏

j=1

z
mj

j ,

where mj ≥ 0 and

vh =
∑

mjvj , �h(u) = e(h; u) +
∑

mj�j (u). (6.25)

To see (6.25), we consider any monomial Z of yi, zi, zi, T
α . We define its multiplica-

tive valuation vu(Z) ∈ R by putting

vu(yi) = 0, vu(zi) = vu(zi) = �i(u), vu(T α) = α.

We also define a (multiplicative) grading ρ(Z) ∈ Zn by

ρ(yi) = ei , ρ(zi) = ρ(zi) = vi, ρ(T α) = 0

and by ρ(ZZ′) = ρ(Z) + ρ(Z′). We remark that vu and ρ are consistent with (6.1).
We next observe that both vu and ρ are preserved by ψ̂u, φ̂u and by (6.23). This implies
(6.25).

Now we use Lemma 6.10 and (6.25) to conclude that

zh − T e(h;u)
n∏

j=1

z
mj

j ∈ SRω(X).

The proof of Proposition 6.9 is now complete. �
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Next we prove the following.

LEMMA 6.13
Let P (X) be the linear relation ideal defined in Definition 6.4. Then

ψ̂u

(
P (X)

) = (∂PO
u
0

∂yi

; i = 1, . . . , n
)
.

Proof
Let

∑m

i=1 vi,j zi be in P (X). Then we have

ψ̂u

( m∑
i=1

vi,j zi

)
=

m∑
i=1

vi,j zi =
m∑

i=1

yj

∂zi

∂yj

= yj

∂PO
u
0

∂yj

by (6.1) and (6.4). Since yj ’s are invertible in �[y1, . . . , yn, y
−1
1 , . . . , y−1

n ], this iden-
tity implies the lemma. �

The proofs of Theorem 6.1 and of Proposition 6.8 are now complete. �

Remark 6.14
Proposition 6.8 holds over �R-coefficient for arbitrary commutative ring R with unit.
The proof is the same.

We define

ψu′,u : Jac(PO
u
0) → Jac(PO

u′
0 )

by

ψu′,u
(
zi(u)

) = zi(u
′) = T �i (u′)−�i (u)zi(u). (6.26)

It is an isomorphism. We have

ψu′,u ◦ ψu = ψu′ .

The well-definedness of ψu′,u is proved from this formula or by checking directly.
As long as no confusion occurs, we identify Jac(PO

u
0), Jac(PO

u′
0 ) by ψu′,u and

denote them by Jac(PO0). Since ψu′,u(zi(u)) = zi(u′), we write them zi when we
regard it as an element of Jac(PO0). Note that ψu′,u(yi) �= yi . In case we regard
yi ∈ Jac(PO

u
0) as an element of Jac(PO0), we write it as yi(u) := ψu(yi).
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Remark 6.15
The above proof of Theorem 6.1 uses Batyrev’s presentation of the quantum co-
homology ring, and it is not likely generalized beyond the case of compact toric
manifolds. (In fact, the proof is purely algebraic and does not contain a serious study
of pseudoholomorphic curve, except Proposition 6.7, which we quote without proof,
and Theorem 4.5, which is a minor improvement of an earlier result of [CO].) There
is an alternative way of constructing the ring homomorphism ψu which is less compu-
tational. (This will give a new proof of Proposition 6.7.) We will give this conceptual
proof in a future article.

We use the operation

q1,k;β : H (X; Q)[2] ⊗ BkH
(
L(u); Q

)
[1] → H

(
L(u); Q

)
[1],

which was introduced by the authors in [FOOO3, Section 3.8] and [FOOO2, Section
13]. Using the class zi ∈ H 2(X; Z) the Poincaré dual to π−1(∂iP ), we put

ψu(zi) =
∑

k

m∑
i=1

T βi∩ω/2π

∫
L(u)

q1,k;βi
(zi ⊗ x⊗k). (6.27)

Here we put x = ∑
xiei , and the right-hand side is a formal power series of xi with

coefficients in �.
Using the description of the moduli space defining the operators q1,k;β (see Section

11), it is easy to see that the right-hand side of (6.27) coincides with the definition of
zi in the current case, when X is Fano toric. Extending the expression (6.27) to an
arbitrary homology class z of arbitrary degree, we obtain

ψu(z) =
∑

k

∑
β;μ(β)=deg z

T β∩ω/2π

∫
L(u)

q1,k;β(z ⊗ x⊗k). (6.28)

Since μ(β) = deg z, then q1,k;β(z ⊗ x⊗k) ∈ Hn(L(u); Q). One can prove that (6.28)
defines a ring homomorphism from the quantum cohomology to the Jacobian ring
Jac(PO

u). We may regard Jac(PO
u) as the moduli space of deformations of Floer

theories of Lagrangian fibers of X. (Note that the Jacobian ring parameterizes defor-
mations of a holomorphic function up to an appropriate equivalence. In our case, the
equivalence is the right equivalence, that is, the coordinate change of the domain.)

Thus (6.28) is a particular case of the ring homomorphism

QH (X) → HH
(
Lag(X)

)
,

where HH (Lag(X)) is the Hochschild cohomology of Fukaya category of X. (We
remark that Hochschild cohomology parameterizes deformations of A∞-category.)
Existence of such a homomorphism is a folk theorem (see [K]), which has been
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verified by various people in various favorable situations (see, e.g., [Ar]). It has
been conjectured to be an isomorphism under certain conditions by various people,
including Seidel and Kontsevich.

This point of view is suitable for generalizing our story to more general X (to non-
Fano toric manifolds, for example) and also for including the big quantum cohomology
into our story. (We also need to use the operators q�,k mentioned above for � ≥ 2.)

These points will be discussed in future articles. In this article, we follow a
more elementary but less conceptual approach exploiting the known calculation of the
quantum cohomology of toric manifolds.

Remark 6.16
There are two other approaches to a proof of Proposition 6.7 besides the fixed-point
localization. One, written by Cieliebak and Salamon [CS], uses vortex equations
(gauged sigma model), and the other, written by McDuff and Tolman [McT], uses
Seidel’s result [Se1].

7. Localization of the quantum cohomology ring at the moment polytope
In this section, we discuss applications of Theorem 1.9. In particular, we prove The-
orem 1.12. (Note that Theorem 1.3 is a consequence of Theorem 1.12.) Theorem 7.1
and Theorem 1.9 immediately imply Theorem 1.12(1).

THEOREM 7.1
There exists a bijection

Crit(PO0) ∼= Hom(Jac(PO0); �C).

Here the right-hand side is the set of unital �C-algebra homomorphisms.
We start with the following definition.

Definition 7.2
For an element x ∈ �\{0}, we define its valuation vT (x) as the unique number λ ∈ R

such that T −λx ∈ �0 \ �+.

We note that vT is a multiplicative non-Archimedean valuation; that is, it satisfies

vT (x + y) ≥ min
(
vT (x), vT (y)

)
,

vT (xy) = vT (x) + vT (y).



LAGRANGIAN FLOER THEORY ON COMPACT TORIC MANIFOLDS, I 79

LEMMA 7.3
For any ϕ ∈ Hom(Jac(PO0); �C) there exists a unique u ∈ MR such that

vT

(
ϕ(yj (u))

) = 0 (7.1)

for all j = 1, . . . , n.

Proof
We still assume Condition 6.12. By definition (6.1) of zi , the homomorphism property
of ϕ, and the multiplicative property of valuation, we obtain

vT

(
ϕ(zi)

) = �i(u) +
n∑

j=1

vi,jvT

(
ϕ(yj (u))

)
, (7.2)

for i = 1, . . . , m. On the other hand, since �i(u) = 〈u, vi〉 − λi and (vi,j )i,j=1,...,n is
invertible, there is a unique u that satisfies

vT

(
ϕ(zi)

) = �i(u) (7.3)

for i = 1, . . . , n. But by the invertibility of (vi,j )i,j=1,...,n and (7.2), this is equivalent
to (7.1), and hence we have the proof. �

We note that obviously by the above proof the formula (7.3) automatically holds for
i = n + 1, . . . , m and u in Lemma 7.3 as well.

Proof of Theorem 7.1
Consider the maps

�1(ϕ) =
n∑

i=1

(
log ϕ(yi(u))

)
ei ∈ H 1

(
L(u); �0

)
, �2(ϕ) = u ∈ MR,

where u is obtained as in Lemma 7.3. Since yi(u) ∈ �0 \ �+, it follows that we
can define its logarithm on �0 as a convergent power series with respect to the non-
Archimedean norm.

Set (x, u) = (�1(ϕ), �2(ϕ)). Since ϕ is a ring homomorphism from Jac(PO0) ∼=
Jac(PO

u
0), it follows from the definition of the Jacobian ring that

∂PO
u
0

∂yi

(x) = 0.

Therefore by Theorem 4.10, HF ((L(u), x), (L(u), x); �) �= 0. We have thus defined

� : Hom
(
Jac(PO0); �C

) → Crit(PO0).
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Let (x, u) ∈ Crit(PO0). We put x = ∑
xiei . We define a homomorphism ϕ :

Jac(PO0) → � by assigning

ϕ
(
yi(u)

) = exi .

It is straightforward to check that ϕ is well defined. Then we define �(x, u) := ϕ. It
easily follows by definition that � is an inverse to �. The proof of Theorem 7.1 is
complete. �

We next work with the (Batyrev) quantum cohomology side.

Definition 7.4
For each zi , we define a �-linear map ẑi : QHω(X; �C) → QHω(X; �C) by
ẑi(z) = zi ∪Q z, where ∪Q is the product in QHω(X; �C).

Since QHω(X; �) is generated by even-degree elements, it follows that it is commu-
tative. Therefore, we have

ẑi ◦ ẑj = ẑj ◦ ẑi . (7.4)

Definition 7.5
For w = (w1, . . . ,wn) ∈ (�C)n, we put

QHω(X; w)={
x ∈ QHω(X; �C)

∣∣ (̂zi −wi)
Nx=0 for i = 1, . . . , n and large N .

}
We say that w is a weight of QHω(X) if QHω(X; w) is nonzero. We denote by
W (X; ω) the set of weights of QHω(X).

We remark that wi �= 0 since zi is invertible (see Corollary 6.11).

Remark 7.6
Since zi , i = 1, . . . , n generates QHω(X; �) by Condition 6.12, we have the fol-
lowing. For each w = (w1, . . . ,wn) there exist wn+1, . . . ,wm depending only on w

such that ( ẑi − wi)Nx = 0 also holds for i = n + 1, . . . , m if N is sufficiently large
and x ∈ QHω(X; w).

PROPOSITION 7.7
(1) There exists a factorization of the ring

QHω(X; �C) ∼=
∏

w∈W (X;ω)

QHω(X; w).
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(2) There exists a bijection

W (X; ω) ∼= Hom
(
QHω(X; �); �C

)
.

(3) In addition, QHω(X; w) is a local ring and (1) is the factorization to inde-
composables.

Proof
Existence of decomposition (1) as a �C-vector space is a standard linear algebra,
using the fact that �C is an algebraically closed field. (We prove this fact in Lemma
A.1.) If z ∈ QHω(X; w) and z′ ∈ QHω(X; w′), then

(zi − wi)
N ∪Q (z ∪Q z′) = (

(zi − wi)
N ∪Q z

) ∪Q z′ = 0,

(zi − w′
i)

N ∪Q (z ∪Q z′) = (
(zi − w′

i)
N ∪Q z′

) ∪Q z = 0.

Therefore, z∪Qz′ ∈ QHω(X; w)∩QHω(X; w′). This implies that the decomposition
(1) is a ring factorization.

Let ϕ : QHω(X; w) → �C be a unital �C-algebra homomorphism. It induces a
homomorphism QHω(X; �) → �C by (1). We denote this ring homomorphism by
the same letter ϕ. Let z ∈ QHω(X; w) be an element such that ϕ(z) �= 0. Then we
have (

ϕ(zi) − wi

)N
ϕ(z) = ϕ

(
(zi − wi)

N ∪Q z
) = 0.

Therefore,

wi = ϕ(zi). (7.5)

Since zi generates QHω(X; �), it follows from (7.5) that there is a unique �C-algebra
homomorphism : QHω(X; w) → �C. Then (2) follows.

Since QHω(X; w) is a finite-dimensional �C-algebra and since �C is alge-
braically closed, we have an isomorphism

QHω(X; w)

rad
∼= (�C)k (7.6)

for some k. (Here, rad equals {z ∈ QHω(X; w) | zN = 0 for some N}.) Since there
is a unique unital �C-algebra homomorphism QHω(X; w) → �C, it follows that
k = 1. Specifically, QHω(X; w) is a local ring.

It also implies that QHω(X; w) is indecomposable. �

The result up to here also works for the non-Fano case. But Theorem 7.8 requires the
fact that X is Fano since we use the equality QHω(X; �) ∼= QH (X; �).
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THEOREM 7.8
If X is Fano, then Crit(PO0) = M(Lag(X)).

Proof
Let w be a weight. We take z ∈ QHω(X; w) ⊂ H (X; �C) ∼= H (X; C) ⊗ �C. We
may take an eigen vector z so that

z ∈ (
H (X; C) ⊗ �C

0

) \ (H (X; C) ⊗ �C
+
)
.

Since

zi ∪Q z ≡ zi ∪ z mod �C
+,

where ∪ is the classical cup product (we use QHω(X; �) = QH (X; �) here), it
follows that

wn
i z = ( ẑi)

n(z) = (zi)
n ∪Q z ≡ (zi)

n ∪ z mod �C
+.

Therefore, wi ∈ �C
+ as (zi)n ∪ z = 0. Then (7.3) and (7.5) imply that

�i(u) = vT (wi) > 0.

In particular, u ∈ IntP . �

We are now ready to complete the proof of Theorem 1.12. Here (1) is Theorem 7.1; (2)
is a consequence of Theorem 4.10; (3) is Theorem 7.8. If QHω(X; �C) is semisimple,
then (7.6) and k = 1 imply that

QHω(X; �C) ∼= (�C)#W (X;ω) (7.7)

as a �C-algebra. Thus (4) follows from (7.7), Proposition 7.7(2), and Theorem 7.1.
The proof of Theorem 1.12 is complete.

We next explain the factorization in Proposition 7.7(1) from the point of view of the
Jacobian ring. Let (x, u) ∈ Crit(PO0).

Definition 7.9
We consider the ideal generated by

∂

∂wi

PO
u
0(y1 + w1, . . . , yn + wn) (7.8)

i = 1, . . . , n, in the ring �[[w1, . . . , wn]] of formal power series, where x = ∑
xiei

and yi = exi . We denote its quotient ring by Jac(PO0; x, u).
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PROPOSITION 7.10
(1) There is a direct product decomposition

Jac(PO0) ∼=
∏

(x,u)∈Crit(PO0)

Jac(PO0; x, u)

as a ring.
(2) If (x, u) ∈ Crit(PO0) corresponds to w ∈ W (X; ω) via the isomorphism given

in Proposition 7.7(2) and Theorem 7.1, then ψu induces an isomorphism

ψu : QHω(X; w) ∼= Jac(PO0; x, u).

(3) Jac(PO0; x, u) is 1-dimensional (over �) if and only if the Hessian(∂2PO
u
0

∂yi∂yj

)
i,j=1,...,n

is invertible over � at x.

Proof
We put x = ∑

xiei and yi = exi . Let m(x, u) be the ideal generated by yi − yi in the
ring

Jac(PO0) = �[y±
1 , . . . , y±

n ](
yi(∂PO

u
0/∂yi)

) .
Since Jac(PO0) is finite-dimensional over �, it follows that

Jac(PO0) ∼=
∏

(x,u)∈Crit(PO0)

Jac(PO0)m(x,u),

where Jac(PO0)m(x,u) is the localization of the ring Jac(PO0) at m(x, u). Using
finite-dimensionality of Jac(PO0) again, we have an isomorphism Jac(PO0)m(x,u)

∼=
Jac(PO0; x, u), which sends yi − yi to wi . Here x = ∑

i xiei and yi = exi , and (1)
follows.

Now we prove (2). If z ∈ QHω(X; w), then ( ẑi − wi)Nz = 0. Let πx,u :
Jac(PO0) → Jac(PO0; x, u) be the projection. We then have

(T �i (u) ŷ
vi,1

1 · · · ŷvi,n

n − wi)
Nπx,u

(
ψu(z)

) = 0. (7.9)

We note that

wi = T �i (u′)y
′vi,1

1 · · · y′vi,n

n (7.10)
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if wi corresponds (x′, u′) and y′
i are exponential of the coordinates of x′. We define the

operator ŷi : Jac(PO0; x, u) → Jac(PO0; x, u) by

ŷi(c) = yic.

By definition of Jac(PO0; x, u), the eigenvalue of ŷi is yi . Therefore, (7.9) and (7.10)
imply that πx,u(ψu(z)) = 0 unless (x, u) = (x′, u′). Thus (2) follows.

Let us prove (3). We first note that � = �C is an algebraically closed field
(Lemma A.1). Therefore, dim� Jac(PO0; x, u) = 1 if and only if the ideal generated
by (7.8) (for i = 1, . . . , n) is the maximal ideal m = (w1, . . . , wn). We note that
m/m2 = �n and that element (7.8) reduces to(∂2PO

u
0

∂yi∂yj

)
j=1,...,n

∈ �n,

modulo m2. So (3) follows easily. �

We recall that a symplectic manifold (X, ω) is said to be (spherically) monotone if
there exists λ > 0 such that c1(X)∩α = λ [ω]∩α for all α ∈ π2(X). The Lagrangian
submanifold L of (X, ω) is said to be monotone if there exists λ > 0 such that
μ(β) = λω(β) for any β ∈ π2(X, L). (Here μ is the Maslov index.) In the monotone
case we have the following.

THEOREM 7.11
If X is a monotone compact toric manifold, then there exists a unique u0 such that

M
(
Lag(X)

) ⊂ � × {u0}

(i.e., whenever (x, u) ∈ M(Lag(X)), u = u0). Moreover, L(u0) is monotone.

Remark 7.12
Related results are discussed in [EP1].

Proof
Since X is Fano, we have QHω(X; �) = QH (X; �). We assume that c1(X) ∩ α =
λ [ω] ∩ α with λ > 0. Let ∪α be the contribution to the moduli space of pseudo-
holomorphic curve of homology class α ∈ H2(X; Z) in the quantum cup product (see
(6.5)). We have a decomposition:

x ∪Q y = x ∪ y +
∑

α∈π2(X)\{0}
T α∩[ω]/2πx ∪α y.
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Then

deg(x ∪α y) = deg x + deg y − 2c1(X) ∩ α = deg x + deg y − 2λα ∩ [ω]. (7.11)

We define

vdeg(T 1/2π ) = 2λ, vdeg(x) = deg x (for x ∈ H (X; Q)).

vdeg is a multiplicative non-Archimedean valuation on QH (X; �) such that vdeg(a∪Q

b) = vdeg(a)+vdeg(b), by virtue of (7.11). Moreover, for c ∈ � and a ∈ QH (X; �),
we have vdeg(ca) = 2λvT (c)+ vdeg(a). Now let w be a weight and x ∈ QHω(X; w).
Since vdeg(zi) = 2, it follows that

2λvT (wi) + vdeg(x) = vdeg(zix) = 2 + vdeg(x).

Therefore, if (x, u) corresponds to w, then �i(u) = vT (wi) = 1/λ, and thus u is
independent of w. We denote it by u0.

For βi ∈ H2(X, L(u0)) (i = 1, . . . , m) given by (6.7), we have ω(βi) =
2π�i(u0) = 2π/λ. Hence μ(βi) = λω(βi)/π . Since βi generates H2(X, L(u0)),
it follows that L(u0) is monotone, as required. �

So far we have studied Floer cohomology with �C-coefficients. We next consider the
case of �F -coefficients where F is a finite Galois extension of Q. We choose F so that
all of the weights w lie in (�F

0 )n. (Since every finite extension of �Q is contained in
such �F , we can always find such an F ; see appendix.) Then we have a decomposition

QHω(X; �F ) ∼=
∏

w∈W (X;ω)

QHω(X; w; F ). (7.12)

It follows that the Galois group Gal(F/Q) acts on W (X; ω); it induces a Gal(F/Q)-
action on Crit(PO0) (we use Remark 6.14 here). We write it as (x, u) �→ (σ (x), σ (u)).
We note the following.

PROPOSITION 7.13
(1) We have σ (u) = u.
(2) We write by yi(x) the exponential of the coordinates of x. Then yi(x) ∈ �F and

yi(σ (x)) = σ (yi(x)).
(3) If QHω(X; �Q) is indecomposable, there exists u0 such that whenever (x, u) ∈

Crit(PO0)), we have u = u0.
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Proof
Let wi(x) correspond to (x, u). Then

�i

(
σ (u)

) = vT

(
wi(σ (x, u))

) = vT

(
σwi(x, u)

) = vT

(
wi(x, u)

) = �i(u).

Thus (1) follows; (2) follows from the definition and (1); and (3) is a consequence of
(1). �

A monotone blow-up of CP 2 (at one point) gives an example where the assumption
of Proposition 7.13(3) is satisfied.

It seems interesting to observe that the ring QH (X; �Q) jumps sometimes when
we deform the symplectic structure of X. The point where this jump occurs is closely
related to the point where the number of balanced Lagrangian fibers jumps. In the case
of Example 5.7, we have

QH (X; �Q) ∼=

⎧⎪⎨⎪⎩
(�Q)5 α > 0,

(�Q)3 × �Q(
√−3) α < 0,

�Q(
√

5) × �F α = 0,

where F = Q[x]/(x3 − x − 1). We observe that x5 + x4 − 2x3 − 2x2 + 1 =
(x2 + x − 1)(x3 − x − 1) (we also refer the reader to Example 10.10 for further
examples).

Remark 7.14
In Sections 11 – 13, we use de Rham cohomology of the Lagrangian submanifold to
define and study Floer cohomology. As a consequence, our results on Floer coho-
mology are proved over �R

0 or �C
0 but not over �

Q

0 or �F
0 . (The authors believe that

those results can be also proved over �
Q

0 by using the singular cohomology version
developed in [FOOO3], although the detail of their proofs could be more complicated.)

On the other hand, Proposition 6.8 and Theorem 6.1 are proved over �
Q

0 . There-
fore, the discussion on quantum cohomology here works over �F

0 .
We also note that, though Proposition 7.13(3) is related to Floer cohomology, its

proof given above does not use Floer cohomology over �
Q

0 but only Floer cohomology
over �C

0 and quantum cohomology over �
Q

0 . In fact, the proof above implies the
following. If u ∈ IntP and x ∈ H 1(L(u); �C

0 ) satisfy

∂PO
u
0

∂xi

(x) = 0,

then u = u0. This is because

Jac(PO
u
0; �C) = Jac(PO

u
0; �Q) ⊗�Q �C
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and

Jac(PO
u
0; �Q) ∼= QH (X; �Q).

8. Further examples and remarks
In this section, we show how we can use the arguments of Sections 6 and 7 to illustrate
calculations of M(Lag(X)) in examples.

Example 8.1
We consider the 1-point blow-up X of CP 2. We choose its Kähler form so that the
moment polytope is

P = {
(u1, u2)

∣∣ 0 ≤ u1, u2, u1 + u2 ≤ 1, u2 ≤ 1 − α
}
,

0 < α < 1. The potential function is

PO = y1T
u1 + y2T

u2 + (y1y2)−1T 1−u1−u2 + y−1
2 T 1−α−u2 .

We put z1 = y1T
u1 , z2 = y2T

u2 , z3 = (y1y2)−1T 1−u1−u2 , z4 = y−1
2 T 1−α−u2 .

The quantum Stanley-Reisner relation is

z1z3 = z4T
α, z2z4 = T 1−α, (8.1)

and the linear relation is

z1 − z3 = 0, z2 − z3 − z4 = 0. (8.2)

We put X = z1 and Y = z2, and we solve (8.1) and (8.2). We obtain

X3(T α + X) = T 1+α, (8.3)

with Y = X + T −αX2. We consider valuations of both sides of (8.3). There are three
different cases to consider.

Case 1: vT (X) > α. Here (8.3) implies that 3vT (X) + α = 1 + α, namely, vT (X) =
1/3. So α < 1/3. Moreover, vT (Y ) = 1/3. We have u1 = vT (X) = 1/3, u2 =
vT (Y ) = 1/3 (see Lemma 7.3). Writing X = a1T

1/3 + a2T
λ+ higher-order terms

with λ > 1/3 and substituting this into (8.3), we obtain a3
1 = 1, which has three

simple roots. Each of them corresponds to the solution for x by Hensel’s lemma (see,
e.g., [BGR, Proposition 3]). (It also follows from Theorem 10.4 in Section 10.)
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Case 2: vT (X) < α. By taking the valuation of (8.3), we obtain u1 = vT (X) =
(1 + α)/4. Hence α > 1/3. Moreover, u2 = vT (Y ) = (1 − α)/2. In the same way as
in Case 1, we can check that there are four solutions.

Case 3: vT (X) = α. We put X = a1T
α + a2T

λ+ higher-order terms where λ > α.

Case 3(1): a1 �= −1. By taking valuation of (8.3), we obtain u1 = vT (X) = 1/3.
Then α = 1/3 and u2 = vT (Y ) = 1/3. So (8.3) becomes

a4
1 + a3

1 − 1 = 0. (8.4)

(In this case, X = a1T
α has no higher term.) There are four solutions. We note that

(8.4) is irreducible over Q, since it is also irreducible over Z2. Thus the assumption of
Proposition 7.13(3) is satisfied. Actually, X is monotone in the case α = 1/3. Hence
the same conclusion (the uniqueness of u) follows from Theorem 7.11 also.

Case 3(2): a1 = −1. By taking valuation of (8.3), we obtain λ = 1−2α. Here λ > α

implies that α < 1/3; u2 = vT (Y ) = 1 − 2α and u1 = vT (X) = α. There is one
solution.

In summary, if α < 1/3, there are two choices of u = (α, 1 − 2α), (1/3, 1/3).
On the other hand, the numbers of choices of x are 1 and 3, respectively.

If α ≥ 1/3, there is the unique choice u = ((1 + α)/4, (1 − α)/2). The number
of choices of x is 4.

We next study a non-Fano case, the Hirzebruch surface Fn. Note that F1 is a 1-point
blow-up of CP 2, which we have already studied. We leave the case F2 to the reader.

Example 8.2
We consider the Hirzebruch surface Fn, n ≥ 3. We take its Kähler form so that the
moment polytope is

P = {
(u1, u2)

∣∣ 0 ≤ u1, u2, u1 + nu2 ≤ n, u2 ≤ 1 − α
}
,

0 < α < 1. The leading-order potential function is

PO0 = y1T
u1 + y2T

u2 + y−1
1 y−n

2 T n−u1−nu2 + y−1
2 T 1−α−u2 .

We put z1 = y1T
u1 , z2 = y2T

u2 , z3 = y−1
1 y−n

2 T n−u1−nu2 , z4 = y−1
2 T 1−α−u2 .

The quantum Stanley-Reisner relation and the linear relation give

z1z3 = zn
4T

nα, z2z4 = T 1−α, (8.5)

z1 − z3 = 0, z2 − nz3 − z4 = 0. (8.6)
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Let us assume that n is odd. We put

z1 = Zn, z4 = Z2T −α.

(In case n = 2n′ is even, we put z1 = Zn′
, z4 = ±ZT −α. The rest of the arguments

are similar and so are omitted.) Then z2 = T −αZ2 + nZn and

Z4(nZn−2 + T −α) = T . (8.7)

Case 1: (n − 2)vT (Z) > −α. In the first case, we have vT (Z) = (α + 1)/4. (Then
(n−2)vT (Z) > −α is automatically satisfied.) Therefore, u1 = vT (z1) = n(α+1)/4,
u2 = vT (z2) = (1 − α)/2. We also can check that there are four solutions. We note
that we are using PO0 in place of PO. However, we can use Corollary 10.6 to
prove Lemma 8.3. This lemma in particular implies that L(n(α + 1)/4, (1 − α)/2) is
balanced, which was already shown above in Example 8.1 for the case n = 1.

LEMMA 8.3
Let y(i) ∈ �0 × �0 (i = 1, . . . , 4) be critical points of PO

u
0 for u = (n(α +

1)/4, (1 − α)/2). Then there exists y(i)′ ∈ �0 × �0, which is a critical point of PO
u

and y(i) ≡ y(i)′ mod �+.

We prove Lemma 8.3 in Section 10.

Case 2: (n − 2)vT (Z) < −α. We have vT (Z) = 1/(n + 2). This can never occur
since 1/(n + 2) > 0 > −α/(n − 2).

Case 3: (n − 2)vT (Z) = −α. We put Z = a1T
−α/(n−2) + a2T

λ+ higher-order term.

Case 3(1): nan−2
1 �= −1. Then vT (Z) = (α + 1)/4. Since (α + 1)/4 �= −α/(n − 2),

this case never occurs.

Case 3(2): nan−2
1 = −1. We have 4vT (Z) + (n − 3)vT (Z) + λ = 1. Therefore,

λ = n − 2 + (n + 1) α

n − 2
.

We have

u1 = vT (z1) = − nα

n − 2
, u2 = vT (z2) = 1 − α − vT (z4) = n − 2 + 2α

n − 2
.

Thus (u1, u2) is not in the moment polytope.
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In Example 8.2, we have

M
(
Lag(X)

) = M0

(
Lag(X)

) �= Crit(PO0).

On the other hand, the order of M(Lag(X)) is 4 and is equal to the sum of Betti
numbers.

Remark 8.4
In a future article, we will prove the equality∑

d

rank Hd(X; Q) = #
(
M(Lag(X))

)
for any compact toric manifold X (which is not necessarily Fano) such that QH (X; �)
is semisimple. If we count the right-hand side with multiplicity, the same equality holds
without assuming semisimplicity.

We next discuss a version of the above in which we substitute some explicit numbers
into the formal variable T . Let u ∈ IntP . We define a Laurent polynomial

PO
u
0,T=t ∈ C[y1, . . . , yn, y

−1
1 , . . . , y−1

n ]

by substituting a complex number t ∈ C \ {0}. In the same way, we define the algebra
QHω(X; T = t ; C) over C by substituting T = t in the quantum Stanley-Reisner
relation. The argument of Section 6 goes through to show that

QHω(X; T = t ; C) ∼= Jac(PO
u
0,T=t ). (8.8)

In particular, the right-hand side is independent of u up to an isomorphism. Here
the C-algebra in the right-hand side of (8.8) is the quotient of the polynomial ring
C[y1, . . . , yn, y

−1
1 , . . . , y−1

n ] by the ideal generated by ∂PO0,T=t /∂yi (i = 1, . . . , n).
We remark that the right-hand side of (8.8) is always nonzero for small t by

Proposition 4.7. It follows that the equation

∂PO
u
0,T=t

∂yi

= 0 (8.9)

has a solution yi �= 0 for any u: namely, as far as the Floer cohomology after T = t

substituted, there always exists b ∈ H 1(X; C) with nonvanishing Floer cohomology
HF

(
(L(u), b), (L(u), b); C

)
for any u ∈ IntP . Since the version of Floer cohomology

after substituting T = t is not invariant under the Hamiltonian isotopy, this is not useful
for the application to symplectic topology (cf. [CO, Section 14.2]).
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The relation between the set of solutions of (8.9) and that of (4.10) is stated as
follows. Let (y(c)

1 (t ; u), . . . , y(c)
n (t ; u)) be a branch of the solutions of (8.9) for t �= 0,

where c is an integer with 1 ≤ c ≤ l for some l ∈ N. We can easily show that it is a
holomorphic function of t on C \R−. We consider its behavior as t → 0. For generic
u, the limit either diverges or converges to zero. However, if (x, u) ∈ M0(Lag(X))
and x = ∑

xiei , then there is some c such that

lim
t→0

y
(c)
i (t ; u) ∈ C \ {0} and y

(c)
i (t ; u) = exi (t).

To prove this claim, it suffices to show that if (x, u) ∈ Crit(PO0) and x = ∑
xiei ,

yi = exi , yi = ∑
j yijT

λij , then
∑

j yij t
λij converges for 0 < |t | < ε (here ε is a

sufficiently small positive number). This follows from Lemma 8.5 below. Let �conv
0

be the ring{∑
i

aiT
λi ∈ �C

0

∣∣∣ ∃ε > 0 such that
∑

i

|ai ||t |λi converges for |t | < ε
}
,

and let �conv be its field of fractions. We put �conv
+ = �conv

0 ∩ �+.

LEMMA 8.5
The field �conv is algebraically closed.

We prove Lemma 8.5 in Section A.

We go back to the discussion on the difference between two sets M0(Lag(X)) and
Crit(PO0) (see Definition 1.11). The rest of this section owes much to the discussion
with Iritani and also to his articles [I1], [I2]. The results we describe below are not
used elsewhere in this article.

We recall that we did not take closure of the ideal (P (X)+SRω(X)) in Section 6.
This is actually the reason why we have M0(Lag(X)) �= Crit(PO0); more precisely,
we have Proposition 8.6 below.

We consider the polynomial ring �[z1, . . . , zm]. We define its norm ‖ · ‖ so that∥∥∥∑
 i

a iz
i1
1 · · · zim

m

∥∥∥ = exp
(− inf

 i
vT (a i)

)
.

We take the closure of the ideal (P (X) + SRω(X)) with respect to this norm and
denote it by Clos(P (X) + SRω(X)). We put

QH
ω
(X; �) = �[z1, . . . , zm]

Clos(P (X) + SRω(X))
. (8.10)

Let W geo(X; ω) be the set of all weights such that the corresponding (x, u) satisfy
u ∈ Int P . We note that w ∈ W geo(X; ω) if and only if vT (wi) > 0 for all i.
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PROPOSITION 8.6 (Iritani)
There exists an isomorphism:

QH
ω
(X; �C) ∼=

∏
w∈W geo(X;ω)

QHω(X; w).

Proof
Let w ∈ W (X; ω) \ W geo(X; ω). We first assume that vT (wi) = −λ < 0. (The case
vT (wi) = 0 is discussed at the end of the proof.)

Then there exists f ∈ �0 \ �+ such that T λf wi = 1. Let x ∈ QHω(X; w). We
assume that x �= 0. We take k such that ( ẑi−wi)kx �= 0, ( ẑi−wi)k+1x = 0 and replace
x by ( ẑi − wi)kx. We then have T λf ẑix = x. Since limN→∞ ‖(f ziT

λ)N‖ = 0, it
follows that x = 0 in QH

ω
(X; �C). This is a contradiction.

We next assume that vT (wi) > 0 for all i. We consider the homomorphism

ϕ : �[z1, . . . , zm] → Hom�

(
QHω(X; w), QHω(X; w)

)
,

defined by

ϕ(zi)(x) = zi ∪Q x.

We have ϕ(P (X) + SRω(X)) = 0. We may choose the basis of QHω(X; w)
so that ϕ(zi) is an upper-triangular matrix whose diagonal entries are all wi and
whose off-diagonal entries are all zero or 1. We use it and vT (wi) > 0 to show
that ϕ

(
Clos(P (X) + SRω(X))

) = 0, and specifically, that ϕ induces a homomor-

phism from QH
ω
(X; �). It follows easily that the restriction of the projection

QHω(X; �C) → QH
ω
(X; �C) to QHω(X; w) is an isomorphism to its image.

We finally show that for u ∈ ∂P , there is no critical point of PO0 on (�0 \�+)n.
Let

u ∈
⋃
i∈I

∂iP \
⋃
i /∈I

∂iPi.

Then

PO
u
0 ≡

∑
i∈I

y
vi,1

1 · · · yvi,n

n mod �+.

We note that vi (i ∈ I ) is a part of the Z basis of Zn, since X is nonsingular toric.
Hence by changing the variables to appropriate y ′

i , it is easy to see that there is no
nonzero critical point of

∑
i∈I y

vi,1

1 · · · yvi,n

n = ∑
i∈I ′ y

′
i . The proof of Proposition 8.6

is now complete. �
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To further discuss the relationship between the contents of Sections 6 and 7 and those
in [I2], we compare the coefficient rings used here and in [I2]. In [I2] (like many of
the literatures on quantum cohomology such as [G1]), the formal power series ring
Q[[q1, . . . , qm−n]] is taken as the coefficient ring (m− n is the rank of H 2(X; Q) and
we choose a basis of it). The superpotential in [I2] (which is the same as the one used
in [G1]) is given as∗

Fq =
m∑

i=1

( m−n∏
a=1

qla,i

a

n∏
j=1

s
vi,j

j

)
. (8.11)

Here la,i is a matrix element of a splitting of H2(X; Z) → H2(X, T n; Z). We show
that (8.11) pulls back to our potential function PO

u
0 after a simple change of variables.

Let αa ∈ H2(X; Z) be the basis we have chosen (we choose it so that [ω] ∩ αa is
positive).

LEMMA 8.7
There exists fj (u) ∈ R (j = 1, . . . , n) such that

1

2π

∑
a

la,i[ω] ∩ αa = �i(u) −
n∑

j=1

vi,jfj (u).

Proof
We consider the exact sequence

0 −→ H2(X; Z)
i∗−→ H2

(
X, L(u); Z

) −→ H1

(
L(u); Z

) −→ 0.

So (c1, . . . , cm) ∈ H2(X, L(u); Z) is in the image of H2(X; Z) if and only if
∑

i civi =
0 (here vi = (vi,1, . . . , vi,n) ∈ Zn). For a given α ∈ H2(X, Z), denote i∗(α) =
(c1, . . . , cm). Then we have∑

a

[ω] ∩ cila,iαa = [ω] ∩ α = 2π
∑

ci�i(u).

This implies the lemma. �

We now put

qa = T [ω]∩αa/2π , sj (u) = T fj (u)yj . (8.12)

∗We change the notation so that it is consistent to ours; m, n, vi,j here corresponds to r + N , r , xi,b in [I2],
respectively.
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We obtain the identity

Fq

(
s1(u), . . . , sn(u)

) = PO
u
0(y1, . . . , yn). (8.13)

We note that if we change the choice of Kähler form, then the identification (8.12)
changes. In other words, the study of quantum cohomology over Q[[q1, . . . , qm−n]]
corresponds to studying all the symplectic structures simultaneously, while the study
of quantum cohomology over � focuses on one particular symplectic structure.

In [I2, Corollary 5.12], Iritani proved the semisimplicity of a quantum cohomology
ring of a toric manifold with a coefficient ring Q[[q1, . . . , qm−n]]; it does not imply
the semisimplicity of our QHω(X; �) since the semisimplicity in general is not
preserved by the pullback. (On the other way around, semisimplicity follows from
semisimplicity of the pullback.) However, it is preserved by the pullback at a generic
point. Specifically, we have the following.

PROPOSITION 8.8
The set of T n-invariant symplectic structures on X for which Jac(PO

u
0) is semisimple

is open and dense.

Proof
Here we give a proof for completeness, following the argument in [I2, proof of
Proposition 5.11]. Consider the polynomial

Fw1,...,wm
=

m∑
i=1

wiy
vi,1

1 · · · yvi,n

n ,

where wi ∈ C \ {0}. By Kushnirenko’s theorem [K], the Jacobian ring of Fw1,...,wm
is

semisimple for a generic w1, . . . , wm. We put

wi = exp
( 1

2π

∑
a

la,i[ω] ∩ α +
∑

j

vi,jfj (u)
)
.

It is easy to see that when we move [ω]∩αa and u (there are (m−n) and n parameters,
respectively), wi moves in an arbitrary way. Therefore, for generic choice of ω and u,
the Jacobian ring Jac(PO

u
0) is semisimple. Since Jac(PO

u
0) is independent of u up

to isomorphism, the proposition follows. �

Remark 8.9
Combined with Theorem 1.9, this proposition gives a partial answer to [EP2, Section 3,
Question].
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9. Variational analysis of potential function
In this section, we prove Proposition 4.7. Let PO be defined as in (4.7).

We define

s1(u) = inf
{
�i(u)

∣∣ i = 1, . . . , m
}
.

Here s1 is a continuous, piecewise affine and convex function, and s1 ≡ 0 on ∂P .
Recall that if u ∈ ∂iP , then �i(u) = 0 by definition.

We put

S1 = sup
{
s1(u)

∣∣ u ∈ P
}
,

P1 = {
u ∈ P

∣∣ s1(u) = S1

}
.

PROPOSITION 9.1
There exist sk , Sk , and Pk with these properties:
(1) Pk+1 is a convex polyhedron in MR. dim Pk+1 ≤ dim Pk;
(2) sk+1 : Pk → R is a continuous, convex piecewise affine function;
(3) sk+1(u) = inf{�i(u) | �i(u) > Sk} for u ∈ IntPk;
(4) sk+1(u) = Sk for u ∈ ∂Pk;
(5) Sk+1 = sup{sk+1(u) | u ∈ Pk};
(6) Pk+1 = {u ∈ Pk | sk+1(u) = Sk+1};
(7) Pk+1 ⊂ IntPk;
(8) sk , Sk , Pk are defined for k = 1, 2, . . . , K for some K ∈ Z+, and PK consists

of a single point.

Example 9.2
Let P = [0, a] × [0, b] (a < b). Then s1(u1, u2) = inf{u1, u2, a − u1, b − u2} and

S1 = a/2, P1 = {(a/2, u2) | a/2 ≤ u2 ≤ b − a/2}, s2(1/2, u2) = inf{u2, b − u2},
S2 = b/2, P2 = {(a/2, b/2)}.

Proof
We define sk , Sk , and Pk inductively over k. We assume that sk , Sk , and Pk are
defined for k = 1, . . . , k0 so that items (1) – (7) of Proposition 9.1 are satisfied for
k = 1, . . . , k0 − 1.

We define sk0+1 by (3) and (4). We prove that it satisfies (2), using Lemma 9.3 for
this purpose.

LEMMA 9.3
Let uj ∈ IntPk0 , and let limj→∞ uj = u∞ ∈ ∂Pk0 . Then

lim
j→∞

sk0+1(uj ) = Sk0 .
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Proof
We put

I ′
k0

= {
�i

∣∣ �i(u∞) = Sk0

}
. (9.1)

By (6) for k = k0 − 1, we find that sk0 (u∞) = Sk0 . Then (3) for k = k0 − 1 implies
that there is �i such that �i(u∞) = Sk0 . Thus I ′

k0
is nonempty. We take the affine space

Ak0 ⊂ MR such that IntPk0 is relatively open in Ak0 .
Now since u∞ ∈ ∂Pk0 , we can take  u ∈ Tu∞Ak0 such that u∞ + ε u /∈ Pk0 for any

sufficiently small ε > 0. It follows from (7) for k = k0 − 1 that u∞ + ε u ∈ Int Pk0−1,
and hence u + ε u ∈ Int Pk0−1 \ Pk0 .

By definition, we also have sk0 (u) ≤ Sk0 for all u ∈ Pk0−1. Therefore, we have

sk0 (u∞ + ε u) < Sk0 .

It follows that there exists �i ∈ I ′
k0

such that

�i(u∞ + ε u) < �i(u∞) = Sk0 < �i(u∞ − ε u). (9.2)

Since (9.2) holds for any  u ∈ Tu∞Ak0 with u∞+ε u /∈ Pk0 , it follows that ε u := uj−u∞
for any sufficiently large j . We note that since uj ∈ Int Pk0 ⊂ Ak0 ,  uj = u∞ − uj is
an “outward” vector as a tangent vector in Tu∞Ak0 at u∞ ∈ ∂Pk0 . Therefore, we have
u∞ +  uj /∈ Pk0 . Because uj = u∞ −  uj , it follows from (9.2) that

�i(uj ) > Sk0 (9.3)

for any sufficiently large j . Therefore, we have

sk0+1(uj ) = inf
{
�i(uj )

∣∣ �i ∈ I ′
k0
, �i(uj ) > Sk0

}
(9.4)

and limj→∞ sk0+1(uj ) = limj→∞ �i(uj ) = �i(u∞) = Sk0 . This finishes the proof of
the lemma. �

Lemma 9.3 implies that sk0+1 is continuous and piecewise linear in a neighborhood of
∂Pk0 . We can then check (2) easily.

We define Sk0+1 by (5). Then we can define Pk0+1 by (6) (in other words, the
right-hand side of (6) is nonempty); (7) is a consequence of Lemma 9.3. We can easily
check that Pk0+1 satisfies (1).

We finally prove that PK becomes a point for some K . Let uk ∈ Int Pk , and put

Ik = {
�i

∣∣ �i(uk) = Sk

}
. (9.5)

Here k = 1, . . . , K . We remark that Ik is independent of the choice of uk ∈ Int Pk .
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Note that we defined I ′
k0

by the formula (9.1). We have Ik0 ⊆ I ′
k0

. But the equality
may not hold in general. In fact, u∞ is in the boundary of Pk0 , but uk0 is an interior
point of Pk0 . Therefore, if �i ∈ Ik0 , then �i is constant on Pk0 . But the element of I ′

k0

may not have this property.
In case some �i ∈ Ik0+1 is not constant on Pk0 , it is easy to see that dim Pk0+1 <

dim Pk0 . There exists some �j /∈ ⋃
k≤k0

Ik0 which is not constant on Sk0 unless Sk0 is
a point. Therefore, if dim Sk0 �= 0, there exists k′ > k0 such that dim Pk′ < dim Pk0 .
Therefore there exists K such that PK becomes zero-dimensional (namely, a point).
Hence we have achieved (8). The proof of Proposition 9.1 is now complete. �

Remark 9.4
In [Mc], McDuff points out an error in statement (1) of Proposition 9.1 in the previous
version of this article. We have corrected the statement and have modified the last
paragraph of its proof, following the corresponding argument in [Mc, Section 2.2],
and we thank her for pointing out this error.

The next lemma easily follows from construction.

LEMMA 9.5
If all the vertices of P lie in Qn, then u0 ∈ Qn. Here {u0} = PK .

By parallel translation of the polytope, we may assume, without loss of generality,
that u0 = 0, the origin. In the rest of this section, we prove that PO

0 has a critical
point in (�0 \ �+)n. More precisely, we prove Proposition 4.7 for u0 = 0 (we note
that if P and �i are given, we can easily locate u0).

Example 9.6
Let us consider Example 8.1 in the case α > 1/3. At u0 = ((1 + α)/4, (1 − α)/2),
we have

PO
u0 = (y2 + y−1

2 )T (1−α)/2 + (
y1 + (y1y2)−1

)
T (1+α)/4.

Therefore, the constant term yi;0 of the coordinate yi of the critical point is given by

1 − y−2
2;0 = 0, 1 − y−2

1;0y
−1
2;0 = 0. (9.6)

Note that the first equation comes from the term of the smallest exponent and contains
only y2;0. The second equation comes from the term which has the second smallest
exponent and contains both y1;0 and y2;0. So we need to solve the equation inductively
according to the order of the exponent. This is the situation we want to work out in
general.
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We observe that the affine space Ai defined above in the proof of Lemma 9.3,

MR = A0 ⊇ A1 ⊇ · · · ⊇ AK−1 ⊇ AK = {0},

is a nonincreasing sequence of linear subspaces such that Int Pk is an open subset of
Ak . Let

A⊥
l ⊂ (MR)∗ ∼= NR

be the annihilator of Al ⊂ MR. Then we have

{0} = A⊥
0 ⊆ A⊥

1 ⊆ · · · ⊆ A⊥
K−1 ⊆ A⊥

K = NR.

We recall that

Ik = {
�i

∣∣ �i(0) = Sk

}
, (9.7)

for k = 1, . . . , K . In fact, 0 ∈ Pk+1 ⊆ Int Pk for k < K .
We renumber each of Ik in (9.7) so that{

�k,j

∣∣ j = 1, . . . , a(k)
} = Ik. (9.8)

By construction,

sk(u) = inf
j

�k,j (u) (9.9)

in a neighborhood of 0 in Pk−1. In fact, sk−1(0) = Sk−1 < Sk = sk(0) and{
�i(0)

∣∣ i = 1, . . . , m
} ∩ (Sk−1, Sk) = ∅.

LEMMA 9.7
If u ∈ Ak , then �k,j (u) = Sk .

Proof
We may assume that k < K . Hence 0 ∈ IntPk . We regard u ∈ Ak = T0Ak . By (9.9),
we have

sk(εu) = inf
{
�k,j (εu)

∣∣ j = 1, . . . , a(k)
}
.

Since sk(εu) = Sk for εu ∈ Pk , it follows that �k,j (u) = Sk . �

Lemma 9.7 implies that the linear part d�k,j of �k,j is an element of A⊥
k ⊂ t = NR.

In fact, if �k,j = �i , we have d�k,j = vi from the definition of �i , �i(u) = 〈u, vi〉 − λi

given in Theorem 2.13.
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LEMMA 9.8
For any v ∈ A⊥

k , there exist nonnegative real numbers cj ≥ 0, j = 1, . . . , a(k) such
that

v −
a(k)∑
j=1

cjd�k,j ∈ A⊥
k−1.

Proof
Suppose to the contrary that

{
v −

a(k)∑
j=1

cjd�k,j

∣∣∣ cj ≥ 0, j = 1, . . . , a(k)
}⋂

A⊥
k−1 = ∅.

Then we can find u ∈ Ak−1 \ Ak such that

d�k,j (u) ≥ 0 (9.10)

for all j = 1, . . . , a(k).
Since εu ∈ Ak−1 \ Ak , it follows that

sk(εu) < Sk

for a sufficiently small ε. On the other hand, (9.10) implies that d�k,j (εu) ≥ 0 for all
ε > 0, and so �k,j (εu) ≥ �k,j (0) = Sk . Therefore, by definition of sk in Proposition
9.1, we have

sk(εu) ≥ inf
{
�k,j (εu)

∣∣ j = 1, . . . , a(k)
}

≥ inf
{
�k,j (0)

∣∣ j = 1, . . . , a(k)
} = Sk.

This is a contradiction. �

Applying Lemma 9.8 inductively downward starting from � = k and ending at � = 1,
we immediately obtain the following.

COROLLARY 9.9
For any v ∈ A⊥

k , there exist cl,j ≥ 0 for l = 1, . . . , k, j = 1, . . . , a(l) such that

v =
k∑

l=1

a(l)∑
j=1

cl,j d�l,j .
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We denote

I = {
�i

∣∣ i = 1, . . . , m
} \ K⋃

k=1

Ik. (9.11)

It is easy to see that

� ∈ I ⇒ �(0) > SK. (9.12)

Now we go back to the situation of (4.7) and we use the notation of (4.7). In this
case, for each k = 1, . . . , K we also associate, in Definition 9.10, a set Ik consisting
of pairs (�, ρ) with an affine map � : MR → R and ρ ∈ R+.

Definition 9.10
We say that a pair (�, ρ) = (�′

j , ρj ) is an element of Ik if the following holds:

(1) If ei
j �= 0, then �i ∈

⋃k

l=1 Il (note that �′
j = ∑

i e
i
j �i).

(2) Item (1) does not hold for some i, j if we replace k by k − 1.
A pair (�, ρ) = (�′

j , ρj ) as in (4.7) is, by definition, an element of IK+1 if it is not
contained in any of Ik , k = 1, . . . , K .

LEMMA 9.11
(1) If (�, ρ) ∈ Ik , then d� ∈ A⊥

k .
(2) If (�, ρ) ∈ Ik , then �(0) + ρ > Sk .
(3) If (�, ρ) ∈ IK+1, then �(0) + ρ > SK .

Proof
Item (1) follows from Definition 9.10(1) and Lemma 9.7.

If (�, ρ) = (�′
j , ρj ) ∈ Ik , then there exists ei

j �= 0, �i = �k,j ′ . Then

�(0) + ρ ≥ ei
j �i(0) + ρj > �i(0) = Sk.

So (2) follows. The proof of (3) is the same. �

LEMMA 9.12
The vector space Ak is defined over Q.

Proof
The vector spaceAk is defined by equalities of the type �i = Sk on Ak−1. Since the
linear part of �i has integer coefficients, the lemma follows by induction on k. �
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We put d(k) = dim Ak−1 − dim Ak = dim A⊥
k − dim A⊥

k−1. We choose e∗i,j ∈
Hom(MQ, Q) ∼= NQ (i = 1, . . . , K , j = 1, . . . , d(k)) such that the following
condition holds. Here MQ = M ⊗ Q and NQ = N ⊗ Q.

Condition 9.13
We have
(1) e∗1,1, . . . , e∗k,d(k) is a Q basis of A⊥

k ∩ NQ;
(2) d�k,j = ∑

k′,j ′ v(k,j ),(k′,j ′)e∗k′,j ′ with v(k,j ),(k′,j ′) ∈ Z;
(3) if (�, ρ) ∈ Ik or � ∈ I, then d� = ∑

k′,j ′ v�,(k′,j ′)e∗k′,j ′ with v�,(k′,j ′) ∈ Z.

Note that d(k) = 0 if Ak = Ak−1.
We identify Rn with H 1(L(u); R) in the same way as in Lemma 4.4, and we let

xk,j ∈ Hom(H 1(L(u); R), R) be the element corresponding to e∗k,j by this identifica-
tion. In other words, if

e∗k,j =
∑

i

a(k,j );ie∗i ,

where e∗i is as in Lemma 4.4, then we have

xk,j =
∑

i

a(k,j );ixi .

We put yk,j = exk,j . We define

Y (k, j ) =
K∏

k′=1

d(k′)∏
j ′=1

y
v(k,j ),(k′ ,j ′ )
k′,j ′ . (9.13)

And for (�, ρ) ∈ Ik or � ∈ I, we define

Y (�) =
K∏

k=1

d(k)∏
j=1

y
v�,(k,j )

k,j . (9.14)

By Theorem 4.6 there exists c(�,ρ) ∈ Q such that

PO
0 =

K∑
k=1

( a(k)∑
j=1

Y (k, j )
)
T Sk +

∑
�∈I

Y (�)T �(0)

+
K+1∑
k=1

∑
(�,ρ)∈Ik

c(�,ρ)Y (�)T �(0)+ρ,

(9.15)

where PO
0 is PO

u with u = 0.
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LEMMA 9.14
(1) If k′ < k, then

∂Y (k′, j ′)
∂yk,j

= 0. (9.16)

(2) If (�, ρ) ∈ Ik′ , k′ < k, then

∂Y (�)

∂yk,j

= 0. (9.17)

(3) If (�, ρ) ∈ Ik , then �(0) + ρ > Sk .
(4) If (�, ρ) ∈ IK+1, then �(0) + ρ > SK .
(5) If � ∈ I, then �(0) > SK .

Proof
Since d�k′,j ′ ∈ A⊥

k′ by Lemma 9.7, it follows that v(k′,j ′),(k,j ) = 0 for k > k′. Then (1)
follows; (2) follows from Lemma 9.11(1) in the same way; (3) follows from Lemma
9.11(2); (4) follows from Lemma 9.11(3); and (5) follows from (9.12). �

Now equation (4.10) becomes

0 = ∂PO
0

∂yk,j

.

We calculate this equation using Lemma 9.14 to find that it is equivalent to

0 =
a(k)∑
j ′=1

∂Y (k, j ′)
∂yk,j

+
∑
k′>k

a(k′)∑
j ′=1

∂Y (k′, j ′)
∂yk,j

T Sk′−Sk

+
K+1∑
k′=k

∑
(�,ρ)∈Ik′

c(�,ρ)
∂Y (�)

∂yk,j

T �(0)+ρ−Sk +
∑
�∈I

∂Y (�)

∂yk,j

T �(0)−Sk .

(9.18)

Note that the exponents of T in the second, third, and fourth terms of (9.18) are all
strictly positive. So after putting T = 0, we have

0 =
a(k)∑
j ′=1

∂Y (k, j ′)
∂yk,j

. (9.19)
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Note that the equation (9.19) does not involve T but becomes a numerical equation.
We call (9.19) the leading-term equation.

LEMMA 9.15
There exist positive real numbers yk,j ;0, k = 1, . . . , K , j = 1, . . . , d(k), solving the
leading-term equations for k = 1, . . . , K .

Proof
We remark that the leading-term equations for k, j contain the monomials involving
only yk′,j for k′ ≤ k. We first solve the leading-term equation for k = 1. Denote

f1(x1,1, . . . , x1,d(1)) =
a(1)∑
j=1

Y (1, j ).

It follows from Corollary 9.9 that for any (x1,1, . . . , x1,d(1)) �= 0, there exists j such
that

d�1,j (x1,1, . . . , x1,d(1)) > 0.

Therefore, we have

lim
t→∞

f1(tx1,1, . . . , tx1,d(1)) ≥ lim
t→∞

C exp
(
td�1,j (x1,1, . . . , x1,d(1))

) = +∞.

Hence f1(x1,1, . . . , x1,d(1)) attains its minimum at some point of Rd(1). Taking its
exponential, we obtain y1,j ;0 ∈ R+.

Suppose that we have already found yk′,j ;0 for k′ < k. Then we put

Fk(x1,1, . . . , xk,1, . . . , xk,d(k)) =
a(k)∑
j=1

Y (k, j )

and

fk(xk,1, . . . , xk,d(k)) = Fk(x1,1;0, . . . , xk−1,d(k−1);0, xk,1, . . . , xk,d(k)),

where xk′,j ;0 = log yk′,j ;0. Again using Corollary 9.9, we find that

lim
t→∞

fk(txk,1, . . . , txk,d(k)) = +∞

for any (xk,1, . . . , xk,d(k)) �= 0. Hence fk(xk,1, . . . , xk,d(k)) attains a minimum and we
obtain yk,j ;0. Lemma 9.15 now follows by induction. �
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We next find the solution of our equation (4.11) or (4.12). We take a sufficiently large
N and put

PO
0
k,N =

a(k)∑
j=1

Y (k, j ) +
∑
k′>k

a(k′)∑
j ′=1

Y (k′, j ′)T Sk′−Sk

+
∑

�∈I, �(0)≤N

Y (�)T �(0)−Sk

+
K+1∑

k′=k+1

∑
(�,ρ)∈Ik′ ,�(0)+ρ≤N

c(�,ρ)Y (�)T �(0)+ρ−Sk .

(9.20)

We remark that (4.11) is equivalent to

∂PO
0
k,N

∂yk,j

(y1, . . . , yn) ≡ 0 mod T N−Sk k = 1, . . . , K, j = 1, . . . , a(k).

(9.21)
We also put

PO
0

k =
a(k)∑
j=1

Y (k, j ).

It satisfies

PO
0

k ≡ PO
0
k,N mod �+. (9.22)

For given positive numbers R(1), . . . , R(K), we define the discs

D
(
R(k)

) = {
(xk,1, . . . , xk,d(k))

∣∣ x2
k,1 + · · · + x2

k,d(k) ≤ R(k)
} ⊂ Rd(k)

and the polydiscs

D
(
R(·)) = K∏

k=1

D
(
R(k)

)
= {

(x1,1, . . . , xK,d(K))
∣∣ x2

k,1 + · · · + x2
k,d(k) ≤ R(k), k = 1, . . . , K

}
.

We factorize

Rn =
K∏

k=1

Rd(k).
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Then we consider the Jacobian of PO
0

k or

∇PO
0

k : Rn → Rd(k),

that is, the map

(x1,1, . . . , xK,d(K)) �→
(∂PO

0

k

∂xk,j

(x1,1, . . . , xK,d(K))
)

j=1,...,d(k)
. (9.23)

We remark that ∇PO
0

k depends only on Rd(1) × · · · × Rd(k) components.

Combining all ∇PO
0

k , k = 1, . . . , K , (9.23) induces a map

∇PO
0

: Rn → Rn

defined by

∇PO
0 = (∇PO

0

1 , . . . ,∇PO
0

K ).

Lemma 9.16 is closely related to Lemma 9.15.

LEMMA 9.16
We may choose the positive numbers R(k) for k = 1, . . . , K such that the following
hold:
(1) ∇PO

0
is nonzero on ∂

(
D(R(·))).

(2) The map ∂
(
D(R(·))) → Sn−1

x �→ ∇PO
0

‖∇PO
0‖

has degree 1.

Proof
We first prove sublemma 9.17 by an upward induction on k0.

SUBLEMMA 9.17
There exist R(k)’s for 1 ≤ k ≤ K such that, for any given 1 ≤ k0 ≤ K , we have

d(k0)∑
j=1

xk0,j

∂PO
0

k0

∂xk0,j

(x1,1, . . . , xk0,d(k0)) > 0 (9.24)
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if (xk,1, . . . , xk,d(k)) ∈ D(R(k)) for all 1 ≤ k ≤ k0 − 1 and (xk0,1, . . . , xk0,d(k0)) ∈
∂D(R(k0)).

Proof
In the case k0 = 1, the existence of R(1) satisfying (9.24) is a consequence of Corol-
lary 9.9. We assume that the sublemma is proved for 1, . . . , k0 − 1.

For each fixed x = (x1,1, . . . , xk0−1,d(k0−1)), we can find R(k0)x such that (9.24)
holds for (xk0,1, . . . , xk0,d(k0)) ∈ Rd(k0) \ D(R(k0)x/2). This is also a consequence of
Corollary 9.9.

We take the supremum of R(k0)x over the compact set x ∈ ∏k0−1
k=1 D(R(k)) and

obtain R(k0). The proof of Sublemma 9.17 is complete. �

It is easy to see that Lemma 9.16 follows from Sublemma 9.17. �

We now use our assumption that the vertices of P lie in MQ = Qn and that ρj ∈ Q.
Replacing T by T 1/C if necessary, we may assume that all the exponents of yk,j and
T appearing in (9.20) are integers. Then

PO
0
k,N = PO

0
k,N(y1,1, . . . , yK,d(K); T )

are polynomials of yk,j , y−1
k,j and T . Define the set X by the set consisting of

(y1,1, . . . , yK,d(K); q) ∈ (R+)n × R

that satisfy

∂PO
0
k,N

∂yk,j

(y1,1, . . . , yK,d(K); q) = 0, (9.25)

for k = 1, . . . , K , j = 1, . . . , d(k). Clearly, X is a real affine algebraic variety. (Note
that the equations for yi are polynomials. So we need to regard yi (not xi) as variables
to regard X as a real affine algebraic variety.)

Consider the projection

π : X → R, π(y1,1, . . . , yK,d(K); q) = q,

which is a morphism of algebraic varieties.

LEMMA 9.18
There exists a sufficiently small ε > 0 such that, if |q| < ε, then

π−1(q) ∩ {
(ex1, . . . , exn)

∣∣ (x1, . . . , xn) ∈ D(R(·))} �= ∅.
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Proof
We consider the real analytic q-family of polynomials

PO
0
k,N,q(y1,1, . . . , yK,d(K)) = PO

0
k,N(y1,1, . . . , yK,d(K); q).

Then

PO
0
k,N,0 = PO

0

k,N. (9.26)

Replacing PO
0

k,N by PO
0
k,N,q , we can repeat construction of the map

∇PO
0
N,q : Rn → Rn

for each fixed q ∈ R in the same way as we defined ∇PO
0
. Then the conclusion of

Lemma 9.16 holds for ∇PO
0
N,q if |q| is sufficiently small (this is a consequence of

Lemma 9.16 and (9.26)). Lemma 9.18 follows from elementary algebraic topology. �

Lemma 9.18 implies that we can find

y0 = (y1,1;0, . . . , yK,d(K);0) ∈ Rn
+

and a sequence

(yh, qh) = (yh
1,1;0, . . . , y

h
K,d(K);0; qh) ∈ X ⊂ Rn+1,

h = 1, 2, . . . , such that qh > 0 and limh→∞(yh, qh) = (y0, 0). Therefore, by the
curve selection lemma [Mi, Lemma 3.1] there exists a real analytic map

γ : [0, ε) → X

such that γ (0) = (y0, 0) and π(γ (t)) > 0 for t > 0. We reparameterize γ (t), so that
its q-component is ta/b, where a and b are relatively prime integers. We put T = ta/b

(i.e., t = T b/a), and we denote the yk,j -components of γ (t) by

yk,j = yk,j ;0 +
∞∑

�=1

yk,j ;�T
b�/a.

Since γ (t) ∈ X, the element (yk,j )k,j ∈ (�R
0 \�R

+)n is the required solution of (4.11).
Since PO0 contains only a finite number of summands, we can take PO0,N =

PO0. Therefore, we can find a solution of (4.12) for PO0.
The proof of Proposition 4.7 is now complete.
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10. Elimination of higher-order term in nondegenerate cases
In this section, we prove a rather technical (but useful) result, which shows that
solutions of the leading-term equation (9.19) correspond to actual critical points under
certain nondegeneracy condition. For this purpose, we slightly modify the argument
of the last part of Section 9. This result is useful to determine u ∈ Int P such that
HF ((L(u); x), (L(u); x); �0) �= 0 for some x in non-Fano cases. (In other words, we
study the image of M(Lag(X)) → Int P by the map (x, u) �→ u.) In fact, it shows
that we can use PO0 in place of PO in most practical cases. Note that we explicitly
calculate PO0, but we do not know the precise form of PO in non-Fano cases.

In order to state the result in a general form, we prepare some notation. Let
u0 ∈ Int P . (In Section 9, u0 is determined as the unique element of PK defined in
Proposition 9.1. The present situation is more general.)

We define positive real numbers S1 < S2 < · · · by{
�i(u0)

∣∣ i = 1, . . . , m} = {S1, S2, . . . , Sm′
}

(10.1)

and the sets

Ik = {
�i

∣∣ �i(u0) = Sk

}
, (10.2)

for k = 1, . . . . We renumber each of Ik so that{
�k,j

∣∣ j = 1, . . . , a(k)
} = Ik. (10.3)

Definition 10.1
Let A⊥

l be the linear subspace of NR spanned by d�k,j k ≤ l, j ≤ a(k). We define K

to be the smallest number such that A⊥
K = NR.

Our notation here is consistent with that in Section 9 in the case {u0} = PK . We define
I and Ik by (9.11) and Definition 9.10. Then Lemma 9.11 and (9.12) hold. We choose
e∗i,j ∈ Hom(MQ, Q) such that Condition 9.13 is satisfied (note that A⊥

l is defined over
Q). Then xi,j and yi,j are defined in the same way as in Section 9. We define Y (k, j )
by (9.13) and Y (�) by (9.14). Then (9.15) and Lemma 9.14 hold.

We note that Corollary 9.9 does not hold in general in the current situation. In
fact, we can write

v =
k∑

l=1

a(l)∑
j=1

cl,j d�l,j

under the assumption of Corollary 9.9, but we may not be able to ensure that cl,j ≥ 0.
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Definition 10.2
(1) We call

0 =
a(k)∑
j ′=1

∂Y (k, j ′)
∂yk,j

, k = 1, . . . , K, j = 1, . . . , d(k)

the leading-term equation at u0. We regard it as a polynomial equation for
yk,j ∈ C \ {0}, k = 1, . . . , K , j = 1, . . . , d(k).

(2) A solution y0 = (yk,j ;0)k=1,...,K, j=1,...,d(k) of leading-term equation is said to be
weakly nondegenerate if it is isolated in the set of solutions.

(3) A solution y0 = (yk,j ;0)k=1,...,K, j=1,...,d(k) of leading-term equation is said to be
strongly nondegenerate if the matrices

( a(k)∑
j ′=1

∂2Y (k, j ′)
∂yk,j1∂yk,j2

)
j1,j2=1,...,a(k)

are invertible for k = 1, . . . , K at y0.
(4) We define the multiplicity of leading-term equation in the standard way of

algebraic geometry, in the weakly nondegenerate case.

Example 10.3
In Example 9.6, the equation (9.6) is the leading-term equation.

Let PO
u0
∗ be either PO

u0
0 or PO

u0 .

THEOREM 10.4
For any strongly nondegenerate solution y0 = (yk,j ;0) of leading-term equation, there
exists a solution y = (yk,j ) ∈ (�C

0 \ �C
+)n of

∂PO
u0
∗

∂yk,j

(y) = 0 (10.4)

such that yk,j ≡ yk,j ;0 mod �C
+.

If all the vertices of P and u0 are rational, the same conclusion holds for weakly
nondegenerate y0.

We prove the following at the end of Section 13.

LEMMA 10.5
We assume that [ω] ∈ H 2(X; Q), and we choose the moment polytope P such that
its vertices are all rational. Let u0 ∈ IntP such that PO

u0
0 has weakly nondegenerate

critical point in (�0 \ �+)n. Then u0 is rational.
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The following corollary is an immediate consequence of Theorem 10.4 and
Lemma 10.5.

COROLLARY 10.6
Let (x, u) ∈ M0(Lag(X)), and let u ∈ Int P . Assume one of the following conditions:
(1) The corresponding solution of the leading-term equation is strongly nondegen-

erate.
(2) The cohomology class [ω] ∈ H 2(X; R) is rational, and the corresponding

solution of leading-term equation is weakly nondegenerate.
Then there exists x′ such that (x′, u) ∈ M(Lag(X)) and x′ ≡ x mod �C

+.

Remark 10.7
(1) Using Proposition 10.8 below, we can also apply Theorem 10.4 and Corollary

10.6 to study nondisplacement of Lagrangian fibers for the weakly nondegener-
ate case, without assuming rationality (see the last step of the proof of Theorem
1.5 given at the end of Section 13).

(2) The conclusion of Theorem 10.4 does not hold in general without weakly
nondegenerate assumption. We give an example (Example 10.17) where both
the assumption of weak nondegeneracy and the conclusion of Theorem 10.4
fail to hold.

(3) In this section, we work with �C-coefficients, while in the last section we
work with �R-coefficients. We also remark that in the last section, we did not
assume the weak nondegeneracy condition.

(4) If we define the multiplicity of the element of M0(Lag(X)) as the dimension
of the Jacobian ring Jac(PO0; x, u0) in Definition 7.9 (namely, as the Milnor
number), then the sum of the multiplicities of the solutions of (10.4) converging
to y0 as T → 0 is equal to the multiplicity of y0.

(5) In the strongly nondegenerate case, the solution of (10.4) with the given leading
term is unique.

PROPOSITION 10.8
Let (X, ω) be a compact toric manifold with moment polytope P , and let u0 ∈ Int P .
Then there exist (X, ωh) with moment polytope P h and uh

0 ∈ Int P h such that
(1) limh→∞ ωh = ω, limh→∞ uh

0 = u0;
(2) the vertices of P h and uh

0 are rational;
(3) the leading-term equation at uh

0 is the same as the leading-term equation at u0.

We prove Proposition 10.8 at the end of Section 13.
We first derive Theorem 1.14 and Lemma 8.3 from Theorem 10.4 before proving

Theorem 10.4.
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Proof of Theorem 1.14
We start with CP 2 and blow up a T 2-fixed point to obtain CP 2#(−CP 2). We take a
Kähler form so that the volume of the exceptional CP 1 is 2πε1, which is small. We
next blow up again at one of the fixed points so that the volume of the exceptional
CP 1 is 2πε2 and is small compared with ε1. We continue k times to obtain X(k),
whose Kähler structure depends on ε1, . . . , εk . Note that X(k) is non-Fano for k > 3.

Let P (k) be the moment polytope of X(k), and let PO0,k be the leading-order
potential function of X(k). We remark that P (k) is obtained by cutting out a vertex of
P (k − 1) (see [Fu]).

LEMMA 10.9
We may choose εi (i = 1, . . . , k) so that for l ≤ k,
(1) the number of balanced fibers of P (l) is l + 1, and we write them as L(u(l,i))

i = 0, . . . , l;
(2) u(l−1,i) = u(l,i) for i ≤ l − 1, u(l,0) = (1/3, 1/3);
(3) u(l,l) is in an o(εl)-neighborhood of the vertices corresponding to the point we

blow up;
(4) the leading-term equation of PO0,l−1 at u(l−1,i) is the same as the leading-

term equation of PO0,l at u(l,i) for i ≤ l − 1;
(5) the leading-term equations are all strongly nondegenerate.

Proof
The proof is by induction on k. There is nothing to show for k = 0. Suppose that we
have proved Lemma 10.9 up to k − 1. Let w be the vertex of the polytope we cut
out which corresponds to the blow-up of X(k − 1). Let �i , �i ′ be the affine functions
associated to the two edges containing w. It is easy to see that

P (k) = {
u ∈ P (k − 1)

∣∣ �i(u) + �i ′(u) ≥ εk

}
.

We also have

PO0,k = PO0,k−1 + T �i (u)+�i′ (u)−εk y
vi,1+vi′ ,1
1 y

vi,2+vi′ ,2
2 .

Therefore, if we choose εk sufficiently small, the leading-term equation at u(k−1,i) does
not change.

We take u(k,k) such that

�i(u
(k,k)) = �i ′(u

(k,k)) = εk.

It is easy to see that there exists such u(k,k) uniquely if εk is sufficiently small. We put

y ′
1 = y

vi,1

1 y
vi,2

2 , y ′
2 = y

vi′ ,1
1 y

vi′ ,2
2 .
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(We observe that vi and vi ′ are Z basis of Z2, since X(k − 1) is smooth toric.) Then
we have

PO
u(k,k)

0,k ≡ (y ′
1 + y ′

2 + y ′
1y

′
2)T εk mod T εk�+.

Therefore, the leading-term equation is

1 + y ′
1 = 1 + y ′

2 = 0,

and hence it has a unique solution (−1,−1). In particular, it is strongly nondegenerate.
We can also easily check that there is no other solution of the leading-term equation.
The proof of Lemma 10.9 now follows by Theorem 10.4. �

Theorem 1.14 immediately follows from Lemma 10.9. �

Note that Theorem 1.14 can be generalized to CP n by the same proof.

Proof of Lemma 8.3
Let u0 = (n(α + 1)/4, (1 − α)/2). We calculate

PO
u0
0 = (y2 + y−1

2 )T (1−α)/2 + (y1 + y−1
1 y−1

2 )T n(α+1)/4.

The leading-term equation is

1 − y−2
2 = 0, 1 − y−2

1 y−1
2 = 0.

Its solutions are (1, 1), (−1, 1), (
√−1,−1), (−√−1,−1), all of which are strongly

nondegenerate. The lemma then follows from Corollary 10.6. �

We give another example demonstrating the way one can use the leading-term equation
and Theorem 10.4 to locate balanced fibers.

Example 10.10
Let us consider CP n with moment polytope P = {(u1, . . . , un) | ui ≥ 0,

∑
ui ≤ 1}.

We take CP n−� ⊂ CP n corresponding to u1 = · · · = u� = 0 (� ≥ 2). We blow up
CP n along the center CP n−� and denote the blow-up by X. (The case � = n = 2 is
Example 8.1.) We take α ∈ (0, 1) so that the moment polytope of X is

Pα =
{

(u1, . . . , un) ∈ P

∣∣∣ �∑
i=1

ui ≥ α
}
.

Below we use PO0 in place of the potential function PO. Since all the critical points
of PO0 are weakly nondegenerate, they correspond to the critical points of PO. (We



LAGRANGIAN FLOER THEORY ON COMPACT TORIC MANIFOLDS, I 113

thank D. McDuff for pointing out that this example is not Fano.) The function PO0

is given by

PO0 =
n∑

i=1

T ui yi + T 1−∑n
i=1 ui (y1 · · · yn)−1 + T

∑�
i=1 ui−αy1 · · · y�.

We denote

zi = T ui yi, z0 = T 1−∑n
i=1 ui (y1 · · · yn)−1, z = T

∑�
i=1 ui−αy1 · · · y�.

Then the quantum Stanley-Reisner relations are

z1 · · · znz0 = T , z1 · · · z� = zT α.

By computing the derivatives yi
∂PO0

∂yi
, we obtain the linear relations, which can be

written as

zi − z0 + z = 0 for i ≤ �,

zi − z0 = 0 for i > �.

Putting X = z0 − z, Y = z, we obtain

zi =
{

X for 1 ≤ i ≤ �,

X + Y for i > � or i = 0.

We also have X� = YT α and

Xn+1(X�−1T −α + 1)n−�+1 = T . (10.5)

Case 1: (� − 1)vT (X) < α. In this case, we obtain

vT (X) = 1 + α(n − � + 1)

n + 1 + (n − � + 1)(� − 1)
.

The condition (� − 1)vT (X) < α then is equivalent to

α >
� − 1

n + 1
.

We have

vT (X + Y ) = vT (Y ) = �vT (X) − α < vT (X)
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for i > �. At the point u = (u1, . . . , un) with ui = vT (X) for 1 ≤ i ≤ � and
ui = vT (X + Y ) for i ≥ �, we have

PO
u
0 = T vT (Y )(y�+1 + · · · + yn + (y1 · · · yn)−1 + y1 · · · y�) + T vT (X)(y1 + · · · + y�).

To obtain the leading-term equation, it is useful to make a change of variables from
y1, . . . , yn to y2, . . . , yn, y with y = y1 · · · y�.

In fact, using the notation which we introduced at the beginning of this section,
we have

S1 = vT (Y ), S2 = vT (X),

and A⊥
1 is the vector space generated by ∂/∂ui , (i = �+1, . . . , n) and ∂/∂u1 +· · ·+

∂/∂u�. We also have A⊥
2 = Rn. Therefore, a basis satisfying Condition 9.13 is

∂

∂u2
, . . . ,

∂

∂un

,
∂

∂u1
+ · · · + ∂

∂u�

.

The variables corresponding to this basis is y2, . . . , yn, y. In these variables, PO
u
0

has the form

PO
u
0 = T vT (Y )(y�+1 + · · · + yn + (yy�+1 · · · yn)−1 + y),

+ T vT (X)(y(y2 · · · y�)
−1 + y2 + · · · + y�).

Then the leading-term equation becomes⎧⎪⎨⎪⎩
0 = 1 − y−1(yy�+1 · · · yn)−1,

0 = 1 − y−1
i (yy�+1 · · · yn)−1 for i > �,

0 = 1 − y−1
i y(y2 · · · y�)−1 for 2 ≤ i ≤ �.

Its solutions are

y�+1 = · · · = yn = y = θ, θn−�+2 = 1

y2 = · · · = y� = ρ, ρ� = θ.

It follows that this leading-term equation has �(n − � + 2) solutions, all of which are
strongly nondegenerate.

Case 2: (� − 1)vT (X) > α. We have

vT (X) = 1

n + 1
.
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We also have vT (Y ) = �vT (X) − α > vT (X) and hence

vT (X + Y ) = vT (X) = 1

n + 1
.

The condition (� − 1)vT (X) > α becomes α < (� − 1)/(n + 1). If we consider the
point u = (u1, . . . , un) with ui = vT (X) = 1/(n + 1) for i = 1, . . . , n, PO

u
0 has

the form

PO
u
0 = T 1/n+1(y1 + · · · + yn + (y1 · · · yn)−1) + T �/(n+1)−αy1 · · · y�,

and so the leading-term equation is obtained by differentiating

y1 + · · · + yn + (y1 · · · yn)−1.

Its solutions are

y1 = · · · = yn = θ, θn+1 = 1.

There are n + 1 solutions, all of which are strongly nondegenerate.

Case 3: (� − 1)vT (X) = α.

Case 3(1): −X�−1 �≡ T α mod T α�+. We have ui = vT (X) = vT (Y ) = 1/(n + 1)
(i = 1, . . . , n), α = (� − 1)/(n + 1). In this case,

PO
u
0 = T 1/(n+1)(y1 + · · · + yn + (y1 · · · yn)−1 + y1 · · · y�).

This formula implies that the symplectic area of all discs with Maslov index 2 are
2π/(n + 1).

The leading-term equation is{
1 − 1

yi

(
(y1 · · · yn)−1 − y1 · · · y�

) = 0, i = 1, . . . , �,

1 − 1
yi

(
(y1 · · · yn)−1

) = 0, i = � + 1, . . . , n.

Its solutions are y1 = · · · = y� = ρ, y�+1 = · · · = yn = θ with

ρ�(ρ + ρ�)n−�+1 = 1, (10.6)

and θ = ρ + ρ�. It looks rather cumbersome to check whether (10.6) has multiple
root. Certainly, all the solutions are weakly nondegenerate. The number of solutions
counted with multiplicity is �(n − � + 2).
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Case 3(2): −X�−1 ≡ T α mod T α�+. We have

z0 = X + Y = T −αX(T α + X�−1).

We put

vT (z0) = λ > vT (X) = α

� − 1
.

Using (10.5), we obtain

λ = � − 1 − �α

(� − 1)(n − � + 1)
.

The condition λ > α/(� − 1) becomes α < (� − 1)/(n + 1). We have ui = vT (X) =
α/(� − 1), i ≤ � and ui = vT (Y ) = λ, i > �. We have

PO
u
0 = T vT (X)(y1 + · · · + y� + y1 · · · y�) + T vT (Y )(y�+1 + · · · + yn + (y1 · · · yn)−1).

The first term gives the leading-term equation

1 + y1 · · · ŷi · · · y� = 0, i = 1, . . . , �.

Its solution is y1 = · · · = y� = ρ and ρ�−1 = −1. The second term of PO
u
0 gives

the leading-term equation

1 − y−1
i ρ−�(y�+1 · · · yn)−1 = 0, i = � + 1, . . . , n.

Its solutions are y�+1 = · · · = yn = θ, with

ρ�θn−�+1 = 1.

Thus the leading-term equation has (� − 1)(n + 1 − �) solutions, all of which are
strongly nondegenerate.

We note that (� − 1)(n + 1 − �) + (n + 1) = �(n − � + 2). Hence the number
of solutions is always �(n − � + 2), which coincides with the Betti number of X.
There are two balanced fibers for α < (� − 1)/(n + 1) and one balanced fiber for
α ≥ (� − 1)/(n + 1).

By the above discussion and Theorem 6.1 (see also Remark 6.14), we can calculate
QH (X; �Q) as

QH (X; �Q) =

⎧⎪⎨⎪⎩
�R1 α > (� − 1)/(n + 1),

�R2 α = (� − 1)/(n + 1),

�R3 × �R4 α < (� − 1)/(n + 1),

(10.7)
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where

R1 = Q[Z]/(Z�(n−�+2) − 1),

R2 = Q[Z]/(Z�(Z + Z�)n−�+1 − 1),

R3 = Q[Z]/(Zn+1 − 1),

R4 = Q[Z1, Z2]/(Z�−1
1 + 1, Z�

1Z
n−�+1
2 − 1).

Here we assume that (10.6) has only a simple root in case α = (� − 1)/(n + 1). We
use Lemma 10.11 to show (10.7).

LEMMA 10.11
Let x = ∑

xiei be a critical point of PO
u
∗. We assume that yi;0 = exi;0 (where xi = xi;0

mod �+) is a strongly nondegenerate solution of the leading-term equation. We also
assume that yi;0 ∈ F , where F ⊂ C is a field.

Then yi = exi is an element of �F
0 .

We prove Lemma 10.11 later in this section.

We are now ready to give the proof of Theorem 10.4.

Proof of Theorem 10.4
We first consider the weakly nondegenerate case. Let m be the multiplicity of y0. We
choose δ such that the ball Bδ(y0) centered at y0 and of radius δ does not contain a
solution of the leading-term equation other than y0. For y ∈ ∂Bδ(y0), we define

∇PO(y) =
( a(k)∑

j ′=1

∂Y (k, j ′)
∂yk,j

(y)
)

k=1,...,K, j=1,...,d(k)
∈ Cn.

The map

y �→ ∇PO(y)

‖∇PO(y)‖ ∈ S2n−1

is well defined and of degree m �= 0 by the definition of multiplicity.
We define PO

u0
∗,k,N in the same way as (9.20). For q ∈ C, we define

PO
u0
∗,k,N(· · · ; q) by substituting q to T . Then, in the same way as the proof of

Lemma 9.18, we can prove the following.
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LEMMA 10.12
There exists ε > 0 such that if |q| < ε, the equation

0 = ∂

∂yk,j

PO
u0
∗,k,N(· · · ; q) (10.8)

has a solution in Bδ(y0). The sum of multiplicities of the solutions of (10.8) converging
to yk,j ;0 is m.

Equation (10.8) is a polynomial equation. Hence multiplicity of its solution is well
defined in the standard sense of algebraic geometry.

Now we assume that all the vertices of P and u0 are contained in Qn. Equation
(10.8) also depends polynomially on q ′ = T ′, where T ′ = T 1/C! for a sufficiently large
integer C. (We observe that C is determined by the denominators of the coordinates
of the vertices of P and of u0. In particular, it can be taken to be independent of N.)

We denote y = (y1, . . . , yn) and put

X = {
(y, q ′)

∣∣ y ∈ Bδ(y
0), q ′ with |q ′| < ε and q = (q ′)C! satisfying (10.8)

}
.

We consider the projection

πq ′ : X → {q ′ ∈ C | |q ′| < ε}. (10.9)

By choosing a sufficiently small ε > 0, we may assume that (10.9) is a local isomor-
phism on the punctured disc {q ′ | 0 < |q ′| < ε}; namely, πq ′ is an étale covering over
the punctured disc.

We note that for each q ′, the fiber consists of at mostm points, since the multiplicity
of the leading-term equation is m. We put q ′′ = (q ′)1/m!. Then the pullback

πq ′′ : X′ → {q ′′ ∈ C | 0 < |q ′′| < ε} (10.10)

of (10.9) becomes a trivial covering space; specifically, there exists a single valued
section of πq ′′ on {q ′′ | 0 < |q ′′| < ε}. It extends to a holomorphic section of
{q ′′ | |q ′′| < ε}.

In other words, there exists a holomorphic family of solutions of (10.8) which
is parameterized by q ′′ ∈ {q ′′ | |q ′′| < ε}. We put T ′′ = (T ′)1/m!. Then by taking
the Taylor series of the q ′′-parameterized family of solutions at zero, we obtain the
following.
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LEMMA 10.13
If all the vertices of P and u0 are rational, then for each N there exists y(N) = (y(N)

k,j )

y
(N)
k,j =

N∑
l=0

y
(N)
k,j ;l(T

′′)l

(y(N)
k,j ;l ∈ C) such that

∂PO
u0
∗

∂yk,j

(y(N)
k,j ) ≡ 0 mod (T ′′)N+1 (10.11)

and such that y
(N)
k,j ;0 ≡ yk,j ;0.

We note that Lemma 10.13 is sufficient for most of the applications. In fact, it implies
that L(u0) is balanced if there exists a weakly nondegenerate solution of leading-term
equation at u0. Hence we can apply Lemma 4.12.

For completeness, we prove the slightly stronger statement made for the weakly
nondegenerate case in Theorem 10.4. The argument is similar to one in [FOOO3,
Section 7.2.11] (equivalent to [FOOO2, Section 30.11]).

For each N, we denote by M̃((yk,j ;0); N) the set of all (y(N)
k,j ;l)k,j ;l ∈ CnN, where

k = 1, . . . , K , j = 1, . . . , a(k), l = 1, . . . , N such that

y
(N)
k,j = yk,j ;0 +

N∑
l=1

y
(N)
k,j ;l(T

′′)l

satisfies (10.11).
By definition, M̃((yk,j ;0); N) is the set of C-valued points of certain com-

plex affine algebraic variety (of finite dimension). Lemma 10.13 implies that
M̃((yk,j ;0); N) is nonempty. For N1 > N2 there exists an obvious morphism

IN1,N2 : M̃
(
(yk,j ;0); N1

) → M̃
(
(yk,j ;0); N2

)
of complex algebraic variety.

To complete the proof of Theorem 10.4 in the weakly nondegenerate case, it
suffices to show that the projective limit

lim
←−

(
M̃(yk,j ;0; N)

)
(10.12)

is nonempty.
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LEMMA 10.14
We have ⋂

N>1

ImIN,1 �= ∅.

Proof
By a theorem of Chevalley (see [Mt, Chapter 6]), each ImIN,1 is a constructible set. It
is nonempty and its dimension dim ImIN,1 is nonincreasing as N → ∞. Therefore,
we may assume that dim ImIN,1 = d for N ≥ N1.

We consider the number of d-dimensional irreducible components of ImIN,1.
This number is nonincreasing for N ≥ N1. Therefore, there exists N2 such that,
for N ≥ N2, the number of d-dimensional irreducible components of ImIN,1

is independent of N. It follows that there exists XN a sequence of d-dimensional
irreducible components of ImIN,1 such that XN+1 ⊂ XN. Since dim(XN \XN+1) <

d , it follows from Baire’s category theorem that
⋂

N XN �= ∅. Hence the lemma. �

LEMMA 10.15
There exists a sequence (y(n)

k,j ; l)k,j ; l n = 1, 2, 3, . . . , m such that

In,n−1

(
(y(n)

k,j ; l)k,j ; l

) = (y(n−1)
k,j ; l )k,j ; l

for n = 2, . . . , m and that

(y(m)
k,j ; l)k,j ; l ∈

⋂
N>m

ImIN,m.

Proof
The proof is by induction on m. The case m = 1 is Lemma 10.14. The inductive steps
are similar to the proof of Lemma 10.14 and so are omitted. �

Lemma 10.15 implies that the projective limit (10.12) is nonempty. The proof of the
weakly nondegenerate case of Theorem 10.4 is complete.

We next consider the strongly nondegenerate case. We prove Lemma 10.16 by
induction on N. Let G be a submonoid of (R≥0,+) generated by the numbers
appearing in the exponent of (9.18). In other words, it is generated by

Sk′ − Sk (k′ > k), �(u0) + ρ − Sk ((�, ρ) ∈ Ik′, k′ ≥ k),

�(u0) − Sk (� ∈ I).
(10.13)
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We define 0 < λ1 < λ2 < · · · by

{λi | i = 1, 2, . . .} = G.

LEMMA 10.16
We assume that y0 = (yk,j ;0)k=1,...,K, j=1,...,d(k) is a strongly nondegenerate solution of
the leading-term equation. Then there exists

y
(N)
k,j = yk,j ;0 +

N∑
l=1

yk,j ; lT
λl

such that

a(k)∑
j ′=1

∂Y (k, j ′)
∂yk,j

(y(N)
k,1 , . . . , y

(N)
K,d(K)) ≡ 0 mod T λN+1 . (10.14)

Moreover, we may choose y
(N)
k,j so that

y
(N)
k,j ≡ y

(N+1)
k,j mod T λN+1 .

Proof
The proof is by induction on N. There is nothing to show in the case N = 0. Assume
that we have proved the lemma up to N − 1. Then we have

a(k)∑
j ′=1

∂Y (k, j ′)
∂yk,j

(y(N−1)
k,1 , . . . , y

(N−1)
K,d(K)) ≡ ck,j,MT λN mod T λN+1 .

Consider y
(N)
k,j of the form

y
(N)
k,j = y

(N−1)
k,j + �k,j,NT λN

for some �k,j,N. Then we can write

a(k)∑
j ′=1

∂Y (k, j ′)
∂yk,j

(y(M−1)
k,1 + �k,1,NT λN, . . . , y

(N−1)
K,d(K) + �K,d(K),NT λN )

≡
(
ck,j,N +

a(k)∑
j ′,j ′′=1

∂2Y (k, j ′)
∂yk,j ∂yk,j ′′

�k,j ′′,N

)
T λN mod T λN+1 .

(10.15)



122 FUKAYA, OH, OHTA, and ONO

Since y0 = (yk,j ;0)k=1,...,K, j=1,...,d(k) is strongly nondegenerate, we can find �k,j ′′,N ∈
C so that the right-hand side becomes zero module T λN+1 . The proof of Lemma 10.16
is complete. �

By Lemma 10.16, the limit limN→∞ y
(N)
k,j exists. We set

yk,j := lim
N→∞

y
(N)
k,j .

This is the required solution of (10.4). The proof of Theorem 10.4 is complete. �

Proof of Lemma 10.11
We put

yk,j = yk,j ;0 +
∞∑
l=1

yk,j ; lT
λl .

By assumption yk,j ;0 ∈ F . We note that (10.15) gives a linear equation which deter-
mines yk,j ; l inductively on l. We use it to show yk,j ; l ∈ F inductively on l. �

We next give an example where weak nondegeneracy condition is not satisfied.

Example 10.17
Consider the 2-point blow-up X(α, β) of CP 2 with its moment polytope given by

P = {
(u1, u2)

∣∣ 0 ≤ u1 ≤ 1, 0 ≤ u2 ≤ 1 − α, β ≤ u1 + u2 ≤ 1
}
.

We consider the case when 1 − α is sufficiently small. The potential function is

PO = T u1y1 + T u2y2 + T 1−α−u2y−1
2 + T 1−u1−u2y−1

1 y−1
2 + T u1+u2−βy1y2.

(We remark that X is Fano.) We fix α and move β starting from zero. When β is small
compared to 1 − α, there are two balanced fibers.

One is located at ((1 + α)/4, (1 − α)/2). This corresponds to the location of the
balanced fiber of the 1-point blow-up, which is nothing but the case β = 0. The other
appears near the origin and is (β, β). The leading-term equation at the first point is

1 − y−2
2 = 0, 1 − y−2

1 y−1
2 = 0.

The solutions are (y1, y2) = (±1, 1), (±√−1,−1), all of which are strongly nonde-
generate. The leading-term equation at the second point is

1 + y1 = 1 + y2 = 0

((−1,−1) is the nondegenerate solution). Thus we have five solutions.
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The situation jumps when β = (1 − α)/2. Denote β0 = (1 − α)/2 for the
simplicity of notation. In that case, the potential function at (β0, β0) becomes

T β0 (y1 + y2 + y1y2 + y−1
2 ) + T 1−2β0y−1

1 y−1
2 .

The leading-term equation is

1 + y2 = 0, 1 + y1 − y−2
2 = 0.

Its solution is (0,−1). Since y1 = 0, it follows that there is no solution in (�0 \
�+)2. Hence there is no weak bounding cochain x for which the Floer cohomology
HF

(
(L(β0, β0), x), (L(β0, β0), x); �

)
is nontrivial. In other words, the fiber L(β0, β0)

in X(α, β0) is not strongly balanced.
On the other hand, this fiber L(β0, β0) in X(α, β0) is balanced because by choosing

β arbitrarily close to β0 and β < β0 we can approximate it by the fibers

L(β, β) ⊂ X(α, β)

for which the Floer cohomology HF
(
(L(β, β), x), (L(β, β), x)

)
is nontrivial. In par-

ticular, L(β0, β0) in X(α, β0) is not displaceable.
We can also verify that

E(β0, β0) = ∞ in X(α, β0), (10.16)

while E(β0, β0) = β0 in X(α0, β0).
Now we examine where the missing solutions at β = β0 have gone. We consider

(u1, (1 − α)/2) where β0 = (1 − α)/2 < u1 < (1 + α)/4. The potential function is

T β0 (y2 + y−1
2 ) + T β0+λ1 (y1 + y1y2) + T β0+λ2y−1

1 y−1
2 . (10.17)

Here

λ1 = u1 − β0 < λ2 = (1 + α)/2 − u1 − β0.

The leading-term equation is

1 − y−2
2 = 0, 1 + y2 = 0. (10.18)

The solution is y2 = −1, and y1 is arbitrary. Thus there are infinitely many solutions
of the leading-term equation. Therefore, these solutions of (10.18) are not weakly
nondegenerate.
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So we need to study the critical point of (10.17) more carefully. The condition
that (y1, y2) is a critical point of (10.17) is written as{

1 − y−2
2 + T λ1y1 − T λ2y−1

1 y−2
2 = 0,

1 + y2 − T λ2−λ1y−2
1 y−1

2 = 0.
(10.19)

The leading-order term of y2 should be −1. We need to study also the second-order
term. We can write

y2 = −1 + cT μ, y1 = d,

where c, d ∈ �0 \ �+. Then we have

−2cT μ + dT λ1 ≡ 0 mod T min{μ,λ1}�+, (10.20)

cT μ + d−2T λ2−λ1 ≡ 0 mod T min{μ,λ2−λ1}�+. (10.21)

Here (10.20) implies that μ = λ1; (10.21) then implies that λ2 − λ1 = λ1. It implies
that u1 = 1/3. Furthermore,

c3 ≡ −1/4 mod �+, d ≡ 2c mod �+. (10.22)

Since the three solutions of the C-reduction of (10.22) are all simple, we can show,
by the same way as that of the proof of Theorem 10.4, that all solutions correspond to
solutions of the equation (10.19). Therefore, L(1/3, β0) is a strongly balanced fiber.

We observe that solutions of the leading-term equation (10.18) do not lift to
solutions of (10.19) unless u1 = 1/3 and y1 = −1. This shows that the weakly
nondegeneracy assumption in Theorem 10.4 is essential.

We note that at ((1 + α)/4, (1 − α)/2) the leading-term equation becomes

1 − y−2
2 = 0, 1 + y2 − y−2

1 y−1
2 = 0.

Its solutions in (C \ {0})2 are (±1/
√

2, 1). The number of solutions jumps from four
to two here (2 + 3 = 5). So this is consistent with Theorem 1.3.

In summary, for the case of (α, β0) with β0 = (1−α)/2, there are three balanced
fibers (1/3, β0), ((1 + α)/4, β0), and (β0, β0). The first two of them are strongly
balanced, and the last is not strongly balanced.

The balanced fiber L(1/3, β0) ⊂ X(α, β0) disappears as we deform X(α, β0) to
X(α, β) as β0 moves to nearby β. To see this, let us take β that is slightly bigger than
β0 = (1 − α)/2. Then ((α + β)/2, (1 − α)/2), and (1 − α − β, β) are the balanced
fibers. The leading-term equation at the first point is

1 − y−2
2 = 0, y2 − y−2

1 y−1
2 = 0.
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Hence there are four solutions (±1,±1). The leading-term equation at the second
point is

1 + y2 = 0, y1 − y−2
2 = 0.

Hence the solution is (1,−1), and the total number is again five.
We remark that the Q-structure of quantum cohomology also jumps at β =

(1 − α)/2. In particular,

QH
(
X(α, β); �Q

) =
⎧⎪⎨⎪⎩

�Q(
√−1) × (�Q)3 β is slightly smaller than (1 − α)/2,

�Q(
√

2) × �Q((−2)1/3) β = (1 − α)/2,

(�Q)5 β is slightly larger than (1 − α)/2.

Remark 10.18
In [FOOO5], we prove that L(u1, (1 − α)/2) is not displaceable for any u1 ∈ ((1 −
α)/2, 1/3) ∪ (1/3, (1 + α)/4) in the case β = β0. We use the bulk deformation
introduced by [FOOO3, Section 3.8] (equivalent to [FOOO2, Section 13]) to prove it.

The next example shows that Theorems 1.3, 1.4, and 10.4 cannot be generalized to
the case of a positive characteristic.

Example 10.19
Consider the 2-point blow-up X of CP 2 with moment polytope

P = {
(u1, u2)

∣∣ 0 ≤ ui ≤ 1 − ε,
∑

ui ≤ 1
}
.

Since X is monotone for ε = 1/3, it follows that X is Fano. We assume that ε > 0 is
sufficiently small. Then the fiber at u0 = (1/3, 1/3) is balanced.

Now we consider the Novikov ring �F with F = F3 a field of charac-
teristic 3. We prove that there exists no element x ∈ H (L(u); �F

0 ) such that
HF

(
(L(u0), x), (L(u0), x); �F

) �= 0.
The potential function at u0 is

PO
u0 = T 1/3

(
y1 + y2 + 1/(y1y2)

)+ T 2/3−ε(y−1
1 + y−1

2 ).

Therefore, the critical-point equation is given by

1 − 1/(yiy1y2) − ty−2
i = 0 i = 1, 2, (10.23)
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where t = T 1/3−ε . From this it follows that yi ≡ 1 mod �+. In fact, the leading-term
equation is aia1a2 = 1 for i = 1, 2, which is reduced to

a1 = a2 = a, a3 = 1.

Obviously, this equation has the unique solution a1 = a2 = 1 in F3.
Going back to the study of solutions of the critical-point equation (10.23), we

first prove that y1 = y2. We put zi = y−1
i . We assume that zi − zj �= 0, and we put

zi − zj ≡ tλc mod tλ�+ with c ∈ F3 \ {0}. Then by (10.23), we have

(zi − zj )z1z2 + t(zi − zj )(zi + zj ) = 0.

This is a contradiction since the left-hand side is congruent to ctλ modulo tλ�
F3+ .

We now put x = yi and obtain

x3 − tx − 1 = 0. (10.24)

We prove the following.

LEMMA 10.20
Equation (10.24) has no solution in �

F3
0 .

Proof
We put x = 1 + t1/3x ′ and obtain

(x ′)3 − t1/3x ′ − 1 = 0.

This equation resembles (10.24) except that t is replaced by t1/3. We now put

xN ≡ 1 +
N∑

k=1

t
∑k

i=1 3−i

.

Then x3
N = 1 + txN−1. Therefore,

(xN )3 − txN − 1 = −t1+∑N
i=1 3−i

.

Therefore, xN is a solution of (10.24) modulo t1+∑N
i=1 3−i

. It is easy to see that there
are no other solutions of (10.24) modulo t1+∑N

i=1 3−i

.
However, since

1 +
∞∑
i=1

3−i = 3

2
< ∞,
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it follows that

lim
N→∞

xN

does not converge in �
F3
0 . Thus there is no solution of (10.24) over a field of charac-

teristic 3. �

Lemma 10.20 implies that the field of fraction of the Puiseux series ring with
coefficients in an algebraically closed field of positive characteristic is not alge-
braically closed. It is well known that this phenomenon does not occur in the case of
characteristic zero (see, e.g., [Ei, Corollary 13.15]). Since we could not find a proof of
a similar result for universal Novikov ring in the literature, we provide its proof
in the appendix for completeness (we used it in the proof of Theorem 1.12 in
Section 7).

11. Calculation of potential function
In this section, we prove Theorems 4.5 and 4.6. We begin with a review of [CO]. Let
π : X → P be the moment map, and let ∂P = ⋃m

i=1 ∂iP be the decomposition of the
boundary of P into (n − 1)-dimensional faces. Let βi ∈ H2(X, L(u); Z) be elements
such that

βi ∩ [π−1(∂Pj )] =
{

1 if i = j ,

0 if i �= j .

The Maslov index μ(βi) is 2 (see [CO, Theorem 5.1]).
Let β ∈ π2(X, L(u)), and let Mmain

k+1 (L(u), β) be the moduli space of stable
maps from bordered Riemann surfaces of genus zero with k + 1 boundary marked
points in homology class β (see [FOOO1, Section 3], which is equivalent to [FOOO3,
Section 2.1.2]). We require the boundary marked points to respect the cyclic order of
S1 = ∂D2. (In other words, we consider the main component in the sense of [FOOO1,
Section 3].) Let Mmain,reg

k+1 (L(u), β) be its subset consisting of all maps from a disc
(namely, the stable map without disc or sphere bubble). Theorem 11.1 easily follows
from the results of [CO]. In Theorem 11.1(3), we use the spin structure of L(u) which
is induced by the diffeomorphism of L(u) ∼= T n by the T n-action and the standard
trivialization of the tangent bundle of T n.

THEOREM 11.1
(1) If μ(β) < 0, or μ(β) = 0, β �= 0, then Mmain,reg

k+1 (L(u), β) is empty.
(2) If μ(β) = 2, β �= β1, . . . , βm, then Mmain,reg

k+1 (L(u), β) is empty.
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(3) For i = 1, . . . , m, we have

Mmain,reg
1

(
L(u), βi

) = Mmain
1

(
L(u), βi

)
. (11.1)

Moreover, Mmain
1 (L(u), βi) is Fredholm regular. Furthermore, the evaluation

map

ev : Mmain
1

(
L(u), βi

) → L(u)

is an orientation-preserving diffeomorphism.
(4) For any β, the moduli space Mmain,reg

1

(
L(u), β

)
is Fredholm regular. Moreover,

ev : Mmain,reg
1

(
L(u), β

) → L(u)

is a submersion.
(5) If Mmain

1 (L(u), β) is not empty, then there exists ki ∈ Z≥0 and αj ∈ H2(X; Z)
such that

β =
∑

i

kiβi +
∑

j

αj

and αj is realized by holomorphic sphere. There is at least one nonzero ki .

Proof
For the reader’s convenience and for completeness, we explain how to deduce Theorem
11.1 from the results in [CO].

By [CO, Theorems 5.5, 6.1], Mmain,reg
k+1 (L(u), β) is Fredholm regular for any β.

Since the complex structure is invariant under the T n-action and since L(u) is T n-
invariant, it follows that T n acts on Mmain,reg

k+1 (L(u), β) and

ev : Mmain,reg
k+1

(
L(u), β

) → L(u)

is T n-equivariant. Since the T n-action on L(u) is free and transitive, it follows that ev
is a submersion if Mmain,reg

k+1 (L(u), β) is nonempty. Item (4) follows.
We assume that Mmain,reg

k+1 (L(u), β) is nonempty. Since ev is a submersion, it
follows that

n = dim L(u) ≤ dim Mmain,reg
k+1

(
L(u), β

) = n + μ(β) − 2

if β �= 0. Therefore, μ(β) ≥ 2, and (1) follows.
We next assume that μ(β) = 2 and that Mmain,reg

k+1 (L(u), β) is nonempty. Then by
[CO, Theorem 5.3], we find that β = βi for some i, and (2) follows.
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We next prove (5). It suffices to consider a map f such that

[f ] ∈ Mmain
1

(
L(u), β

) \ Mmain,reg
1

(
L(u), β

)
.

We decompose the domain of f into irreducible components and restrict f there. Let
fj : D2 → M and gk : S2 → M be the restriction of f to disc or sphere components,
respectively. We have

β =
∑

[fj ] +
∑

[gk].

Theorem 5.3 in [CO] implies that each of fj is homologous to the sum of the elements
of βi . It implies (5).

We finally prove (3). The fact that ev is a diffeomorphism for β = βi follows
directly from [CO, Theorem 5.3]. We next prove that ev is orientation-preserving. Since
L(u), u ∈ Int P, is a principal homogeneous space of T n, the tangent bundle T L(u) is
trivialized once we fix an isomorphism, T n ≡ S1 ×· · ·×S1. Using the orientation and
the spin structure on L(u) induced by such a trivialization, we orient the moduli space
M1(β) of holomorphic discs. If we change the identification T n ≡ S1 × · · · × S1

by an orientation-preserving (resp., reversing) isomorphism, then the corresponding
orientations on L(u) and M1(β) are preserved (resp., reversed). Therefore, whether
ev : M(βi) → L(u) is orientation-preserving or not does not depend on the choice of
the identification T n and S1 × · · · × S1.

For each i = 1, . . . , m, we can find an automorphism φ of (C∗)n and a biholo-
morphic map f : X \ ∪j �=iπ

−1(∂jP ) → C × (C∗)n−1 such that
(1) f is φ-equivariant;
(2) f (L(u)) = Lstd, where Lstd = {(w1, . . . , wn) ∈ (C)n||w1| = · · · = |wn| =

1}.
Under this identification, M1(βi) is identified with the space of holomorphic discs

z ∈ D2 �→ (ζ · z, w2, . . . , wn) ∈ C × (C∗)n−1, ζ ∈ S1 ⊂ C∗,

where wk ∈ C, k = 2, . . . , n with |wk| = 1. Therefore, it is enough to check the
statement that ev is orientation-preserving in a single example. Cho [Cho] proved it
in the case of the Clifford torus in CP n, and hence the proof.

To prove (11.1) and complete the proof of Theorem 11.1, it remains to prove
Mmain,reg

1 (L(u), βi0 ) = Mmain
1 (L(u), βi0 ). (Here i0 ∈ {1, . . . , m}.) Let [f ] ∈

Mmain
1 (L(u), βi0 ). We take ki and αj as in (5). (Here β = βi0 ). We have

∂βi0 =
∑

i

ki∂βi.
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Using the convexity of P , (5), and ki ≥ 0, we show that the inequality

βi0 ∩ ω ≤
∑

i

kiβi ∩ ω (11.2)

holds and that the equality holds only if ki = 0 (i �= i0), ki0 = 1, as follows. By (5)
we have

�i0 =
m∑

i=1

ki�i + c,

where c is a constant. Since ki ≥ 0 and �i0 (u
′) = 0 for u′ ∈ ∂i0P , it follows that

c ≤ 0. (Note that �i ≥ 0 on P .) Since βi ∩ ω = �i(u), we have the inequality (11.2).
Let us assume that the equality holds. If there exists i �= j with ki, kj > 0, then

∂i0 P = {
u′ ∈ P

∣∣ �i0 (u
′) = 0

} ⊆ {
u′ ∈ P

∣∣ �i(u
′) = �j (u′) = 0

} ⊆ ∂iP ∩ ∂jP .

This is a contradiction since ∂i0P is codimension 1. Therefore, there is only one
nonzero ki . It is easy to see that i = i0 and that ki0 = 1.

On the other hand, since αj ∩ ω > 0, it follows that

βi0 ∩ ω ≥
∑

i

kiβi ∩ ω.

Therefore, there is no sphere bubble (that is αj ). Moreover, the equality holds in (11.2).
Hence the domain of our stable map is irreducible; namely,

Mmain,reg
1

(
L(u), βi0

) = Mmain
1

(
L(u), βi0

)
.

The proof of Theorem 11.1 is now complete. �

Next we discuss one delicate point to apply Theorem 11.1 to the proofs of Theorems
4.5 and 4.6 (this point was already mentioned in [CO, Section 16]). Let us consider
the case where there exists a holomorphic sphere g : S2 → X with

c1(X) ∩ g∗[S2] < 0.

We assume, moreover, that there exists a holomorphic disc f : (D2, ∂D2) →
(X, L(u)) such that

f (0) = g(1).

We glue D2 and S2 at 0 ∈ D2 and 1 ∈ S2 to obtain 
; f and g induce a stable map
h : (
, ∂
) → (X, L(u)).
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In general, h is not Fredholm regular since g may not be Fredholm reg-
ular or the evaluation is not transversal at the interior nodes. In other words,
elements of Mmain

1 (L(u), β) \ Mmain,reg
1 (L(u), β) may not be Fredholm regular in

general. Moreover, replacing g by its multiple cover, we obtain an element of
Mmain

1 (L(u), β) \ Mmain,reg
1 (L(u), β) such that μ(β) is negative. Theorem 11.1 says

that all the holomorphic discs without any bubble are Fredholm regular. However, we
cannot expect that all stable maps in Mmain

1 (L(u), β) are Fredholm regular.
In order to prove Theorem 4.6, we need to find appropriate perturbations of those

stable maps. For this purpose, we use the T n-action and proceed as follows. (Note
that many of the arguments below are much simplified in the Fano case, where there
exists no holomorphic sphere g with c1(M) ∩ g∗[S2] ≤ 0.)

We equip each of M1(L(u), β) with Kuranishi structure (see [FO] for the general
theory of Kuranishi structure and [FOOO1, Sections 17–18], [FOOO3, Section 7.1],
and [FOOO2, Section 29] for its construction in the context we currently deal with).
We may construct Kuranishi neighborhoods and obstruction bundles that carry T n-
actions induced by the T n-action on X, and choose T n-equivariant Kuranishi maps
(see Definition B.4). We note that the evaluation map

ev : M1

(
L(u), β

) → L(u)

is T n-equivariant. We use the fact that the complex structure of X is T n-invariant and
that L(u) is a free T n-orbit to find such a Kuranishi structure (see Proposition B.7 for
details).

We remark that the T n-action on the Kuranishi neighborhood is free since the
T n-action on L(u) is free and ev is T n-equivariant. We take a perturbation (that
is, a multisection) of the Kuranishi map that is T n-equivariant. We can find such a
multisection which is also transversal to zero as follows. Since the T n-action is free, we
can take the quotient of Kuranishi neighborhood, obstruction bundle, and so forth, to
obtain a space with Kuranishi structure. Then we take a transversal multisection of the
quotient Kuranishi structure and lift it to a multisection of the Kuranishi neighborhood
of M1(L(u), β) (see Corollary B.15 for details). Let sβ be such a multisection, and
let M1(L(u), β)sβ be its zero set. We note that the evaluation map

ev : M1

(
L(u), β

)sβ → L(u) (11.3)

is a submersion. This follows from the T n-equivariance. This makes our construction
of systems of multisections much simpler than the general one in [FOOO3, Sec-
tion 7.2] (equivalent to [FOOO2, Section 30]) since the fiber product appearing in
the inductive construction is automatically transversal (see [FOOO3, Section 7.2.2],
[FOOO2, Section 30.2] for the reason why this is crucial). More precisely, we prove
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Lemma 11.2 below. Let

forget0 : Mmain
k+1 (L(u), β) → Mmain

1 (L(u), β) (11.4)

be the forgetful map which forgets the (first, . . . , kth) marked points. (In other words,
only the zeroth marked point remains.) We can construct our Kuranishi structure so
that it is compatible with forget0 in the same sense as in [FOOO3, Lemma 7.3.8] or
[FOOO2, Lemma 31.8].

LEMMA 11.2
For each given E > 0, there exists a system of multisections sβ,k+1 on Mmain

k+1 (L(u), β)
for β ∩ ω < E with the following properties:
(1) They are transversal to 0.
(2) They are invariant under the T n-action.
(3) The multisection sβ,k+1 is the pullback of the multisection sβ,1 by the forgetful

map (11.4).
(4) The restriction of sβ,1 to the boundary of Mmain

1 (L(u), β) is the fiber product
of the multisections sβ ′,k′ with respect to the identification of the boundary

∂Mmain
1

(
L(u), β

) = ⋃
β1+β2=β

Mmain
1

(
L(u), β1

)
ev0 ×ev1 Mmain

2

(
L(u), β2

)
.

(5) We do not perturb Mmain
1 (L(u), βi) for i = 1, . . . , m.

Proof
We construct multisections inductively over ω∩β. Since (2) implies that fiber products
of the perturbed moduli spaces which we have already constructed in the earlier stage
of induction are automatically transversal, we can extend them so that (1), (2), (3), (4)
are satisfied by the method we already explained above. We recall from Theorem 11.1
(3) that

Mmain
1

(
L(u), βi

) = Mmain,reg
1

(
L(u), βi

)
,

and it is Fredholm regular and its evaluation map is surjective to L(u). Therefore,
when we perturb the multisection we do not need to worry about compatibility of it
with other multisections we have already constructed in the earlier stage of induction.
This enables us to leave the moduli space Mmain

1 (L(u), βi) unperturbed for all βi . The
proof of Lemma 11.2 is complete. �

Remark 11.3
We need to fix E and stop the inductive construction of multisections at some finite
stage. Specifically, we define sβ,k+1 only for β with β∩ω < E. The reason is explained
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in [FOOO3, Section 7.2.3] or [FOOO2, Section 30.3]. We can get around this trouble
in the same way as explained in [FOOO3, Section 7.2] or [FOOO2, Section 30] (see
Remark 11.11).

Remark 11.4
We explain one delicate point of the proof of Lemma 11.2. Let α ∈ π2(X) be
represented by a holomorphic sphere with c1(X) ∩ α < 0. We consider the moduli
space M1(α) of the holomorphic sphere with one marked point and in homology class
α. Let us consider β ∈ π2(X; L(u)) and the moduli space Mmain

k+1,1(β) of holomorphic
discs with one interior and (k + 1)-boundary marked points and of homotopy class β.
The fiber product

M1(α) ×X Mmain
k+1,1(β)

taken by the evaluation maps at interior marked points are contained in Mmain
k+1,1(β+α).

If we want to define a multisection compatible with the embedding

M1(α) ×X Mmain
k+1,1(β) ⊂ Mmain

k+1 (β + α) (11.5)

then it is impossible to make it both transversal and T n-equivariant in general. This is
because the nodal point of such a singular curve could be contained in the part of X

with nontrivial isotropy group.
Our perturbation constructed above satisfies items (1) and (2) of Lemma 11.2

and so may not be compatible with the embedding (11.5). Our construction of the
perturbation given in Lemma 11.2 exploits the fact that the T n-action acts freely
on the Lagrangian fiber L(u) and is carried out by induction on the number of disc
components (and of energy) only, regardless of the number of sphere components.

The following corollary is an immediate consequence of Lemma 11.2.

COROLLARY 11.5
If μ(β) < 0 or μ(β) = 0, β �= 0, then Mmain

1 (L(u), β)sβ is empty.

Now we consider β ∈ π2(X; L) with μ(β) = 2 and β ∩ ω < E, where E is as
in Lemma 11.2. One immediate consequence of Corollary 11.5 is that the virtual
fundamental chain of Mmain

1 (L(u), β) becomes a cycle. More precisely, we introduce
the following.

Definition 11.6
Let β ∈ π2(X; L) with μ(β) = 2 and β ∩ ω < E, where E is as in Lemma 11.2. We
define a homology class cβ ∈ Hn(L(u); Q) ∼= Q by the pushforward

cβ = ev∗
(
[Mmain

1 (L(u), β)sβ ]
)
.
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LEMMA 11.7
The number cβ is independent of the choice of the system of multisections sβ,k+1

satisfying items (1)–(5) of Proposition 11.2.

Proof
If there are two such systems, we can find a T n-invariant homotopy between them
which is also transversal to zero. By a dimension counting argument applied to the
parameterized version of Mmain

1 (L(u), β) and its perturbation, we have the parameter-
ized version of Corollary 11.5. This in turn implies that the perturbed (parameterized)
moduli space defines a compact cobordism between the perturbed moduli spaces of
Mmain

1 (β) associated to the two such systems. The lemma follows. �

We note that cβi
= 1 where βi (i = 1, . . . , m) are the classes corresponding to each

of the irreducible components of the divisor π−1(∂P ). If X is Fano, then cβ = 0 for
β �= βi . But this may not be the case if X is not Fano.

We now use our perturbed moduli space to define a structure of filtered A∞-
algebra on the de Rham cohomology H (L(u); �R

0 ) ∼= (H (L(u), R)) ⊗ �0. We write
it as mcan.

We take a T n-equivariant Riemannian metric on L(u). We observe that a differ-
ential form ρ on L(u) is harmonic if and only if ρ is T n-equivariant. So we identify
H (L(u), R) with the set of T n-equivariant forms from now on.

We consider the evaluation map

ev = (ev1, . . . , evk, ev0) : Mmain
k+1

(
L(u), β

)sβ → L(u)k+1.

Let ρ1, . . . , ρk be T n-equivariant differential forms on L(u). We define

mcan
k,β(ρ1, . . . , ρk) = (ev0)!(ev1, . . . , evk)∗(ρ1 ∧ · · · ∧ ρk). (11.6)

We remark that integration along fiber (ev0)! is well defined and gives a smooth form
since ev0 is a submersion (this is a consequence of T n-equivariance). More precisely,
we apply Definition C.7 as follows. We put M = Mmain

k+1 (L(u), β), Ls = Lk , Lt = L.
Thus evs = (ev1, . . . , evk) : M → Ls , evt = ev0 : M → Lt . Thus we are in the
situation that we formulate at the beginning of Section C. Then using Lemma C.9 and
Remark C.8 (1), we put

mcan
k,β(ρ1, . . . , ρk) = (M; evs, evt , sβ)∗(ρ1 × · · · × ρk). (11.7)

We remark that the right-hand side of (11.7) is again T n-equivariant since sβ and so
forth are T n-equivariant.
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Lemma 11.2(4) implies that

∂Mmain
k+1

(
L(u), β

)
=

⋃
k1+k2=k+1

⋃
β1+β2=β

k2⋃
l=1

Mmain
k1+1

(
L(u), β1

)
ev0 ×evl

Mmain
k2+1

(
L(u), β2

)
.

Therefore, using Lemmas C.9 and C.10, we have the following formula:

∑
β1+β2=β

∑
k1+k2=k+1

k1∑
l=1

(−1)∗mcan
k1,β1

(
ρ1, . . . ,m

can
k2,β2

(ρl, . . . , ), . . . , ρk

) = 0. (11.8)

Here ∗ = ∑l

i=1(deg ρi + 1) (see the end of Section C for sign). We now put

mcan
k (ρ1, . . . , ρk) =

∑
β

T β∩ω/2πmcan
k,β(ρ1, . . . , ρk). (11.9)

We extend (11.9) to ρ ∈ H (L(u); �R
0 ) such that it is �0-multilinear. Then (11.8)

implies that it defines a structure of a filtered A∞-structure on H (L(u); �R
0 ) in the

sense of Section 3.
We also observe that our filtered A∞-algebra is unital and that the constant zero

form 1 ∈ H 0(L; R) is a unit. This is a consequence of Lemma 11.2(3).
We next calculate our filtered A∞-structure in the case when ρi are degree 1-forms.

LEMMA 11.8
For x ∈ H 1(L(u), �0) and β ∈ π2(X, L) with μ(β) = 2, we have

mcan
k,β(x, . . . , x) = cβ

k!
(∂β ∩ x)k · PD

(
[L(u)]

)
.

Here PD([L(u)]) is the Poincaré dual to the fundamental class. In other words, it is
the n-form with

∫
L(u) PD([L(u)]) = 1.

Proof
It suffices to consider the case x = ρ ∈ H 1(L(u); R) and to show that∫

L(u)
mcan

k,β(ρ, . . . , ρ) = cβ

k!
(∂β ∩ x)k. (11.10)

Let

Ck = {
(t1, . . . , tk)

∣∣ 0 ≤ t1 ≤ · · · ≤ tk ≤ 1
}
. (11.11)



136 FUKAYA, OH, OHTA, and ONO

We define an iterated blow-up, denoted by Ĉk , of Ck in the following way. Let
S = ∂D be the boundary of the unit disc D = D2 ⊂ C, and let βD ∈ H2(C, S) be
the homology class of the unit disc. We consider the moduli space Mk+1(C, S; βD)
and the evaluation map  ev = (ev0, . . . , evk) : Mk+1(C, S; βD) → (S1)k+1. We fix a
point p0 ∈ S ⊂ C, and we put

Ĉk := ev−1
0 (p0) ⊂ Mk+1(C, S; βD).

We make the identification S1 \ {p0} ∼= (0, 1). Then  ev induces a diffeomorphism

Ĉk ∩ Mreg
k+1(C, S; βD) → Int Ck

given by

[w, z0, . . . , zk] �→ (
w(z1) − w(z0), . . . , w(zk) − w(z0)

)
,

where

Int Ck = {
(t1, . . . , tk)

∣∣ 0 < t1 < · · · < tk < 1
} ⊂ Ck.

In this sense, Ĉk is regarded as an iterated blow-up of Ck along the diagonal (that is,
the set of points where ti = ti+1 for some i). We identify ∂D = S ∼= R/Z ∼= S1. We
have

Mmain
k+1

(
L(u), β

)s ∼= Mmain
1

(
L(u), β

)s × Ĉk. (11.12)

In fact, Corollary 11.5 implies that Mmain
1 (L(u), β)s consists of finitely many free

T n-orbits (with multiplicity ∈ Q) and Mmain
1 (L(u), β)s = Mmain,reg

1 (L(u), β)s. By
Lemma 11.2(3), we have a map Mmain,reg

k+1 (L(u), β)s → Mmain,reg
1 (L(u), β)s. It is easy

to see that the fiber can be identified with Ĉk .
Under this identification, the evaluation map  ev is induced by

evi(u; t1, . . . , tk) = [ti∂β] · ev(u) (11.13)

for (u; t1, . . . , tk) ∈ Mmain
1 (L(u), β) × Int Ck ⊂ Mmain

1 (L(u), β) × Ĉk .
Here ∂β ∈ H1(L(u); Z) is identified to an element of the universal cover L̃(u) ∼=

Rn of L(u), and [ti∂β] ∈ L(u) acts as a multiplication on the torus; ev(u) is defined
by the evaluation map ev : Mmain

1 (L(u), β) → L(u). We also have

ev0(u; t1, . . . , tk) = ev(u). (11.14)
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We note that ev : Mmain
1 (L(u), βi) → L(u) is a diffeomorphism (see Theorem

11.1(3)). Now we have∫
L(u)

mdR
k,β(ρ, . . . , ρ) = cβVol(Ck)

( ∫
∂β

ρ
)k

= cβ

k!
(∂β ∩ x)k.

The proof of Lemma 11.8 is now complete. �

Remark 11.9
We can prove that our filtered A∞-algebra

(
H (L(u); �R

0 ),mcan
∗
)

is homotopy-
equivalent to the one in [FOOO3, Theorem A] and [FOOO2, Theorem A]. The proof
is a straightforward generalization of [FOOO3, Section 7.5] and [FOOO2, Section
33]; it is omitted here. In fact, we do not need to use this fact to prove Theorem 1.5
if we use the de Rham version in all the steps of the proof of Theorem 1.5 without
involving the singular homology version.

Remark 11.10
We constructed our filtered A∞-structure directly on de Rham cohomology group
H (L(u); �R

0 ). The above construction uses the fact that the wedge products of har-
monic forms are again harmonic. This is a special feature of our situation, where our
Lagrangian submanifold L is a torus. (In other words, we use the fact that the rational
homotopy type of L is formal.)

Alternatively, we can construct filtered A∞-structure on the de Rham com-
plex �(L(u))⊗̂R�R

0 and reduce it to the de Rham cohomology by homological
algebra; namely, we consider smooth forms ρi which are not necessarily harmonic, and
we use (11.6) and (11.9) to define mdR

k (ρ1, . . . , ρk). (The proof of the A∞-formula
is the same.) Using the formality of T n, we can show that the canonical model of
(�(L(u))⊗̂R�R

0 ,mdR
∗ ) is the same as (H (L(u); �R

0 ),mcan). We omit its proof since
we do not use it here.

Using the continuous family of perturbations, this construction can be generalized
to the case of arbitrary relatively spin Lagrangian submanifold in a symplectic manifold
(see [F5]).
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Proof of Proposition 4.3
Proposition 4.3 immediately follows from Corollary 11.5, Lemma 11.8, and Lemma
11.9. We just take the sum

∞∑
k=0

mcan
k (b, . . . , b) =

∞∑
k=0

∑
β∈π2(X,L(u))

T ω∩β/2πmcan
k,β(b, . . . , b)

=
∞∑

k=0

∑
β

T ω∩β/2πmcan
k,β(b, . . . , b)

=
∑

β

∞∑
k=0

cβ

k!
(∂β ∩ b)kT β∩ω/2π · PD

(
[L(u)]

)
. (11.15)

Note, by the degree reason, that we need to take sum over β with μ(β) = 2.
Since b is assumed to lie in H 1(L(u), �+) and not just in H 1(L(u), �0), the

series appearing as the scalar factor in (11.15) converges in non-Archimedean topol-
ogy of �0 and so the sum

∑∞
k=0 mcan

k (b, . . . , b) is a multiple of PD([L(u)]). Hence
b ∈ M̂weak(L(u)) by definition (4.1). We remark that the gauge equivalence rela-
tion in [FOOO3, Chapter 4] is trivial on H 1(L(u); �0), and so H 1(L(u); �+) ↪→
Mweak(L(u)). We omit the proof of this fact since we do not use it here. �

Proof of Theorem 4.5
Suppose that there is no nontrivial holomorphic sphere whose Maslov index is non-
positive. Then Theorem 11.1(5) implies that if μ(β) ≤ 2, β �= βi , β �= 0, then
Mmain

1 (L(u), β) is empty. Therefore, again by dimension counting as in Corollary
11.5, we obtain

∞∑
k=0

mcan
k (x, . . . , x) =

m∑
i=1

∞∑
k=0

T ω∩βi/2πmcan
k,βi

(x, . . . , x)

for x ∈ H 1(L(u), �+). On the other hand, we obtain

PO(x; u) =
m∑

i=1

∞∑
k=0

1

k!
(∂βi ∩ x)kT �i (u)

=
m∑

i=1

∞∑
k=0

1

k!
〈vi, x〉kT �i (u) =

m∑
i=1

e〈vi ,x〉T �i (u)

from (6.8), (11.15), and the definition of PO. Writing x = ∑n

i=1 xiei and recalling
yi = exi , we obtain e〈vi ,x〉 = y

vi,1

1 · · · yvi,n

n and hence the proof of Theorem 4.5. �
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Proof of Theorem 4.6
Let β ∈ π2(X), let μ(β) = 2, and let Mweak(β) �= ∅. Theorem 11.1(5) implies that

∂β =
∑

ki∂βi, β =
∑

i

kiβi +
∑

j

αj .

Hence ∑
k

T β∩ω/2πmcan
k,β(b, . . . , b)

becomes one of the terms of the right-hand side of (4.7). We remark that class β with
μ(β) ≥ 4 does not contribute to mcan

k (b, . . . , b) by the degree reason.
When all the vertices of P lie in Qn, then the symplectic volume of all αj are in

2πQ. Moreover, ω ∩ βi ∈ 2πQ. Therefore, the exponents β ∩ ω/2π are rational.
The proof of Theorem 4.6 is complete. �

Remark 11.11
We remark that in Lemma 11.2 we constructed a system of multisections only
for Mmain

k+1 (L(u), β) with β ∩ ω < E. So we obtain only an An,K -structure in-
stead of a filtered A∞-structure. Here (n, K) = (n(E), K(E)) depends on E and
limE→∞(n(E), K(E)) = (∞,∞). It induces an An,K -structure m(E) on H (L; �0)
(see [FOOO3, Section 7.2.7] or [FOOO2, Section 30.7]). In the same way as in
[FOOO3, Section 7.2] and [FOOO2, Section 30], we can find (n′(E), K ′(E)) such
that (n′(E), K ′(E)) → (∞,∞) as E → ∞ and the following holds.

If E1 < E2, then the An(E1),K(E1)-structure m(E1) is (n′(E), K ′(E))-homotopy
equivalent to m(E2).

This implies that we can extend m(E1) (regarded as an An′(E1),K ′(E1)-structure) to
a filtered A∞-structure by [FOOO3, Theorem 7.2.72] and [FOOO2, Theorem 30.72].
(We also note that for all the applications in this article, we can use filtered An,K -
structure for sufficiently large n, K in place of filtered A∞-structure.)

Moreover, we can use Lemma 11.7 to show the following. If xi ∈ H 1(L(u); Q),
then m

(E)
k,β(x1, . . . , xk) is independent of E. So in particular, it coincides to one of

filtered A∞-structure we define as above.
In other words, since the number cβ is independent of the choice of the system

of T n-invariant multisections, it follows that the potential function in Theorem 4.6 is
independent of it. However, we do not know how to calculate it.

Remark 11.12
We used de Rham cohomology to go around the problem of transversality among
chains in the classical cup product. One drawback of this approach is that we lose
control of the rational homotopy type. Specifically, we do not prove here that the filtered
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A∞-algebra (partially) calculated above is homotopy-equivalent to the one in [FOOO3,
Theorem A] or [FOOO2, Theorem A] over Q. (Note that all the operations we obtain
are defined over Q, however.) Nevertheless, we believe that they are indeed homotopy-
equivalent over Q. There may be several possible ways to prove this statement, one
of which is to use the rational de Rham forms used by Sullivan.

Moreover, since the number cβ is independent of the choices we made, the
structure of filtered A∞-algebra on H (L(u), �Q) is well defined (i.e., independent
of the choices involved). The Q-structure is actually interesting in our situation (see,
e.g., Proposition 7.13). However, homotopy equivalence of the Q-version of Lemma
11.9 is not used in the statement of Proposition 7.13 or in its proof.

12. Nonunitary flat connection on L(u)
In this section, we explain how we can include (not necessarily unitary) flat bundles
on Lagrangian submanifolds in Lagrangian Floer theory following [F2] and [Cho].

Remark 12.1
For our purposes, we need to use a flat complex line bundle due to the following reason.
In [FOOO3], we assumed that our bounding cochain b is an element of H (L; �+)
since we want the series

mb
1(x) =

∑
k,�

mk+�+1(b⊗k, x, b⊗�)

to converge. There we used convergence with respect to the non-Archimedean norm.
For the case of Lagrangian fibers in toric manifold, the above series converges for
b ∈ H 1(L; �0). The convergence is the usual (classical Archimedean) topology on C

on each coefficient of T λ.
This is not an accident, and in general, it was expected to happen (see [FOOO3,

Conjecture 3.6.46] and [FOOO2, Conjecture 11.46]). However, for this convergence
to occur, we need to choose the perturbations on Mmain

k+1 (L, β) so that it is consistent
with Mmain

k′+1(L, β) (k′ �= k) via the forgetful map. We can make this choice for the
current toric situation by Lemma 11.2(3). In a more general situation, we need to
regard Mmain

1 (L, β) as a chain in the free loop space (see [F4]).
On the other hand, if we use a complex structure other than the standard one,

we do not know if Lemma 11.2(3) holds. So in the proof of independence of Floer
cohomology under the various choices made, there is trouble in using a bounding
cochain b lying in H 1(L; �0). The idea, originally due to [Cho], is to change the
leading-order term of x by twisting the construction using nonunitary flat bundles
on L.
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Let X be a symplectic manifold, and let L be its relatively spin Lagrangian submani-
fold. Let ρ : H1(L; Z) → C \ {0} be a representation, and let Lρ be the flat C bundle
induced by ρ.

We replace the formula (11.9) by

m
ρ,can
k =

∑
β∈H2(M,L)

ρ(∂β) mcan
k,β ⊗ T ω(β)/2π .

(Compare this with (4.3).)

PROPOSITION 12.2
(H (L(u); �R

0 ),mρ,can
k ) is a filtered A∞-algebra.

Proof
Suppose that [f ] ∈ Mmain

k+1 (L, β) is a fiber product of [f1] ∈ Mmain
�+1 (L, β1) and

[f2] ∈ Mmain
k−� (L, β2). In other words, β1 + β2 = β and ev0(f2) = evi(f1) for some i.

Then it is easy to see that

ρ(∂β) = ρ(∂β1)ρ(∂β2). (12.1)

Therefore, (12.1) and (11.8) imply the filtered A∞-relation. �

The unitality can also be proved in the same way. The well-definedness (that is, the
independence of various choices up to homotopy equivalence) can also be proved in
the same way.

Remark 12.3
We have obtained our twisted filtered A∞-structure on the (untwisted) cohomology
group H ∗(L; �0). This is because the flat bundle Hom(Lρ,Lρ) is trivial. In more
general situations where we consider a flat bundle L of higher rank, we obtain a
filtered A∞-structure on cohomology group with local coefficients with values in
Hom(L,L).

The filtered A∞-structure m
ρ,can
k is different from mcan

k in general, as we can see
from the expression of the potential function given in Lemma 4.9.

In the rest of this section, we explain how Floer cohomology detects the Lagrangian
intersection; namely, we sketch the proof of Theorem 3.11 in our case and its gener-
alization to the case where we include the nonunital flat connection ρ.

Let ψt : X → X be a Hamiltonian isotopy with ψ0 = identity. We put ψ1 = ψ .
We consider the pair

L(0) = L(u), L(1) = ψ
(
L(u)

)
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such that L(1) is transversal to L(0). We then take a 1-parameter family {Jt}t∈[0,1]

of compatible almost complex structures such that J0 = J , which is the standard
complex structure of X and J1 = ψ∗(J ).

Let p, q ∈ L(0) ∩ L(1). We consider the homotopy class of maps

ϕ : R × [0, 1] → X (12.2)

such that
(1) limτ→−∞ ϕ(τ, t) = p, limτ→+∞ ϕ(τ, t) = q;
(2) ϕ(τ, 0) ∈ L(0), ϕ(τ, 1) ∈ L(1).
We denote by π2(L(1), L(0); p, q) the set of all such homotopy classes. There are
obvious maps

π2(L(1), L(0); p, r) × π2(L(1), L(0); r, q) → π2(L(1), L(0); p, q),

π2(X; L(1)) × π2(L(1), L(0); p, q) → π2(L(1), L(0); p, q),

π2(L(1), L(0); p, q) × π2(X; L(0)) → π2(L(1), L(0); p, q).

(12.3)

We denote them by #.

Definition 12.4
We consider the moduli space of maps (12.2) satisfying (1), (2) above, in homotopy
class B ∈ π2(L(1), L(0); p, q), and that satisfies the equation

∂ϕ

∂τ
+ Jt

(∂ϕ

∂t

)
= 0. (12.4)

We denote it by M̂reg(L(1), L(0); p, q; B). We take its stable map compactification and
denote it by M̂(L(1), L(0); p, q; B). We divide this space by the R-action induced by
the translation of τ direction to obtain M(L(1), L(0); p, q; B). We define evaluation
maps evL(i) : M̂(L(1), L(0); p, q; B) → L(i) by evL(i) (ϕ) = ϕ(0, i), for i = 0, 1.

LEMMA 12.5
The space M(L(1), L(0); p, q; B) has an oriented Kuranishi structure with corners. Its
boundary is isomorphic to the union of the following three kinds of fiber products as
spaces with Kuranishi structure:
(1)

M(L(1), L(0); p, r; B ′) × M(L(1), L(0); r, q; B ′′).

Here B ′ ∈ π2(L(1), L(0); p, r), B ′′ ∈ π2(L(1), L(0); r, q).
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(2)

M1(L(u); β ′) ev0 ×ev
L(1) M̂(L(1), L(0); p, q; B ′′).

Here β ′ ∈ π2(X; L(1)) ∼= π2(X; L(u)), β ′#B ′′ = B. The fiber product is
taken over L(1) ∼= L(u) by using ev0 : M(L(u); β ′) → L(u) and evL(1) :
M̂(L(1), L(0); p, q; B ′′) → L(1).

(3)

M̂(L(1), L(0); p, q; B ′) ev
L(0) ×ev0 M

(
L(u); β ′′).

Here β ′ ∈ π2(X; L(1)) ∼= π2(X; L(u)), B ′#β ′′ = B. The fiber product is
taken over L(0) ∼= L(u) by using ev0 : M(L(u); β ′′) → L(u) and evL(0) :
M̂(L(1), L(0); p, q; B ′) → L(0).

We have

dim M(L(1), L(0); p, q; B) = μ(B) − 1,

where

μ(B1#B2) = μ(B1) + μ(B2),

μ(β ′#B ′′) = μ(β ′) + μ(B ′′),

μ(B ′#β ′′) = μ(B ′) + μ(β ′′).

Here the notation is as in items (1), (2), (3) above.

Lemma 12.5 is proved in [FOOO3, Section 7.1.4] and [FOOO2, Section 29.4].

LEMMA 12.6
There exists a system of multisections on M(L(1), L(0); p, q; B) such that
(1) it is transversal to zero;
(2) it is compatible at the boundaries described in Lemma 12.5 (here we pull back

the multisection of M(L(1), L(0); p, q; B) to one on M̂(L(1), L(0); p, q; B) and
use the multisection in Lemma 11.2 on M(L(u); β)).

Proof
We can find such a system of multisections inductively over

∫
B

ω by using the facts
that ev0 : M(L(u); β)s → L(u) is a submersion and Lemma 12.5(1) is a direct
product. �
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In the case when μ(B) = 1, we define

n(B) = #M(L(1), L(0); p, q; B)s ∈ Q,

that is, the “number” of zeros of our multisection counted with sign and multiplicity.
We use it to define Floer cohomology.

Let CF (L(1), L(0)) be the free �0,nov-module generated by L(0) ∩L(1). We define
boundary operator on it.

Let ρi : π1(L(i)) → C∗ be the representation. We take harmonic 1-form hi ∈
H 1(L(i); C) such that

ρi(γ ) = exp
( ∫

γ

hi

)
.

Let bi,+ ∈ H 1(L(0); �+) ⊂ M(L(0)). An element B ∈ π2(L(1), L(0); p, q) induces a
path ∂i : [0, 1] → L(i) joining p to q in L(i) for i = 0, 1. We define

C
(
B; (h0, h1), (b0,+, b1,+)

) = exp
( ∫

∂0B

(h0 + b0,+)
)

exp
(
−
∫

∂1B

(h1 + b1,+)
)
.

This is an element of �0 \ �+. It is easy to see that

C
(
B1#B2; (h0, h1), (b0,+, b1,+)

)
= C

(
B1; (h0, h1), (b0,+, b1,+)

)
C
(
B2; (h0, h1), (b0,+, b1,+)

)
,

(12.5)

and

C
(
β ′#B ′′; (h0, h1), (b0,+, b1,+)

)
= C

(
B ′′; (h0, h1), (b0,+, b1,+)

)
exp

( ∫
∂β ′

h1 + b0,+
)
.

(12.6)

(Here B ′ and β ′′ are as in Lemma 12.5(2).) Now we define

〈δ(h0,h1),(b0,+,b1,+)(p), q〉
=

∑
B∈π2(L(1),L(0);p,q);μ(B)=1

n(B)C
(
B; (h0, h1), (b0,+, b1,+)

)
.

(12.7)

For the case h1 = ψ∗(h0), b1,+ = ψ∗(b+), b0,+ = b+, we write C(B; h0, b+) and
δh0,b+ , in place of C(B; (h0, h1), (b0,+, b1,+)) and δ(h0,h1),(b0,+,b1,+), respectively.

LEMMA 12.7
We have

δ(h0,h1),(b0,+,b1,+) ◦ δ(h0,h1),(b0,+,b1,+) =
(
PO(b(1)

)− PO
(
b(0))

) · id

where b(i) = hi + bi,+ ∈ H 1(L(u); �0).
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Proof
Let p, q ∈ L(1) ∩ L(0). We consider B ∈ π2(L(1), L(0); p, q) with μ(B) = 2. We
consider the boundary of M(L(1), L(0); p, q; B). We put

δB =
{

1 B ∈ π2(L(1), L(0); p, q), p = q, and B is the class of constant map,
0 otherwise.

Then, using the classification of the boundary of M(L(1), L(0); p, q; B) in Lemma
12.5, we have the equality

0 =
∑

r,B,B ′′
n(B ′)n(B ′′) +

∑
β ′,B ′′

cβ ′δB ′′ −
∑
β ′′,B ′

cβ ′′δB ′, (12.8)

where the summention in the first, second, and third terms of the right-hand side is
taken over the set described in items (1), (2), and (3) of Lemma 12.5, respectively, and
where cβ is defined in Definition 11.6.

We multiply (12.8) by C(B; (h0, h1), (b0,+, b1,+)) and calculate the right-hand
side by using Formulas (12.5) and (12.6) and Lemma 11.8. It is easy to see that the
first term gives

〈δ(h0,h1),(h0,+,b1,+) ◦ δ(h0,h1),(b0,+,b1,+)(p), q〉.

The second term is 0 if p �= q, and is∑
β

cβ exp
( ∫

∂β

h0 + b0,+
)
= PO

(
b(0)

)
if p = q. The third term gives PO(b(1)) · id in a similar way. �

Definition 12.8
Let b(0) = h0 + b+ and b(1) = ψ∗(b(0)). We define

HF
(
(L(0), b(0)), (L(1), b(1)); �0

) ∼= Ker δh0,h+

Im δh0,h+
.

This is well defined by Lemma 12.7 and by the identity PO
(
ψ∗(b(0))

) =
PO

(
(b(0))

)
.

Now we have the following.
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LEMMA 12.9
We have

HF
(
(L(0), b(0)), (L(1), b(1)); �0

)⊗�0 � ∼= Ker m
ρ,can,b+
1

Im m
ρ,can,b+
1

⊗�0 �.

Here ρ(γ ) = exp
( ∫

γ
h0

)
and

m
ρ,can,b+
1 (x) =

∞∑
k1,k2=0

m
ρ,can
k1+k2+1(b⊗k1+ , x, b⊗k2+ ).

Lemma 12.9 implies (the ρ twisted version of) Theorem 3.11 in our case. We omit the
proof of Lemma 12.9 and refer the reader to [FOOO3, Section 5.3], [FOOO2, Section
22], or [FOOO5, Section 8].

13. Floer cohomology at a critical point of potential function
In this section, we prove Theorem 4.10 and so forth and complete the proof of Theorem
1.5.

Proof of Lemma 4.9
Let β ∈ H2(X, L(u0)) with μ(β) = 2, and let Mmain

1 (L(u0), β) be nonempty. We
have β = ∑m

i=1 ciβi +
∑

j αj by Theorem 11.1(5). Let ρ be as in (4.15). We have
ρ(∂β) = ∏

ρ(∂βi)ci . Note that ∂βi =
∑

j vi,j e∗j . Thus we have⎧⎪⎨⎪⎩
ρ(∂βi) = y

vi,1

1,0 · · · yvi,n

n,0,

ρ(∂β) =
∏

i

∏
j

y
civi,j

j,0 .
(13.1)

Therefore, for b ∈ H 1(L(u0); �C
+), we have

∞∑
k=0

m
ρ,can
k,β (b, . . . , b) =

∞∑
k=0

y
vi,1

1,0 · · · yvi,n

n,0m
can
k,β(b, . . . , b)

=
∞∑

k=0

ex1,0vi,1 · · · exn,0vi,n
cβ

k!
(b ∩ ∂β)k · [PD(L)]

=
∞∑

k=0

mcan
k,β

(
b +

n∑
j=1

xj,0ej , . . . , b +
n∑

j=1

xj,0ej

)
.
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On the other hand, it follows from Theorems 4.5 and 4.6 that the left and the right
sides of this identity correspond to those in Lemma 4.9, respectively. This finishes the
proof of Lemma 4.9. �

Proof of Theorem 4.10
Let x+ = (x+

1 , . . . , x+
n ), x+

1 , . . . , x+
n ∈ �+. We put

x(x+) =
∑

i

(xi,0 + x+
i )ei , b(x+) =

∑
i

x+
i ei .

From Lemma 4.9 we derive

PO
u0
ρ

(
b(x+)

) = ∑
m

ρ,can
k

(
b(x+), . . . , b(x+)

) ∩ [L(u0)]

=
∑

mcan
k

(
x(x+), . . . , x(x+)

) ∩ [L(u0)] = PO
u0
(
x(x+)

)
.

Let x be as in (4.13). Then we have

∂

∂x+
i

PO
u0
ρ

(
b(x+)

)∣∣∣
x(x+)=x

= ∂

∂x+
i

PO
u0
(
x(x+)

)∣∣∣
x(x+)=x

= ∂PO
u0

∂xi

(x) = 0,

where the last equality follows from the assumption (4.12). (In the case when (4.11)
is assumed, we have ≡ 0 mod T N in place of = 0.) On the other hand, we have

∂

∂x+
i

PO
u0
ρ

(
b(x+)

)∣∣∣
x(x+)=x

=
∑

k

∑
�

m
ρ,can
k (b⊗�, ei , b

⊗(k−�−1)) ∩ [L(u0)]

= m
ρ,can,b

1 (ei) ∩ [L(u0)].

(13.2)

Note that here and hereafter we write b in place of b(x+) with x(x+) = x; namely,
b = x −∑

xi,0ei .
Hence we obtain

m
ρ,can,b

1 (ei)

{= 0 if (4.12) is satisfied,

≡ 0 mod T N if (4.11) is satisfied.
(13.3)

We also note that, by the degree reason, mρ,can,b

1 (ei) is proportional to PD[L(u0)].
We next prove the vanishing of m

ρ,can,b

1 (f) for the classes f of higher degree. We
prove the following.
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LEMMA 13.1
For f ∈ H ∗(L(u0); �C

0 ), we have

m
ρ,can,b

1,β (f)
{= 0 if (4.12) is satisfied,
≡ 0 mod T N if (4.11) is satisfied.

Proof
Let d = deg f, and let 2� = μ(β). We say (d, �) < (d ′, �′) if � < �′ or � = �′, d < d ′.
We prove the lemma by an upward induction on (d, �). The case d = 1 is (13.3). We
note that mk,β = 0 if μ(β) ≤ 0.

We assume that the lemma is proved for (d ′, �′) smaller than (d, �), and we prove
the case of (d, �). Since the case d = 1 is already proved, we may assume that d ≥ 2.
Let f = f1 ∪ f2, where deg fi ≥ 1. By the A∞-relation, we have

m
ρ,can,b

1,β (f1 ∪ f2) =
∑

β1+β2=β

±m
ρ,can,b

2,β1

(
m

ρ,can,b

1,β2
(f1), f2

)
+

∑
β1+β2=β

±m
ρ,can,b

2,β1

(
f1,m1,β2 (f2)

)
+

∑
β1+β2=β,β2 �=0

±m
ρ,can,b

1,β1

(
m2,β2 (f1, f2)

)
.

We remark that m
ρ,can,b

1,β0
= 0 since we are working on a canonical model.

The first two terms on the right-hand side vanish by the induction hypothesis since
deg fi < deg f and μ(βi) ≤ μ(β). The third term also vanishes since μ(β1) < μ(β).
The proof of Lemma 13.1 is complete. �

Lemma 13.1 immediately implies Theorem 4.10. �

Proof of Proposition 5.4
Let us specialize to the case of two dimensions. In case dim L(u0) = 2, we can prove
m

ρ,can,b

1,β = 0 for μ(β) ≥ 4 also by dimension counting. We can use that to prove
Proposition 5.4 in the same way as above. �

Proof of Proposition 4.12
Let ωi , ui , xi,N be as in Definition 4.11. We assume that ψ : X → X does not satisfy
(4.19) or (4.20), and we deduce a contradiction. We use the same (time dependent)
Hamiltonian as ψ to obtain ψi : (X, ωi) → (X, ωi). Take an integer N such that
‖ψi‖ < 2πN for large i. Then for sufficiently large i, L(ui

0) and ψi does not satisfy
(4.19) or (4.20). In fact, if ψ(L(u0)) ∩ L(u0) = ∅, then for sufficiently large i, we
have ψi(L(ui

0)) ∩ L(ui
0) = ∅. If ψ(L(u0)) is transversal to L(u0) and if (4.20) is not
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satisfied, then

#
(
ψ(L(u0)) ∩ L(u0)

) ≥ #
(
ψεi

(L(ui
0)) ∩ L(ui

0)
)
.

On the other hand, by Theorem 4.10 we have

HF
(
(L(ui), xi,k), (L(ui), xi,k); �C

0 /(T N)
) ∼= H

(
T n; �C

0 /(T N)
)
.

It follows from the universal coefficient theorem that

HF
(
(L(ui), xi,k), (L(ui), xi,k); �C

0

) ∼= �⊕a
0 ⊕

b⊕
i=1

�0/(T c(i)) (13.4)

such that c(i) ≥ N and a + 2b ≥ 2n. This contradicts [FOOO3, Theorem J]. (In
fact, [FOOO3, Theorem J], which is equivalent to Theorems (3.12) and (13.4), imply
that (4.19) and (4.20) hold for L(ui) and ψi with ‖ψi‖ < 2πN.) Proposition 4.12 is
proved. �

Proof of Theorem 5.11
The proof is the same as the proof of Proposition 4.12 above. �

Now we are ready to complete the proof of Theorem 1.5.

Proof of Theorem 1.5
In the case where the vertices of P are contained in Qn, Proposition 4.7 and Theorem
4.10 imply that L(u0) is balanced in the sense of Definition 4.11. Therefore, Propo-
sition 4.12 implies Theorem 1.5 in this case. If the leading-term equation is strongly
nondegenerate, Theorem 1.5 also follows from Theorem 4.10, Theorem 10.4, and
Proposition 4.12.

We finally present an argument to remove the rationality assumption. In view of
Lemma 4.12, it suffices to prove the following.

PROPOSITION 13.2
In the situation of Theorem 1.5, there exists u0 such that L(u0) is a balanced La-
grangian fiber.

Proof
Let π : X → P be as in Theorem 1.5. Let us consider sk , Sk , and Pk as in Section 9.
We obtain u0 ∈ P such that {u0} = PK . We prove that L(u0) is balanced.

We perturb the Kähler form ω of X a bit so that we obtain ω′. Let P ′ be the
corresponding moment polytope, and let sω′

k , Sω′
k , and P ω′

k be the corresponding
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piecewise affine function, number, and subset of Pω′ , respectively, obtained for ω′, Pω′

as in Section 9.

PROPOSITION 13.3
We can choose ωh so that ωh is rational and limh→∞ s

ωh

k = sk , limh→∞ S
ωh

k = Sk ,
limh→∞ P

ωh

k = Pk , dim P
ωh

k = dim Pk for all k.

Proof
We write Iω′

k for the set Ik defined in (9.7) for ω′, P ′. We prove Lemma 13.4. We
observe that the set K of T n-invariant Kähler structure ω′ is regarded as an open set
of an affine space defined on Q (i.e., the Kähler cone). We may regard K as a moduli
space of moment polytope as follows. We consider a polyhedron P ′ each of whose
edges is parallel to a corresponding edge of P . Translation defines an Rn-action on
the set of such P ′. The quotient space can be identified with K.

LEMMA 13.4
There exists a subset Pk of K which is a nonempty open subset of an affine subspace
defined over Q such that any element ω′ ∈ Pk has the following properties:
(1) dim P ω′

l = dim P ω
l for l ≤ k;

(2) Iω′
l = Iω

l for l ≤ k.

Remark 13.5
In the case of Example 8.1, the set P ω′

k and so forth jumps at the point α = 1/3 in the
Kähler cone. Hence the set Pk may have a strictly smaller dimension than K.

Proof of Lemma 13.4
Let Aω′

l be the affine space defined in Section 9. (We put ω′ to specify the symplectic
form.) We write �ω

i , �ω′
i in place of �i to specify symplectic form and moment polytope.

We remark that the linear part of �ω
i is equal to the linear part of �ω′

i .
The proof of Lemma 13.4 is given by induction on k. Let us first consider the case

k = 1. We put

Âω′
1 = {

u ∈ MR

∣∣ �ω′
1,1(u) = · · · = �ω′

1,a1
(u)

}
.

We remark that {�ω
1,1, . . . , �

ω
1,a1

} = Iω
1 and so Âω

1 = Aω
1 .

We put

P′
1 = {ω′ | dim Âω′

1 = dim Aω
1 }.

It is easy to see that P′
1 is a nonempty affine subset of K and that it is defined over Q.
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SUBLEMMA 13.6
If ω′ ∈ P′

1 and is sufficiently close to ω, then P ω′
1 is an equidimensional polyhedron

in Âω′
1 . In particular, Âω′

1 = Aω′
1 .

Proof
The tangent space of Âω′

1 is parallel to the tangent space of Aω
1 . Therefore, �ω′

1,j is
constant on Âω′

1 . We put

Ŝω′
1 = �ω′

1,1(u)

for some u ∈ Âω′
1 .

On the other hand, if �ω
i /∈ Iω

1 , then �ω
i (u) > Sω

1 on Int P ω
1 . Therefore, if ω′ is

sufficiently close to ω, we have �ω′
i (u) > Ŝω′

1 on a neighborhood of a compact subset
of Int P ω

1 , which we identify with a subset of P ′. This implies the sublemma. �

Conditions (1) and (2) of Lemma 13.4 in the case k = 1 follow from Sublemma 13.6
easily.

Let us assume that Lemma 13.4 is proved up to k − 1. We note that
{�ω

k,1, . . . , �
ω
k,ak

} = Iω
k . We put

Âω′
k = {

u ∈ Aω′
k−1

∣∣ �ω′
k,1(u) = · · · = �ω′

k,ak
(u)

}
and

P′
k = {ω′ ∈ P′

k−1 | dim Âω′
k = dim Aω

k }.

Then P′
k is a nonempty affine subset of K and is defined over Q. We can show that a

sufficiently small open neighborhood Pk of ω in P′
k has the required properties in the

same way as the first step of the induction. The proof of Lemma 13.4 is complete. �

Proposition 13.3 follows immediately from Lemma 13.4. In fact, the set of rational
points are dense in PK . �

Proposition 13.2 follows from Proposition 13.3, Proposition 4.7, and Theorem
4.10. �

The proof of Theorem 1.5 is now complete. �

Proof of Proposition 10.8
The proof is similar to the proof of Proposition 13.3. Let Ik be as in (10.2). We write
it as Ik(P, u0), where P is the moment polytope of (X, ω). We define Ik(P ′, u′

0) as
follows.
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Let P ′ be a polytope which is a small perturbation of P and such that each of
the faces are parallel to the corresponding face of P . Let u′

0 ∈ Int P ′. Let us consider
the set K+ of all such pairs (P ′, u′

0). It is an open set of an affine space defined over
Q. Each such P ′ is a moment polytope of certain Kähler form on X. (We remark that
Kähler form on X determines P ′ only up to translation.)

For each P ′ we take the corresponding Kähler form on X, and it determines a
potential function. Therefore, Ik(P ′, u′

0) is determined by (10.2). We define A⊥
l (P ′, u′

0)
in the same way as Definition 10.1.

LEMMA 13.7
There exists a subset Qk of K+, which is a nonempty open set of an affine subspace
defined over Q. All the elements (P ′, u′

0) of Qk have the following properties:
(1) dim A⊥

l (P ′, u′
0) = dim A⊥

l (P, u0) for l ≤ k;
(2) Il(P ′, u′

0) = Il(P, u0) for l ≤ k.

The proof of Lemma 13.7 is the same as the proof of Lemma 13.4 and is omitted.
Now we take a sequence of rational points (Ph, u

h
0) ∈ Qk converging to (P, u0).

Lemma 13.7(2) implies that the leading-term equation at uh
0 is the same as the leading-

term equation at u0. The proof of Proposition 10.8 is complete. �

Proof of Lemma 10.5
Let [ω] ∈ H 2(X; Q). We may take the moment polytope P such that its vertices are
rational. (This time we do not change P throughout the proof.) Let u0 ∈ Int P , and
assume that PO

u0
0 has a nondegenerate critical point in (�0 \ �+)n.

We define Ik(P, u) as above. In the same way as in the proof of Lemma 13.7, we
can prove the following.

SUBLEMMA 13.8
The set Pk of all u ∈ Int P satisfying conditions (1) and (2) below contains an open
neighborhood u0 in certain affine subspace A of Rn. The affine space A is defined on
Q:
(1) dim A⊥

l (P, u) = dim A⊥
l (P, u0) for all l < k;

(2) Il(P, u) = Il(P, u0) for all l < k.

We omit the proof. We take K such that {d�i | �i ∈ I1(P, u0) ∪ · · · ∪ IK (P, u0)}
generates NR. (Note that P ⊂ NR = M∗

R.) By Sublemma 13.8 there exists a sequence
{ui}i=1,2,··· of rational points ui in PK which converges to u0.

Items (1) and (2) in Sublemma 13.8 imply that PO
u0
0 and PO

ui

0 have the
same leading-term equation. Therefore by assumption, PO

ui

0 has a critical point
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on (�0 \ �+)n. Since Jac(PO0; �) is finite-dimensional, it follows that we may
take a subsequence uki

such that uk1 = uk2 = · · · . Hence u0 = uki
is rational as

required. �

Remark 13.9
We can replace Definition 4.11(3) by

HF
(
(L(ui), xi,N), (L(ui), xi,N); �C/(T N)

) ⊇ �C/(T N).

In fact, the following three conditions are equivalent to one another:
(1) HF

(
(L(u), x), (L(u), x); �C/(T N)

) ∼= H (T n; C) ⊗ �C/(T N);
(2) HF

(
(L(u), x), (L(u), x); �C/(T N)

) ⊇ �C/(T N);
(3) ∂PO

u

∂yk
≡ 0, mod T N k = 1, . . . , n, at x.

Here (1) ⇒ (2) is obvious; (3) ⇒ (1) is Theorem 4.10. Let us prove (2) ⇒
(3). Suppose that (3) does not hold. We put ∂POu

∂yk
≡ cT λ mod T λ�+, where

c ∈ C \ {0} and 0 ≤ λ < N . Then (13.2) implies that T N−λPD[L(u)] = 0 in
HF

(
(L(u), x), (L(u), x); �C/(T N)

)
. Since PD[L(u)] is a unit, item (2) does not

hold.

Remark 13.10
The proof of Theorem 4.10 (or of Lemma 13.1) does not imply that

mk,β(ρ1, . . . , ρk) = 0 (13.5)

for μ(β) ≥ 4. So it does not imply that the numbers cβ (Definition 11.6) de-
termine the filtered A∞-algebra

(
H (L(u); �0),m

)
up to homotopy equivalence.

However, we believe that this is indeed the case. In fact, the homology group
H (L(T n); Q) of the free loop space L(T n) is trivial for degree > n. On the other
hand, dim Mmain

1 (L(u0); β) = n + μ(β) − 2. Hence if μ(β) ≥ 4, there is no nonzero
homology class on the corresponding degree in the free loop space. Using the argument
of [F4], it may imply that the contribution of those classes to the homotopy type of
filtered A∞-structure is automatically determined from the contribution of the classes
of Maslov index 2.

On the other hand, the pseudoholomorphic disc with Maslov index ≥ 4 certainly
contributes to the operator q�,k,β introduced in [FOOO3, Section 3.8] and [FOOO2,
Section 13]: namely, q�,k,β is the operator that involves a cohomology class of the
ambient symplectic manifold X (see Remark 6.15). It seems that tropical geometry
plays a role in this calculation.
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Appendices

A. Algebraic closedness of Novikov fields
LEMMA A.1
If F is an algebraically closed field of characteristic zero, then �F is algebraically
closed.

Proof
Let

∑n

k=0 akx
k = 0 be a polynomial equation with �F -coefficients. We prove that it

has a solution in �F by induction on n. We may assume that an = 1. Replacing x by
x − an−1

n
, we may assume that an−1 = 0. (Here we use the fact that the characteristic

of F is zero.) We may assume furthermore that a0 �= 0, since otherwise zero is a
solution. We put

c = inf
k=0,...,n−2

vT (ak)

n − k
.

We put x = T cy, bk = T c(k−n)ak . Then our equation is equivalent to P (y) =∑n

k=0 bky
k = 0. We observe that bn = 1, bn−1 = 0, b0 �= 0. Moreover,

vT (bk) = c(k − n) + vT (ak) ≥ 0.

Specifically, bk ∈ �0. We define bk ∈ F to be the zero-order term of bk (i.e., to satisfy
bk ≡ bk mod �+). We consider the equation P ( y ) = ∑n

k=0 bky
k = 0. By our

choice of c there exists k < n− 1 such that bk �= 0 and bn = 1, bn−1 = 0. Therefore,
P has at least two distinct roots. (We use the fact that the characteristic of F is zero
here.) Since F is algebraically closed, we can decompose P = QR, where Q and
R are monic, of nonzero degree, and coprime. Therefore, by Hensel’s lemma, there
exists Q, R ∈ �0[y] such that P = QR and deg Q = deg Q, Q ≡ Q mod �+,
R ≡ R mod �+.∗

Since the degree of Q is smaller than the degree of P , it follows from induction
hypothesis that Q has a root in �F . The proof of Lemma A.1 is now complete. �

By a similar argument we can show that if F has characteristic zero, then a finite
algebraic extension of �F is contained in �K for some finite extension K of F (we
used this fact in Section 7).

∗A proof of Hensel’s lemma, in the case when valuation is not necessarily discrete, is given, for example, in
[BGR, page 144]. See also the proof of Lemma 8.5 given here.
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Proof of Lemma 8.5
In view of the proof of Lemma A.1, it suffices to show that �conv

0 is Henselian (namely,
Hensel’s lemma holds for it). Let

P (X) =
n−1∑
i=0

aiX
i + Xn ∈ �conv

0 [X].

We assume that its C-reduction P ∈ C[X] is decomposed as P = QR, where Q and
R are monic and coprime. We put

ai = ai,0 + ai,+, ai,0 ∈ C, ai,+ ∈ �conv
+ ,

and

P̃ (X) =
n−1∑
i=0

(ai,0 + Zi)X
i + Xn ∈ C[Z0, . . . , Zn−1][X],

where Zi are formal variables.
The convergent power series ring C{Z0, . . . , Zn−1} is Henselian (see [N, Section

45]). Therefore, there exist monic polynomials Q̃, R̃ ∈ C{Z0, . . . , Zn−1}[X] such
that

Q̃R̃ = P̃

and the C-reduction of Q̃, R̃ are Q, R, respectively. On the other hand, it is easy to see
that Zi �→ ai,+ induces a continuous ring homomorphism C{Z0, . . . , Zn−1} → �conv

0 .
Thus Q̃, R̃ induce Q, R ∈ �conv

0 [X] such that QR = P . Hence �conv
0 is Henselian,

as required. �

B. T n-equivariant Kuranishi structure
In this section, we define the notion of T n-equivariant Kuranishi structure and prove
that our moduli space Mmain

k+1 (β) has one. We also show the existence of T n-equivariant
perturbation of the Kuranishi map.

Let M be a compact space with Kuranishi structure. The space M is covered
by a finite number of Kuranishi charts (Vα, Eα, 
α, ψα, sα), α ∈ A which satisfy the
following.

Condition B.1
(1) The space Vα is a smooth manifold (with boundaries or corners) and 
α is a

finite group acting effectively on Vα .
(2) The map prα : Eα → Vα is a finite-dimensional vector bundle on which 
α

acts so that prα is 
α- equivariant.
(3) The map sα is a 
α-equivariant section of Eα .
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(4) The map ψα : s−1
α (0)/
α → M is a homeomorphism to its image.

(5) The union of ψα(s−1
α (0)/
α) for various α is M.

We assume that {(Vα, Eα, 
α, ψα, sα) | α ∈ A} is a good coordinate system, in
the sense of [FO, Definition 6.1] or [FOOO3, Lemma A1.11] and [FOOO2, Lemma
A1.11]. This means the following. The set A has a partial order <, where either
α1 ≤ α2 or α2 ≤ α1 holds for α1, α2 ∈ A if

ψα1

(
s−1
α1

(0)/
α1

) ∩ ψα2

(
s−1
α2

(0)/
α2

) �= ∅.

Let α1, α2 ∈ A, and let α1 ≤ α2. Then there exists a 
α1 -invariant open subset Vα2,α1 ⊂
Vα1 , a smooth embedding ϕα2,α1 : Vα2,α1 → Vα2, and a bundle map ϕ̂α2,α1 : Eα1 |Vα2 ,α1

→
Eα2, which covers ϕα2,α1 . Moreover, there exists an injective homomorphism ̂̂ϕα2,α1

:

α1 → 
α2 . We require that they satisfy the following.

Condition B.2
(1) The maps ϕα2,α1 , ϕ̂α2,α1 are ̂̂ϕα2,α1

-equivariant.
(2) The maps ϕα2,α1 and ̂̂ϕα2,α1

induce an embedding of orbifold

ϕα2,α1
:

Vα2,α1


α1

→ Vα2


α2

. (B.1)

(3) We have sα2 ◦ ϕα2,α1 = ϕ̂α2,α1 ◦ sα1 .

(4) We have ψα2 ◦ ϕα2,α1
= ψα1 on

Vα2 ,α1∩s−1
α1

(0)


α1
.

(5) If α1 < α2 < α3, then ϕα3,α2 ◦ ϕα2,α1 = ϕα3,α1, on ϕ−1
α2,α1

(Vα3,α2 ). Also ϕ̂α3,α2 ◦
ϕ̂α2,α1 = ϕ̂α3,α1 and

̂̂ϕα3,α2
◦ ̂̂ϕα2,α1

= ̂̂ϕα3,α1
,

hold in the similar sense.
(6) Also, Vα2,α1/
α1 contains ψ−1

α1

(
ψα1 (s

−1
α1

(0)/
α1 ) ∩ ψα2 (s
−1
α2

(0)/
α2 )
)
.

Condition B.3
The space with Kuranishi structure M has a tangent bundle, that is, the differential of
sα2 in the direction of the normal bundle induces a bundle isomorphism

dsα2 :
ϕ∗

α2,α1
T Vα2

T Vα2,α1

→ ϕ̂∗
α2,α1

Eα2

Eα1

.

We say that M is oriented if Vα , Eα is oriented, the 
α-action is orientation-preserving,
and dsα is orientation-preserving.
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Definition B.4
Suppose that M has a T n-action. We say our Kuranishi structure on M is T n-
equivariant in the strong sense if the following conditions hold:
(1) Vα has a T n-action which commutes with the given 
α-action;
(2) Eα is a T n-equivariant bundle;
(3) the Kuranishi map sα is T n-equivariant and ψα is a T n-equivariant map;
(4) the coordinate changes ϕα2,α1 and ϕα2,α1 are T n-equivariant.

Remark B.5
We note that Condition (1) above is more restrictive than the condition that the orbifold
Vα/
α has a T n-action. This is the reason why we use the phrase in the strong sense
in the above definition; hereafter, we say T n-equivariant instead for simplicity.

Let L be a smooth manifold. A strongly continuous smooth map ev : M → L is a
family of 
α-invariant smooth maps

evα : Vα → L (B.2)

which induce evα : Vα/
α → L such that evα2 ◦ ϕα2,α1
= evα1 on Vα2,α1/
α . (Note

that 
α-action on L is trivial.)
We say that ev is weakly submersive if each of evα in (B.2) is a submersion.

Definition B.6
Assume that there exist T n-actions on L and on M. We say that ev : M → L is
T n-equivariant if evα in (B.2) is T n-equivariant.

Now we show the following.

PROPOSITION B.7
The moduli space Mk+1(β) has a T n-equivariant Kuranishi structure such that ev0 :
Mk+1(β) → L is a T n-equivariant strongly continuous weakly submersive map.

Proof
Except for the T n-equivariance, this is proved in [FOOO3, Section 7.1] and [FOOO2,
Section 29]. Below we explain how we choose our Kuranishi structure so that it is
T n-equivariant. We also include the case of the moduli space Mk+1,�(β) with interior
marked points.

We first review the construction of the Kuranishi neighborhood from [FOOO3,
Section 7.1] and [FOOO2, Section 29].
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Let x = ((
,  z), w) ∈ Mk+1,�(β). Let 
a be an irreducible component of 
. We
consider the operator

Dw,a∂ : W 1,p
(

a; w∗(T X); L,  za

) → W 0,p
(

a; w∗(T X) ⊗ �0,1

)
. (B.3)

Here W 1,p(
a; w∗(T X); L,  za) is the space of section v of w∗(T X) of W 1,p class
with the following properties:
(1) The restriction of v to ∂
a is in w∗(T L).
(2) Also,  za is the set of 
 which is either singular or marked. We assume that v

is zero at those points.
Here �0,1 is the bundle of (0, 1)-forms on 
a , and W 0,p(
a; w∗(T X) ⊗ �0,1) is the
set of sections of the W 0,p class of w∗(T X) ⊗ �0,1. Also, Dw,a∂ is the linearization
of (nonlinear) Cauchy-Riemann equations (see [Fo]). The operator (B.3) is Fredholm
by the ellipticity thereof.

We choose open subsets Wa of 
a whose closure is disjoint from the boundary of
each of the irreducible component 
a of 
 and from the singular points and marked
points. By the unique continuation theorem, we can choose a finite-dimensional subset
E0,a of C∞

0 (Wa; w∗T X) (the set of smooth sections of compact support in Wa) such
that

ImDw,a∂ + E0,a = W 0,p
(

a; w∗(T X) ⊗ �0,1

)
.

When x has nontrivial automorphisms, we choose
⊕

a E0,a to be invariant under the
automorphisms.

We next associate a finite-dimensional subspace E0,a((
,  z), w′) for w′ which
is “C0 close to w.” We need some care to handle the case where some component
(
a,  za) is not stable, that is, the case for which the automorphism group Ga of
(
a,  za) is of positive dimension. (Note that Ga is different from the automorphism
group of ((
a,  za), w|
a

). The latter group is finite.) We explain this choice of E0,1

below following [FO, Appendix].
For each unstable component 
a , pick points za,i ∈ 
 (i = 1, . . . , da) with the

following properties.

Condition B.8
We have the following:
(1) w is immersed at za,i ;
(2) za,i in the interior of 
a , za,i �= za,j for i �= j and za,i /∈  z;
(3) (
a; ( z ∩ 
a) ∪ (za,1, . . . , za,da

)) is stable;
(4) let 
 = 
(x) be the group of automorphisms of x = ((
,  z), w), so if γ ∈ 
,

γ (
a) = 
a′ , then da = da′ and {γ (za,i) | i = 1, . . . , da} = {za′,i ′ | i ′ =
1, . . . , da}.
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For each a, i, we choose a submanifold Na,i of codimension 2 in X that transversely
intersects with (
a, w) at wa(za,i). In relation to Condition B.8(4), we choose Na,i =
Na′,i ′ if γ (za,i) = za′,i ′ .

We add extra interior marked points {za,i | a, i} in addition to  z on (
,  z), and
obtain a stable curve (
,  z+) (namely,  z+ =  z $ {za,i | a, i}). (We choose an order of
the added marked points and fix it.)

We consider a neighborhood U0 of [
,  z+] in Mmain
k+1,�′ (i.e., the moduli space

of bordered stable curve of genus zero with k + 1 boundary and �′ interior marked
points). Let 
0 be the group of automorphisms of ((
,  z+), w). Now both 
 and 
0

are finite groups and 
 ⊇ 
0.
An element γ ∈ 
 induces an automorphism γ : 
 → 
, which fixes marked

points in  z and permutes � − �′ marked points {za,i | a, i} by Condition B.8(4).
Therefore, we obtain an element of [γ∗(
,  z+)] that is different from [
,  z+] only by
the reordering of marked points. We take the union of neighborhoods of [γ∗(
,  z+)]
for various γ ∈ 
 in Mmain

k+1,�′ and denote it by U.
The space U0 is written as V0/
0, where V0 is a manifold. Moreover, there exists

a manifold V on which 
 acts such that V/
0 = U, V/
 ∼= U0.
Furthermore, there is a “universal family” M → V, where the fiber 
(v) of

v ∈ V is identified with the bordered marked stable curve that represents the element
[v] ∈ V/
 ⊂ Mmain

k+1,�′ . There is a 
-action on M such that M → V is 
-equivariant.
By construction, each member 
(v) of our universal family is diffeomorphic to


 away from singularity. More precisely, we have the following.
Let 
0 = 
 \ S, where S is a small neighborhood of the union of the singular

point sets and the marked point sets. Then for each v there exists a smooth embedding
iv : 
0 → 
(v). The error of this embedding for becoming a biholomorphic map
goes to zero as v goes to zero. We may assume that v �→ iv is 
-invariant in an obvious
sense and that iv depends smoothly on v.

We may choose Wa so that Wa ⊂ 
0 for each a. Moreover, we assume that⊕
a E0,a is invariant under the 
-action in the following sense : if γ ∈ 
 and


a′ = γ (
a), then the isomorphism induced by γ sends E0,a to E0,a′ .
Now we consider a pair (w′, v) where

w′ :
(

(v), ∂
(v)

) → (X, L).

We assume the following.

Condition B.9
There exists ε > 0 depending only on x such that the following items hold:
(1) supx∈
0

dist
(
w′(iv(x)), w(x)

) ≤ ε;
(2) for any connected component Dc of 
(v) \ Im(iv), the diameter of w′(Dc) in

X (with a fixed Riemannian metric on it) is smaller than ε.
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For each point x ∈ Wa , we use the parallel transport to make the identification

Tw(x)X ⊗ �0,1
x (
) ≡ Tw′(iv(x))X ⊗ �

0,1
iv(x)

(

(v)

)
.

Using this identification, we obtain an embedding

I(v,w′) :
⊕

a

E0,a −→ w′∗(T X) ⊗ �0,1
(

(v)

)
.

Via this embedding I(v,w′), we consider the equation

∂w′ ≡ 0 mod
⊕

a

I(v,w′)(E0,a) (B.4)

together with the additional conditions

w′(za,i) ∈ Na,i . (B.5)

Let V (x) be the set of solutions of (B.4) and (B.5). This is a smooth manifold (with
boundary and corners) by the implicit function theorem and a gluing argument (see
[FOOO3, Section A1.4] and [FOOO2, Section A1.4] for the smoothness at boundary
and corner). Since we can make all the construction above invariant under the 
(x)-
action, the space V (x) has a 
(x)-action. (Note that we may choose Na,i so that
{Na,i | a, i} is invariant under the action of 
(x).)

The obstruction bundle E is the space
⊕

a E0,a at x and
⊕

a I(v,w′)(E0,a) at (v, w′).
We omit the construction of coordinate changes (see [FOOO3, Section 7.1] and

[FOOO2, Section 29], which in turn is similar to [FO, Section 15]).
The Kuranishi map is given by(

(
′,  z′), w′) �→ ∂w′ ∈
⊕

a

E0,a. (B.6)

We have thus finished our review of the construction of Kuranishi charts.
Now we assume that X has a T n-action, which preserves both the complex and

the symplectic structures on X. We also assume that L is a T n-orbit.
We want to construct a family of vector spaces (v, w′) �→ ⊕

a I(v,w′)(E0,a) so that
it is invariant under the T n-action. We need to slightly modify the above construction
for this purpose. In fact, it is not totally obvious to make Condition (B.5) T n-invariant.

For this purpose, we proceed in the following way. We fix a point p0 ∈ L and
consider an element

x ∈ ev−1
0 (p0) ∩ Mk+1,�(β).
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We are going to construct a T n-equivariant Kuranishi neighborhood of the T n-orbit of
x. Let v ∈ V and w′ : (
(v), ∂
(v)) → (X, L) be as before. We replace Condition
B.9 by the following.

Condition B.10
Let z0 be the zeroth boundary marked point, and let g ∈ T n be the unique element
satisfying w′(z0) = g(p0). There exists ε > 0 depending only on x such that
(1) supx∈
0

dist
(
w′(iv(x)), g(w(x))

) ≤ ε;
(2) for any connected component Dc of 
(v) \ Im(iv), the diameter of w′(Dc) in

X (with a fixed Riemannian metric on it) is smaller than ε.

Now we define an embedding

I(v,w′) :
⊕

a

E0,a −→ w′∗(T X) ⊗ �0,1
(

(v)

)
as follows. We first use the g-action to define an isomorphism

g∗ : Tw(x)X ⊗ �0,1
x (
) ∼= Tg(w(x))X ⊗ �0,1

x (
).

Then we use the parallel transport in the same way as before to define⊕
a

g∗(E0,a) −→ w′∗(T X) ⊗ �0,1
(

(v)

)
.

By composing the two we obtain the embedding I(v,w′). Now we consider the equation

∂w′ ≡ 0 mod
⊕

a

I(v,w′)(E0,a), (B.7)

together with the additional conditions

w′(za,i) ∈ g(Na,i) (B.8)

as before. Clearly, these equations are T n-invariant. It is also 
(x)-invariant.
Note that the automorphism group 
(x) of x of our Kuranishi structure, which is

a finite group, acts on the source while T n acts on the target. Therefore, it is obvious
that two actions commute.

By definition the obstruction bundle has a T n-action. Moreover, (B.6) is T n-
equivariant. It is fairly obvious from the construction that coordinate changes of the
constructed Kuranishi structure is also T n-equivariant.

The proof of Proposition B.7 is now complete. �
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Remark B.11
(1) From the above construction, it is easy to see that our T n-equivariant Kuranishi
structure is compatible with the gluing at the boundary marked points. Under the
embedding

Mk1+1(β1)ev0 ×evi
Mk2+1(β2) ⊂ Mk1+k2 (β1 + β2)

the restriction of the Kuranishi structure of the right-hand side coincides with the
fiber product of the Kuranishi structure of the left-hand side. More precisely, we can
construct the system of our Kuranishi structures so that this statement holds: this
Kuranishi structure is constructed inductively over the number of disc components
and the energy of β.

(2) On the other hand, when we construct the T n-invariant Kuranishi structure in
the way we described above, it may not be compatible with the gluing at the interior
marked point. By the embedding

M1(α) ×X Mk+1,1(β) ⊂ Mk+1(β + α) (B.9)

the restriction of the Kuranishi structure of the right-hand side may not coincide with
the fiber product of the Kuranishi structure of the left-hand side. This compatibility is
not used in this article and hence is not required (see Remark 11.4, where a similar
point is discussed for the choice of multisections).

However, contrary to the choice of multisections mentioned in Remark 11.4, we
note that it is possible to construct T n-equivariant Kuranishi structure compatible with
(B.9). Since we do not use this point in the article, we do not elaborate it here.

We next review the multisections (see [FO, Section 3]). Let (Vα, Eα, 
α, ψα, sα) be
a Kuranishi chart of M. For x ∈ Vα , we consider the fiber Eα,x of the bundle Eα

at x. We take its l copies and consider the direct product El
α,x . We take the quotient

thereof by the action of symmetric group of order l!, and let Sl(Eα,x) be the quotient
space. There exists a map tmm : Sl(Eα,x) → Slm(Eα,x), which sends [a1, . . . , al] to
[ a1, . . . , a1︸ ︷︷ ︸

m copies

, . . . , al, . . . , al︸ ︷︷ ︸
m copies

]. A smooth multisection s of the bundle Eα → Vα consists

of an open covering
⋃

i Ui = Vα and si which maps x ∈ Ui to si(x) ∈ Sli (Eα,x).
They are required to have the following properties.

Condition B.12
(1) The open set Ui is 
α-invariant, and the map si is 
α-equivariant. (We note that

there exists an obvious map γ : Sli (Eα,x) → Sli (Eα,γ x) for each γ ∈ 
α .)



LAGRANGIAN FLOER THEORY ON COMPACT TORIC MANIFOLDS, I 163

(2) If x ∈ Ui ∩ Uj , then we have

tmlj

(
si(x)

) = tmli

(
sj (x)

) ∈ Sli lj (Eα,γ x).

(3) Also, si is liftable and smooth in the following sense. For each x there exists a
smooth section s̃i of Eα ⊕ · · · ⊕ Eα︸ ︷︷ ︸

li times

in a neighborhood of x such that

s̃i(y) = (
si,1(y), . . . , si,li (y)

)
, si(y) = [si,1(y), . . . , si,li (y)]. (B.10)

We identify two multisections ({Ui}, {si}, {li}), ({U ′
i }, {s ′i}, {l′i}) if

tmli

(
si(x)

) = tml′j

(
s ′j (x)

) ∈ Sli l
′
j (Eα,γ x)

on Ui ∩ U ′
j . We say that si,j is a branch of si in the situation of (B.10).

We next prove the following lemma, which we use in Section 11.

LEMMA B.13
Let M have a T n-action and a T n-equivariant Kuranishi structure. Suppose that the
T n-action on each of the Kuranishi neighborhood is free. Then we can descend the
Kuranishi structure to M/T n in a canonical way.

Proof
Let (Vα, Eα, 
α, ψα, sα) be a Kuranishi chart. Since the T n-action on Vα is free, Vα/T n

is a smooth manifold and Eα/T n → Vα/T n is a vector bundle. Since the 
α-action
commutes with the T n-action, it follows that it acts on this vector bundle. The T n-
equivariance of sα implies that we have a section sα of Eα/T n → Vα/T n. Moreover,
since ψα : s−1

α (0) → M is T n-equivariant, it induces a map s−1
α (0) → M/T n. Thus

we obtain a Kuranishi chart. It is easy to define the coordinate changes. �

Definition B.14
In the situation of Lemma B.13, we say that a system of multisections of the Kuranishi
structure of M is T n-equivariant if it is induced from the multisection of the Kuranishi
structure on M/T n in an obvious way.

COROLLARY B.15
In the situation of Lemma B.13, we assume that we have a T n-equivariant multisection
at the boundary of M, which is transversal to zero. Then it extends to a T n-equivariant
multisection of M.
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This is an immediate consequence of [FO, Lemma 3.14], that is, the nonequivariant
version.

C. Smooth correspondence via the zero set of multisection
In this section, we explain the way we use the zero set of multisection to define smooth
correspondence, when appropriate submersive properties are satisfied.

Such a construction is a special case of the techniques of using a continuous
family of multisections and integration along the fiber on their zero sets so that a
smooth correspondence by the space with Kuranishi structure induces a map between
the de Rham complex.

This (more general) technique is not new and is known to some experts. In fact,
[R] and [F3, Section 16] use a similar technique and [FOOO3, Section 7.5], [FOOO2,
Section 33], [F4], and [F5] contain the details of this more general technique.

We explain the special case (namely, the case in which we use a single multisec-
tion) in our situation of toric manifolds for the sake of completeness and the reader’s
convenience.

Let M be a space with Kuranishi structure and evs : M → Ls , evt : M →
Lt be strongly continuous smooth maps (here s and t stand for source and target,
respectively). We assume that our smooth manifolds Ls, Lt are compact and oriented
without boundary. We also assume that M has a tangent bundle and is oriented in the
sense of Kuranishi structure.

Suppose that Lt has a free and transitive T n-action and that Ls and M have
T n-action. We assume that the Kuranishi structure on M is T n-equivariant and that
the maps evs , evt are T n-equivariant.

Let {(Vα, Eα, 
α, ψα, sα)} be a T n-equivariant Kuranishi coordinate system (good
coordinate system) of M. We use Corollary B.15 to find a T n-equivariant (system) of
multisection sα : Vα → Eα that is transversal to zero.

Let θα be a smooth differential form of compact support on Vα . We assume that
θα is 
α-invariant. Let fα : Vα → Ls be a 
α-equivariant submersion. (The 
α-action
on Ls is trivial.) We next define integration along the fiber:(

(Vα, Eα, 
α, ψα, sα), sα, fα

)
∗(θα) ∈ �deg θα+dim Lt−dim M(Lt ).

We first fix α. Let (Ui, sα,i) be a representative of sα (namely, {Ui | i ∈ I } is an
open covering of Vα , and sα is represented by sα,i on Ui). By the definition of the
multisection, Ui is 
α-invariant. We may shrink Ui , if necessary, so that there exists a
lifting s̃α,i = (s̃α,i,1, . . . , s̃α,i,li ) as in (B.10).

Let {χi | i ∈ I } be a partition of unity subordinate to the covering {Ui | i ∈ I }.
By replacing χi with its average over 
α , we may assume that χi is 
α-invariant.
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We put

s̃−1
α,i,j (0) = {

x ∈ Ui

∣∣ s̃α,i,j (x) = 0
}
. (C.1)

By assumption, s̃−1
α,i,j (0) is a smooth manifold. Since the T n-action on Lt is free and

transitive it follows that

evt,α|s̃−1
α,i,j (0) : s̃−1

α,i,j (0) → Lt (C.2)

is a submersion.

Definition C.1
We define a differential form on Lt by(

(Vα, Eα, 
α, ψα, sα), sα, evt,α

)
∗(θα)

= 1

#
α

I∑
i=1

li∑
j=1

1

li
(evt,α)!

(
χiθα|s̃−1

α,i,j (0)

)
.

(C.3)

Here (evt,α)! is the integration along the fiber of the smooth submersion (C.2).

LEMMA C.2
The right-hand side of (C.3) depends only on (Vα, Eα, 
α, ψα, sα), sα , evt,α , and θα

but is independent of
(1) the choice of representatives ({Ui}, sα,i) of sα;
(2) the partition of unity χi .

Proof
The proof is straightforward generalization of the proof of well-definedness of inte-
gration on the manifold, which can be found in any textbook on manifold theory and
is left to the reader. �

So far we have been working on one Kuranishi chart (Vα, Eα, 
α, ψα, sα). We next
describe the compatibility conditions of multisections for various α. During the con-
struction, we need to shrink Vα slightly several times; we do not explicitly mention
this point henceforth.

Let α1 < α2. For α1 < α2, we take the normal bundle NVα2 ,α1
Vα2 of ϕα2,α1 (Vα2,α1 )

in Vα2 . We use an appropriate 
α2 -invariant Riemannian metric on Vα2 to define the
exponential map

Expα2,α1
: BεNVα2 ,α1

Vα2 → V2. (C.4)

(Here BεNVα2 ,α1
Vα2 is the ε-neighborhood of the zero section of NVα2 ,α1

Vα2 .)
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Using Expα2,α1
, we identify BεNVα2 ,α1

Vα2/
α1 to an open subset of Vα1/
α1 and
denote it by Uε(Vα2,α1/
α1 ).

Using the projection

PrVα2 ,α1
: Uε(Vα2,α1/
α1 ) → Vα2,α1/
α1

we extend the orbibundle Eα1 to Uε(Vα2,α1/
α1 ). Also we extend the embedding
Eα1 → ϕ̂∗

α2,α1
Eα2 , (which is induced by ϕ̂α2,α1 ) to Uε(Vα2,α1/
α1 ).

We fix a 
α-invariant inner product of the bundles Eα . We then have a bundle
isomorphism

Eα2
∼= Eα1 ⊕

ϕ̂∗
α2,α1

Eα2

Eα1

(C.5)

on Uε(Vα2,α1/
α1 ). We can use Condition B.3 to modify Expα2,α1
in (C.4) so that the

following is satisfied.

Condition C.3
If y = Expα2,α1

(ỹ) ∈ Uε(Vα2,α1/
α1 ), then

dsα2 (ỹ mod T Vα1 ) ≡ sα2 (y) mod Eα1 . (C.6)

Let us explain the notation of (C.6). We note that ỹ ∈ Tϕα2 ,α1 (x)Vα2 for x = Pr(ỹ) ∈
Vα2,α1 . Hence

ỹ mod T Vα1 ∈ Tϕα2 ,α1 (x)Vα2

TxVα1

.

Therefore,

dsα2 (ỹ mod T Vα1 ) ∈
(Eα2 )ϕα2 ,α1 (x)

(Eα1 )x
.

Note that (C.6) claims that it coincides with sα2 modulo (Eα1 )x .
We note that Condition B.3 implies that

[ỹ] �→ dsα2 (ỹ mod T Vα1 ) :
Tϕα2 ,α1 (x)Vα2

TxVα1

−→ (Eα2 )ϕα2 ,α1 (x)

(Eα1 )x

is an isomorphism. Therefore, we can use the implicit function theorem to modify
Expα2,α1

so that Condition C.3 holds.
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Definition C.4
A multisection sα2 of Vα2 is said to be compatible with sα1 if the following holds for
each y = Expα2,α1

(ỹ) ∈ Uε(Vα2,α1/
α1 ):

sα2 (y) = sα1

(
Pr(ỹ)

)⊕ dsα2 (ỹ mod T Vα1 ). (C.7)

We note that sα1 (w, Pr(ỹ)) is a multisection of π∗
α1

Eα1 and dsα2 (ỹ mod T Vα1 ) is a
(single-valued) section. Therefore, via the isomorphism (C.5), the right-hand side of
(C.7) defines an element of Sli (Eα2 )x (x = Pr(ỹ)), and hence it is regarded as a
multisection of π∗

α2
Eα2 . In other words, we omit ϕ̂α2,α1 in (C.7).

We next choose a partition of unity χα subordinate to our Kuranishi charts. To de-
fine the notion of partition of unity, we need some notation. Let Prα2,α1 : NVα2 ,α1

Vα2 →
Vα2,α1 be the projection. We fix a 
α1 -invariant positive definite metric of NVα2 ,α1

Vα2 ,
and we let rα2,α1 : NVα2 ,α1

Vα2 → [0,∞) be the norm with respect to this metric. We
fix a sufficiently small δ, and we let χδ : R → [0, 1] be a smooth function such that

χδ(t) =
{

0 t ≥ δ,

1 t ≤ δ/2.

Let Uδ(Vα2,α1/
α1 ) be the image of the exponential map. In other words,

Uδ(Vα2,α1/
α1 ) =
{
Exp(v)

∣∣ v ∈ NVα2 ,α1
Vα2/
α1

∣∣ rα2,α1 (v) < δ
}
.

We push out our function rα2,α1 to Uδ(Vα2,α1/
α1 ) and denote it by the same symbol.
We call rα2,α1 a tubular distance function. We require rα2,α1 to satisfy the compatibility
conditions for various tubular neighborhoods and tubular distance functions, which
are formulated in [Ma, Sections 5, 6].

Let x ∈ Vα . We put

Ax,+ = {α+ | x ∈ Vα+,α, α+ > α},
Ax,− = {

α−
∣∣ [x mod 
α] ∈ Uδ(Vα,α−/
α−), α− < α

}
.

For α− ∈ Ax,−, we take xα− such that Exp(xα−) = x.

Definition C.5
A system {χα | α ∈ A} of 
α-equivariant smooth functions χα : Vα → [0, 1] of
compact support is said to be a partition of unity subordinate to our Kuranishi chart if

χα(x) +
∑

α−∈Ax,−

χδ
(
rα,α−(xα−)

)
χα−

(
Prα,α−(xα−)

)+ ∑
α+∈Ax,+

χα+

(
ϕα+,α(x)

) = 1.
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LEMMA C.6
There exists a partition of unity subordinate to our Kuranishi chart. We may choose
them so that they are T n-equivariant.

Proof
We may assume that A is a finite set since M is compact. By shrinking Vα if necessary,
we may assume that there exists V −

α such that V −
α is a relatively compact subset of

Vα and that Eα , ϕα2,α1 , sα , and so forth restricted to V −
α still defines a good coordinate

system. We take a 
α-invariant smooth function χ ′
α on Vα , which has compact support

and satisfies χ ′
α = 1 on V −

α . We define

hα(x) = χ ′
α(x) +

∑
α−∈Ax,−

χδ
(
rα,α−(xα−)

)
χ ′

α−

(
Prα,α−(xα−)

)+ ∑
α+∈Ax,+

χ ′
α+

(
ϕα+,α(x)

)
.

Using compatibility of tubular neighborhoods and tubular distance functions, we can
show that hα is 
α-invariant and that

hα2

(
ϕα2,α1 (x)

) = hα1 (x)

if x ∈ Vα2,α1 . Therefore,

χα(x) = χ ′
α(x)/hα(x)

has the required properties. �

Now we consider the situation we start with; namely, we have two strongly continuous
T n-equivariant smooth maps

evs : M → Ls, evt : M → Lt

and evt is weakly submersive. (In fact, T n-action on Lt is transitive and free.)
Let a differential form h on Ls be given. We choose a T n-equivariant good

coordinate system {(Vα, Eα, 
α, ψα, sα)} of M and a T n-equivariant multisection
represented by {sα} in this Kuranishi chart. Assume that the multisection is transversal
to zero.

We also choose a partition of unity {χα} subordinate to our Kuranishi chart. Then
we put

θα = χα(evs,α)∗h, (C.8)

which is a differential form on Vα .
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Definition C.7
Define

(M; evs, evt )∗(h) =
∑

α

(
(Vα, 
α, Eα, ψα, sα), sα, evt,α

)
∗(θα). (C.9)

This is a smooth differential form on Lt . It is T n-equivariant if h is T n-equivariant.

Remark C.8
(1) Actually, the right-hand side of (C.9) depends on the choice of

(Vα, Eα, 
α, ψα, sα), sα . We write s to demonstrate this choice and write
(M; evs, evt , s)∗(h).

(2) The right-hand side of (C.9) is independent of the choice of partition of unity.
The proof is similar to the well-definedness of integration on manifolds.

In case M has a boundary ∂M, the choices (Vα, Eα, 
α, ψα, sα), sα on M induce one
for ∂M. We then have the following.

LEMMA C.9 (Stokes’s theorem)
We have

d
(
(M; evs, evt , s)∗(h)

) = (M; evs, evt , s)∗(dh) + (∂M; evs, evt , s)∗(h). (C.10)

We discuss the sign at the end of this section.

Proof
Using the partition of unity χα it suffices to consider the case when M has only one
Kuranishi chart Vα . We use the open covering Ui of Vα and the partition of unity again
to see that we need only to study on one Ui . In that case, (C.10) is immediate from
the usual Stokes’s formula. �

We next discuss composition of smooth correspondences. We consider the following
situation. Let

evs;st : Mst → Ls, evt ;st : Mst → Lt

be as before such that T n-action on Lt is free and transitive. Let

evr;rs : Mrs → Lr, evs;rs : Mrs → Ls
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be a similar diagram such that T n on Ls is free and transitive. Using the fact that evs;rs

is weakly submersive, we define the fiber product

Mrs evs;rs ×evs;st Mst

as a space with Kuranishi structure. We write it as Mrt . We have a diagram of strongly
continuous smooth maps

evr;rt : Mrt → Lr, evt ;rt : Mrt → Lt .

We next make choices sst , srs for Mst and Mrs . It is easy to see that it determines
a choice srt for Mrt .

Now we have the following.

LEMMA C.10 (Composition formula)
We have the following formula for each differential form h on Lr .

(Mrt ; evr;rt , evt ;rt , s
rt )∗(h)

= (
(Mst ; evs;st , evt ;st , s

st )∗ ◦ (Mrs ; evr;rs , evs;rs , s
rs)∗

)
(h).

(C.11)

Proof
Using a partition of unity it suffices to study locally on Mrs , Mst . In that case it
suffices to consider the case of usual manifold, which is well known. �

Finally, we discuss the signs in Lemmas C.9 and C.10. It is rather cumbersome to
fix appropriate sign conventions and show those lemmas with signs. So, instead,
we use the trick of [FOOO3, Section 8.10.3] and [FOOO2, Section 53.3] (see also
[F5, Section 13]) to reduce the orientation problem to the case already discussed in
[FOOO3, Chapter 8] and [FOOO2, Chapter 9], as follows.

The correspondence h �→ (M; evs, evt , s)∗(h) extends to the currents h that
satisfy appropriate transversality properties about its wave-front set (see [Hm]). We
can also represent the smooth form h by an appropriate average (with respect to certain
smooth measure) of a family of currents realized by smooth singular chains. So, as
far as sign concerns, it suffices to consider a current realized by a smooth singular
chain. Then the right-hand side of (C.3) turns out to be a current realized by a smooth
singular chain which is obtained from a smooth singular chain on Ls by a transversal
smooth correspondence. In fact, we may assume that all the fiber products appearing
here are transversal, since it suffices to discuss the sign in the generic case. Thus the
problem reduces to finding a sign convention (and orientation) for the correspondence
of the singular chains by a smooth manifold. In the situation of our application, such
sign convention (singular homology version) was determined and analyzed in detail in
[FOOO3, Chapter 8] and [FOOO2, Chapter 9]. Especially, existence of an appropriate
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orientation that is consistent with the sign appearing in A∞ formulas and so forth was
proved there. Therefore, we can prove that there is a sign (orientation) convention
which induces all the formulas we need with sign, in our de Rham version, as well
(see [FOOO3, Section 8.10.3] and [FOOO2, Section 53.3] or [F5, Section 13] for the
details).
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