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Lifetime of dynamical heterogeneity in a highly supercooled liquid
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We numerically examine dynamical heterogeneity in a highly supercooled three-dimensional liquid via
molecular-dynamics simulations. To define the local dynamics, we consider two time intervals: �� and �ngp. ��

is the � relaxation time, and �ngp is the time at which non-Gaussian parameter of the Van Hove self-correlation
function is maximized. We determine the lifetimes of the heterogeneous dynamics in these two different time
intervals, �hetero���� and �hetero��ngp�, by calculating the time correlation function of the particle dynamics, i.e.,
the four-point correlation function. We find that the difference between �hetero���� and �hetero��ngp� increases
with decreasing temperature. At low temperatures, �hetero���� is considerably larger than ��, while �hetero��ngp�
remains comparable to ��. Thus, the lifetime of the heterogeneous dynamics depends strongly on the time
interval.

DOI: 10.1103/PhysRevE.82.030501 PACS number�s�: 64.70.P�, 61.20.Lc, 61.43.Fs

One of the long-unresolved problems in materials science
is the glass transition �1,2�. In spite of the extremely wide-
spread use of glass in industry, the formation process and
dynamical properties of this material are still poorly under-
stood. Numerous studies have attempted to explain the fun-
damental mechanisms of the slowing of the dynamics ob-
served in fragile glass �i.e., the sharp increase in viscosity in
the vicinity of the glass transition�. However, the physical
mechanisms behind the glass transition have not been suc-
cessfully identified.

Recently, dynamical heterogeneities in glass-forming liq-
uids have attracted much attention. In a system displaying
dynamical heterogeneity, the dynamic characteristics �i.e.,
particle displacements and local structural relaxations� are
nonuniformly distributed throughout space. Dynamical het-
erogeneities have been detected and visualized through simu-
lations of soft-sphere systems �3–8�, hard-sphere systems
�9�, Lennard-Jones �LJ� systems �10�, and experiments
�11,12�. Insight into the mechanisms of dynamical heteroge-
neities will lead to a better understanding of the slowing of
the dynamics near the glass transition.

Conventional two-point density correlation functions are
not informative when applied to the investigation of dynami-
cal heterogeneities. We need to examine the correlation of
the particle dynamics, not just snapshots. We can quantify
the correlation length � of the heterogeneous dynamics by
calculating the four-point correlation functions, which corre-
spond to the static structure factor of the particle dynamics.
Several simulations �5,13–15�, experiments �16,17�, and
mode-coupling theory �18� have estimated � in terms of the
four-point correlation functions and revealed that � increases
with decreasing temperature. In addition, we can quantify the
lifetime �hetero of the heterogeneous dynamics by employing
the multiple time extension of the four-point correlation
functions �i.e., the multitime correlation functions�, which
correspond to the time correlation functions of the particle
dynamics. �hetero has been measured in terms of the multitime

correlation functions by simulations �5,6,19–21� and experi-
ments �16,22,23�. It was reported that �hetero increases dra-
matically with decreasing temperature and can become
greater than the � relaxation time near the glass transition.

In 2009, Kim and Saito �20,21� investigated the correla-
tions between the heterogeneous dynamics at various time
intervals. They calculated the sum of the time correlation
functions for the heterogeneous dynamics at these time inter-
vals and determined the lifetime of the heterogeneous dy-
namics as a characteristic time at which the sum of correla-
tion functions decays.

In this Rapid Communication, we demonstrate via
molecular-dynamics �MD� simulations that the lifetime of
the heterogeneous dynamics depends strongly on the time
interval. To define the local dynamics, we consider two time
intervals: the � relaxation time �� and the time �ngp at which
the non-Gaussian parameter of the Van Hove self-correlation
function is maximized. We estimate the lifetimes of the het-
erogeneous dynamics in these two different time intervals,
�hetero���� and �hetero��ngp�, by calculating the time correlation
function of the particle dynamics. Finally, we compare the
two lifetimes.

The conventional two-point correlation function F�k , t�
represents the correlation of the local fluctuations �n�k , t� in
some order parameter, such as the particle density. �n�k , t� is
the Fourier component k of the fluctuations at the time t, and
F�k , t�= ��n�k , t��n�−k ,0��, where k= �k�. The two-point cor-
relation function can describe the particle dynamics in the
time interval �0, t�, averaged over the initial time and space.
As the time interval t increases, F�k , t� decays in the
stretched exponential form,

F�k,t�
F�k,0�

� exp	− 
 t

��k�
��� , �1�

where ��k� is the relaxation time of the two-point correlation
function, which represents the characteristic time scale of the
averaged particle dynamics. To examine the lifetime of spa-
tially heterogeneous dynamics, we have to calculate the time
correlation function of the local fluctuations �Qk�q , t0 , t� in
the particle dynamics. �Qk�q , t0 , t� is the Fourier component
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q of the fluctuations in the particle dynamics associated with
a microscopic wave number k in the time interval �t0 , t0+ t�.
F�k , t� is equal to Qk�q , t0 , t� averaged over the initial time t0
and space, i.e., F�k , t���Qk�q , t0 , t��. The time correlation
function defined by

F4,k�q,ts,t� = ��Qk�q,ts + t,t��Qk�− q,0,t�� �2�

represents the correlation of particle dynamics between the
two time intervals �0, t� and �ts+ t , ts+2t�. ts is the time
separation between the two time intervals �0, t� and
�ts+ t , ts+2t�, as is schematically illustrated in Fig. 1.
F4,k�q , ts , t� is the multiple time extension of the four-point
correlation function �20,21�. As the time separation ts in-
creases, F4,k�q , ts , t� with fixed t decays in the stretched ex-
ponential form,

F4,k�q,ts,t�
F4,k�q,0,t�

� exp	− 
 ts

�4,k�q,t��
c� , �3�

where �4,k�q , t� is the relaxation time of the correlation of the
particle dynamics. We determined the lifetime of the hetero-
geneous dynamics �hetero�t� as �4,k�q , t� at q=0.38, the small-
est wave number in our simulation.

To calculate the time correlation function of the particle
dynamics, we performed MD simulations in three dimen-
sions on binary mixtures of two different atomic species 1
and 2, with N1=N2=5000 particles and a cube of constant
volume V as the basic cell, surrounded by periodic boundary
image cells. The particles interact via the soft-sphere poten-
tials vab�r�=���ab /r�12, where r is the distance between two
particles, �ab= ��a+�b� /2, and a ,b�1,2. The interaction
was truncated at r=3�ab. In the present Rapid Communica-
tion, the following dimensionless units were used: length, �1;
temperature, � /kB; and time, �0= �m1�1

2 /��. The mass ratio
was m2 /m1=2, and the diameter ratio was �2 /�1=1.2. This
diameter ratio avoided system crystallization and ensured
that an amorphous supercooled state formed at low
temperatures �24�. The particle density was fixed at the high
value of 	= �N1+N2��1

3 /V=0.8. The system length was
L=V1/3=23.2�1. Simulations were carried out at T=0.772,
0.473, 0.352, 0.306, 0.289, 0.267, and 0.253. Note that the
freezing point of the corresponding one-component model is
around T=0.772 �
eff=1.15� �24�. Here, 
eff is the effective
density, a single parameter characterizing this model. At
T=0.253 �
eff=1.52�, the system is in a highly supercooled
state. We used the leapfrog algorithm with time steps of
0.005�0 when integrating the Newtonian equation of
motion. At each temperature, the system was equilibrated
in the canonical condition. Very long annealing times
�3�106 for T=0.253� were chosen. No appreciable aging
effect was detected in various quantities, including the pres-

sure or the density correlation function. Once equilibrium
was established, data were taken in the microcanonical con-
dition. The length of the data collection runs was at least 50
times � relaxation time �� �1031000�� for T=0.772 and
5�10650�� for T=0.253�.

To define the local dynamics, we consider the two time
intervals �� and �ngp. �� is the � relaxation time defined by
Fs�km ,���=e−1, where Fs�k , t� is the self-part of the density
time correlation function for particle species 1, and km=2� is
the first peak wave number of the static structure factor. �ngp
is the time at which the non-Gaussian parameter �25� of the
Van Hove self-correlation function is maximized. In Fig. 2,
we show �� and �ngp as functions of the inverse temperature
1 /T. ���ngp at T=0.306, and �� grows exponentially larger
than �ngp with decreasing temperature at T0.306. This
trend agrees with other simulation results of LJ systems
�26,27�. Next, we visualize the heterogeneous dynamics of
�� and �ngp in the same manner presented in Ref. �6�. We
calculate the displacement of each particle of species 1
in the time interval �t0 , t0+ t�, �r j�t0 , t�=r j�t0+ t�−r j�t0�
�j=1,2 , . . . ,N1�. In Fig. 3, particles are drawn as spheres
with radii
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FIG. 1. �Color� Schematic illustration of two time intervals and
their time separation.
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FIG. 2. ��, �ngp versus the inverse temperature 1 /T. We use
these two time intervals to define the local dynamics.

� � � � � �

FIG. 3. �Color� Visualization of the heterogeneous dynamics of
particle species 1. The temperature is 0.253. The time intervals are
�t0 , t0+��� in �a� and �t0 , t0+�ngp� in �b�. The radii of the spheres are
��r j�t0 , t��2 / ���r j�t0 , t��2�, and the centers are at 1

2 �r j�t0�+r j�t0+ t��.
The red and blue spheres represent ��r j�t0 , t��2 / ���r j�t0 , t��2��1
and ��r j�t0 , t��2 / ���r j�t0 , t��2�1, respectively.
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aj
2�t0,t� =

��r j�t0,t��2

���r j�t0,t��2�
, �4�

located at R j�t0 , t�= 1
2 �r j�t0�+r j�t0+ t�� in both time intervals:

�t0 , t0+��� �t=��� in Fig. 3�a� and �t0 , t0+�ngp� �t=�ngp� in
Fig. 3�b�. The temperature is 0.253. aj

2�t0 , t��1
�aj

2�t0 , t�1� means that the particle j moves more �less�
than the mean value of the single-particle displacement. In
Fig. 3, the red �blue� spheres represent aj

2�t0 , t��1
�aj

2�t0 , t�1�. We can see the large-scale heterogeneities in
both �� and �ngp.

We can quantify the lifetimes of the heterogeneous dy-
namics in both time intervals. We consider the local fluctua-
tions in the particle dynamics defined by

�D�q,t0,t� = �
j=1

N1

�aj
2�t0,t� − 1�exp�− iq · R j�t0,t�� , �5�

which is equal to the fluctuations in the diffusivity density
defined in Ref. �6� and represents the local fluctuations in the
particle dynamics in the time interval �t0 , t0+ t�. We use
�D�q , t0 , t� as �Qk�q , t0 , t� in Eq. �2�, and the time correlation
function defined by

SD�q,ts,t� = ��D�q,ts + t,t��D�− q,0,t�� �6�

corresponds to F4,k�q , ts , t�. SD�q , ts , t� represents the correla-
tion of the particle dynamics between two time intervals
�0, t� and �ts+ t , ts+2t� �see Fig. 1�. Thus, we can estimate the
lifetime of the heterogeneous dynamics by examining the
time decay of SD�q , ts , t�. As the time separation ts increases,
SD�q , ts , t� with fixed t decays in the stretched exponential
form,

SD�q,ts,t�
SD�q,0,t�

� exp	− 
 ts

�h�q,t��
c� , �7�

where �h�q , t� is the wave-number-dependent heterogeneous
dynamics lifetime, which corresponds to �4,k�q , t� in Eq. �3�.
Figure 4 shows the time decay of SD�q , ts , t� at t=��,
q=0.38 for various temperatures. q=0.38 is the smallest
wave number in our simulation. In Fig. 5, we show the wave
number dependence of �h�q , t� at t=��. �h�q ,��� depends on

q more weakly than the q-dependent relaxation time of the
two-point density correlation functions and dramatically in-
creases with decreasing temperature in a wide region of q
�q=0.38–19�. Furthermore, we can see that �h�q ,��� ap-
proaches �h�q ,����q−a �0a�2� at small q. This suggests
that the heterogeneous dynamics may migrate in space with a
diffusionlike mechanism. These results of �h�q ,��� are quali-
tatively the same as those of �h�q ,�ngp�.

We determined the lifetime of the heterogeneous dynam-
ics �hetero�t� as �h�q , t� at q=0.38, which is the time separa-
tion ts at which SD�q , ts , t� /SD�q ,0 , t� at q=0.38 equals e−1 in
Fig. 4. �hetero�t� increases dramatically with decreasing tem-
perature. We plot �hetero�t� versus �� in Fig. 6, which shows
that �hetero�������

1.08�0.02 and �hetero��ngp����
0.91�0.03. The

difference between �hetero���� and �hetero��ngp� increases with
decreasing temperature. At T=0.253, �hetero����7.8�� and
�hetero��ngp�1.4��. Therefore, �hetero���� is considerably
larger than ��, while �hetero��ngp� is comparable to ��. The
existence of a slower time scale in the heterogeneous dynam-
ics is consistent with Refs. �20,21�.
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FIG. 4. The time decay of SD�q , ts , t� at t=��, q=0.38 for
T=0.772–0.253. q=0.38 is the smallest wave number in our simu-
lation. Temperature decreases going right.
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FIG. 5. The wave number dependence of �h�q , t� at t=�� for
T=0.772–0.253. Temperature decreases going up. The error bars
represent the standard deviations of averaging data over initial
times. The dotted line is �h�q ,����q−2.
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FIG. 6. The lifetime �hetero�t� for t=��, �ngp versus ��. The error
bars represent the standard deviations of averaging data over initial
times. The line �hetero���

1.08�0.02 is fitted for t=��, while the line
�hetero���

0.91�0.03 is fitted for t=�ngp.
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Finally, we examine the finite-size effect. To this end, we
performed MD simulations using a larger system with
N1=N2=50 000 and L=50�1 and compared our results with
those of a larger system. No finite-size effect was detected in
quantities such as ��, �ngp, or �hetero.

In summary, we have investigated the heterogeneous dy-
namics in two different time intervals �� and �ngp. We quan-
tified the lifetimes of the heterogeneous dynamics in these
two intervals, �hetero���� and �hetero��ngp�, by calculating the

time correlation function of the particle dynamics. We found
that the difference between �hetero���� and �hetero��ngp� in-
creases with decreasing temperature. At low temperatures,
�hetero���� is considerably larger than ��, while �hetero��ngp�
remains comparable to ��. Thus, we can conclude that the
lifetime of the heterogeneous dynamics depends strongly on
the time interval. We also have examined the finite-size ef-
fect. No finite-size effect was detected in our study.
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