
                                    
 

 

 

DOTTORATO DI RICERCA IN  

AREA DEL FARMACO E TRATTAMENTI INNOVATIVI 
 

CICLO XXXIII 

 

 

 

COORDINATORE Prof.ssa CARLA GHELARDINI 

 

 

 

Brain histamine as a gateway for the improvement of  

stress-induced maladaptive behaviours and 

 social memory 
  

 

 

 

 

Settore Scientifico Disciplinare BIO/14 

 

 

 

 

 Dottorando  Tutore 

 Dott. Barbara Rani                                                 Prof.ssa Maria Beatrice Passani 

 

 

 

 

Coordinatore 

Prof.ssa Carla Ghelardini 

 

 

 

 

 

 

 

Anni 2017/2020 

  



2 
 

Index 

Abstract ..................................................................................................................................... 4 

Social behaviour: From social stress to social memory ........................................................ 7 

Stress: social behaviour and resilience ................................................................................... 8 

Definition and neurobiology of stress .................................................................................... 8 

Social stress ............................................................................................................................ 9 

Chronic stress paradigms in rodents ................................................................................. 10 

Chronic social defeat stress. .............................................................................................. 11 

Crowding and isolation ..................................................................................................... 13 

Chronic restraint stress ...................................................................................................... 14 

Social instability ................................................................................................................ 14 

Individual variability in the social behaviour response to stress e resilience vs. 

vulnerability ...................................................................................................................... 16 

Stress impact on memory function ................................................................................... 17 

Can a diet modulate social-stress induced effects? ............................................................. 20 

Polyunsaturated fatty acids (PUFAs) ................................................................................... 20 

Brain Omega-3 PUFAs ..................................................................................................... 21 

Neuroinflammation ........................................................................................................... 23 

Cognition ........................................................................................................................... 26 

Mood and stress ................................................................................................................ 27 

Vitamin A ............................................................................................................................. 28 

Brain Vitamin A ................................................................................................................ 31 

Neuroinflammation ........................................................................................................... 32 

Cognition ........................................................................................................................... 32 

Interaction between Omega-3 PUFAs and vitamin A .......................................................... 34 

Fatty acids ‘derivatives: Oleoylethanolamide ...................................................................... 35 

Can brain histamine modulate social-stress induced effects? ............................................ 39 

Anatomic Framework ........................................................................................................... 39 

Histaminergic Receptors ....................................................................................................... 41 

Histamine H1 Receptor ...................................................................................................... 41 

Histamine H2 Receptor ...................................................................................................... 42 

Histamine H3 Receptor ...................................................................................................... 42 

Histamine H4 Receptor ...................................................................................................... 43 

Homeostatic Histaminergic Functions.................................................................................. 44 

Sleep and Wakefulness ..................................................................................................... 44 



3 
 

Feeding and Energy Metabolism ...................................................................................... 45 

Cognitive functions of brain histamine ................................................................................ 46 

Fear memory ......................................................................................................................... 47 

How to evaluate fear memory in rodents: most widely used paradigms .......................... 48 

Does histamine have a role in aversive memory? ............................................................. 49 

Recognition memory ............................................................................................................ 49 

How to evaluate recognition memory in rodents: most widely used paradigms .............. 50 

Does histamine have a role in recognition memory? ........................................................ 51 

Social memory ...................................................................................................................... 52 

How to evaluate social memory in rodents: most widely used paradigms ....................... 54 

Does histamine have a role in social memory? ................................................................. 55 

Interaction between the histaminergic and cholinergic system ............................................ 56 

Aim of the study ...................................................................................................................... 59 

Part I: Preventing adolescent stress-induced cognitive changes by diet ........................... 61 

Materials and Methods ......................................................................................................... 61 

Results .................................................................................................................................. 67 

Conclusions: Part I................................................................................................................ 75 

Part IIa: Role of brain histamine in the effects of a diet to prevent social defeat stress-

induced cognitive and neuropsychologic modifications ...................................................... 77 

Material and Methods ........................................................................................................... 77 

Results .................................................................................................................................. 84 

Part IIb: Brain histamine and oleoylethanolamide restore behavioural deficits induced 

by chronic social stress in mice. ............................................................................................ 94 

Materials and Methods ......................................................................................................... 94 

Results .................................................................................................................................. 99 

Conclusion: Part II .............................................................................................................. 108 

Part III: Brain histamine is necessary for long-term but not short-term social memory

 ................................................................................................................................................ 112 

Materials and methods ........................................................................................................ 112 

Results ................................................................................................................................ 115 

Conclusion: part III ............................................................................................................. 126 

Discussion .............................................................................................................................. 128 

References ............................................................................................................................. 132 

 



 

4 
 

     Abstract 

Abstract 

Stress-related disorders are common and debilitating conditions characterised in part 

by affective manifestations associated with cognitive and behavioural alterations. 

These disorders could be chronic and severe at some point in life (Tolentino and 

Schmidt 2018). 

Stress is a triggering factor for both anxiety and depression, therefore stress 

modulation may represent an winning strategy in the treatment of stress-associated 

disorders (Moritz et al. 2020). In addition, understanding the neurophysiological 

aspects implicated in the etiology of stress-associated disorders may ultimately 

contribute to their treatment.  

Lately, nutritional interventions to ameliorate stress-induced cognitive deficits is 

gaining worldwide interest. Since the discovery of omega-3 polyunsaturated fatty 

acids (ω-3 PUFAs) in 1929 by George and Mildred Burr (Burr 1929), research on ω-

3 PUFAs became an appealing topic ranging from their role in cardiovascular risk and 

more recently neuropsychiatric pathologies such as depression and anxiety, cognitive 

decline or neurodegenerative diseases (Bazinet and Layé 2014, Joffre et al. 2014, 

Coulombe et al. 2018). The relevance of lipids in brain function is illustrated by the 

fact that the central nervous system (CNS) has the highest concentration of lipids in 

the organism after adipose tissue. Among these lipids, the brain is particularly enriched 

with PUFAs represented by the ω-6 and ω-3 series. 

In animal models, it has been shown that transient or maternal ω-3 PUFA-deficient 

diet induces depressive and anxiety-like symptoms (Carrié et al. 2000, DeMar et al. 

2006, Bondi et al. 2014) as well as abnormal social behaviour (Lafourcade et al. 2011) 

in adolescent and adult offspring. However, the mechanisms underlying the effects of 

ω-3 PUFA-deficient diet on emotional behaviour remain largely unknown.  

In this thesis, I evaluated the role of a diet enriched with ω-3 PUFA (EPA and DHA) 

and vitamin A, another nutrient that plays a key role in the regulation of synaptic 

plasticity and in learning and memory in adult rats (Lane and Bailey 2005), by using 

a preclinical model of adolescent stress, the social instability paradigm. We studied 

the effects of the enriched diet in the cognitive and neurochemical deficits induced by 

this kind of stress. The results showed that the supplemented diet had beneficial effects 

preventing cognitive and neurochemical alterations of juvenile rats tested immediately 

after the stressful procedure.  but also when rats were tested as adults. Furthermore, 
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     Abstract 

the detrimental behavioural and neurochemical effects of adolescent stress, as well as 

the protective effect of the enriched diet, were maintained throughout adulthood, long 

after the exposure to the stressful environment was terminated.  

Histamine is implicated in arousal, awakening and maintenance of wakefulness and 

has a pivotal role in the maintenance of high vigilance that is required for cognitive 

processes (Thakkar 2011, Thakkar et al. 1999). Not surprisingly, current research is 

providing evidence that malfunctioning of the histaminergic system is associated with 

neuropathological disorders (Shan, Bao and Swaab 2017). For this reason, in the 

second part of the thesis I evaluated the role of the brain histaminergic in the protective 

effects of the ω-3 PUFA and Vitamin A enriched diet. To this end I used genetically 

modified mice that do not synthesise histidine decarboxylase (HDC-/-, the only enzyme 

responsible for histamine synthesis) and HDC+/+ mice. These were exposed to chronic 

social defeat stress, a well-characterised preclinical model of anxiety and depression 

(Krishnan and Nestler 2011). The results demonstrated that the enriched diet prevented 

the memory impairment and social avoidance behaviour induced by stress only in 

animals whose histaminergic system is intact, thus supporting our hypothesis on the 

key role of the histaminergic system in the beneficial effects of this diet. 

Oleoylethanolamide (OEA) is derived from a monounsaturated fatty acid oleic acid 

(OA),  which has beneficial effects on intestinal metabolism  (Lama et al., 2020) 

regional fat distribution (Sarro-Ramírez et al. 2013), inflammation (Piomelli 2013). 

Furthermore, OEA has precognitive effects (Campolongo et al., 2009; Provensi et al., 

2017) 

Previous preclinical studies in our laboratory showed that the central histaminergic 

system is essential for the central effects of OEA such as the hypophagia (Provensi et 

al. 2014), improved memory for aversive events (Provensi et al. 2017) and 

antidepressant-like action (Costa et al. 2018). For this reason, I also evaluated the 

effect of a chronic administration of OEA in mice subjected to the chronic social defeat 

stress. The results obtained showed that treatment with OEA prevents behavioural 

impairments induced by chronic stress in HDC+/+, but not in HDC-/- mice, further 

supporting the role of the histaminergic system in the beneficial effects of OEA. 

In the last part of my thesis I investigated the role of central histaminergic system on 

social recognition memory. Social memory is one of the crucial components of 

episodic memories. Among the four identified histamine receptors, H3 receptors are 
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     Abstract 

predominantly expressed in the central nervous system, act as autoreceptors as well as 

heteroreceptors, and control presynaptic release of histamine and other 

neurotransmitters (Haas, Sergeeva and Selbach 2008).  

The results demonstrated that acute and pharmacologically or genetically histamine 

depleted mice had long term, but not short-term memory impairment. However, 

histamine deprived mice treated with a selective H3 receptor agonist VUF16839, that 

supposedly decreases histamine and other neurotransmitters’ release showed short-

term memory impairment as well.  We interpret this finding as indicative of the 

involvement of H3 heteroceptors on non-histaminergic cells being involved in the 

amnesic effect. Indeed, treatment with the acetylcholinesterase inhibitor, donepezil, 

prevented the amnesic effect of VUF16839.  

The results presented in this thesis strongly suggest that central histaminergic system 

plays a crucial and fundamental role in mediating the beneficial effects of nutritional 

compounds such as the ω-3 PUFA and vitamin A enriched diet or OEA on behavioural 

impairments induced by stress. 

I also contributed to the understanding of the role of the central histaminergic and the 

interplay with other neurotransmitter systems on social recognition memory.  
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Social behaviour: From social stress to social memory 

We live in a world that is largely socially constructed and we are constantly involved in, and 

fundamentally influenced by a large array of complex social interactions.  

In a broad sense, social behaviours can be defined as any modality of communication and/or 

interaction between two conspecifics of a given species and are observed in species as simple 

as single-celled microorganisms to species as complex as humans (Crespi 2001, Ebstein et al. 

2010). Social behaviours, no matter whether cooperative or competitive, have been selected for 

and have persisted throughout evolutionary history due to their contributions toward increasing 

survival and reproductive fitness. Social behaviours displayed at the inappropriate time or place 

or of inappropriate intensity can have detrimental effects on both the individuals and a social 

group as a whole. Mating, or sexual reproduction, is a clear example of an absolutely required 

social behaviour for reproductive fitness, as it is the substrate for genetic heritability across 

generations. Aggression is an example of a competitive social behaviour where the winner of 

an aggressive encounter is provided greater access to resources, including territories or mating 

opportunities, resulting in a greater chance of survival and reproductive success. Social group 

living, termed sociality, also increases reproductive fitness due to group association offering 

greater capabilities for threat defence, resource acquisition, and opportunities for mating (Silk 

2007).   

Social behaviours are essential for the health, survival, and reproduction of animals; conversely, 

impairment in social function is a prominent feature of several neuropsychiatric disorders, such 

as autism spectrum disorders and schizophrenia (Chen and Hong 2018).  

Traditionally, the emphasis has been placed on basic neuronal networks underlying a specific 

type of behaviour, as well as hormonal or pharmacological manipulations of this behaviour. 

More recently, reciprocal links with other behavioural systems have received increasing 

attention. Examples of these links are the effects of stress (acute, chronic, or early in life), trait 

or state anxiety, cognitive skills, and impulse control on positive and negative social 

interactions, and vice versa the effects of positive and negative social experiences on stress 

system (re-)activity, mood, and cognition. The field of translational social neuroscience comes 

with certain challenges. Foremost, neuroscientists will benefit from knowing the behavioural 

ecology of their model animal or its ancestors far more intimately than is typically necessary 

for the study of depression and anxiety or learning and memory (Lukas and de Jong 2015). 
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Stress: social behaviour and resilience  

Definition and neurobiology of stress 

Stress has a different meaning for different people under different conditions. The first and most 

generic definition of stress is that proposed by Hans Selye: “Stress is the non-specific response 

of the body to any demand” (Selye 1936). 

The Diagnostic and Statistical Manual of Mental Disorders (DSM-V) recognizes two stress 

disorders: acute stress disorder and posttraumatic stress disorder (PTSD). For the diagnosis of 

acute stress disorder, the individual, while experiencing the trauma or after the event, must have 

at least three of several dissociative symptoms, such as a subjective sense of numbing, 

detachment, or absence of emotional responsiveness; reduction in awareness of surroundings; 

depersonalization; or dissociative amnesia. Following the trauma, the traumatic event is 

persistently re-experienced, the individual avoids stimuli that may arouse recollections of the 

traumatic event, and they have anxiety or increased arousal. PTSD is defined as a condition in 

which a traumatic event is persistently re-experienced in the form of intrusive recollections, 

dreams, or dissociative flashback episodes. Cues to the event lead to distress and are avoided, 

and there are symptoms of increased arousal; the full symptom picture must be present for more 

than one month, and the disturbance must cause clinically significant distress or impairment in 

social, occupational, or other areas of functioning (Fink 2009).  

Stress is usefully viewed from a biological perspective; accordingly, it involves activation of 

neurobiological systems that preserve viability through change or allostasis. Although they are 

necessary for survival, frequent neurobiological stress responses increase the risk of physical 

and mental health problems, perhaps particularly when experienced during periods of rapid 

brain development (Gunnar and Quevedo 2006).  

Physiological and neurochemical approaches have elucidated the way in which stress is 

controlled by two major neuroendocrine systems, the hypothalamic-pituitary- adrenal (HPA) 

axis (Stratakis and Chrousos 1995) and the sympathetic-adrenomedullary (SAM) limb of the 

autonomic nervous system (ANS) (Frankenhaeuser et al. 1986).  

The SAM system is a component of the sympathetic division of the autonomic nervous system, 

releasing epinephrine (adrenaline) from the medulla or centre of the adrenal gland. Increases in 

circulating epinephrine facilitate rapid mobilization of metabolic resources and orchestration of 

the fight/flight response (Cannon 1929). The HPA system, in contrast, produces glucocorticoids 

(cortisol in humans, corticosterone in rodents; hereafter GCs) which are steroid hormones. 

Unlike epinephrine, which does not cross the blood-brain barrier to a significant degree, the 



                                                                                                                                                    Introduction 

9 
 

brain is a major target of GCs (Bohus, De Kloet and Veldhuis 1982). Also, unlike epinephrine, 

GCs production takes some time (approximately 25 minutes to peak levels), and many of its 

impacts on the body and brain occur through changes in gene expression (de Kloet, Rots and 

Cools 1996).  Consequently, the effects of GCs are slower to develop and continue for longer 

periods (de Kloet et al. 1996). The role of the HPA system in stress is complex, and its functions 

are not fully captured by reference to the fight/flight response (Sapolsky, Romero and Munck 

2000). Regulation of both the SAM and HPA systems converges at the level of the 

hypothalamus, which integrates autonomic and endocrine functions with behaviour (Palkovits 

1987). Furthermore, inputs to the hypothalamic nuclei that orchestrate HPA and SAM 

responses to psychosocial stressors involve cortico-limbic pathways (Gray and Bingaman 

1996).  

Social stress 

Social stress, a common stressor readily translated across species, is a recurrent factor in the 

life of all social species (Von Holst 1998). The effects of stress exposure and consequent 

trajectory depend on the nature of the stressor, the severity, duration (acute vs. chronic), 

sex/gender, genetics, timing of exposure (early life, adolescence, adulthood or aging) as well 

as the perception of the stressor by the individual, for example, stressor controllability 

dramatically affects resilience versus vulnerability as an outcome (Maier and Watkins 2005, 

Amat et al. 2010, Lucas et al. 2014).  

The nature of the stressor is important; physical (e.g., electric, chemical and terminal stimuli, 

as well as surgeries), psychological (e.g., restraint, exposure to novel environments, forced 

swimming) or social (when the stimulus is represented by the behaviour of a conspecific or of 

its products) stressors elicit different responses (Bartolomucci 2007). The duration of the 

exposure to a stressor is important. A stressor may be defined as acute (e.g., minutes, hours or 

a single event), intermittent (e.g., repetition over time of an acute stressor) or chronic 

(continuous exposure to a stressor) (Kusnecov and Rossi-George 2002). Acute stressor will, by 

definition, immediately activate the stress–response. The termination of the activated response 

is not always complete and intermittent or repeated perturbations may last weeks or even years 

in specific situations (Koolhaas et al. 1997, Yehuda 2002). In general, an intermittent or chronic 

exposure is needed to translate a stress–response into a pathological condition (van Kampen et 

al. 2002). 

In rodents, acute stress typically leads to reduced social behaviours and increased aggression, 

including antisocial behaviours such as bite counts that exceed species-typical levels (de 
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Almeida and Miczek 2002). This fits with the concept of acute stress as a 'flight or fight' 

response and implies that brief acute stressors mobilize resources to cope with the situation 

(Sandi and Haller 2015).  

Chronic stressors are defined as persistent events which require an individual to make 

adaptations over an extended period of time. When stress becomes chronic, one experiences 

emotional, behavioural, and physiological changes that can put one under greater risk for 

developing a mental disorder and physical illness (Krieger and Loch-Caruso 2001). Chronic 

stress reduces social motivation and social interactions in a variety of sociability tests (van der 

Kooij et al. 2014, Wood et al. 2003).  However, although chronic stressors generally reduce 

sociability, social isolation stress actually enhances social interest (van den Berg et al. 1999), 

probably because long-term deprivation from social contacts increases interest in social 

partners.  

Chronic social stressors that involve fighting that leads to defeat and subordination have been 

shown to downregulate aggressiveness in various species. Conversely, repeated victories which 

are accompanied by reduced physiological stress responses, but which can be considered 

stressful because they involve recurrent exposure to social conflicts may result in exacerbated 

and abnormal aggression (Nephew and Bridges 2011, Miczek, de Boer and Haller 2013).  

Chronic stress paradigms in rodents  

Stress models that cover a range of neurodevelopmental periods have been applied to 

investigate the long-term impact of stress on adult social behaviours. Social motivation 

(sociability) was disrupted in adulthood by prenatal (de Souza et al. 2013), neonatal (Franklin 

et al. 2011) and juvenile (Naert (Naert et al. 2011, Vidal, Buwalda and Koolhaas 2011) exposure 

to stressors. Prenatal stress (DE Souza, 2013), neonatal stressors-maternal separation (Wang, 

Shao and Wang 2015a), and early deprivation (Jia et al. 2009) and peripubertal exposure to 

physical stressors (Márquez et al. 2013) inhibited social interactions in adulthood. Juvenile 

social stressors (post-weaning social isolation (Workman et al. 2011)  and early subjugation 

(Wommack et al. 2004) either did not affect this aspect of social behaviour or, in one study 

(Shimozuru et al. 2008), increased adult social interactions. Early life stressors decrease 

measures of social motivation, reduce the expression of social behaviours, increase 

aggressiveness and promote the development of antisocial features, but the specific 

consequences depend on the timing and type of the early stressor. Although these changes can 

be problematic for human individuals and societies, from an evolutionary perspective they may 
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be interpreted as mechanisms through which early adversity prepares the organism to endure 

similar adversities later in life (Gluckman, Hanson and Beedle 2007).  

The social environment interacts with stress on almost every front: social interactions can be 

potent stressors; they can buffer the response to an external stressor; and social behaviour 

often changes in response to stressful life experience. Widely used models of social stress in 

rodents include social subordination, crowding, isolation, and social instability (Figure 1) 

(Beery and Kaufer 2015) 

. 

 

Figure 1. Schematic representation of the levels at which the social environment impacts (Beery and Kaufer 

2015). 

 

Chronic social defeat stress. 

The most common stressors in man are of a psychological or social nature (Kessler 1997, 

Kessler, Price and Wortman 1985, Björkqvist 2001), and therefore, using social conflict 

between members of the same species  to  generate  stress  has  an  obvious advantage  over 

animal  models  that  require  aversive  physical  stimuli  such as electric foot shock, restraint, 

water or food deprivation, or  cold  exposure.  Several studies have shown that subordination 

stress (social defeat) is an important factor that may lead to psychopathological changes 

(Björkqvist 2001, Fuchs and Flügge 2002). 

In rodents, the most prominent model of stressful social interaction is social defeat. Social 

defeat is typically induced by a version of the resident-intruder test in which a test subject is 

paired with a dominant resident in its home cage. Dominance may be assured by size, prior 

history of winning, strain of the resident, and/or prior housing differences (Martinez, Calvo-

Torrent and Pico-Alfonso 1998). These animal models are based on a physical contact phase, 

where an intruder animal is physically exposed to an attacking resident aggressor, and/or a 

sensory contact phase during which the intruder is kept in visual, auditory and olfactory contact 



                                                                                                                                                    Introduction 

12 
 

with the dominant con-specific in order to maintain psychological stress for the intruder animal 

(Hammels et al. 2015).  The total duration of exposure to the aggressor in social defeat 

paradigms may vary from minutes to weeks, broadly classified as acute and chronic exposure 

(Martinez et al. 1998). Acute social defeat is defined as a single social confrontation for a few 

minutes (Berton et al. 1999), or several short interactions on the same day (Huhman et al. 2003), 

whereas social conflicts in chronic paradigms typically last from 10 days (Berton (Berton et al. 

2006) up to 40 days (Chang et al. 2009, Bartolomucci et al. 2001). The sensory contact phase 

has been implied to maintain psychological stress for the intruder animals for a prolonged 

period. Intruder animals can be exposed to a sensory contact period either before (Tornatzky 

and Miczek 1993) or after the physical contact period (Berton et al. 2006). The duration of the 

sensory contact phase can vary from 10 min (Tornatzky and Miczek 1993) to 24 h (Berton et 

al. 2006). 

In the short-term, social defeat produces changes in heart rate, hormone secretion, and body 

temperature, with longer-term impacts on a wide variety of additional outcomes including 

activity, social behaviour, drug preference, disease susceptibility and others (Martinez et al. 

1998, Sgoifo et al. 1999, Peters et al. 2012). Repeated episodes of social defeat, particularly if 

they are unpredictable and uncontrollable, amplify and prolong these behavioural and 

neurobiological consequences (Tornatzky and Miczek 1993, Yap et al. 2006). Repeated defeat 

followed by individual housing results in long term impaired social memory, decreased social 

interaction and diminished anticipation for a sucrose reward up to 3 months after the last defeat 

experience,  

Unlike physical stressors such as restraint, social defeat does not appear to be susceptible to 

habituation or sensitization (Tornatzky and Miczek 1993, Sgoifo et al. 2002). Social defeat 

stress has profound effects on hippocampal morphology and function (McEwen and Magarinos 

2001, Buwalda et al. 2005, Mirescu and Gould 2006, McEwen 2012). These effects include 

reduction in hippocampal volume (Czéh et al. 2001) related to dendritic remodelling and 

reduced neurogenesis (Magariños et al. 1996, Gould et al. 1998)et al., 1996; Gould et al., 1998), 

as well as attenuated induction of long-term potentiation and suppressed facilitation of long-

term depression in the CA1 region of the hippocampus (Von Frijtag et al. 2001). Social defeat 

also alters the ratio of mineralocorticoid to glucocorticoid receptors in the hippocampus 

(Buwalda et al. 2001, Veenema et al. 2003). As with most of neurobiological research, attention 

has centred on neurons as the mediators of the biological embedding of the social world. 

However, following recent reports on the effects of stress (in general, and particularly social 

stress) on astrocytes, oligodendrocytes and microglial cells, it has become clear that glial cells 
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are likely to play a role in this process, and deserve more attention in future studies (Braun et 

al. 2009, Wohleb et al. 2011, Araya-Callís et al. 2012, Chetty et al. 2014) 

Crowding and isolation  

Housing density affects rodent behaviour, and both crowded and isolated social environments 

have been used as stressors in rodents. Crowding is a naturalistic stressor especially for social 

or gregarious species that relates to high population density and resource competition in the 

field. In house mice, several studies have shown that crowding can impair reproductive function 

and may be part of population size regulation (Christian and Lemunyan 1958, Christian 1971). 

In the laboratory, crowding typically consists of large numbers of mice or rats (e.g. >6 rats/cage 

(Brown and Grunberg 1995, Reiss et al. 2007) with ad libitum access to resources such as food 

and water. Crowding must be somewhat extreme to induce stressful outcomes, as group housing 

(e.g. 4-6 rats or 12 mice in a sufficiently large area) is often used as a key component of 

environmental enrichment (Sztainberg and Chen 2010, Simpson and Kelly 2011). Social 

crowding has been shown to impact many different physiological outcomes in male mice, rats, 

and prairie voles. These include changes in organ weights, hormone secretion, HPA reactivity, 

pain sensitivity, telomere length, and cardiac outcomes (Gamallo et al. 1986, Gadek-Michalska 

and Bugajski 2003, Kotrschal, Ilmonen and Penn 2007, Grippo et al. 2010, Tramullas, Dinan 

and Cryan 2012, Puzserova et al. 2013). 

At the opposite extreme, solitary housing can be a potent stressor for social species. Social 

isolation is employed as a stressor in previously group-housed mice and rats (Heinrichs and 

Koob 2006); in both species, extended (2-13 week) solitary housing produces an “isolation 

syndrome” particularly in females, consisting of hyperadrenocorticism, reduced body weight, 

altered blood composition, and enhanced pain responsiveness among other outcomes (Hatch et 

al. 1965, Valzelli 1973). These changes coincide with alterations in behaviour including 

aggression, mating behaviour, learning, and pain sensitivity (Valzelli 1973). More recent 

studies have added a host of additional physiological outcomes related to stress and depressive 

behaviour, including changes in dopamine signalling in different brain regions (Heidbreder et 

al. 2000), altered heart rate and cardiac function (Carnevali et al. 2012), and neurogenesis 

(Stranahan, Khalil and Gould 2006, Lieberwirth and Wang 2012). Which outcomes are affected 

by isolation depend in part on the age at which isolation occurs (Hall 1998), and there are sex 

differences in the effects of social isolation. These suggest that isolation may be stressful for 

females but not necessarily to the same extent for males (Hatch et al. 1965, Palanza 2001, 

Palanza, Gioiosa and Parmigiani 2001). Assessing the impacts of both isolation and crowding 
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share the problem of what to consider as the control comparison, as anxiety and other 

behavioural outcomes vary along a continuum of group sizes (Botelho, Estanislau and Morato 

2007). 

Chronic restraint stress 

Chronic restraint stress (CRS) has been used widely to study the morphological, hormonal, and 

behavioural alteration in several brain regions in rodents, such as the hippocampus, prefrontal 

cortex, amygdala, and nucleus accumbens because it is inexpensive and relatively easy to 

implement (Buynitsky and Mostofsky 2009). Restraint stress is generally induced by keeping 

the animals in a cylindrical or semi-cylindrical tube with ventilation holes for 120-180 min. 

(Padovan and Guimarães 2000, Campos et al. 2010). The procedure can be used to induce either 

acute or chronic stress (7-21 days). A disadvantage of the CRS model is the habituation of rats 

or mice to repeated exposure to homotypic restraint stressors; the response of plasma 

corticosterone, the major glucocorticoids in rodents, to the final stressor is diminished in 

animals that had been stressed for 14 days (Ma and Lightman 1998, Martí and Armario 1998, 

Herman 2013). The duration of CRS may differentially affect learning/memory and  

hippocampal CA3 dendritic atrophy (Luine et al. 1996). Depending on duration and intensity 

of chronic stress, some studies report that exposure of animals to CRS induces depression-like 

behaviours such as anhedonia (decreased sucrose preference) (Aboul-Fotouh 2013, Chiba et al. 

2012, Bravo et al. 2009), which is a core symptom of human depression (Hill et al. 2012, 

Willner 2005). 

Social instability 

Some studies employ both crowding and isolation in alternation (for example, 24 h of each for 

2weeks), as a model for chronic social instability (Haller et al. 1999, Herzog et al. 2009). Social 

instability has particularly been used as a social stressor for female rats, for whom crowding 

alone and social defeat are not always effective stressors (Palanza 2001). In the crowding phase, 

different social groups consisting of different numbers of males and females are formed. 

Females exposed to this variable social environment show increased adrenal weight, increased 

corticosterone secretion, decreased thymus weight, and reduced weight gain relative to females 

housed in stable male-female pairs (Haller et al. 1999). A second study replicated these findings 

and demonstrated that social instability also induced dysregulation of the hypothalamic-

pituitary-gonadal (HPG) axis (elevated luteinizing hormone, prolactin, and disrupted oestrus 

cycles), and reduced sucrose preference and food intake (Herzog et al. 2009). This stressed 
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phenotype persisted for several weeks without habituation and led to a depressive-like 

phenotype. Prior history of social instability in the form of early-life separation from the mother 

also exacerbates vulnerability to later life chronic subordination stress (Veenema et al. 2008). 

Social instability stress in adolescence  

Adolescence represents a time of transition to independence during which significant lifestyle 

changes occur (Casey et al. 2002, Arnett 2000), and it is believed to be a critical period for the 

programming of future adult behaviours (Sawyer et al. 2012). Although there are no definite 

markers for the adolescent period, in mice and rats adolescence is generally considered to be 

from post-natal day (PND) 21–60, and in humans from ages 12 to 18 (Spear 2000b). 

Significant changes in neuroendocrine, neurodevelopmental and behavioural systems occur 

during adolescence.(Spear 2000b, Spear 2000a, Romeo 2010, McCormick and Zovkic 2009, 

Green and McCormick 2013). For instance, there are changes in reward circuitry that render 

both rodent and human adolescents less sensitive to the aversive effects of drugs of abuse 

(Doremus-Fitzwater, Varlinskaya and Spear 2010). Behaviourally, both rodents (Spear 2000a, 

Adriani and Laviola 2003, Douglas, Varlinskaya and Spear 2004) and humans (Spear 2000a, 

Forbes and Dahl 2010, Romer 2010, Steinberg 2008) show increased risk-taking (Steinberg 

2008), social activity (Forbes and Dahl 2010, Vanderschuren, Achterberg and Trezza 2016) 

and impulsivity (Adriani and Laviola 2003, Romer 2010) across the adolescent period. 

Cognitive changes have also been demonstrated at this time of life (Yurgelun-Todd 2007) 

especially in relation to executive function (Blakemore and Choudhury 2006) and cognitive 

control (Kuhn 2006). 

Social interactions are highly rewarding in adolescence (Douglas et al. 2004), and time spent 

in social play is highest during adolescence (Sachser, Dürschlag and Hirzel 1998, Meaney and 

Stewart 1981). Consistent with the latter, the effects of social isolation are greatest when applied 

during adolescence (Panksepp and Beatty 1980, Einon and Morgan 1977), and the social 

deprivation involved with social isolation has been an effective model to investigate 

psychopathology. McCormick et al. chose to develop a milder model of adolescent stress using 

social instability, on the basis that it might allow for broader relevance for some aspects of 

adolescent development in people. They used the combination of repeated daily 1 h isolation 

(confinement to a small, ventilated container) followed by pairing with a new partner and cage 

after isolation, on the hypothesis that the social instability would prolong the recovery of 

corticosterone levels after the stress of isolation and impede habituation to repeated isolation 

(McCormick 2010).  
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The adolescent social instability procedure affected males and females differently over the 

course of the procedure (e.g., males had reduced weight gain but showed evidence of 

habituation to the repeated isolation, whereas females did not habituate but weight gain was 

unaffected), which may be a basis for the greater lasting effect on drug-related behaviour in 

females. This model of adolescent social stress adds to growing evidence that adolescence is a 

sensitive period of development during which social experiences can shape the trajectory of 

ongoing brain development and thereby confer risk or resilience in adulthood (McCormick 

2010) since the effect of stress during adolescence also appears to produce changes to 

hippocampal neurogenesis that last into adulthood (Hueston, Cryan and Nolan 2017). 

Individual variability in the social behaviour response to stress e resilience vs. 

vulnerability 

What is the difference between responders and non-responders, or a resilient vs. vulnerable 

trajectory?  

Chronic stress leads to the development of depression– or anxiety–like behaviours in only a 

subset of laboratory animals (Taliaz et al. 2011, Krishnan et al. 2007, Lehmann and Herkenham 

2011, Delgado y Palacios et al. 2011, Golden et al. 2011). Animals which have been termed 

“resilient” usually exhibit some deleterious symptoms in response to the stress, but do not 

exhibit deficits in key behavioural domains. For example, following chronic social defeat stress, 

all genetically inbred C57BL6/J male mice exhibit a constellation of symptoms including 

heightened reactivity of the HPA axis, deficits in exploratory–based behaviour that are 

interpreted as increased anxiety, social avoidance and stress–induced polydipsia (Krishnan et 

al. 2007). However, ~35% of the stressed mice, considered “resilient,” do not exhibit social 

avoidance, hyperthermia elicited by social interactions, anhedonia–like symptoms (reduced 

interest in sucrose, high fat food, or sex), or a metabolic syndrome characterized by decreased 

body weight (Krishnan et al. 2007). Using this classification, resilient animals are not devoid 

of symptoms and, in fact, exhibit some behavioural adaptations that appear maladaptive, but 

they exhibit clear resistance to many other maladaptive sequelae of the chronic social stress 

(Russo et al. 2012). 

Several neurotransmission systems are implicated in social stress resilience vs. vulnerability: 

stress-susceptibility has been correlated with stress-induced increase in levels of brain derived 

neurotrophic factor (BDNF). Investigation of the individual differences between susceptible 

and unsusceptible mice revealed that susceptibility was characterized by increased nucleus 

accumbens (NAc) BDNF levels, but reinforced the importance of BDNF release from the VTA, 
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as knockdown in the VTA but not NAc promoted resilience (Krishnan et al. 2007). 

Glutamatergic, serotonergic, and GABAergic systems appear to be involved as well. 

Vulnerable and resilient animals differ significantly in the expression of AMPA receptors in 

the dorsal hippocampus, and activation of AMPA receptor during the stress exposure prevented 

the physiological, neuroendocrine, and behavioural effects of chronic social stress exposure 

(Schmidt et al. 2010). Knockout of serotonin transporter increases the vulnerability to social 

avoidance following social defeat (Bartolomucci et al. 2010). Finally, suppression of the 

GABAergic system is seen in the pre-frontal cortex of mice showing depressive symptoms 

following social defeat (Veeraiah et al. 2014), and in amygdala of mice exposed to peripubertal 

stress (Tzanoulinou et al. 2014). Similar suppression is found in the cortex of human patients 

with PTSD.  

 

Stress impact on memory function 

Stress can affect cognition in many ways, with the outcome (i.e., facilitating or impairing) 

depending on a combination of factors related to both stress and the cognitive function under 

study (Sandi 2013). 

- Stress related factors 

In this section we can find 3 essential stress factors that can impact cognitive functions: 

1. Source of stress: It refers to the origin of stress with regard to the cognitive task. This factor 

classifies stress as either intrinsic (if stress is originated by elements related to the cognitive 

task) or extrinsic (if stress is originated by conditions completely unrelated to the cognitive 

task, i.e., in the outside world, and ideally occurring temporally dissociated from such task, 

i.e., either before or afterwards) (Sandi and Pinelo-Nava 2007). 

2. Stressor duration: this factor refers to the length of stress. The differential effects of acute 

versus chronic (with some subchronic versions) stress have concentrated great interest in the 

field. In addition to the relevance to cognitive function, this factor is essential when 

evaluating the neural mechanisms whereby stress affects cognition (Sandi and Pinelo-Nava 

2007). 

3. Stressor intensity: stressors can vary throughout a very wide range of intensities. Even 

though oversimplifications can have the drawback of being too superficial, for the sake of 

clarity, we will just use the categories of low, medium, high (and occasionally very high) 

intensities. Not surprisingly, very high (e.g., a clear life threat, such as a being in a combat) 
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and mild (e.g., novelty exposure) stressors seem to have distinct effects on cognitive function 

(Cordero, Merino and Sandi 1998, Joëls et al. 2006).  

- Cognitive related factors 

The vast majority of research dealing with the cognitive effects of stress has covered quite 

comprehensively stress actions on different aspects of memory function, including its different 

phases (acquisition, consolidation, retrieval, etc.), operations (working memory vs long-term 

memory), types (implicit vs explicit), and strategies (habit vs goal-directed).  

Stress and stress mediators appear to exert opposing effects in consolidation (memory storage) 

and retrieval (access to stored information) (Roozendaal 2002, Roozendaal 2003). If stress is 

given before learning (acquisition of information), it can potentially affect all cognitive phases 

involved in memory function. If stress is experienced after learning, any effect observed in 

retention could now be due to an impact of stress on either consolidation or retrieval, but any 

effects on acquisition can be discarded. If stress is delivered before the recall test, it should just 

normally affect the retrieval processes (Figure 2). 

 

 

Figure 2. Diagram depicting the relevance of specifying timing of stress with regards to different memory 

phases. 

 
 
 

An additional key factor is the type of the learning process that is evaluated (i.e., implicit/non-

declarative learning, explicit/declarative learning, non-associative learning etc.; (Nelson, 

Schreiber and McEvoy 1992, Squire and Zola 1996, Verfaellie and Keane 1997, Eichenbaum 

1999, Moscovitch et al. 2006).  

 two of probably the most important factors are: psychological factors, like controllability and 

predictability; and individual differences in the vulnerability and response to stress. The 

literature indicates the existence of considerable variability in the vulnerability of individuals 

to display cognitive changes when exposed to stress. Whereas some individuals are particularly 

‘vulnerable’, others seem to be quite ‘resistant’ to the effects of stress. These differences could 

be due to predisposing factors, previous life experiences or, more likely, both. Among the 
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individual factors, gender (Shors 2004, Andreano and Cahill 2009, McLaughlin, Baran and 

Conrad 2009), genetic endowment (Palumbo et al. 2010), personality traits (Holmes 2008, 

Sandi et al. 2008), and age (Bodnoff et al. 1995, Fenoglio, Brunson and Baram 2006) can play 

an important role in the cognitive consequences of stress.  

Chronic stress was originally reported to damage hippocampal structure (McEwen 1999, 

McEwen 2002), a well-known region in the brain important for memory processing 

(Eichenbaum 1997). Given the effects of chronic stress in the hippocampus it has been 

hypothesized that chronic stress affects hippocampal-dependent learning. Chronically stressed 

male rats were shown to exhibit learning and memory deficits in a variety of spatial tasks, 

including the radial-arm maze (Luine et al. 1994), the Y-maze (Conrad et al. 1996), and the 

Morris water maze (Venero et al. 2002, Sandi et al. 2003).  

In the hippocampus, chronically activating the stress response can produce maladaptive 

changes, which have been postulated to contribute to disease (de Kloet et al. 2006, McEwen 

and Wingfield 2003, Smith 1996). A transition into maladaptive changes includes dendritic 

remodelling resulting in reduces dendritic arbours in CA3 neurons; dendritic retraction has been 

observed in other brain regions following 10 to 21 days of repeated stress. When chronic stress 

continues for 4 weeks, CA1 and dentate gyrus neurons in the hippocampus show dendritic 

retraction (Sousa et al. 2000). Prefrontal cortical neurons also show dendritic retraction 

following 1 to 3 weeks of stress (Brown, Henning and Wellman 2005, Radley et al. 2004). 

Chronic stress-induced CA3 dendritic remodelling has been proposed to be a maladaptive 

response because it is associated with susceptibility to damage and cognitive dysfunction 

(McEwen 2016). 

Although the majority of studies on chronic stress have focused on structural changes within 

the hippocampus, chronic stress has opposite effects in the basolateral nucleus of the amygdala 

(BLA), where it increases the dendritic complexity of neurons (Vyas et al. 2002, Vyas, Pillai 

and Chattarji 2004), suggesting that chronic stress facilitates memory under emotionally 

arousing situations. 
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Can a diet modulate social-stress induced effects? 

Food intake is a fundamental basis for survival in all living organisms insofar as an adequate 

daily food intake secures energy levels (Wolever and Jenkins 1986). Each meal contains a 

different macronutrient composition that in turn influences a variety of biochemical processes 

(Wurtman et al. 2003, Gailliot et al. 2007). In addition to supplying the body with nutrients, 

these biochemical processes also influence brain performance, including higher-level cognition, 

such as social decision making (Crockett et al. 2008, Colzato et al. 2013, Strang et al. 2017). 

Therefore, it is not only whether and when we eat that is important, but equally what we eat. 

Polyunsaturated fatty acids (PUFAs) 

Lipids represent 33%–40% of the energy intake in the United States (Simopoulos 2011).  

There are three families of fatty acids classified according to the number of double bonds on 

their carbon chain they contain: the saturated ones (no double bond), the monounsaturated ones 

(one double bond MUFA), and the polyunsaturated ones (two or more double bonds, PUFA). 

In rodents, the brain contains 36%–46% saturated fatty acids, 18%–33% MUFA and 18%–28% 

PUFAs (Joffre et al. 2016).  

PUFAs are classified into two main series, the ω-6 PUFAs and the ω-3 PUFAs depending on 

the position of the first double bond from the methyl terminal end. 

Linoleic acid (LA; 18:2n-6) is the dietary-essential shorter-chain ω-6 PUFA precursor of 

arachidonic acid (AA), whereas -linolenic acid (ALA; 18:3n-3) is the precursor of 

eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). AA, DHA, and EPA are also 

found in the diet, although as distinct sources (Layé et al. 2018).  

In the western diet, there is thought to be an imbalance between ω-6 and ω-3 PUFAs, leading 

to a ω-3 PUFA consumption 12–20 times lower than ω-6 PUFA consumption (Simopoulos 

2002, Simopoulos 2011), whereas an optimal ratio should approximately 1(ω-3):3(ω-6). This 

is due to the increased industrialization in the developed nations accompanied by changes in 

dietary habits. It is particularly characterized by an increase in LA, abundant in many vegetable 

oils (60%–65% in sunflower oil for example) (Orsavova et al. 2015) and AA, found in meats 

(5%–10%) and eggs (15%) (Taber, Chiu and Whelan 1998, Meyer et al. 2003), together with 

relatively low intakes of ALA, found in some green vegetables, rapeseed oil (10%) (Lewinska 

et al. 2015), and nuts, and EPA and DHA abundant in fatty fish (18.7% EPA plus DHA in 

salmon, 32.9% EPA plus DHA in tuna) (Strobel, Jahreis and Kuhnt 2012). 
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PUFAs from the diet are absorbed from the gut to the blood and are available for storage (in 

the adipose tissue), conversion into longer-chain PUFA (mainly in the liver), or energy 

production through β-oxidation. LA and ALA biosynthetic pathway to AA and EPA and DHA, 

respectively, involves a series of desaturation, elongation occurring and β-oxidation  (Layé et 

al. 2018) (Figure 3). 

 
Figure 1. Synthesis pathways of n-6 and n-3 LC-PUFA and main dietary sources of PUFAs. LA: linoleic 

acid; LNA: linolenic acid; AA: arachidonic acid; EPA: eicosapentaenoic acid; DHA: docosahexaenoic 

acid. (Joffre 2019) 

 

Brain Omega-3 PUFAs 

The brain contains high levels of PUFAs (25–30%) that are mainly DHA, (12–14% of total 

fatty acids) and AA, (8–10% of total fatty acids) (Carrié et al. 2000, Xiao, Huang and Chen 

2005, McNamara and Carlson 2006, Chung, Chen and Su 2008, Joffre, Rey and Layé 2019). 

EPA level is low in the brain because of its rapid β-oxidation, elongation and desaturation to 

docosapentaenoic acid (DPA n3; 22:5n-3) and DHA, and is not heavily recycled within brain 

phospholipids (Chen and Bazinet 2015). 

Saturated and MUFAs can be synthesised de novo within the brain, but PUFAs are mainly 

supplied by the blood (Bourre et al. 1984). 

The brain expresses the enzymes that are necessary for the synthesis of DHA and ARA. 

However, in rodents the synthesis rate of these PUFAs in the brain is much lower than the rate 

of PUFA uptake from the plasma. Furthermore, the brain levels of enzymes involved in the 

synthesis of ARA and DHA seem to be static, in contrast to the liver, which regulates the 

expression of these enzymes in response to dietary supply (Rapoport 2013). Upon entry into 
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the brain, most PUFAs — especially DHA and ARA — are activated by a long-chain-fatty-

acid-CoA synthase  (ACSL) (Watkins 1997)  and then esterified to phospholipid membranes. 

In phospholipids, two fatty acids attach to the stereospecifically numbered first and second 

carbons (sn-1 and sn-2 positions) of the glycerol molecule. Upon esterification to the 

phospholipid plasma membrane, fatty acids at the sn-1 position can be de-esterified and released 

from the membrane by phospholipase A1 (PLA1), whereas fatty acids at the sn-2 position (such 

as ARA and DHA) are de-esterified by phospholipase A2 PLA2 (Burke and Dennis 2009).  

PUFAs’ concentration vary across brain regions (Delion et al. 1994, Carrié et al. 2000, 

McNamara et al. 2009, Joffre et al. 2016). For example, in the adult C57BL6/J mice, the highest 

level of AA is found in the hippocampus (10.2%), followed by the prefrontal cortex (9.7%), the 

hypothalamus (8.5%), the cortex (7.7%), the cerebellum (6.5%), and the brain stem (5.5%) 

(Joffre et al., 2016). The highest level of DHA is found in the prefrontal cortex (14.3%) and in 

the hippocampus (13.7%), followed by cerebellum (12.2%), cortex (11.9%), hypothalamus 

(10.1%), and brain stem (8.2%) (Joffre et al. 2016). 

This brain fatty acid composition can be affected by environmental factors such as 

nutrition .Indeed, PUFA content in all brain structures is strongly impacted by PUFAs present 

in the diet (Alashmali, Hopperton and Bazinet 2016). 

A diet rich in ω-3 PUFAs increases brain DHA in rodents (Hiratsuka et al. 2009, de Theije et 

al. 2015, Skorve et al. 2015, Kitson et al. 2016). However, DHA supplementation is more 

effective than -linolenic supplementation in increasing the DHA content in the brain 

(Lacombe et al. 2017, Rey et al. 2019). In rodents, DHA supplementation from 16 weeks to 16 

months or from 20 to 22 months of age compensates a DHA decrease due to aging (Labrousse 

et al. 2012, Bascoul-Colombo et al. 2016). On the other hand, a diet deficient in ω-3 PUFAs 

induces  a decrease in brain DHA levels (Connor, Neuringer and Lin 1990, Carrié et al. 2000, 

Larrieu et al. 2012, Joffre et al. 2016) and an increase in brain DPA (22:5n-6) and often AA 

levels (Connor et al. 1990, Larrieu et al. 2012).  These modifications impact all brain structures, 

but some of them are more affected than others: the prefrontal cortex and the hippocampus, 

which contain the highest DHA levels are the most sensitive, whereas the hypothalamus, which 

contains the lowest DHA, is the least sensitive. These differences may be attributed to the 

evolution of brain structures, hence capability (Crawford et al. 1999, Broadhurst et al. 2002). 

Both, AA and DHA (and their metabolites), participate in many important brain functions such 

as acting as intracellular second messengers, neurotransmission, gene transcription, among 

other brain processes (Hibbeln, Palmer and Davis 1989). Additionally, fatty acids at the cell 

membrane can directly interact with membrane proteins, determining their structure and 
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function. Thus, they can determine the membranes fluidity, lateral pressure, bilayer thickness, 

and surface charge distribution (Stillwell and Wassall 2003).  

Therefore, the presence of DHA in the membrane can modulate neurotransmission systems 

signalling, contributing in this way to brain function. PUFAs and/or their mediators are agonists 

for the oxysterols receptor LXR, peroxisome proliferator-activated receptor (PPAR), hepatic 

nuclear factor 4A (HNF4A; also known as NR2A1), chemokine-like receptor 1 (also known as 

CHEMR23), G-protein-coupled receptor 32 (GPR32) and lipoxin receptor ALX/ FPR2, and 

they can activate protein kinase C (PKC) and inhibit nuclear factor-κB (NF-κB) (Green, Orr 

and Bazinet 2008, Rapoport 2014, Serhan 2014, Rao et al. 2008). 

PUFAs can also influence brain function through modulation of the endocannabinoid system 

(Bazinet and Layé 2014); endocannabinoids are important regulators of synaptic function; they 

suppress neurotransmitter release (including the release of glutamate, GABA, monoamine 

neurotransmitters, opioids and acetylcholine) by acting as retrograde messengers at presynaptic 

CB1s (Castillo et al. 2012). 

Neuroinflammation  

Inflammation is a key mechanism in the pathophysiology of mood disorders, including major 

depression, post-partum depression and bipolar disorder (Dantzer et al. 2008, Capuron and 

Miller 2011). Increased levels of inflammatory factors, such as proinflammatory cytokines and 

chemokines, are found in a subset of depressed patients and may contribute to their symptoms 

through a direct effect in the brain (Raison and Miller 2011).  

ω-3 PUFAs have powerful anti-inflammatory properties (Calder 2005) because they play an 

important role in the regulation of the synthesis and release of some pro-inflammatory 

mediators (Delpech et al. 2015, Hanisch and Kettenmann 2007, Cunningham and Sanderson 

2008, Yirmiya and Goshen 2011, Pascual et al. 2012).  

DHA and EPA effect on neuroinflammatory pathways could be either direct or indirect.  

High levels of brain DHA are linked to reduced expression of proinflammatory cytokines 

(including interleukin-1 beta (IL-1β), interleukin-6 (IL-6) and tumour necrosis factor alpha 

(TNF-α) in several rodent models of acute or chronic neuroinflammation, such as systemic 

administration of the bacterial endotoxin lipopolysaccharide (LPS), brain ischemia-reperfusion, 

spinal cord injury, or aging (Orr et al., 2013b). In addition, a diet rich in EPA attenuates the 

production of the proinflammatory cytokine IL-1β and improves synaptic plasticity impairment 

in the hippocampus of old rats (Martin et al. 2002, Lynch et al. 2007). Importantly, the reduction 
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of neuroinflammation linked to diets enriched in ω-3 -PUFA is associated with improvement 

of spatial memory deficits (Song et al. 2004, Labrousse et al. 2012). 

Several mechanisms have been proposed to explain the indirect immunomodulatory properties 

of ω-3 PUFAs. One of the most attractive is the synthesis of bioactive lipid mediators or 

oxylipins. These oxylipins are synthesized sequentially: first, those involved in the regulation 

of inflammation such as the eicosanoids (prostaglandins, leukotrienes, thromboxane), and then 

those involved in the resolution of inflammation called Specialized Pro-resolving Mediator 

(SPMs) (resolvins, protectins, maresins; Figure 4). SPMs have both anti-inflammatory and pro-

resolutive properties without immune suppression and induce a return to homeostasis (Serhan 

et al. 2000, Serhan et al. 2002, Serhan, Chiang and Van Dyke 2008a, Serhan 2014). They 

actively coordinate and finely tune the inflammatory response. They down-regulate the pro-

inflammatory cytokines and up-regulate the anti-inflammatory cytokines, promote the 

phagocytosis of cellular debris and dead cells without immune suppression, reduce the 

concentration, and compete with pro-inflammatory oxylipins derived from ω-6 PUFAs (Joffre 

et al. 2020). 

PUFAs are released from membrane phospholipids through the action of phospholipases A2 

(PLA2) in response to stimulation. DHA is hydrolysed by calcium independent PLA2 (iPLA2) 

from phospholipids and plasmenylethanolamine-PLA2 from plasmalogens (Farooqui and 

Horrocks 2006). After this step, ω-3 PUFAs undergo an enzymatic conversion to generate 

SPMs (ω-3 PUFA-derived SPMs are synthesized mainly from DHA and EPA via COX-2, 

lipoxygenases (LOX) and CYP450 monoxygenases (CYP450) (Figure 4). In the brain, 15-

LOX, 12/15- LOX and 5-LOX are the most abundant LOX and are widely distributed, 

suggesting the potential production of SPMs (Shalini et al. 2018). They are expressed in the 

second step of inflammation in the hippocampus (Czapski, Gajkowska and Strosznajder 2010, 

Birnie et al. 2013). 15-LOX is involved in neurodegeneration and neurotoxicity due to the 

increased oxidative stress it generates in models of Alzheimer’s disease (Praticò et al. 2004, 

Wang et al. 2015b) and brain ischemia (Yigitkanli et al. 2017). However, it is also implicated 

in neuroprotection (Sun et al. 2015). Indeed, it increases the production of 12-HETE and 15-

HETE that promote the activation of PPARγ that is neuroprotective through its anti-

inflammatory properties. The inhibition of 15-LOX induces hippocampus-dependent cognitive 

alterations (Shalini et al. 2018). 
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Figure 2. Main synthesis pathway of n-3 long-chain PUFA-derived lipid mediators.  

ALX/FpR2, lipoxin A4 receptor/formyl peptide receptor 2; BLT1, Leukotriene B4 receptor 1; ChemR23, 

chemokine-like receptor 1; COX-2, cyclooxygenase-2; CYP450, monoxygenases cytochrome P450; DHA, 

docosahexaenoic acid; EPA, eicosapentaenoic acid; GPR, G protein-coupled receptor; HDHA, hydroxy-

docosahexaenoic acid; HEPE, hydroxy-eicosapentaenoic acid; HpDHA, hydroperoxyl-docosahexaenoic 

acid; HpEPE, hydroperoxy-eicosapentaenoic acid; LOX, lipoxygenases; PLA2, phospholipase A2  (Joffre 

et al. 2019). 

 

In the brain, the inducible COX-2 is activated via an NFκB pathway (Nadjar (Nadjar et al. 

2005)et al., 2005). COX-2 catalyses the first step of the synthesis of prostaglandins and 

thromboxanes derived from ω-6 PUFAs that contribute to the initiation of inflammation 

(Davidson (Davidson et al. 2001, Salinas et al. 2007, Engström et al. 2012)et al., 2001; Salinas 

et al., 2007; Engstrom et al., 2012). DHA is the precursor of resolvins D1-6 (RvD1-6), 

neuroprotectin D1 (NPD1) and maresins 1–2 (Mar1-2) which all have pro-resolutive and anti-

inflammatory properties (Spite (Spite and Serhan 2010, Halade, Black and Verma 2018) RvD1-

6 are synthesized from DHA but RvD1 is the most studied because it has powerful anti-

inflammatory and pro-resolutive properties. DHA is converted into monohydroxy DHA, 17-

hydroxy docosahexaenoic acid (17-HDHA) by acetylated COX- 2, CYP450 and 15-LOX 

(Barden, Mas and Mori 2016, Halade et al. 2018) and then into RvD1 by 5-LOX (Sun et al. 

2007, Recchiuti 2013). DHA is also converted into di-hydroxy-DHA, termed protectin D1 

(PD1) or neuroprotectin D1 (NPD1) when produced in the central nervous system by 5- and 

15-LOX (Hong et al. 2003, Aursnes et al. 2014, Kuda 2017, Doyle, Sadlier and Godson 2018). 

Acetylated COX-2 permits the synthesis of aspirin-triggered PD1 (AT-PD1) which has 

powerful protective effects (Bazan et al. 2012). DHA is transformed into Mar 1-2 by 12/15-

LOX via the synthesis of 14-HDHA (Serhan et al. 2008b, Barden et al. 2016, Halade et al. 

2018).  
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EPA is the precursor of resolvins E1 (RvE1), E2 and E3 that have many biological roles (Serhan 

et al. 2000, Rey et al. 2016, Halade et al. 2018). It is converted by aspirin-triggered acetylated 

COX-2 or CYP450 into 18R-hydroxyeicosapentaenoic acid (18R-HEPE), that is transformed 

into RvE1 or E2 by 5-LOX (Ohira et al. 2010, Barden et al. 2016) or into RvE3 by 15-LOX 

(Isobe et al. 2012). 

RvD1 and RvE1 display anti-inflammatory activities in the CNS (Joffre et al. 2020). Indeed, an 

intrathecal injection of 17-HDHA, precursor of RvD1, decreases TNF-α release in the spinal 

cord in rats (Abdelmoaty et al. 2013) and the expression of hippocampal pro-inflammatory 

cytokines IL-1β and TNF-α induced by LPS acute icv injection. Moreover,17-HDHA restores 

transmission and synaptic plasticity and prevents astrogliosis and cognitive decline in a 

systemic inflammation model in mice (Terrando et al. 2013). RvE1 reduces the expression of 

pro-inflammatory cytokines IL-1β and IL-6 in the prefrontal cortex (Kantarci et al. 2018). 

Cognition  

Animal studies using diets that are lacking or are enriched in ω-3 PUFAs have indicated that 

there is a critical period for DHA accretion in the brain, normal brain development and 

cognition. (Bazinet and Layé 2014). 

Rodents with lower brain DHA levels show decreased performance in learning tasks (Moranis 

et al. 2012, Fedorova et al. 2007). On the other hand, chronic ω-3 PUFA supplementation 

improved long-term memory and increased synaptic plasticity in the hippocampus of stressed 

and aged rodents (Joffre et al. 2014). Other studies showed that dietary supplementation with 

ω-3 PUFAs facilitated LTP in reodents’ hippocampus (Connor et al. 2012, Kavraal et al. 

2012).  

Dietary enrichment of aged rats with EPA, DHA have all been shown to have positive effects 

on age-related impairments in LTP, and these effects are likely mediated via multiple anti-

inflammatory effects acting via alterations in cytokine levels. Feeding rats diets supplemented 

with EPA prevented age-related increased in cortical and hippocampal IL-1 and restored LTP 

(Martin et al. 2002), it also prevented age-related increases in IL-1 -induced signalling and 

decrease in IL-4, extracellular-signal-regulated kinases(ERK) and PI-3 kinase (Maher, Martin 

and Lynch 2004). EPA also protects aged rats from amyloid-  (A ) induced increases in 

hippocampal IL-1, potentially mediated by positive effects on the PPAR nuclear transcription 

factor (Minogue et al. 2007). In mouse models of Alzheimer’s disease, increased brain DHA 

levels are associated with a reduction in the formation of amyloid plaques (Calon et al. 2004, 
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Lim et al. 2005, Green et al. 2007), a protective effect that could be due to the anti-

amyloidogenic activity of DHA or of its mediator NPD1 (Zhao et al. 2011, Calon et al. 2005). 

Mood and stress 

Findings from clinical and observational studies suggest that PUFAs have a role in the 

regulation of mood. EPA concentration (Adams et al. 1996, Green et al. 2006, Liu et al. 2013) 

as well as DHA concentration (Edwards et al. 1998, Frasure-Smith, Lespérance and Julien 

2004, Green et al. 2006, McNamara and Liu 2011, Liu et al. 2013, Otoki et al. 2017) are 

decreased in the membrane of erythrocytes and in the plasma of patients suffering from unipolar 

depression, seasonal winter affective disorder or social anxiety disorders (Adams et al. 1996, 

Green et al. 2006). The involvement of brain DHA levels in the development of depression has 

also been assessed in animal studies. Single- or multi-generation exposure to dietary ω-3 PUFA 

deprivation induces depressive and anxiety-like behaviours in rats and mice (Lafourcade et al. 

2011, Rao et al. 2007, DeMar et al. 2006), and these behaviours are associated with decreased 

brain DHA levels, including in the prefrontal cortex and the hippocampus (Lafourcade et al. 

2011).  

Stress may be one pathway by which ω-3 PUFA levels modulate mood and cognition. Stress 

and depression, as well as dietary composition akin to the Western diet with high ω-6 to ω-3 

PUFA ratio, have been shown to influence inflammation through increasing pro-inflammatory 

cytokine production (Kiecolt-Glaser 2010, O'Brien, Scott and Dinan 2004). Animal studies 

suggest that ω-3 PUFAs mitigate stress-induced cognitive impairments (Su 2010). Further, an 

ω-3 PUFA deficient diet is associated with learning deficits and heightened anxiety (Heinrichs 

2010), whereas ω-3 PUFA supplementation in rats prevented anxiety- and depressive-like 

behaviours and learning and memory deficits induced by stress (Ferraz et al. 2011). Some 

studies show that behavioural impairments (e.g., anxiety-like behaviour and social interaction) 

occur in mice after exposure to chronic social defeat stress (CSDS; (Golden et al. 2011, Bosch-

Bouju et al. 2016, Larrieu et al. 2017). By comparing the effects of dietary ω-3 PUFAs 

deficiency to those of CSDS on emotional behaviour, Larrieu and collaborator found that mice 

fed with a diet deficient in ω-3 PUFAs exhibited behavioural changes and neuronal atrophy 

profile that resemble those of mice exposed to CSDS (Larrieu et al. 2014). Interestingly, 

behavioural alterations can be reversed after chronic ω-3 PUFAs supplementation. As such, 

increased anxiety- and depressive-like behaviour after chronic stress is normalized after ω-3 

PUFAs supplementation (Ferraz et al. 2011, Larrieu et al. 2014).  
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Vitamin A 

Vitamin A (all-trans-retinol) is a fat-soluble micronutrient which, together with its natural 

derivatives and synthetic analogues that exhibit its biological activity, constitutes the group of 

retinoids (McLaren and Kraemer 2012). It is converted by two successive oxidative reactions 

into its main biologically active derivatives, retinaldehyde and retinoic acid (RA). Vitamin A 

is the most multifunctional vitamin in the human body, as it is involved in several essential 

physiological processes from embryogenesis to adulthood. Most of these functions are not 

carried out by retinol itself but by its active metabolites (Timoneda et al. 2018) (Figure 5).  

 

Figure 3. Intracellular metabolism of retinol (vitamin A). All-trans retinol (vitamin A) is converted to all-

trans retinaldehyde by retinol dehydrogenase. The second and irreversible step is the oxidation of 

retinaldehyde to all-trans-retinoic acid by retinal dehydrogenase 1 family. Excessive all trans-retinoic acid 

is not recycled back to retinol and must be oxidized to be eliminated from the body by the cytochrome P450 

family members in 4-oxo all-trans retinoic acid.  

 

No animal species have the potential for de novo synthesis of vitamin A. Hence vitamin A must 

be acquired from the diet as preformed retinol or retinyl esters or as precursors, the carotenoids, 

mainly β-carotene. Diet retinol is provided by eggs and liver from several animals, especially 

poultry and fish (Fraser and Bramley 2004). Dietary carotenoids are provided by fruits and 

vegetables with orange/yellow pigments and then converted to retinol by a number of tissues 

in the body. 

Retinol is stored as retinyl esters essentially in the liver (O'Byrne and Blaner 2013, Shirakami 

et al. 2012). Mobilisation of retinol from its stores requires hydrolysis of retinyl esters and 

secretion of retinol to the circulation. As it is poorly soluble in water, retinol circulates in blood 

bound to a soluble carrier protein termed serum retinol-binding protein (RBP) that is associated 

with another protein named transthyretin (transporter of thyroxin and retinol, TTR) (Noy and 

Xu 1990) (Figure 5). Then the major fraction of cellular uptake of retinol from circulation 
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occurs upon dissociation from RBP and free diffusion across the plasma membrane (Noy 1992). 

However, in tissues with extreme vitamin A demand, such as retinal pigment epithelium cells 

in the eye, a transporter has been identified. This transporter named Stra6 is an integral plasma 

membrane protein, which recognizes circulating retinol-RBP and mediates retinol uptake into 

cells (Kawaguchi et al. 2007, Ruiz et al. 2012). It is important to consider that a number of 

factors can affect the vitamin A absorption and availability and thus its requirements, including 

the presence and severity of infection and parasites, intestinal or liver disease (such as biliary 

atresia, cholangitis, viral hepatitis, alcoholic liver disease and non-alcoholic fatty liver disease), 

iron and zinc status, stress, fat intake, xenobiotics, protein energy malnutrition, alcohol 

consumption and the food matrix and food processing. Both insufficient dietary retinoid intake 

(hypovitaminosis A or vitamin A deficiency, VAD) and excessive retinoid consumption 

resulting in vitamin A concentrations above the physiological range (hypervitaminosis A or 

vitamin A-toxicity) cause adverse effects to human health, which are paradoxically similar in 

both situations (Blaner et al. 2016, Lieber 2000, World Health 2009, Eroglu and Harrison 2013, 

Otten, Hellwig and Meyers 2006, Shmarakov 2015). 

Retinoids and its natural derivatives retinol, retinal and RA, are involved in many important 

physiological functions, such as vision, immunity, reproduction, embryonic development, 

cellular differentiation, tissue architecture maintenance, antioxidant function, redox signalling 

or energy balance (De Luca 1991, Livrea and Tesoriere 1998, Clagett-Dame and Knutson 2011, 

Rhinn and Dollé 2012, Ross 2012, Sommer and Vyas 2012, Al Tanoury, Piskunov and 

Rochette-Egly 2013, Baybutt and Molteni 2007). Retinal, the oxidized form of retinol, plays a 

key role in vision being the precursor of the visual chromophore 11-cis-retinal. The 

photosensitive receptor is restored via the retinoid visual cycle (Blomhoff and Blomhoff 2006, 

Wald 1968). RA is involved in the regulation of more than 500 genes. In some cases, the control 

of gene expression is exerted by RARs directly, mainly by direct binding of RAR/RXR 

heterodimers to RA responding elements (RAREs) on the promoter of responsive genes. 

However, in some cases, gene regulation is achieved through an indirect action of RARs onto 

responsive genes (Figure 5). At the moment, two families of nuclear receptors, RA receptors 

(RAR isotypes α, β and γ and their isoforms) and retinoid X receptors (RXR isotypes α, β and 

γ and their isoforms) are described. RARs act by forming heterodimers with RXRs, whereas 

RXRs can form either homodimers or heterodimers with several partners including RARs, 

vitamin D receptor, PPAR, thyroid hormone receptor and orphan nuclear receptor (Timoneda 

et al. 2018).  
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Several studies over the last decade have suggested that RA displays biological activities that 

are independent of its ability to activate RAR. RA can also function as an agonist for a different 

nuclear receptor, namely PPARβ/δ. PPARs, like RARs, interact with RXR to form heterodimers 

which when are activated by its ligand bind to PPAR response elements, PPRE, in regulatory 

regions of specific genes to induce target gene transcription. PPARβ/δ is involved in 

keratinocyte differentiation, neuronal development and inflammation and, like other PPARs, is 

also involved in lipid metabolism and insulin resistance. RA signalling through RXR: PPARβ/δ 

has acquired a great interest for energy homeostasis and insulin response (Berry and Noy 2009, 

Noy 2016). 

Retinol can also work as a cytokine that activates Stra6 and transduces a signalling cascade 

mediated by tyrosine kinases called Janus kinases (JAK) and by their associated transcription 

factors STAT (Signal Transducers and Activators of Transcription) (Figure 6). Upon 

dimerization, STATs translocate into the nucleus where they regulate the expression of target 

genes involved in energy homeostasis and insulin responses (Iskakova et al. 2015). 

 

The importance of vitamin A for mammals was first evident with the discovery that vitamin A 

is required for the function of the eye (Wald 1935). A lack of vitamin A leads to decline and 

loss of vision, as this vitamin has a fundamental role in retinal function and visual transduction. 

The earliest sign of vitamin A deficiency is xerophthalmia, which can start with nightblindness, 

reflecting a decline in the retina’s capacity for light detection (Sommer 1998). Nightblindness 

is reversible with restoration of vitamin A, but the vitamin is also necessary for the health of 

the cornea, the transparent structure in the front of the eye. Later stages of xerophthalmia 

resulting from vitamin A deficiency can include ulceration of the cornea and finally corneal 

melting, causing irreversible blindness (Sommer 1998). Vitamin A is even necessary for the 

development of the eye in the foetus, and vitamin A deficiency can cause severe malformation 

of this structure (See and Clagett-Dame 2009). 
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Figure 4. Signalling by vitamin A (Retinol): Retinol circulates in the blood bound to RBP-TTR. Retinol 

uptake into the cell occurs in majority by passive diffusion across the membrane. In the eye, it involves a 

transporter Stra6. Then in the cell, retinol binds CRBP1, which controls its partitioning between 

metabolism or esterification for storage. Retinol bound to RBB can also activate Stra6 that initiate a 

signalling cascade leading to the activation of STAT5 that translocate in the nucleus and regulate the 

expression of a subset of target genes (Iskakova et al. 2015). 

 

Brain Vitamin A 

The brain’s requirement for vitamin A is not driven by a need for the vitamin per se, but instead 

for vitamin A-derived retinoic acid that is generated in two steps by enzymes [retinol 

dehydrogenases and retinaldehyde dehydrogenases (RALDHs)] present in those cells that 

activate vitamin A (Napoli 2012). These are the two main routes by which vitamin A acts in 

the brain, while the system is turned off by breakdown of retinoic acid by a set of enzymes 

known as CYP26s. The functions of vitamin A and retinoic acid in controlling cell proliferation 

and differentiation had previously suggested only minor functions for this vitamin in the brain, 

given that neurons are non-proliferative. However, vitamin A is essential for neuroplasticity 

that allows neurons to alter their connections with other cells and the strength of the signal 

passed among them (Stoney and McCaffery 2016).  

However, evidence from studies of animal models suggests that vitamin A is essential for a 

number of key  functions of the brain (Shearer et al. 2012), and these may be affected by even 

relatively mild vitamin A deficiency or can be problematic when combined with a genetic 

susceptibility to vitamin A deficiency, such as in individuals who cannot make efficient use of 

carotenes (Leung et al. 2009). 
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Neuroinflammation 

Retinoids have important roles in prevention of neuroinflammatory responses for providing 

neuroprotection (Lee et al. 2009). Retinoids are known to down regulate expression of 

cytokines and inflammatory molecules in microglia (Goncalves et al. 2013). 

Inflammation causes synaptic dysfunction and neurodegeneration in the brain. Production of 

excessive neuroinflammatory mediators. Optimal microglial function is necessary for 

scavenging tasks, but chronic activation of these cells in the brain also causes proinflammatory 

responses, oxidative stress, degradation of neuroprotective retinoids, and down regulation of 

RA signalling, promoting degeneration of surrounding healthy neurons (Regen et al. 2017). 

In the context of neuroinflammation RA was shown to mitigate the activity of microglia cells 

(Choi et al. 2009, Dheen et al. 2005, Xu and Drew 2006). Most pathological features associated 

with microglial reactions involve the activation of astrocytes, which are influenced by RA as 

well. The RXR agonist 9-cis RA suppressed the production of TNFα that was triggered by LPS 

in astrocyte primary cultures (Xu and Drew 2006). Stimulation with bacterial LPS induced 

mouse cortical astrocytes to release cytokines IL-1β, IL-6, IL-12, and TNFα. These factors are 

involved in cellular degeneration under neuroinflammatory conditions which are associated 

with pathologies such as ischemia, CNS injury and neurodegenerative disorders, such as 

Alzheimer’s disease (Weisman, Hakimian and Ho 2006). Pretreatment of astrocyte primary 

cultures with all-trans RA interfered with the LPS-induced mRNA expression and protein 

release of these cytokines (Das, Dasgupta and Ray 2019). 

RXRs are known to heterodimerize also with other members of the nuclear hormone receptor 

superfamily, including peroxisome proliferator-activated receptors (PPAR), vitamin D 

receptor, thyroid hormone receptor (TR), or liver X receptor (LXR). Since several of these 

nuclear receptors were shown to have anti-inflammatory properties themselves, the RXR family 

is in a pivotal position for the development of therapeutic approaches (Zhang-Gandhi and Drew 

2007, Genovese et al. 2005).  

Cognition  

The effects of the vitamin A on regions of the central nervous system include the brain. The 

first clear evidence that retinoids play a role in cognitive function came from work with 

knockout mice that lacked either one of the retinoic acid receptors, RARβ, or one of the retinoid 

× receptors, RXRγ (Chiang et al. 1998). These particular receptors are uniquely expressed in 

hippocampal regions of the adult mouse brain that are implicated in spatial and relational 

memory, whereas the other retinoic acid receptors and retinoid × receptors are more uniform in 
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their distribution. Thus, mutant mice for these receptors showed normal development and 

growth with no abnormal physical or neuronal morphology yet demonstrated cognitive deficits 

in learning the Morris water maze and impaired motor control and balance, compared to wild-

type mice. These behavioural impairments correlated with electrophysiological differences in 

hippocampal CA1 cells in that RARβ mutants had impaired long-term potentiation (LTP) and 

the RARβ and RXRγ mutants both impaired LTD. Both of these correspond to changes in long-

term synaptic efficacy that can affect learning and memory. Following these findings, several 

studies have demonstrated a dietary link between retinoids and behaviour or neuronal plasticity. 

By experimentally inducing Vitamin A Deficency (VAD) in neonatal mice, Misner et al. 

showed that poor retinoid nutrition also affects LTP and LDP in mice, along with the more 

obvious physical and ocular deformities typical of VAD (Luo, Wagner and Dräger 2009). These 

electrophysiological effects occurred without apparent physical differences in the underlying 

neuronal structure of the hippocampus, and in fact when proper retinoid nutrition was returned 

to retinoid-deprived mice, LTP and LTD returned to normal (Luo et al. 2009). Behaviourally, 

dietary VAD in rodents also results in cognitive declines in memory tasks, but unlike the 

apparent rescue effect of supplemental retinoids for electrophysiological function, the 

behavioural rescue effect was not as consistent in all animals as there continue to be age-related 

effects on susceptibility to VAD (Etchamendy et al. 2003). 

In parallel to the deprivation experiments, high doses of the 13-cis retinoic acid isomer 

administered to adult mice also resulted in cognitive deficits and were correlated with reduced 

cell proliferation in the hippocampus and the proliferative regions of the ventricle (Crandall et 

al. 2004). Thus, excessively high levels of retinoic acid also have detrimental effects, suggesting 

that it needs to be regulated within a narrow concentration range. Furthermore, in a mouse 

model of Alzheimer’s disease that overexpresses genes for β-amyloid and presenilin 1, mice 

can be rescued from Alzheimer’s-related learning deficits by therapeutic all-trans retinoic acid 

(ATRA) administration (Ding et al. 2008).ATRA-treated mice showed  fewer of the 

neurodegenerative β-amyloid deposits in their brains, yet the possibility exists that the cognitive 

improvements were unrelated to the decrease in β-amyloid deposits, as aged wild-type mice 

that are given retinoic acid also show improvements in their cognitive abilities (Etchamendy et 

al. 2001). Indeed, retinoid based therapeutic approaches are promising for nervous system 

injuries, age-related declines in cognitive function as well as dementia-associated diseases; 

however, because of the multiple gene/signalling pathways and multiple aspects of neuronal 

plasticity known to be affected by retinoid signalling, further research is needed (Olson and 

Mello 2010). 
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Interaction between Omega-3 PUFAs and vitamin A 

Retinoids and ω-3 PUFAs may modulate cerebral plasticity and memory by regulating gene 

expression through nuclear receptors that function as ligand-controlled transcription factors 

(Lane and Bailey 2005, Su 2010). Indeed, DHA and RA can bind to nuclear receptors, such as 

the PPARs, the RARs, and the RXRs (Evans and Mangelsdorf 2014). Several studies 

highlighted multiple levels of interactions between the fatty acid and the retinoid signalling 

pathways. On the one hand, it has been shown that RXR is the obligatory heterodimerization 

partner of RARs and PPARs, suggesting that RXRs play a key role in both retinoid- and ω-3 

PUFA-mediated signalling pathways (van Neerven, Kampmann and Mey 2008). On the other 

hand, in vitro studies have shown that fatty acids and particularly DHA can bind and activate 

RXRs (de Urquiza et al. 2000, Lengqvist et al. 2004) and that RA can bind to the PPARs (Shaw, 

Elholm and Noy 2003, Schug et al. 2007), implying interactions at the nuclear level between 

DHA and RA for binding to their receptors. Moreover, RA and ω-3 PUFAs have additional 

extra- nuclear and non-transcriptional effects that activate kinase signalling pathways such as, 

AKT or the MAPK, which includes ERK1/2, thus influencing gene expression through 

phosphorylation processes (Masiá et al. 2007, Al Tanoury et al. 2013). These signalling 

pathways are involved in the modulation of cerebral plasticity and thus in learning and memory 

processes (Giese and Mizuno 2013). It has been shown that the ERK2 mRNA expression is 

impaired in the rat hippocampus during aging (Simonyi, Murch and Sun 2003). Other kinases 

such as the CAMKII involved in synaptic plasticity (Ma, Li and Tsien 2015) seem to be 

modulated by both ω-3 PUFAs and RA. Indeed, although the transcriptional regulation of 

CAMKII depends on retinoids (Chen and Kelly 1996), it has been shown that DHA treatment 

normalizes the CAMKII expression in the hippocampus of rats after a traumatic brain injury 

(Wu, Ying and Gomez-Pinilla 2011). 

A recent work of Létondor and collaborators demonstrated for the first time a preventive 

additive effect of an EPA/DHA and vitamin A enriched diet on the age-related decline in 

reference memory performance that could be in part mediated both by RXR and kinase 

signalling pathways that were maintained in the hippocampus of middle-aged supplemented 

rats (Létondor et al. 2016). 

Altogether these data indicate that there is a close relationship between the ω-3 PUFA and the 

retinoid signalling pathways with both intra-and extra-nuclear interactions, suggesting that 

these nutrients may act together to modulate synaptic plasticity processes and memory.  
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Fatty acids ‘derivatives: Oleoylethanolamide 

Fatty acid ethanolamides (FAEs) exist as a class of lipid amides that regulate numerous 

pathophysiological functions. This class includes the FAEs palmitoylethanolamide (PEA), 

oleoylethanolamine (OEA), and linoleoylethanolamide (LEA) that possess a variety of 

physiological activities (Calignano et al. 1998, Rodríguez de Fonseca et al. 2001, Lo Verme et 

al. 2005, LoVerme et al. 2006, Fu et al. 2003). 

OEA is formed from the ω-9 monounsaturated fatty acid, oleic acid. The identified biological 

functions of OEA include promotion of fat catabolism and control of food intake (Lo Verme et 

al. 2005, Thabuis et al. 2007, Thabuis et al. 2008, Piomelli 2013), primarily through activation 

of the nuclear transcription factor peroxisome proliferator-activated receptor α (PPAR-α) (Fu 

et al. 2003). Diets high in oleic acid may beneficially modify body composition and regional 

fat distribution (Walker et al. 1996, Paniagua et al. 2007, Gillingham, Robinson and Jones 2012, 

Estruch et al. 2016). Emerging evidence suggests OEA may mediate this response (Pu et al. 

2016), positioning OEA as an attractive molecule in the current obesogenic environment that 

requires further exploration. 

OEA has also attracted attention as a lipid mediator involved in peripheral appetite regulation. 

In rodents, intestinal OEA levels decrease during starvation (Rodríguez de Fonseca et al. 2001, 

Fu et al. 2007) and both intraperitoneal injection as well as oral administration of OEA decrease 

food intake (Rodríguez de Fonseca et al. 2001, Nielsen et al. 2004, Oveisi et al. 2004). OEA 

stimulates hepatic lipolysis, decreases body weight gain and lowers hepatic and adipose tissue 

hyperlipidemia in obese rats probably through activation of the nuclear receptor PPAR-α (Fu 

et al. 2003, Fu et al. 2005, Yang et al. 2007). Levels of OEA in plasma seem to be influenced 

by glucose levels (Matias et al. 2007). OEA is also an endogenous ligand for GPR119 (Overton 

et al. 2006) which is expressed primarily in the pancreas and to some extend in the small 

intestine (Soga et al. 2005, Sakamoto et al. 2006). Activation of GPR119 leads to reduction in 

both food intake, bodyweight gain and white adipose deposition in diet-induced obese rats 

(Overton et al. 2006) and it improves glycemic control by enhancing glucose-dependent insulin 

release (Chu et al. 2007). Moreover, OEA is an endogenous ligand for the pain-mediating 

transient receptor potential vanilloid 1 (Movahed et al. 2005, Zygmunt et al. 1999). 

OEA inhibits food intake mainly, but not essentially by recruiting sensory afferents in the 

intestinal branch of the vagus nerve (Azari et al. 2014). Several studies demonstrated this 

mechanism of action: (i) OEA reduces food intake after systemic administration, but not after 

infusion into the brain ventricles (Rodríguez de Fonseca et al. 2001); (ii) local elevations in 
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small-intestinal OEA production mimic the hypophagic effects of exogenous OEA (Fu et al. 

2008); (iii) surgical disconnection of the vagus nerve prevents such effects, but not those of 

centrally acting anorexiants (Rodríguez de Fonseca et al. 2001);  (iv) a similar failure to respond 

to OEA is seen in rats treated with neurotoxic doses of capsaicin, which deprive the animals of 

peripheral vagal and non-vagal sensory fibers (Rodríguez de Fonseca et al. 2001); and, finally 

(v) IP injections of OEA stimulate transcription of c-Fos (a marker of neuronal activation) in 

the nucleus of the solitary tract (NST) (Rodríguez de Fonseca et al. 2001, Gaetani et al. 2010) 

(Figure 7).  

From the brainstem nucleus of NST, the signal is relayed to magnocellular neurons of the 

paraventricular (PVN) and supraoptic (SON) nuclei of the hypothalamus, stimulating oxytocin 

neurotransmission (Gaetani et al. 2010). Pharmacological blockade of central oxytocin 

receptors abrogates the hypophagic effects of OEA, implying that release of oxytocin in the 

hypothalamus and/or other regions of the brain may be a key effector of OEA-induced satiety 

(Gaetani et al. 2010). This neural peptide, whose ability to control satiety is most likely 

mediated by activation of descending projections from hypothalamus to brainstem, plays an 

obligatory role in OEA-induced satiety. The identification of a functional link between OEA 

signalling in the gut and oxytocin transmission in the CNS raises the intriguing, but as-yet 

unexplored possibility, that OEA might also trigger other actions of oxytocin, such as 

facilitation of social behaviours (Insel and Young 2001).  

Noradrenergic projections that connect the NST to the basolateral complex of the amygdala 

(BLA) are part of a neural circuit that is crucially implicated in the consolidation of recent 

emotional memories (McGaugh 2000). Considering that the ability to retain contextual 

information associated with nutrient sources would provide an adaptive advantage to animals 

foraging in the wild, it is plausible that OEA might reinforce such ability by strengthening 

memory consolidation (Campolongo et al. 2009). Using two distinct experimental paradigms 

in rats (inhibitory avoidance and the Morris watermaze) Campolongo et al. found that i.p. 

administration of OEA after behavioural training strongly improved the retention of these tasks. 

This effect was blocked by infusions of the local anaesthetic lidocaine into the NST or the β-

adrenergic antagonist propranolol into the BLA, indicating that the signal launched by 

peripheral OEA gains access to the CNS via the afferent vagus, and strengthens memory 

consolidation by stimulating noradrenergic activity in the BLA (Campolongo et al. 2009) 

(Figure 7). It appears, therefore, that OEA signalling in the gut initiates an integrated response 

in which satiety induced by a fat-rich meal coincides temporally with enhanced encoding of 

information about the spatial and emotional context in which the meal was consumed. 
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A recent study conducted by Misto et al (Misto et al. 2019) demonstrated that mast cells 

contribute to the control of fasting-induced ketogenesis through a paracrine mechanism, which 

involves secretion of histamine into the hepatic portal circulation, stimulation of liver H1 

receptors, and local biosynthesis of OEA. 

 

 
Figure 5. From gut to brain and back. The entry of oleic acid into gut mucosal cells stimulates OEA 

mobilization, which launches a PPAR-α-mediated signal that travels to the CNS through the afferent vagus 

nerve. From the the solitary tract (NST), the signal is relayed to magnocellular neurons of the 

paraventricular (PVN) and supraoptic (SON) nuclei of the hypothalamus, stimulating oxytocin 

neurotransmission. The PPAR-a-mediated signal may also travel to the basolateral nucleus of the amygdala 

(BLA) to strengthen the consolidation of recently formed memories. Within the gut, OEA may influence 

fatty acid (FA) absorption (through PPAR-α) as well as smooth-muscle motility (through an as-yet 

unidentified receptor). A descending sympathetic pathway, presumably originating in the rostral 

ventrolateral medulla (RVLM), facilitates OEA production by activating b-adrenergic receptors in the 

submucosal layer and the myenteric plexus (Piomelli 2013). 

 

Other behavioural effects of OEA include antidyskinetic effect as assessed by using a 

hemiparkinsonian model of Parkinson’s diseases (PD) in mice by using 6-OHDA striatal lesion. 

OEA treatment reduced axial, forelimb and orolingual dyskinetic symptoms, as well as 

contralateral rotations induced by 6-OHDA (González-Aparicio and Moratalla 2014). Also, 

OEA reduced spontaneous locomotor activity and attenuated psychomotor activation induced 

by cocaine, an effect that does not seem to be mediated by PPARα  (Bilbao et al. 2013). OEA’s 

central effects were also tested in depressive-like behaviour by using two animal models: the 

chronic unpredictable mild stress (CUMS) and tail suspension/forced swim tests. OEA 

treatment normalized sucrose preferences, rearing frequencies, prefrontal cortex and 
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hippocampal atrophy and reversed the abnormalities of BDNF and MDA levels and SOD 

activities in the hippocampus and prefrontal cortex, as well as changes in serum levels of 

ACTH, CORT, and T-AOC in CUMS, demonstrating antioxidant properties and normalisation 

of the hyperactivity in the HPA (Jin et al. 2015) .In the tail suspension test (TST) and/or forced 

swimming test (FST), OEA treatment decreased the immobility time demonstrating an 

antidepressant-like effect and also and increased cerebral levels of NE and 5-HT regulating 

central monoamine neurotransmitters (Yu et al. 2015a). 

OEA recruits numerous neurotransmitters and food-regulating hormones to control feeding 

behaviour  among which histamine, which regulates the homeostasis and essential functions in 

the brain, including eating pattern and circadian rhythms (Romano et al. 2015).  

A study of our laboratory demonstrated that disruption of histidine decarboxylase (HDC), the 

primary enzyme for regulating histamine biosynthesis, lowers the hypophagic actions of OEA 

(Provensi et al. 2014). Brain histamine affects feeding behaviour and it is fundamental for 

appetitive and aversive responses during motivated behaviour, and blockade of histamine H1R 

in the hypothalamus is believed to be responsible for the weight gain and metabolic 

dysregulation associated with the clinical use of atypical antipsychotics (Kim et al. 2007). 

Provensi and co-workers (2014) demonstrated that lack of central histamine dampens OEA-

induced increase of c-Fos expression in oxytocin PVN neurons. Therefore, OEA requires the 

integrity of the brain histaminergic system to fully exert its hypophagic effect. These findings 

establish new functional connections between peripherally acting hypophagic signals and brain 

histamine neurotransmission (Provensi et al. 2014). 

Provensi et al. showed that OEA increases memory expression of an aversively motivated task, 

contextual fear conditioning, by eliciting histaminergic neurotransmission in the BLA. 

Accordingly, both depletion of releasable histamine in the brain with α-fluoromethylhistidine 

(α-FMH) that blocks the histamine synthesizing enzyme histidine decarboxylase, and intra-

BLA infusion of histaminergic antagonists prevent the freezing-enhancing effects of OEA 

(Provensi et al. 2017). 

As previously reported, OEA has a potential antidepressant effect since it reduces immobility 

time in the TST (Jiang et al. 2015, Yu et al. 2015a). Our laboratory recently demonstrated that 

the reduction of immobility time occurred in normal, but not in histamine-deprived mice and, 

as other antidepressant compounds, OEA elicited CREB phosphorylation, one of the molecular 

mechanisms associated to the efficacy of SSRI treatment (Carlezon, Duman and Nestler 2005) 

in normal mice, but not in brain histamine-deprived mice, nor in PPAR-α-/- mice, suggesting 
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that these nuclear receptors play an important role in the antidepressant-like properties of OEA  

(Costa et al. 2018). 

Can brain histamine modulate social-stress induced effects? 

Anatomic Framework  

In the central nervous system, the presence of histamine is attributed to the presence of 

histamine-releasing neurons. The amount of histamine derived by non-neuronal pool (mast 

cells) is somewhat limited under normal conditions. Other possible sources of histamine in the 

brain may include microglia and microvascular endothelial cells (Katoh et al. 2001, Yamakami 

et al. 2000).  Mast cells are relatively scarce in the brain, in comparison to other tissues, and 

their function is at present unclear. Furthermore, peripherally synthetized histamine does not 

contribute to its central content due to the histamine inability to cross the blood brain barrier. 

Therefore, it can be assumed that central histaminergic function are due almost exclusively to 

histaminergic neurons (Brown and Ennis 2001). The histamine-producing neurons are located 

in the small tuberomamillary nucleus (TMN). The name derives from the anatomical term tuber 

cinerum, denoting an ashen swelling located rostral to the mammillary bodies and caudal to the 

optic chiasm, forming the floor of the third ventricle in the hypothalamus (Krüger and Nyland 

1995). The TMN in rats has been subdivided by Ericson et al. (Ericson, Watanabe and Köhler 

1987) into three subgroups: (I) the medial tuberomamillary subgroup (TMM), which consists 

of about 600 neurons located on either side of the mamillary recess; (II) the ventral 

tuberomamillary subgroup (TMV), which contains approximately 1500 neurons around the 

mamillary bodies; and (III) the diffuse part of the TM (TMdiff or E5), which is made up of 

about 100 HD-immunoreactive perikarya scattered within or between various hypothalamic 

nuclei (Inagaki et al. 1990). In the mouse brain the TMN is less compact and is characterized 

by smaller and fewer neurons than rat TMN (Parmentier et al. 2002). The human TMN consist 

of about 64.000 neurons anatomically identified as the ventral, medial area and the lateral area 

(Airaksinen et al. 1991).  

The histamine neurons in the TMN send projections that innervate the entire brain, and parts of 

the spinal cord (Figure 8) (Panula, Yang and Costa 1984, Watanabe et al. 1984). Two ascending 

pathways and one descending pathway have been identified (Panula et al. 1989). The highest 

density of histaminergic fibres are found in the hypothalamus, diagonal band, septum and 

olfactory tubercle. Moderate density of fibres is found in cerebral cortex, striatum and nucleus 

accumbens. Projections to the midbrain, brain stem, cerebellum and spinal cord tend to be of 
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lower density. The hippocampal formation is most strongly innervated in the subiculum and 

dentate gyrus, with a low density of fibres present in CA3 and CA1(Brown and Ennis 2001). 

The afferent projections to TM neurons are widespread and come from many different areas. 

Prominent sources are the infralimbic prefrontal cortex, lateral septum and preoptic nucleus 

(Ericson, Blomqvist and Köhler 1991). Most of the efferent histaminergic fibres are 

unmyelinated and except for those that project to the trigeminal nucleus (Inagaki et al. 1988), 

do not in general form synaptic specializations, rather, histamine is released from varicosities 

located periodically along the axon (Takagi et al. 1986). Thus, histamine release sites and 

histamine receptors are not directly associated to one another. Rather, histamine has been 

proposed to act like a local hormone on neurons, glial cells and blood vessels in a concerted 

manner (Wada et al. 1991). In addition to histamine, the TMN neurons contain several other 

neurotransmitters and modulators like GABA that is presumably released in specific brain 

regions to modulate behavioural response (Williams et al. 2014, Yu et al. 2015b). The 

neuropeptides Galanin, thyrotropin-releasing hormone, proenkephalin-derived peptides and 

substance P are also found in various populations of histamine producing TM neurons.  

 

 

Figure 8. The brain histaminergic system.  The tuberomammillary nucleus (TMN) of the hypothalamus is 

the sole source of histaminergic innervation of the CNS. Varicose axons of TMN neurons provide 

widespread input to all areas of the CNS via 2 ascending pathways that innervate the hypothalamus, basal 

forebrain, basal ganglia, amygdala, hippocampus, and cerebral cortex and 1 descending pathway that 

innervates the brainstem, including the cholinergic and monoaminergic nuclei, cerebellum, and spinal cord. 

(Benarroch 2010) 
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Histaminergic Receptors 

The basic homeostatic and higher functions, including cognition, arousal, circadian and feeding 

rhythms regulated by brain histamine are due to the action on 4 metabotropic receptors: H1R, 

H2R, H3R, H4R. All of histaminergic receptors are expressed at central level with different 

density in different brain regions (Passani and Blandina 2011). All metabotropic histamine 

receptors (H1R-H4R) belong to the rhodopsin-like family of G protein coupled receptors 

(GPCR).  Each receptor consists of seven large transmembrane-spanning elements with 

prototypic domains (Haas et al. 2008). Three of the four histamine receptors that have been 

identified (H1–H3) are prominently expressed in the brain in specific cellular compartments, 

whereas the fourth (H4) receptor is detected predominantly in bone marrow and leukocytes 

(Haas and Panula 2003).  

Histamine H1 Receptor 

The human H1 receptor is encoded by a gene of 56kDa composed by 487~490 amino acids 

located on chromosome 3p25 (Jongejan et al. 2005). The signal transduction of H1R is mainly 

mediated by coupling to Gq/11 proteins (Gutowski et al. 1991, Leopoldt, Harteneck and 

Nürnberg 1997, Selbach, Brown and Haas 1997, Moniri, Covington-Strachan and Booth 2004), 

but also signals via Gi/o in some systems (Seifert et al. 1994, Wang and Kotlikoff 2000), and 

the small G protein family, most likely through an indirect downstream effect (Mitchell and 

Mayeenuddin 1998).  The interaction of H1 receptor with Gq/11 protein and phospholipase C 

promotes inositol trisphosphate (IP3)-dependent Ca2+ release from intracellular Ca2+-stores, 

and also diacylglycerol formation. H1R also activates AMP-kinase, nuclear factor kappa B, 

nitric oxide synthases, and phospholipase A2 (PLA2), which induces arachidonic acid 

formation (Haas et al. 2008). H1R are found throughout the whole body and nervous system. 

H1 receptors are widely distributed in mammalian brain (Hill 1990, Schwartz et al. 1991). High 

densities are found in brain regions concerned with neuroendocrine, behavioural, and 

nutritional state control, including the periventricular, suprachiasmatic, and ventromedial nuclei 

of the hypothalamus, aminergic and cholinergic brainstem nuclei, thalamus, and cortex 

(Schwartz et al. 1991). The global loss of H1R in KO mice produces immunological, metabolic, 

and behavioural abnormalities (Masaki and Yoshimatsu 2006, Hirai et al. 2004, Huang et al. 

2006, Haas et al. 2008). 
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Histamine H2 Receptor 

A second class of histamine receptors was identified by Black and colleagues based on the 

different pharmacological profile of the histamine receptor responsible for stimulating gastric 

acid secretion (Hill et al. 1997). The gene encoding the human H2R, which is a 40-kDa 359-

amino acid peptide, is located on chromosome 5q35.5. H2R couple to Gs proteins to stimulate 

adenylyl cyclase and increase intracellular cAMP, which activates protein kinase A (PKA) and 

the transcription factor CREB, all of which are key regulators of neuronal physiology and 

plasticity. Through H2R activation and PKA-dependent phosphorylation, histamine blocks a 

Ca2+-activated potassium conductance responsible for the neuronal excitability (Haas et al. 

2008). Independent of either cAMP or [Ca2+ ]i levels, H2R also inhibit PLA2 and release of 

arachidonic acid, which likely account for the opposing physiological responses elicited by H1R 

and H2R in many tissues (Traiffort et al. 1992). Like the histamine H1 receptor, the H2 receptor 

has a widespread expression in the brain and spinal cord, particularly high densities are found 

in the basal ganglia and in parts of the limbic system such as the hippocampal formation and 

amygdala. In contrast to H1 receptors, H2 receptors are present in low densities in septal areas, 

hypothalamic and thalamic nuclei. H1 and H2 receptors are colocalized in several areas of the 

brain including pyramidal and granule cells in the hippocampal formation and in the other 

aminergic cell where the receptors can act synergistically, e.g. in the stimulation of cAMP 

production (Brown and Ennis 2001). Mice deficient in H2R function exhibit selective cognitive 

deficits along with an impairment in hippocampal LTP (Dai et al. 2007) and with abnormalities 

in nociception (Mobarakeh et al. 2005, Mobarakeh et al. 2006) and gastric and immune 

functions (Teuscher et al. 2004). 

Histamine H3 Receptor 

Histamine H3 receptor in the brain were detected in1983 by the group of J.C. Schwartz in Paris 

proved its neurotransmitter function as auto- as well as hetero-receptor at pre- and postsynaptic 

membranes and revealed its profound influence on different neurotransmitter balances (Panula 

et al. 2015). The gene (Hrh3) encoding human H3R, a 70-kDa 445-amino acid peptide, is located 

on chromosome 20q13.33. H3R negatively couple through pertussis toxin-sensitive Gi/o 

proteins to N- and P-type Ca2+ channels and to adenylyl cyclase. Through extensive cross-talks 

with other GPCRs, they can also engage Gq/11 signalling and activate PLA2, AKT/GSK3, and 

MAP kinase pathways, all of which play important roles in axonal and synaptic plasticity and 

a variety of brain disorders (Haas et al. 2008). The histamine H3 receptor is located on 

histaminergic neuron somata, dendrites and axon varicosities, as well as on the axon varicosities 
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and somata of other neurons, providing negative feedback to inhibit histamine synthesis and 

the release of histamine or other transmitters, including glutamate (Brown and Reymann 1996, 

Doreulee et al. 2001), acetylcholine (Arrang, Morisset and Gbahou 2007, Passani and Blandina 

1998) and GABA (Jang et al. 2001, Yamamoto et al. 1997). In keeping with their role as auto- 

and hetero-receptors, H3R  are heterogeneously distributed among areas known to receive 

histaminergic projections (Hu and Chen 2017). The CNS contains the great majority of H3Rs, 

although they can also be found in the periphery such as heart, lung and intestine (Hancock et 

al. 2003). In rodents, high H3Rs densities are found particularly in anterior parts of the cerebral 

cortex, hippocampus, amygdala, nucleus accumbens, striatum, olfactory tubercles, cerebellum, 

substantia nigra, and brain stem. In the TMN, H3R reside on perikarya of histaminergic neurons. 

Loss of H3R function in KO mice is associated with behavioural state abnormalities, reduced 

locomotion (Toyota et al. 2002), a metabolic syndrome with hyperphagia, late-onset obesity, 

increased insulin and leptin levels (Tokita, Takahashi and Kotani 2006, Yoshimoto et al. 2006), 

and an increased severity of neuroinflammatory diseases (Teuscher et al. 2007).  

An important feature of the H3R is its high degree of constitutive or spontaneous activity 

(Morisset et al. 2000). As a G-protein-coupled receptor, the H3R is an allosteric protein that can 

adopt various conformations in equilibrium and the spontaneously active state leads to 

constitutive activity. It has been suggested that the potency of various H3R antagonist might 

depend on their intrinsic activity as inverse agonists. This discovery is important for drug 

development because the ability to compete with constitutively active H3R states might have 

important therapeutic implication. Currently, an H3R antagonist/inverse agonist, Pitolisant, in 

2016  was introduced for clinical use for the treatment of narcolepsy (Syed 2016). Moreover, 

other H3R antagonist/inverse agonist are in phase II and phase III clinical trial for potential 

treatment of cognitive impairment associated with Alzheimer’s disease  and Parkinson’s 

disease(Kubo et al. 2015), schizophrenia, attention deficit hyperactivity disorders and obesity 

(Passani and Blandina 2011). 

Histamine H4 Receptor 

Six independent laboratories contributed to the identification and cloning of the H4 receptor 

(Nakamura et al. 2000, Oda et al. 2000, Liu et al. 2001, Morse et al. 2001, Nguyen et al. 2001, 

Zhu et al. 2001, O'Reilly et al. 2002). The human H4 receptor gene is present on chromosome 

18q11.2 and is a 44 kDa 390-amino-acid polypeptide. Like H3R, the H4 receptor is coupled to 

pertussis toxin sensitive Gi/o protein with inhibitory effect on cAMP accumulation (Oda et al. 

2000, Leurs et al. 2009). H4 receptor expression has been observed in eosinophils, T cells, 
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dendritic cells, basophils, and mast cells (Liu et al. 2001, Gantner et al. 2002, O'Reilly et al. 

2002, Hofstra et al. 2003), but its expression in the central nervous system remains 

controversial. In the human brain, expression of H4 receptor mRNA has been reported in the 

amygdala, cerebellum, corpus callosum, cortex frontal cortex, hippocampus, and thalamus 

(Strakhova et al. 2009) but, results obtained with analyses of mRNA expression does not always 

reflect results obtained with immunohistochemistry, therefore there is a debate about H4R in 

SNC that needs further research (Panula et al. 2015). 

Homeostatic Histaminergic Functions 

The morphology of brain histaminergic system with a compact group of cells and a capillary 

distribution of varicose fibres suggests its action as a normative centre for brain activity. 

Pharmacological studies in intact and histamine-deficient animals as well as humans link brain 

histamine with homoeostatic brain functions and neuroendocrine control. Brain histamine 

controls behavioural responses, biological rhythms, body weight, energy metabolism, 

thermoregulation, fluid balance, stress, and reproduction (Hough 1988, Schwartz et al. 1991, 

Parmentier et al. 2002). 

Our laboratory demonstrated functional differences in TMN neurons, suggesting that 

histaminergic neurons are organized in distinct subpopulation impinging on different brain 

regions (Giannoni et al. 2009, Blandina et al. 2012).  

Sleep and Wakefulness 

Histaminergic neurons help sustain wakefulness. Several studies corroborate this hypothesis; 

in H1R-KO mice the sleep-wake cycle is impaired, and the waking promotion induced by H3R 

antagonist is abolished (Huang et al. 2006, Lin et al. 2002). During waking c-fos expression 

increases in TMN neurons (Lin 2000, Nelson et al. 2002, Nelson et al. 2003, Scammell et al. 

2000, Sherin et al. 1998, Vanni-Mercier et al. 2003). The regulation of the transition between 

wakefulness and sleep involves antagonist influences of sleep-promoting VLPO neurons, which 

provide inhibitory GABA- and galanin-mediated inputs to TMN and brainstem cholinergic and 

monoaminergic groups, and excitatory effects of orexin (Hcrt/Orx) neurons on TMN and other 

wake-active neuronal groups (Benarroch 2010).  TMN neurons become active just after waking 

and fire at an average rate of about 5 Hz, and their activity is suppressed during sleep (Sakai et 

al. 2010, Saper et al. 2010, Takahashi, Lin and Sakai 2006). A recent elegant work by Wisden 

and co-workers demonstrated that zolpidem, a GABAA receptor-positive modulator, needs to 

work on specific cell types of the brain, including histaminergic neurons, to induce sleep, 
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without reducing the power of the sleep, hence improving sleep quality (Uygun et al. 2016). 

Furthermore, the same laboratory showed that wake-active histaminergic neurons generate a 

paracrine GABAergic signal that serves to provide a brake on over-activation from histamine, 

but could also increase the precision of neocortical processing (Yu et al. 2015b). 

Feeding and Energy Metabolism 

The evidence for histamine involvement in food intake is nowadays very consistent (Provensi, 

Blandina and Passani 2016a, Provensi et al. 2014). Early studies demonstrated that i.c.v 

injection of histamine, loading with histamine precursor L-histidine or application of the H3 

receptor antagonist thioperamide suppress feeding (Cohn, Ball and Hirsch 1973, Sheiner, 

Morris and Anderson 1985, Machidori et al. 1992, Ookuma et al. 1993), whereas i.c.v infusions 

of α-FMH or H1 receptors antagonists increase food intake (Sakata et al. 1988b, Fukagawa et 

al. 1989, Ookuma et al. 1989, Sakata et al. 1988a). However, the role of histamine is not 

restricted to feeding control but also the regulation of body weight and adiposity by modulation 

of peripheral energy. Many of the central hypothalamic areas involved in regulating feeding, 

including the arcuate, ventromedial (VMH) and paraventricular (PVN) nucleus and lateral 

hypothalamic perifornical area (LHA), are densely innervated by histamine containing fibres 

and show a high density of H1Rs (Panula et al. 1989). Early work suggested that histamine-

mediated suppression of food intake was controlled by the VMH as microinfusion of H1R 

antagonists into the VMH but not PVN or LH elicited feeding responses and increases both 

meal size and duration  (Fukagawa et al. 1989, Sakata et al. 2003). Likewise, electrophoretic 

application of H1R antagonists suppressed the firing of glucose-responsive units in the VMH 

but not in the LHA or PVN (Fukagawa et al. 1989). Another site of importance in the histamine 

control of food intake is the mesencephalic trigeminal nucleus. Bilateral injections of α-FMH 

into this region reduced eating speed and prolonged meal duration while leaving meal size 

unaltered. Feeding induced increases in histamine turnover in both the trigeminal nucleus, 

which controls mastication, and the ventromedial area, which is considered as a satiety centre 

(Fujise et al. 1998). In our laboratory, we recently showed that the PVN as well takes part into 

the histaminergic control feeding behaviour as histamine released in the PVN activates oxytocin 

neurons (Provensi et al. 2014) that in turn exert hypophagic behaviour (Gaetani et al. 2010). 

Furthermore, the orexigenic actions of orexins/hypocretins (Jørgensen et al. 2005) and the 

anorexigenic effects of leptin (Toftegaard et al. 2003) and glucagon-like peptide-1 (GLP-1), 

which depend on CRH released by PVN neurons (Gotoh et al. 2005), are all blunted or absent 

by pharmacological or genetic loss of H1R function. Ghrelin, another peptide of peripheral 
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origin, does not affect histamine release, suggesting that ghrelin may act on a parallel, different 

mechanism that controls food intake (Ishizuka et al. 2006).  

Most experimental observations in rodents agree that blockade of brain H3 receptor, hence 

increasing histamine release, decreases energy intake, body weight and plasma triglycerides 

(Hancock and Brune 2005). Also, they increase histamine release from the hypothalamus, they 

reduce energy intake in normal and leptin-resistant mice with diet induced obesity (Ishizuka et 

al. 2008), and decrease food intake in wild type mice (Provensi et al. 2014).   

 

 

Figure 9. Key brain areas involved in the regulation of feeding and their innervation by histaminergic fibres 

(Panula and Nuutinen 2013). 

 

 

From the pharmacological point of view the importance of histamine in the regulation of 

feeding behaviour came from the observation that increased weight is a common adverse effect 

of many classic antipsychotic drugs and atypical antipsychotics that depends on their affinity 

as antagonists at the H1Rs (Kroeze et al. 2003). Preclinical studies showed that activation of 

histamine neurons induces the arousal state during food anticipation (Inzunza et al. 2000, 

Angeles-Castellanos, Aguilar-Roblero and Escobar 2004), and during the appetitive phase that 

precede food consumption (Passani and Blandina 2011). 

Cognitive functions of brain histamine 

Eric Kandel defined learning and memory as a continuous process, and he stated that, “Learning 

is the process by which we acquire knowledge about the world and memory is the process by 

which that knowledge of the world is encoded, stored, and later retrieved” (Kandel et al. 2012). 

Learning is the process that modifies subsequent behaviour while memory is the ability to 

remember past experiences. Cognition, on the other hand, is a broad term that applies to 

processes such as memory, association, language, attention, concept formation and problem 

solving (Coren, Porac and Ward 1984). 
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Memory can be divided into short-term (working memory) and long-term memory. Short-term 

memory has a limited capacity and lasts only for a period of several seconds to a minute. In 

contrast, long-term memory can store larger quantities of information for potentially unlimited 

duration. Long-term memory is divided into declarative (explicit) or non-declarative (implicit) 

memory. Declarative memory answers the question “what”, and it includes knowledge of facts 

such as places, things and people, and the meaning of these facts. Declarative memory is further 

sub-divided into episodic memory, which is the personally experienced event specific to a 

particular context such as time and place; and semantic memory, which involves knowledge of 

these facts taken independent of  the context in which they were learned (Miller 1956, Tulving 

1972).The major brain structure involved in declarative memory is the hippocampus along with 

other medial temporal lobe structures (Squire and Zola 1996). Non-declarative or implicit 

memory, on the other hand, answers the question “how”. It is the acquisition of motor skills 

and habits and is mediated by neostriatum and cerebellum (Bechara et al. 1995, Knowlton, 

Mangels and Squire 1996, Salmon and Butters 1995). In addition, the amygdala mediates 

emotional memory and has been shown to be involved in memory consolidation (Cahill et al. 

1995). 

Fear memory  

Forming associations about events and then consolidating memories of those associations is an 

important strategy for survival. However, in traumatic situations, these associations sometimes 

become overly consolidated and then, potentially, are resistant to extinction over time, resulting 

in fear-related disorders (Parsons and Ressler 2013).  But fear, in general, has a strong survival 

value. The lack of fear, also called recklessness or mindlessness in humans, is inherently 

dangerous and potentially lethal (Izquierdo, Furini and Myskiw 2016). Therefore, in both cases, 

over-consolidation/resistant-extinction and recklessness/loss of fear are two side of the same 

coin, dangerous in the same way. 

The acquisition and memory of conditioned fear depend on both hippocampus and amygdala, 

as lesion studies (Lorenzini et al. 1996b, Lorenzini et al. 1996a, Sacchetti et al. 1999, Sacchetti 

et al. 2002) and biochemical studies (Trifilieff et al. 2007) indicate. The sensory-related 

information from hippocampus and amygdala presumably originates in the mesencephalic 

reticular formation and ventral tegmental area (VTA), which receive it, in turn, from collaterals 

of the sensory pathways (BUSER and ROUGEUL 1961, GREEN and MACHNE 1955, 

MACHNE and SEGUNDO 1956). The hippocampus and the basolateral amygdala (BLA) 

together with the ventro-medial prefrontal cortex (vmPFC) orchestrate memory formation 
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(Izquierdo et al. 2016). Also, the periaqueductal grey (PAG), is a brain region that conveys 

aversive signals to the amygdala. The PAG is known as an output structure for various 

conditioned fear responses, it receives a strong nociceptive input from the spinal and trigeminal 

dorsal horn (Gross and Canteras 2012) and a recent study found that temporary pharmacological 

inactivation of PAG reduces shock-evoked responding in amygdala neurons and the acquisition 

of fear learning (Johansen et al. 2011).  

How to evaluate fear memory in rodents: most widely used paradigms 

Fear learning is usually studied by classical (Pavlovian) or instrumental association between 

the environment or changes in the environment (conditioned stimulus, CS) and a fearsome 

stimulus (usually one or more mild foot shocks; unconditioned stimulus, US). This type of 

learning represents situations in humans in which initially neutral stimuli become threatening 

through pairing with other stimuli and generate fear, a human emotion that guides much of our 

behaviour and is crucial for survival (Izquierdo et al. 2016).  

In the fear conditioning paradigm, the animals are placed in a new environment (context) were 

they receive a mild aversive stimulus such as a foot shock (Unconditioned Stimulus, US) 

associated with another stimulus such as tone or light (Conditioned Stimulus, CS), that usually 

does not elicit a response. Following learning, the presentation of the CS alone generates 

various visceral and behavioural conditioned fear responses. The term fear response is used to 

refer specifically to measurable responses that occur in response to threat and not to the 

conscious feelings of fear: called freezing behaviour.  Freezing behaviour (conditioned 

response, CR), is a generalized immobility caused by a generalized tonic response of the 

animals' skeletal musculature except those muscles used in breathing (Herry and Johansen 

2014, Izquierdo et al. 2016).  

Promnesic agents are expected to increase, whereas amnesic manipulations to reduce freezing 

behaviour (Wehner and Radcliffe 2004, Curzon , Rustay and Browman 2009).  

The most widely used instrumental fear conditioning is one-trial inhibitory avoidance (IA) 

(Gold 1986, Izquierdo et al. 2006, Izquierdo and Medina 1997) which used to be called “passive 

avoidance” in opposition to the “active avoidance” tasks in which animals have to perform 

some movement to avoid the foot shocks. In the “passive” tasks, animals have to withhold 

stepping through a hole into a dark compartment, or stepping down from a platform onto a grid, 

to access the shock compartment; the required response is to remain in the safe, lit compartment 

or on the start platform. Animals learn to avoid stepping through or stepping down, but they are 

not in any way refrained from moving or behave in any way passively. In fact, they move a lot 
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while on the platform or in the lit compartment (Netto and Izquierdo 1985). When re-tested, an 

increase in the latency to step-through or to step-down is related as a measure of learning 

(Izquierdo and McGaugh 2000).  

Multiple systems and brain areas are involved in processing this kind of memories; the 

amygdala has been proven to be a key region engaged in mediating emotional valence during 

memory consolidation (Gold et al. 1975, Izquierdo and Medina 1997, McGaugh 2013, LeDoux 

2003). The amygdala also modulates memory consolidation through projections to other brain 

regions, the cortex (Packard and Goodman 2012) and the hippocampus (Packard, Cahill and 

McGaugh 1994, McIntyre et al. 2005).   

Does histamine have a role in aversive memory? 

Several studies suggest that histaminergic neurons detect stress-induced signals and coordinate 

their influences on memory consolidation. First of all, emotionally arousing events activate the 

neuronal histaminergic system (Passani and Blandina 2011, Torrealba et al. 2012). Studies 

demonstrate that histamine regulates the consolidation of emotional memories. Almeida and 

Izquierdo reported more than 30 years ago that an i.c.v. injection of histamine immediately 

post-training ameliorated the performance of rats in the retention test of a step-down inhibitory 

avoidance paradigm measured 24 h later. This effect involved the activation of both H1 and H2 

receptors (de Almeida and Izquierdo 1986). 

Consistently, systemic treatment with H3 receptor antagonists, known to increase synaptic 

levels of endogenous histamine by blocking inhibitory histamine autoreceptors (Arrang et al. 

2007), enhanced the performance of rat pups in a multi-trial, inhibitory avoidance response, a 

task modelling aspects of ADHD and other disorders in which vigilance, impulsivity and/or 

cognitive performance are impaired (Fox et al. 2002, Komater et al. 2003). 

Consistent with a facilitatory effect of H3 receptor blockade on memory, thioperamide, an H3 

antagonist, facilitated, while Imetit, an H3 agonist, impaired retention in mice trained on foot 

shock avoidance in a T-maze (Flood, Uezu and Morley 1998). 

Recognition memory 

Recognition memory confers the ability to learn and memorize the novelty of entities (Rossato 

et al. 2007). Recognition memory involves at least two separable processes, familiarity 

discrimination and recollection and more complex aspects of contextual, associative and spatial 

aspects (Brown and Banks 2015). Discrimination for visual stimuli seems to be affected by a 

system centred on the perirhinal cortex of the temporal lobe (Brown and Banks 2015). Regions 
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other than perirhinal cortex may also be involved in recognition memory processes: when a 

recognition memory task is solved using recollection or association concerning a presented 

stimulus, the recognition memory predicts hippocampal involvement (Brown, Warburton and 

Aggleton 2010). The hippocampus is involved in recognition memory using multiple items and 

associative or spatial information (Aggleton and Brown 2006, Dere et al. 2006, Eichenbaum, 

Yonelinas and Ranganath 2007, Murray and Ranganath 2007, Squire, Wixted and Clark 2007, 

Winters, Saksida and Bussey 2008). In particular, lesions of the rat hippocampus impair 

recognition memory that requires spatial information; location tasks are impaired by 

hippocampal lesions while perirhinal lesions have no effect (Warburton and Brown 2010).  

Functional imaging in human subjects has implicated the prefrontal cortex in recognition 

memory processes (O'Neil et al. 2012). The role of the rodent medial prefrontal cortex in 

recognition memory has been extensively studied. Large lesions of the prefrontal cortex, which 

included the anterior cingulate, prelimbic and infralimbic cortices, or which centred on the 

ventral medial prefrontal cortex, produced recognition impairments (Kolb et al. 1994, 

Ragozzino, Detrick and Kesner 2002). The medial prefrontal cortex has been implicated in 

attentional processing (Muir 1996, Chudasama and Robbins 2003), and play an important role 

in temporal order memory (Mitchell and Laiacona 1998, Hannesson et al. 2004, Chiba, Kesner 

and Gibson 1997). Lesions in the medial prefrontal cortex impaired temporal order memory 

task (Barker et al. 2007, Devito and Eichenbaum 2011) but not induces deficits in the 

recognition or location tasks (Barker et al. 2007). Moreover, in humans and non-human 

primates damage to the medial dorsal thalamus (MD nucleus) produces recognition memory 

deficits (Victor 1987, Parker, Eacott and Gaffan 1997, Warburton and Brown 2015).  

How to evaluate recognition memory in rodents: most widely used paradigms 

Although highly conserved among species, the expression of declarative memories varies 

greatly among different species (Paul, Magda and Abel 2009). Declarative memory in humans, 

for example, is formulated through language and other explicit representations. Animals, on the 

other hand, cannot represent such knowledge verbally or symbolically, and different tests have 

been used as models of episodic memory tasks in rodents (Fouquet, Tobin and Rondi-Reig 

2010). The most used tasks are the object recognition task and its variations (Ennaceur and 

Delacour 1988, Leger et al. 2013). The novel object recognition and the novel spatial location 

tests rely on the motivational strength of novelty, as they are based on the natural tendency of 

rodents to search and explore novel objects or the new location where an object has been 

displaced. These procedures have become popular methods for studying emotionally neutral 
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memories as they do not require punishments, food or water restriction, and several behavioural 

endpoints can be rapidly obtained, including general activity, reactivity to novelty, and learning 

(Blaser and Heyser 2015). Experimental animals usually remember objects previously 

encountered in an open arena and their location and spend more time exploring new objects or 

their new location. Usually, this type of memory is labile and does not last for more than 6–12 

h (da Silveira et al. 2013b). 

Does histamine have a role in recognition memory? 

As previously reported, manipulation of the central histaminergic system during different 

learning paradigms modifies animals’ behaviour. Early work by the group of Blandina et al. 

(1996) described the effects of systemic administration of the H3 receptor agonists Imetit and 

R-α-methylhistamine prior to the acquisition session in the object discrimination test.  The 

memory of treated animals was impaired, as they showed no significant differences in the time 

spent exploring either object (Blandina et al. 1996). Furthermore, scopolamine-induced 

memory impairment was prevented by pretreatment with the H3 antagonists thioperamide or 

Clobenpropit (Giovannini et al. 1999). 

Nowadays, most experimental observations agree that H3 receptor antagonists prolong 

recognition memory and prevent anterograde or retrograde, pharmacologically induced 

memory impairment. In some studies, memory facilitation occurred when the H3 receptor 

antagonist ciproxifan was given before the retention session (Pascoli, Boer-Saccomani and 

Hermant 2009) or when administered shortly after training or  before retention sessions 

(Trofimiuk and Braszko 2014). These results are in agreement with the majority of studies 

indicating that H3 receptor blockade facilitates retrieval. As mentioned above, H3 receptor 

antagonists increase histamine release as well as the release of other neurotransmitters in brain 

regions crucial for the maintenance of alertness and storage of information. In keeping with this 

hypothesis, we demonstrated that administration of the non-imidazole H3 receptor antagonist, 

ABT-239, to wild-type mice before training and retention test improved memory in the object 

recognition paradigm; the efficacy of ABT-239 on memory was not observed in the brain of 

histamine-depleted mice, suggesting that endogenous histamine is crucial for the mnemonic 

effects of H3 receptor ligands (Provensi et al. 2016b).   

Many studies, however, have evaluated the roles of other specific histaminergic receptors such 

as H1 or H2.  Intra-hippocampal infusion of the H1 receptor antagonist pyrilamine 30–120 min 

after training impaired recognition memory, whereas no effects on retention were observed 

when the drug was infused immediately or 360 min after acquisition. Similar findings were 
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observed when the H2 receptor antagonist ranitidine or the H3 receptor agonist Imetit were 

directly delivered into the CA1 region of the hippocampus (da Silveira et al. 2013a).  

The participation of the central histaminergic system in recognition memory was also studied 

using genetically modified animals. It was observed that H1 receptor as well as H2 receptor 

deficiency impairs learning and memory, including object recognition (Dai et al. 2007). Mice 

lacking the H1 receptor display also episodic like memory impairments as evaluated in a 

complex spatial and temporal object recognition task (Dere et al. 2006). Whereas H3 receptor-

knockout mice performed better than wild-type mice in a spatial learning task but not in novel 

object recognition learning (Rizk et al. 2004). The results of this studies suggest that histamine 

facilitates learning and memory. Indeed, HDC-knockout mice show impairment in novel object 

location (Acevedo et al. 2006) and non-reinforced episodic object memory (Dere et al. 2003). 

As discussed in one of the previous chapters, memory processes can be profoundly affected by 

stress. Trofimiuk and Braszko (2014) observed that daily restrained rats for 21 days were unable 

to differentiate the novel from the familiar objects when the retention session was performed 

24 h after the acquisition. Acute ciproxifan treatment counteracted the deleterious effects of 

chronic restrain stress on long-term recognition memory (Trofimiuk and Braszko 2014). 

Moreover, researchers using the Flinders Sensitive Line (FSL), a suitable rat model to study 

emotional and cognitive deficits of depression-like symptoms (Eriksson et al. 2012, Gómez-

Galán et al. 2013) show that the behavioural repertoire of FSL rats acutely treated with the H3R 

antagonist Clobenpropit or saline was compared with that of Sprague–Dawley (SD) rats treated 

with saline. During the test session, performed 24 h after training, SD rats preferentially 

explored the novel objects, whereas saline-treated FSL rats showed no object preference. 

Treatment of FSL rats with Clobenpropit increased the recognition index to the same level 

observed in SD rats, indicating that the drug treatment restored recognition memory (Femenía 

et al. 2015). 

Social memory  

Social recognition is a recognition memory fundamental to form and consolidate social groups; 

hence, it is important for reproduction, species survival and the establishment of dominance 

hierarchies. In addition to these forms of long-term social recognition, rodents are also known 

to form transient, short-term memories of recently encountered individuals (Thor and Holloway 

1982, Winslow and Insel 2004). In humans and other primates, individual recognition relies 

mostly on visual and auditory cues. Indeed, in the human brain, a specific visual association 

area, the right fusiform gyrus, appears to be critical for face recognition (de Waal 2000, Fisher 
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et al. 1998). In most other mammals, social information is encoded via olfactory or pheromonal 

signals, although auditory and visual signals may have important influences (Gowaty, 

Drickamer and Schmid-Holmes 2003). 

Social memory performance depends on various factors, including the species, sex, age, and 

emotional status of the animal during the investigation. memory. A study (Noack et al. 2010) 

suggested that differences in olfaction between rats and mice might account for the species-

specific differences in the social preference task. Thus, although the number of c-Fos-positive 

cells after exposure to the volatile scent of a juvenile was robustly upregulated in the accessory 

olfactory bulb (OB) and the main OB in mice, the same procedure in rats only modestly 

increased the number of c-Fos-positive cells and only in the accessory OB. Gender may also 

play a role in social recognition. A study showed that although the total investigation time of a 

conspecific juvenile was lower in female than in male Long-Evans rats, young female rats 

displayed stronger social recognition than males (Markham and Juraska 2007). In agreement 

with these findings, oestrogen replacement in ovariectomized mice was reported to be 

beneficial for social recognition (Tang et al. 2005). A more recent study identified the medial 

amygdala (MeA) as a site of action for the effects of oestrogen administration on social 

recognition (Spiteri et al. 2010). Interestingly, castration of male rats results in enhanced social 

recognition, supposedly by diminishing arginine vasopressin (AVP) function (Bluthé and 

Dantzer 1992). Of note, a role for AVP in social recognition has been established (Sekiguchi, 

Wolterink and van Ree 1991, Landgraf et al. 1998, Ferguson, Young and Insel 2002, Bielsky 

and Young 2004). Aging is generally accompanied by the deterioration of social recognition in 

both rats and mice (Terranova et al. 1994). For example, old (24-month-old) Wistar rats 

typically demonstrate reduced social recognition in juvenile compared to young (3-month-old) 

rats (Prediger, De-Mello and Takahashi 2006). Some studies have investigated the impact of 

the circadian cycle on social memory. Intracerebroventricular (ICV) infusion of melatonin or 

histamine—both of which are important modulators of the circadian rhythm—in rats facilitated 

social recognition (Prast, Argyriou and Philippu 1996, Argyriou, Prast and Philippu 1998). 

However, the relevance of this variable is unclear because disruption of the circadian rhythm 

was not found to affect social memory in rats (Reijmers et al. 2001). 

Studies have shown that multiple brain regions regulate social behaviours and the formation of 

social recognition memory. The hippocampus, amygdala, and anterior cingulate cortex (ACC) 

are critical regions for the formation/consolidation of social recognition memory in mice 

(Kogan, Frankland and Silva 2000, Suzuki et al. 2011, Hitti and Siegelbaum 2014, Garrido Zinn 

et al. 2016). Conversely, the medial prefrontal cortex (mPFC) and amygdala are involved in the 
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regulation of social behaviours such as social interaction and approach (Jodo et al. 2010, Yizhar 

et al. 2011, Felix-Ortiz et al. 2016). 

The study of the neurochemistry of social memories has largely concentrated on the ‘social 

neuropeptides’, oxytocin (OT) and vasopressin (AVP). OT and AVP are closely related 

neuropeptides that are produced in the paraventricular nucleus and supraoptic nucleus of the 

hypothalamus as well as in extra-hypothalamic sites (Castel and Morris 1988). They are 

currently acknowledged for their major involvement in social behaviour in both rodents 

(Bielsky and Young 2004, Ross and Young 2009) and humans (Meyer-Lindenberg 2008). 

Brattleboro rats, for example, lack AVP production in the hypothalamus and do not recognize 

a juvenile conspecific encountered 30 min earlier. In turn, administration of AVP into the lateral 

septum restores social recognition in the Brattleboro rat without affecting social exploration per 

se (Engelmann and Landgraf 1994, Feifel et al. 2009). Moreover, animals lacking an AVP 

receptor  AVP1bR show reduced interest in a conspecific when given the choice to explore a 

juvenile vs. an empty compartment but they did not show a significant social preference during 

the test, indicating a lack of social interest (DeVito et al. 2009). This suggests that AVP is 

important for the social component of social recognition because perturbations of this system 

do not appear to affect object recognition (DeVito et al. 2009). 

As said before, OT also plays a very important role in social memory (Bielsky and Young 

2004). ICV injections of OT facilitated social recognition of a juvenile in rats that could be 

blocked with an OT antagonist (Benelli et al. 1995, Dluzen et al. 1998, Samuelsen and Meredith 

2011). OT KO mice from both genders showed impaired social recognition without alterations 

in social approach, olfactory functions or cognitive impairments (Ferguson et al. 2000, Crawley 

et al. 2007, Choleris et al. 2003). The social recognition deficit in OT KO mice was rescued 

through OT infusion (Ferguson et al. 2000, Ferguson et al. 2001). OT receptor (OTR) KO mice 

showed impaired social recognition (Takayanagi et al. 2005), in line with the findings obtained 

in OT KO mice. 

How to evaluate social memory in rodents: most widely used paradigms 

Social recognition is assessed in laboratory rodents using tests that represent different variants 

of a basic scheme that measures familiarity recognition. The basic principle relies on the usual 

propensity of rodents to investigate an unfamiliar conspecific more thoroughly than a familiar 

one. (van der Kooij and Sandi 2012). 

The most widely used variant is the habituation/dishabituation paradigm (Thor and Holloway 

1982). In a first step (habituation), a stimulus rodent is presented either once (Thor 1980, Thor 
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and Holloway 1982) or repeatedly (Choleris et al. 2003) to an experimental rodent that shows 

a reduction in its social investigative response on subsequent presentations. Once social 

investigation has declined, in a second step (dishabituation) the presentation of a different 

conspecific reinstates the initial level of social investigation. In this paradigm social recognition 

is inferred from a change in the behaviour of the experimental animal upon subsequent tests. 

This constitutes a potential disadvantage to the use of this procedure because repeated testing 

of the same animal can lead to non-specific behavioural changes, such as sensitization to the 

testing procedure (Engelmann and Landgraf 1994). These effects may mask specific social 

recognition related behavioural changes.  

The social discrimination paradigm has proven to be more sensitive for measuring social 

recognition than the habituation/dishabituation test (Choleris et al. 2009) because is provided 

with a simultaneous binary choice between a novel and a familiar conspecific (Engelmann and 

Landgraf 1994, Choleris et al. 2006). The social discrimination paradigm shares the initial 

exposure to an unfamiliar conspecific with the habituation/dishabituation paradigm but differs 

in the subsequent phase. In this case, both a familiar and a novel conspecific are simultaneously 

presented. In some cases, the two stimulus animals are left to freely move about the cage, 

whereas in other studies, they are confined within wired cups which is frequently the case when 

a three-chambered apparatus is used (Silverman et al. 2010). The experimental design of this 

test allows evaluation of two critical but distinguishable aspects of social behaviour, such as 

social affiliation/motivation, as well as social memory and novelty. "Sociability" in this case is 

defined as the propensity to spend time with another mouse, as compared to the time spent alone 

exploring the empty cup (Moy et al. 2004). "Preference for social novelty" is defined as 

propensity to spend time with a previously unencountered mouse rather than with a familiar 

mouse (Moy et al. 2004).  

Even though it is less popular and less utilized than the habituation/dishabituation procedure, 

the social discrimination paradigm has been shown to be more a sensitive means of assessing 

social recognition because it has allowed for the emergence of social discrimination in animals 

that appeared to possess no social recognition when tested in the habituation/dishabituation 

paradigm (Choleris et al. 2006, Engelmann and Landgraf 1994). For both paradigms various 

versions exist using different exposure times, inter-trial intervals and stimulus animals.  

Does histamine have a role in social memory? 

Neurotransmitters such as noradrenaline, dopamine and acetylcholine (Griffin and Taylor 1995, 

Di Cara et al. 2007, Deiana, Platt and Riedel 2011) and hormones such as oxytocin (Raam et 
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al. 2017, Lin et al. 2018) have been suggested to play key roles in social discrimination and 

memory. Early work by Philippu and colleagues showed that histamine is also involved in this 

type of memory, as an increased histamine concentration in the brain improved short-term 

recognition memory, whereas depletion of neuronal histamine had an amnesic effect (Prast et 

al. 1996). As previously mentioned, social recognition depends also on aging. The H3 receptor 

antagonist ABT-239 that does not significantly improve social memory in adult rats improved 

recall in aged rats to the extent that their performance was comparable to that of adult rats, 

without altering exploratory behaviour (Fox et al. 2005). Other recently synthesized H3 receptor 

antagonists were also found to enhance short-term memory in the rat social recognition memory 

model (Hudkins et al. 2014). Using a protocol entailing re-exposure of the adult rat to the same 

juvenile 90 min after the first encounter, Kraus and colleagues suggested that histaminergic 

neurotransmission within the nucleus accumbens facilitated short-term social memory without 

influencing cholinergic and glutamatergic transmission (Kraus, Prast and Philippu 2013). 

Another study used the social discrimination protocol to show that recognition consolidation is 

mediated by H2 receptors in both the amygdala and dorsal hippocampus, as rats injected with 

the H2 receptor antagonist ranitidine spent a similar length of time exploring the novel and 

familiar juveniles, and the H2 receptor agonist dimaprit reversed this effect (Garrido Zinn et al. 

2016). Nevertheless, H2 receptor activation in the infralimbic cortex does not appear to 

participate in the consolidation of social recognition memory (Cavalcante et al. 2017). Kraus 

and colleagues had previously reported that an infusion of famotidine, another H2 receptor 

antagonist, did not affect the thioperamide-induced facilitatory effect on recognition memory 

(Kraus et al. 2013). These apparently contrasting results could be related to differences in the 

injection site. Famotidine was administered into the brain ventricular system, whereas ranitidine 

was given directly into the BLA or CA1 at very similar dosages; thus, it is conceivable that the 

final concentration of famotidine within these specific structures was not sufficient to prevent 

thioperamide’s effects (Provensi et al. 2018a).  

Interaction between the histaminergic and cholinergic system  

Several evidences support the involvement of the cholinergic transmission as an essential 

neurophysiological component in cognitive functioning: (i) pharmacological experiments 

conducted in both animals and humans have shown learning and memory deficits after 

anticholinergic treatments, (ii) cholinergic disfunction and cell loss have been associated with 

memory alteration in aged subjects and Alzheimer’s disease patients, which has been related to 

cognitive deficits, (iii) the clinical efficacy of acetylcholinesterase inhibitors (galantamine, 
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donepezil, rivastigmine) for the cognitive deficits associated with mild to moderate Alzheimer’s 

disease (Micheau and Marighetto 2011).  

There are compelling reasons to believe that histamine modulates memory through interactions 

with other neurotransmitters regulated by H3 receptors.  

The report that in rats perfusion of the septum with H3 receptor antagonists or H2 receptor 

agonist, dimaprit, increased acetylcholine (ACh) release from the hippocampus, whereas R-α-

methylhistamine, an H3 agonist, produced the opposite effect (Bacciottini et al. 2002), evoked 

the intriguing hypothesis that histamine exerts this procognitive effect through the regulation 

of ACh release in the hippocampus. In this regard, it has been proposed that histamine 

participates in different associative learning tasks mainly by regulating the release of 

neurotransmitters such as ACh, dopamine and GABA (Passani et al. 2017). Passani and 

colleagues demonstrated that intra-BLA administration of H3 receptor antagonists reduced both 

the freezing time of contextual fear conditioned rats and local ACh release (Passani et al. 2001); 

thus, amnesia may depend, at least in part, on the local modulation of the cholinergic tone. 

Consistently, H3 receptor agonists given into the BLA ameliorated the expression of fear 

memory and increased the local release of ACh (Cangioli et al. 2002, Baldi and Bucherelli 

2005).  

H3 receptor activation modulates ACh release from other brain regions as well, apparently with 

modalities that differ according to their cytoarchitectonics. Local H3 receptor activation 

decreased ACh release from the cholinergic terminals in the neocortex (Blandina et al. 1996), 

through a neuronal arrangement that involves inhibition of GABAergic transmission (Giorgetti 

et al. 2000). Consistent with the reduction in cholinergic tone, stimulation of cortical H3 

receptors impaired performance in both passive avoidance and object recognition tasks 

(Blandina et al. 1996). Histamine-elicited decrease in cortical ACh release also has a significant 

impact on the formation of taste aversive memory, since an injection of R-α-methylhistamine, 

an H3 agonist, into the insular cortex impaired conditioned taste aversive memory and 

simultaneously decreased the local release of ACh (Purón-Sierra and Miranda 2014). In this 

test, animals acquire an aversion to a specific taste when a gastric malaise follows its 

consumption. Inactivation of the cortex decreased the efficiency of taste aversive learning 

(Buresová and Bures 1974); cholinergic activity in the insular cortex is strongly implicated in 

the formation of taste mnemonic representation (Naor and Dudai 1996). 

Other study demonstrated that injection of an acetylcholinesterase inhibitor, donepezil, or ABT-

239 improved memory in the object recognition paradigm and augment GSK-3β 
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phosphorylation in cortical and hippocampal homogenates of wild type but not of acutely or 

chronically histamine-depleted animals (Provensi et al. 2016b).   

Study of our laboratory demonstrated show that responses to H3R antagonists differentiate 

histaminergic neurons according to their projection areas. When applied to the rat TMN, H3R 

antagonists, such as thioperamide or GSK- 189254, invariably augmented histamine release 

from the TMN, from the prefrontal cortex and from the nucleus basalis magnocellularis (NBM), 

but not from the nucleus accumbens (NAcc), nor the striatum (Giannoni et al. 2009, Giannoni 

et al. 2010), demonstrating that H3R antagonists may discriminate groups of histaminergic 

neurons impinging on different brain regions, thus suggesting that these neurons are organized 

into functionally distinct circuits that influence different brain regions, and display selective 

control mechanisms (Blandina et al. 2012). 

Taken together, these observations strongly suggest a physiological role for the differential 

regulation, in a region-specific manner, of histamine and of neurotransmitters that are crucial 

modulators of memory processing and motivated behaviours.  Therefore, the resulting effects 

of histaminergic ligands may depend on tissue-architectural constraints that separate groups of 

neurons in particular brain structures that modulate the expression of specific behaviours 

(Provensi et al. 2018b). 
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Aim of the study 

During my PhD I focused my research mainly on the interplay between the brain histaminergic 

system and nutritional/hormonal interventions in lessening stress-induced maladaptive 

behaviours and memory impairments. I also investigated the role of the histaminergic system 

in sociability and the memory of social recognition. 

For these reasons and for the purpose of clarity, the manuscript is divided in three sections.  

 

In the first section of the thesis, I reported the results published in the publication Provensi et 

al., 2019 PNAS, that I co-authored and where I contributed to all experimental settings with the 

exception of microbiota analysis. 

We evaluated the effects of a diet  enriched  with ω-3 polyunsaturated fatty acid (PUFA) and 

vitamin A in preventing immediate and long-lasting behavioural deficits and neurochemical 

changes induced by adolescent social instability stress, a well-validated animal model of social 

stress that produces long-lasting effects on cognitive and emotional responses that may persist 

for the entire lifespan (Burke et al. 2017, McCormick, Hodges and Simone 2015). These results 

prompt us to understand if the brain histaminergic system takes part in the protective effects of 

the enriched diet. 

 

In the second part, I investigated whether the central histaminergic system mediates the 

preventive effect of the ω-3 PUFA and vitamin A enriched diet in stress-induced maladaptive 

behaviours and memory impairment. Indeed, brain histamine is very sensitive to stressful 

stimuli and our working hypothesis is that the histaminergic system is necessary to process 

signals from the periphery. We then evaluated the effects of the enriched diet in preventing 

behavioural, neurochemical and molecular changes induced by 10 days of chronic social defeat 

stress (CSDS) in mice genetically deprived of histamine (HDC+/+) and wild type littermates 

(HDC-/-). At the end of the stress period, the animals underwent a series of behavioural tests 

that are comprehensive of several domains affected by stress: social behaviour, mood, anxiety 

and cognition. Moreover, we analysed the hippocampus and prefrontal cortex composition in 

term of fatty acid metabolic enzymes by qPRC and synaptophysin, a synaptic 

vesicle glycoprotein that participate in synaptic transmission (Calhoun et al. 1996) measured 

by Western Blot analysis. To complete my metabolic studies, I joined the laboratory of Prof. 

Sophie Layé at University of Bordeaux in NutriNeuro Institute. Due to the pandemic 

emergency, I returned to Italy before all experimental settings were completed.  
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I also studied the interplay between the brain histaminergic system and the fatty acid derivative 

lipid Oleoylethanolamide (OEA) in preventing stress-induced deleterious effects, since our 

research group recently show that OEA require the central histaminergic system to exhibit its 

antidepressant-like effect . In this case we subjected HDC+/+ and HDC-/- mice to 21 days of 

CSDS and based on the preliminary results published in the PhD thesis by Dr. Alessia Costa in 

2017 that report an effect of OEA in preventing social aversion induced by chronic stress in 

HDC+/+ but not HDC-/- mice, in collaboration with Dr. Andrea Santangelo we analysed the 

behavioural changes of mice subjected to CSDS and treated with OEA. The manuscript Rani et 

al., has been submitted to Neurobiology of Stress. 

 

In the third part of my thesis I assessed the role of the histaminergic system in sociability and 

the memory of social recognition by using selective ligands of the histaminergic H3 receptor on 

social behaviour and social memory. Indeed, the histaminergic system is strongly involved in 

the modulation of memory and of social recognition memory as well (Provensi et al. 2018b, 

Provensi et al. 2018a), however nowadays not much is known about the specific phases 

regulated by neuronal histamine.  To investigate the impact of histaminergic neurotransmission 

deficiency or potentiation in short and long-term social recognition memory we subjected adult 

mice to the social recognition paradigm Reduction of brain histamine levels was achieved with 

3 different approaches: (i) by using HDC-/- mice; (ii) mice infused with the HDC inhibitor α-

Fluoromethylhistidine (a-FMH 1 mg/mL, 5mL) directly into the lateral ventricles and (iii) 

animals receiving a systemic injection of the H3 receptor agonist VUF16839 (5 mg/kg, i.p.) 

which decreases histamine release. Increased histamine release was induced by systemic 

administration of the H3R antagonist ciproxifan (3 mg/kg, i.p.). Part of the results are published 

in Wágner et al., J. Med Chem. 2020. 
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Part I: Preventing adolescent stress-induced cognitive changes by 

diet 

In rodents, as in humans, adolescence is a time of developmental changes and reorganization 

in the brain and stress systems, marked by cognitive maturation and behavioural changes (Spear 

2000b). ω-3 PUFAs play critical roles in the development and function of CNS. In this part of 

my thesis, we hypothesized that a diet enriched in ω-3 PUFAs and vitamin A may prevent 

immediate and long-lasting behavioural deficits and neurochemical changes induced by stress 

during adolescence. 

Materials and Methods 

Animals: Male Wistar rats obtained from Charles River (Lecco, Italy) were housed in the 

animal facility of Ce.S.A.L (Università di Firenze) upon arrival at 25 days of age. Rats were 

housed in pairs in a humidity and temperature-controlled room (22 ± 1°C) with a 12:12-h light-

dark cycle (light on 07:00–19:00 h), Control or enriched diet (ssniff-Spezialdiäten GmbH, 

Germany) and water were available ad libitum except during the sucrose preference test. All 

procedures were conducted in accordance with the Council Directive of the European 

Community (2010/63/EU), with the Decreto Legislativo Italiano 26 (13/03/2014), and National 

Institutes of Health guidelines on animal care and approved by veterinarian supervision.  

Diet composition: Diets were matched for macronutrient content; the specific compositions are 

provided in Table 1. To prevent oxidation of PUFAs, diets were maintained in air-sealed bags 

at 4 °C in the dark. Food was changed and weighed every day. 
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Table 1. Composition of the control diet and Omega 3 PUFA/Vit. A enriched diet (from Ssniff 

Spezialdiäten GmbH)  

  Control Diet 

5,000 IU/kg Vit. A 

EPA/DHA 

45,000 IU/kg Vit. A 

  SPP12-E020 S9912-E022 

Casein % 20.0000 20.0000 

Corn Starch, pre-gelatinized % 37.4984 37.4904 

Maltodextrin % 15.0000 15.0000 

Sucrose % 10.0000 10.0000 

Cellulose % 5.0000 5.0000 

L-Cystine % 0.3000 0.3000 

Mineral & trace element premix % 6.0000 6.0000 

Vitamin premix, AIN * % 1.0000 1.0000 

TBHQ (t-butylhydroquinone) % 0.0014 0.0014 

Vitamin A % 0.0002 0.0082 

Choline Cl % 0.2000 0.2000 

HO Sunflower Oil % 1.9000 1.4000 

Palm Oil % 2.2000 - 

Canola Oil % 0.8000 - 

EPA oil % - 2.5000 

Safflower oil % - 0.4000 

Soybean Oil % 0.1000 0.7000 

Crude protein % 17.6 17.6 

Crude fat % 5.1 5.1 

Crude fibre % 5.0 5.0 

Crude ash % 5.4 5.4 

Starch % 36.1 36.1 

Sugar % 11.1 11.1 

Fatty Acids    

   C 12:0 % - 0.01 

   C 14:0 % 0.03 0.20 

   C 16:0 % 1.12 0.65 

   C 18:0 % 0.18 0.18 

   C 20:0 % 0.02 0.02 

   C 16:1 % 0.01 0.21 

   C 18:1 % 2.94 1.72 

   C 18:2 % 0.55 0.79 

   C 18:3 % 0.09 0.06 

   C 20:5 n3 % - 0.44 

   C 22:5 n3 % - 0.05 

   C 22:6 n3 % - 0.30 

Physiological fuel value MJ/kg 15.5 15.5 

   Protein kcal% 19 19 

   Fat kcal% 13 13 

   Carbohydrates kcal% 68 68 

*  Providing 4,000 IU/kg Vit. A  
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Social instability: Male Wistar rats arrived at our animal facility at PND 25 and were assigned 

at random to three experimental groups: non-stressed rats fed with the control diet (NSCD), rats 

subjected to social instability protocol and fed with the control diet (SCD), and stressed rats fed 

with the enriched diet (SED). The social instability stress involves changing the social housing 

conditions of adolescent rats, as described previously (McCormick et al. 2015). In brief, on 

each day from PND 30 to PND 45, the rats were isolated for 1 h in ventilated round plastic 

containers (10 cm in diameter), akin to restraint. After isolation, the rats were housed with a 

new partner undergoing the same procedure in a new cage. The stress regimen was implemented 

at various times during the light cycle to decrease the predictability of the event. After the last 

isolation on PND 45, the rats were returned to their original cage partners. The NSCD rats were 

not disturbed except for regular cage maintenance and weighing. The consequences of the social 

instability stress procedure were assessed during adolescence (PND 46–51) and during 

adulthood (PND 70–76) using a battery of tests comprehensive of several domains affected by 

chronic stress: cognition (novel object recognition and contextual fear conditioning), 

anhedonia-like behaviour (sucrose preference), and anxiety-like behaviour (elevated plus 

maze). Locomotor activity was measured in an open field arena. At 1 d after completion of the 

behavioural tests, hippocampus and prefrontal cortex were collected for neurochemical 

analyses. Different cohorts of animals were used at the two time points. The experimental 

timeline is depicted in Figure 10.  

 

Figure 10. Time-line for the adolescent social instability stress experiment. Adolescent rats were randomly 

assigned to three experimental groups: NSCD=Non-stressed fed with control diet, SCD=Stressed fed with 

control diet, and SED=stressed fed with enriched diet (Provensi et al., 2019).  
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Novel Object Recognition Test: Rats’ behaviour was assessed in an open-field arena (60 x 70 

x 40 cm) placed in a sound attenuated room. The procedure for the NOR involved a total of 

three sessions: habituation, training and test separated by predetermined inter-trial intervals. 

Each animal was subjected to the procedure separately and care was taken to remove any 

olfactory/taste cues by cleaning carefully the arena and test objects between trials. During 

habituation rats freely explored the arena for 10 min. Twenty-four hours later, each rat was 

placed in the same position and facing the same direction into the test arena in the presence of 

two identical objects (plastic shapes such as cubes, cylinders or pyramids). The test session was 

performed 1 or 4 h after training, during which, each rat was again placed in the test arena for 

5 min in the presence of one of the familiar objects and a novel object. Rats were placed in their 

home cages between trials. The position of the objects (left/right) was randomized to prevent 

bias from order or place preference. Animal’s behaviour during all session was videotaped and 

the time spent actively exploring each object was recorded by an experienced observer unaware 

of the experimental groups. Exploration was defined as sniffing or touching the stimulus object 

with the nose and/or forepaws. Sitting on or turning around the objects was not considered 

exploratory behaviour. The final data is expressed as the percentage of time exploring the 

familiar and new objects during the test. 

 

Contextual fear conditioning: Contextual fear conditioning was induced in a Skinner box 

module (29 × 31 × 26 cm, Modular Operant Cage; Coulbourn Instruments Inc., USA), equipped 

with a grid floor connected to a shock-delivery apparatus (Modular Operant Cage/Grid Floor 

Shocker E13-08; Coulbourn Instruments) and placed in an acoustically insulated room at 20 ± 

1 °C. The number of the electric shocks and the inter-shock interval duration was predetermined 

by a stimulus programming device (Scatola di comando Arco 2340, Italy). Illumination inside 

the room was 60 lux. The rat was left undisturbed for 2 min and subsequently 3 electric 

footshocks (2s, 0.5 mA) were delivered at 30s intervals. The footshock intensity was chosen 

according to previous published data from our laboratory (Provensi et al. 2017). Rats were 

removed from the chamber 1 min after the last footshock and placed back in their home cages. 

Twenty-four hours after conditioning, rats were again placed inside the conditioning apparatus 

in the soundproof room and left undisturbed for 3 min. Freezing, the complete absence of 

somatic motility with the exception of respiratory movements, was measured with a stopwatch 

by personnel unaware of the experimental group. Results are expressed as the time the animals 

spent freezing (in seconds) during each session which is considered an index of contextual fear 

learning. Each rat was tested either during adolescence or during adulthood.  
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Sucrose preference test: To assess anhedonia-like behaviour, rats were allowed to habituate 

to the 1% sucrose solution and the two-bottle procedure by introducing two identical bottles to 

their home cage for 24 hs, one containing 1% sucrose and the other tap water. After 

acclimatization, sucrose preference was evaluated at three time points: (i) at PND29 prior to 

social instability procedure to obtain a baseline measure of sucrose preference, (ii) at PND45 

the end of stress procedure (adolescence) and (iii) during adulthood at PND70. To test sucrose 

preference, the rats were deprived of food and water for 5 hours, then presented with two bottles, 

one containing 1% sucrose and the other tap water. The test lasted 1 h beginning at the start of 

the dark-phase (19:00-20:00 h). All bottles were weighed before and after the test, and results 

were expressed as percentage of sweetened or water consumption. The right-left placement of 

the sucrose and water bottles were counter-balanced for all animals in test days. 

 

Elevated Plus Maze: The apparatus consisted of two open (50 x 10 cm) and two closed (50 x 

10 X 37 cm) arms extending from a central platform (10 X 10 cm) elevated 50 cm above the 

floor. Each rat was placed in the central platform of the maze, facing the open arm opposite to 

the experimenter, and videotaped test session of 5 min duration for each trial. Observers blind 

to experimental groups measured the amount of time spent in the open and closed arms, as well 

as the number of open and closed arm entries. Between tests, the apparatus was cleaned with a 

30% ethanol solution in water and was allowed to dry thoroughly.  

 

Open field: The open-field apparatus used in this experiment consisted of a 60 x 70 x 40 cm 

square arena. Rats were placed facing the centre of the arena and allowed to freely explore for 

10 minutes. They were then returned to the home cage after the test. After each observation, the 

arena was cleaned with 30 % ethyl alcohol in water to remove possible scent cues left by the 

animal. For analysis, the space of the arena was virtually divided into a central square (25%) 

and a peripheral zone (75%) and several behavioural parameters were investigated using Smart 

2.5 software. Exploratory behaviours such as rearing, grooming and climbing were recorded by 

trained observers unaware of the experimental groups.  

 

Western blot analysis: For the neurochemical determinations, rats were sacrificed 24 hs after 

the end of behavioural evaluations. After sacrifice, rat brains were dissected out on ice and 

cortices and hippocampi immediately isolated. The pooled structures (left and right) were 

individually homogenized in 400 μL ice-cold lysis buffer containing protease and phosphatase 

inhibitors (50mM TrisHCl (pH 7.5), 50mM NaCl, 10mM EGTA, 5mM EDTA, 2mM NaPP, 
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4mM PNFF, 1mM Na3VO4, 1.1mM PMSF, 20 μg/μL Leupeptin, 50 μg/μL Aprotinin, 0.1% 

SDS) and centrifuged at 12000 rpm at 4 °C for 15 minutes. The supernatant was collected and 

total protein levels were quantified using the Pierce BCA Protein Assay (Thermo Scientific, 

USA). Homogenates were diluted in a mix of lysis buffer and loading buffer 2x (50mM Tris 

pH = 6.8, 100mM DTT, 10% Glycerol, 1% Bromophenol Blue, and 2% SDS) and boiled for 

10 minutes. Aliquots containing 40 μg or 10 μg of total proteins, for detection of BDNF or 

synaptophysin respectively, were resolved by electrophoresis on a 10% SDS-polyacrylamide 

gel (SDS-PAGE) and transferred onto polyvinylidene difluoride (PVDF) membranes 

(Immobilon Transfer Membranes, Millipore, USA). Blots were blocked in Tris-buffered saline, 

pH 7.6 containing 0.1% of Tween 20 (TBS-T) and 5% non-fat dry milk (Bio-Rad Laboratories, 

USA) for 2 h at room temperature and then incubated overnight at 4°C with antibodies against 

BDNF (1:1000 Abcam), synaptophysin (1:10000 ThermoFisher Scientific) or tubulin (1:1000 

Cell Signaling) all diluted TBS-T containing 5% non-fat dry milk. Immunodetection was 

performed with secondary antibodies (anti-rabbit IgG conjugated to horseradish peroxidase, 

Cell Signaling technology, USA) diluted 1:5000 in TBS-T containing 1% of non-fat dry milk. 

Membranes were washed in TBS-T and then reactive bands were detected using enhanced 

chemiluminescence (Luminata Crescendo, Millipore, USA). Quantitative densitometric 

analysis was performed using the QuantityOne analysis software (Bio-Rad). For each sample, 

a ratio of BNDF/Tubulin or Synaptophysin/Tubulin densities was calculated and then all the 

individual rates were expressed as a percentage of the average of ratios obtained from control 

groups. 
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Statistical analysis: Data were analysed using Graphpad Software (version 6.0). The data 

presented in graphs or tables are expressed as mean and S.E.M. or mean ± S.D., respectively. 

Statistical significance was determined using One- or Two-way ANOVA followed by 

Bonferroni’s or Newman-Keuls multiple comparison post-hoc tests. The level of significance 

was set to P<0.05.  

 

Results 

Effects of Stress and the Enriched Diet on Body Weight and Food Consumption. 

As shown in Figure 11A, adolescent SCD gained less weight than NSCD (F(2,61)= 9.950; P < 

0.001], an effect that persisted until adulthood (F(2,59)= 5.262; P < 0.01) (Figure 11B). This 

effect was counteracted by the ω-3 PUFA/vitamin A–enriched diet. At both ages, rats ate 

comparable amounts of food independent of stress and diet (Figure 11C-D). 

 

 
Figure 11. (A-B) Impact of social instability stress and diet enrichment on body weight and cumulative food 

consumption measured during adolescence (at post-natal day 45, A) and at completion of the stress 

procedure during adulthood (at post-natal day 70, B). n = 18–24 rats/group. ***P < 0.001, *P < 0.05 vs. 

NSCD rats; ##P < 0.01, #P < 0.05 vs. NSCD by one-way ANOVA and the Bonferroni test (Modified from 

Provensi et al., 2019). 
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The Enriched Diet Prevented the Recognition memory Impairments Induced by Social 

Instability Stress 

The Enriched Diet Prevented the Cognitive Impairments Induced by Social Instability Stress 

when testes in Novel Object Recognition task. Two weeks of social instability stress had a 

negative impact on recognition memory that persisted into adulthood. For short-term memory 

(i.e., at 1 h after training), adolescent rats spent significantly more time exploring the novel 

object regardless of stress or diet [objects: F(1,34) = 62.88, P < 0.001; condition: F(2,34) = 0.0, 

P > 0.05; interaction: F(2,34) = 4.43, P > 0.05] (Figure 12A). Regarding long-term memory 

(i.e., at 4 h after training), SCD rats did not discriminate between the two objects (Figure 12B). 

However, in SED rats, the enriched diet fully prevented the stress-induced impairment of object 

discrimination [objects: F(1,30) = 59.11, P < 0.001; condition: F(2,30) = 0, P > 0.05; interaction: 

F(2,30) = 15.01, P < 0.01]. The cognitive impairment induced by the social instability persisted 

into adulthood and was prevented by the enriched diet administered since adolescence. Indeed, 

when tested in adulthood, SED rats showed a total prevention of the memory impairment 

induced by adolescent stress [objects: F(1,30) = 67.45, P < 0.001; conditions: F(2,30) = 0, P > 

0.05; interaction: F(2,30) = 14.08, P < 0.001] (Figure 12D). 

 

 

Figure 12. The enriched diet prevented stress-induced cognitive impairment in the novel object recognition 

test. (A and C) Stress did not affect the performance of either adolescent or adult rats when the test was 

performed at 1 h after training. (B and D) Adolescent and adult stressed rats showed memory impairment 

when tested at 4 h after training, which was prevented by dietary supplementation with ω-3 PUFA/vitamin 

A. n = 6–8 rats/group. ***P < 0.001; **P < 0.01; *P < 0.05 vs. familiar object within each experimental 

group by two-way ANOVA and the Bonferroni test. (Modified from Provensi et al., 2019) 
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The Enriched Diet Prevented the Emotional memory Impairments Induced by Social 

Instability Stress 

We also tested rats with an emotional arousing training experience that engages both contextual 

and emotional memory processing: the contextual fear conditioning paradigm. Freezing time 

obtained during a 3-min reexposure of rats to the conditioning apparatus at 24 h after acquisition 

served as an index of memory of the aversive experience. As shown in Figure 13A, social 

instability stress did not affect the acquisition of fear memory irrespective of diet, whereas SCD 

adolescent rats froze less during context retrieval compared with non-stressed adolescent rats 

fed with control diet [NSCD, F(5,55) = 22.77, P < 0.001]. The enriched diet restored contextual 

fear memory expression, as SED rats spent significantly more time freezing at recall compared 

with SCD rats, which were indistinguishable from NSCD rats. The emotional memory deficit 

and beneficial effects of the enriched diet were long-lasting, as rats tested in adulthood showed 

a comparable behaviour as the adolescents.  SED adult rats froze for a significantly longer time 

than SCD rats [F(5,55) = 47.95, P < 0.001] (Figure 13B). 

 

 
Figure 13. The enriched diet prevented immediate (A) and long-term (B) stress-induced cognitive 

impairment in the contextual fear conditioning test. Rat freezing time did not differ at training regardless 

of treatment condition. When tested at 24 h after training, the SCD rats showed a lower freezing time than 

the NSCD rats, and the SED rats showed no stress-induced cognitive impairment. n = 9–10 rats/group. ***P 

< 0.001, **P < 0.01 vs. respective training; ###P < 0.001, #P < 0.05 vs. SCD by one-way ANOVA and the 

Bonferroni test (Modified from Provensi et al., 2019). 
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Stress and diet did not affect anhedonia-like behaviour 

In agreement with recent data (Marcolin et al. 2019), we observed no differences between SCD 

and NSCD rats in terms of preference for the consumption of a sweetened solution when 

evaluated at different time points (Figure 14). Neither stress nor the enriched diet had an effect 

on anhedonia-like behaviour, as the preference for a sucrose-sweetened drink was not affected 

by any of the experimental manipulations in either age group tested. 

 

 
Figure 14. Social instability stress did not induce an anhedonia-like state. Consumption of a sweetened 

solution (sucrose 1%, S) or tap water (W) during 1h were measured at 3 time points: (A) PND 29 in order 

to a baseline measure; (B) PND 44, immediately at the end of stress procedure (adolescence) and (C) PND70, 

during adulthood. Preference was calculated as the percentage of sucrose solution over tap water 

consumption. NSCD stressed-control diet, SCD stressed control diet; SED stressed enriched diet; W, water; 

S, sucrose. ***P<0.001; **P<0.01 vs water consumption within the same experimental group by two-way 

ANOVA and Bonferroni’s test. Shown are means ± SEM of 18-24 animals per experimental group. 

(Modified from Provensi et al., 2019) 

 

 

Neither stress or diet affected locomotion or anxiety-like behaviour.  

Locomotor activity, measured as the distance travelled and time spent moving in an open field, 

was comparable across the three cohorts in each age group, although adult rats were less active 

than adolescents (Table 2). Neither stress nor diet affected the number of entries and time spent 

in the centre or the periphery of the open field (Table 2).  

Treatment conditions did not affect other exploratory behaviours indicative of a non-distressed 

state, such as climbing, rearing, and grooming. Accordingly, treatment conditions also had no 

effect on the number of entries and percentage of time spent by adolescent or adult rats in the 

open arms of the elevated plus maze (Table 3). 
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Table 2. Social instability stress did not alter locomotor activity and exploratory behaviours measured in 

an open field arena at any age. NSCD stressed-control diet SCD stressed control diet; SED stressed enriched 

diet. Results are expressed as means ± SD of 10 animals per experimental group. F ratios and P values were 

determined using one-way ANOVA. 
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Table 3. Social instability stress did not alter anxiety-related behaviours evaluated in the elevated plus maze 

test 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



                                                                                                                                                    Part I: Results 

73 
 

The Enriched Diet Prevented Short- and Long-Term Social Stress-induced effects on 

BDNF Expression.  

To investigate the effect of stress and diet on brain plasticity, we assessed the expression of 

BDNF in the brain. We found significant differences in BDNF protein levels in the 

hippocampus of adolescent rats [F(2,27)= 10.33, P < 0.001; Figure 15A]. BDNF expression was 

decreased in SCD rats compared with NSCD rats, and this effect was prevented by the enriched 

diet. In the frontal cortex of adolescent rats, stress did not significantly modify BDNF 

expression, whereas the enriched diet increased BDNF levels [F(2,27)= 5.808, P < 0.01] (Figure 

15B). Interestingly, social instability stress led to a long-lasting decrease in hippocampal BDNF 

expression, whereas the enriched diet prevented the effects of social instability stress [F(2,28) = 

6.896, P < 0.01] (Figure 15C). BDNF levels in the frontal cortex were significantly increased 

following the enriched diet in adult rats as well [F(2,24) = 3.680, P < 0.05] (Figure 15D).  

 

Figure 15. The enriched diet restored BDNF expression in the brain of stressed rats. (A and B) Stress 

decreased BDNF levels in the hippocampus in both adolescent (A) and adult (B) rats. The enriched diet 

restored BDNF expression to control levels. (C and D) In the prefrontal cortex of stressed rats, the BDNF 

decrease did not reach statistical significance in either adolescence (C) or adulthood (D); nonetheless, the 

enriched diet augmented BDNF expression compared with stressed and control rats. (Insets) Representative 

immunoblots for each experimental group. n = 8–10 rats/group. **P < 0.01; *P < 0.05 vs. NSCD; ###P < 

0.001, ##P < 0.01, #P < 0.05 vs. SCD by one-way ANOVA and Bonferroni’s test. (Modified from Provensi et 

al., 2019) 
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Enriched diet increases synaptophysin expression in the brain of stressed rat 

We also used Western blot analysis to detect synaptophysin (a glycoprotein associated with 

presynaptic vesicles) as a marker of synaptic density. Synaptophysin expression was not 

significantly affected by stress in both adolescent and adult rats (Figure 16), in agreement with 

a previous report (McCormick et al. 2012). In adolescent rats, the enriched diet did not 

significantly affect synaptophysin expression in the hippocampus [F(2,28)= 2.121, P > 0.05] or 

in the cortex [F(2,29)= 2.727, P > 0.05]. In adult rats, however, we observed a significant diet-

induced increase of synaptophysin expression in both the hippocampus [F(2,26)= 8.858, P < 

0.001] and the frontal cortex [F(2,27)= 3.705, P < 0.05], which is consistent with the previous 

observation that long exposure to ω-3 PUFAs increases hippocampal synaptophysin expression 

(Venna et al. 2009) 

 

Figure 16. Representative immunoblots and densitometric quantification of synaptophysin in hippocampal 

(A,C) and cortical (B,D) homogenates from the different experimental groups. Stressful manipulation did 

not alter synaptophysin expression in both structures at any age. The enriched increased synaptophysin 

expression in hippocampus (C) as well as in the frontal cortex (D) of adult rats. NSCD stressed-control diet, 

SCD stressed control diet, SED stressed enriched diet. **P<0.01; *P<0.05 vs NSCD; ###P<0.001, ##P<0.01, 
#P<0.05 vs SCD by ANOVA and Bonferroni’s test. Shown are means ± SEM of 9-10 animals per 

experimental group. (Modified from Provensi et al., 2019) 
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Conclusions: Part I  

Nutrition has a fundamental role in maintaining brain health and behaviour at critical periods, 

especially in adolescence (Hueston et al. 2017). In rodents, appropriate essential micronutrient 

supplementation protects against the cognitive decline associated with early life stress (Naninck 

et al. 2015). Our study corroborates the idea that dietary intervention affects neurobehavioral 

development (Robertson et al. 2017) by demonstrating that a diet supplemented with ω-3 

PUFAs and vitamin A prevented the deleterious cognitive decline induced by social instability 

stress during adolescence, with the amelioration maintained in adulthood. Social instability 

stress during adolescence is known to cause emotional and recognition memory impairments 

that persist into adulthood. These behavioural changes are closely associated with alterations in 

BDNF expression in the hippocampus and the frontal cortex. In the present study, dietary ω-3 

PUFA/vitamin A exposure from adolescence to adulthood was sufficient to prevent such 

alterations, and the beneficial outcomes were maintained throughout adulthood. The rationale 

for using a combination of ω-3 PUFAs and vitamin A stems from recent findings demonstrating 

a beneficial synergistic effect of vitamin A and EPA/DHA on behavioural and neurobiological 

markers in aged rats (Létondor et al. 2016). Multiple levels of interactions occur between ω-3 

PUFAs and retinoid signalling, because retinoic acid (the active metabolite of vitamin A) and 

DHA may bind to common nuclear receptors (Lane and Bailey, 2005; Su, 2010). Indeed, DHA 

and Vitamin A can bind to nuclear receptors, such as the PPARs (Evans and Mangelsdorf, 2014) 

and they activate kinase signalling pathways such as, AKT or the MAPK, which includes 

ERK1/2, (Masia et al., 2007; Rao et al., 2007; Al Tanoury et al., 2013) that are involved in the 

modulation of cerebral plasticity and thus in learning and memory processes (Giese and 

Mizuno, 2013). 

Evidence indicates that there is a close relationship between ω-3 PUFA and vitamin A 

signalling pathways with both intra- and extra-nuclear interactions (Létondor et al., 2016), 

suggesting that these nutrients may act together to modulate synaptic plasticity processes and 

memory altered.  

Social instability stress in adolescence exerts long-lasting effects on aversive and recognition 

memory, as shown in previous reports describing enduring deficits in contextual fear memory 

in response to adolescence stress (Morrissey, Mathews and McCormick 2011). The 

hippocampus is one of the brain structures crucially involved in regulation of stress responses 

(Reul and de Kloet 1985). We found that social instability impaired contextual fear memory, a 

predominantly hippocampus-dependent form of aversive memory (reviewed in ref. (Kim and 
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Diamond 2002)), in both adolescent and adult rats. In addition, stressed adolescent rats showed 

long-lasting memory impairment in the novel object recognition test, an effect not previously 

observed. We found a close correspondence between rats’ memory performance and BDNF 

expression in the hippocampus, as both effects were significantly decreased in stressed 

adolescent and adult rats, and the enriched diet prevented both effects. Our results are in 

agreement with recent observations that ω-3 PUFAs induce increased BDNF expression in rat 

hippocampus (Vines et al. 2012). Unequivocal evidence suggests a key role for BDNF in the 

initiation of fear memory consolidation. BDNF enhances fear memory, and antibodies against 

BDNF impair fear memory when administered into the CA1 region of the hippocampus 

(reviewed in ref. (Izquierdo et al. 2016)). Our behavioural results are in accordance with these 

observations, as social instability stress reduced hippocampal BDNF expression and impaired 

contextual fear memory.  

In the frontal cortex, BDNF expression is required for fear memory consolidation and 

expression (reviewed in ref. (Bekinschtein, Cammarota and Medina 2014)). Social instability 

stress did not significantly affect BDNF expression levels in the cortex of adolescent and adult 

rats, although the enriched diet augmented BDNF levels, presumably contributing to 

maintenance of long-term memory. 

Social instability during adolescence is known to modify several social behaviours, as stressed 

rats spend less time in social interactions with other males, have reduced sexual performance, 

and exhibit longer latency to enter the centre of an open arena (Green, Barnes and McCormick 

2013), all validated measures of anxiety-like behaviour. Furthermore, the modified social 

repertoire is evident in adulthood even weeks after the stressful procedure (Burke et al. 2017). 

In our study, though, we found no difference between stressed and non-stressed rats in the 

latency to enter the centre of the arena or the number of entries, or in behavioural differences 

in the elevated plus maze during adolescence or adulthood. One factor contributing to these 

discrepancies may be strain differences, which are known to be responsible for the anxiety 

profile (Ramos et al. 1997). Indeed, the Wistar rats used in our experiments appeared more 

resilient than those commonly used for anxiety-like tests. Other behavioural signs of stress, 

such as modified grooming, rearing, or climbing (Kruk et al. 1998, Füzesi et al. 2016) were not 

affected by our protocol or by the dietary supplementation. Confirming recent data regarding 

the consumption of natural rewards (Marcolin et al. 2019), neither adolescent nor adult stressed 

rats manifested anhedonia-like behaviour in the sucrose preference test. 
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Part IIa: Role of brain histamine in the effects of a diet to prevent 

social defeat stress-induced cognitive and neuropsychologic 

modifications  

ω-3 PUFA supplementation increased synaptic plasticity in the hippocampus and improved 

memory in rodents under stress, but it may show little effect under normal conditions (Joffre et 

al. 2014, Bazinet and Layé 2014). Altered PUFAs metabolism has been reported to be involved 

in different neurological disorders via sustained neuroinflammatory processes (Joffre et al. 

2014). Here we propose that a ω-3 PUFA and vitamin-A supplemented diet confers resilience 

to stress-induced maladaptive behaviours in a model of stress by activating the histaminergic 

system which is crucial in controlling arousal and cognition and is profoundly affected by stress 

(Haas et al. 2008). Therefore, we investigated its involvement in the effects produced by chronic 

stress and dietary supplementation with ω-3 PUFA/Vitamin-A in mice.    

Material and Methods 

Animals: Histidine decarboxylase null (C57bl/6, HDC-/-) and wild type (C57bl/6, HDC+/+) 

mice were grown in the Centro Stabulazione Animali di Laboratorio (CeSAL), Università di 

Firenze in humidity, temperature (22 - 24 °C) and light (light on 7:00-19:00)-controlled room.  

Mice were allowed free access to food and water. Genotypes were confirmed using the PCR 

protocol according to (Provensi et al. 2014). At postnatal (PND) day 21, mice were weaned and 

fed with Control or enriched diet (ssniff-Spezialdiäten GmbH, Germany). Nine to 13-week-old 

male CD1 retired breeders (Charles River, Italy) fed with standard diet (Mucedola s.r.l., Milan, 

Italy)  were screened for aggressive behaviour and used for the social defeat stress protocol 

according to (Golden et al. 2011). All experiments were performed in accordance with the EEC 

recommendations for the care and use of laboratory animals (2010/63/EU) and approved by the 

Animal Care Committee of the University of Florence and Italian Ministry of Health 

(authorization n. 114-2017PR) and complying to the 3R. Ethical policy of the Università di 

Firenze complies with the Guide for the Care and Use of Laboratory Animals of the Council 

Directive of the European Community (2010/63/EU) and the Italian Decreto Legislativo 26 

(13/03/2014). Every effort was made to minimize animal suffering and to reduce the number 

of animals used. All animals were weighted, and food consumption calculated daily.  
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Diet composition: Diets were matched for macronutrient content; the specific compositions are 

provided in Table 1. To prevent oxidation of PUFAs, diets were maintained in air-sealed bags 

at 4 °C in the dark. Food was changed and weighed every day. 

Chronic Social Defeat Stress: C57bl/6 mice were singly housed prior to undergoing social 

defeat stress. CD1 mice were used as resident aggressors for the social defeat stress and were 

singly-housed prior to the experiments. Aggressive CD-1 mice, as defined by demonstrating at 

least one successful act of aggression during two consecutive days toward another male CD1 

intruder mouse, were selected for use in the social defeat. A group of HDC+/+ and of HDC-/- 

mice fed with control or supplemented diet were subjected to the CSDS protocol for 10 days 

(PND56 to PND76); adapted from (Golden et al. 2011). Briefly, the procedure consisted of the 

introduction of an experimental mouse of either genotype in the cage of a CD-1 aggressor until 

the first aggression occurred. Mice were then separated for 2 hrs by a transparent, perforated 

Plexiglas wall to allow visual and olfactory exposure. The separator was then removed, and the 

second attack occurred. Social defeat sessions were carried out once daily (on days 1-3, 5, 9) 

or twice daily (on days 6 and 10). The stress protocol included overcrowding sessions: 6/8 mice 

were placed together in a standard holding cage (33 × 15 × 13 cm) for 24 h (on days 4 and 8) 

with diet and water available ad libitum. Non-stressed mice were left undisturbed in their own 

home cages with other non-stressed mice (3-4 mice per cage). 24 hours after the last aggression 

all the c57bl/6 mice were tested in the social interaction test. Then different cohorts of animals 

were used for novel object recognition or novel object location tests. The experimental timeline 

is reported in Figure 17.  

 

Figure 17. Time-line for the chronic social defeat stress experiment. Adult HDC+/+ and HDC-/- mice were 

randomly assigned to three experimental groups: NS=Non-stressed, SCD=stressed fed with control diet, 

and SED=stressed fed with enriched diet  
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Social Interaction Test: Twenty-four hours after the last defeat session mice were subjected 

to the social interaction test adopting the protocol described by (Golden et al. 2011). Briefly, 

mice were habituated to an arena (41 cm x 32 cm x 40 cm) containing an empty wire-mesh 

enclosure (7.5 cm length, 9.5 cm width) and their movements recorded for 2.5 min to determine 

baseline exploratory behaviour and locomotion (T1). During the second session (T2) the wire-

mesh contained an unfamiliar CD1 aggressive mouse and the time the experimental C57BL/6 

mouse spent in its proximity was measured. Trials were video-recorded and analysed by an 

experienced observer unaware of the group assignment to time spent in the interaction zone, 

that is 5 cm around the wire mesh cage. Exploration was defined as sniffing or touching the 

cage with the nose and/or forepaws. Social interaction (SI) was calculated as the ratio between 

the time spent in the interaction zone during T2 and T1.  

 

Novel object recognition and Novel object location test: The novel object recognition (NOR) 

and novel object location (NOL) tests were conducted to evaluate the short‐term, non-spatial 

recognition and short‐term spatial memory, respectively (Ennaceur and Delacour 1988). Both 

tests were conducted in a white polyvinylchloride rectangular chamber (70 × 60 cm and 30 cm 

high), with a grid floor that is easily cleaned, and illuminated by a 75-W lamp suspended 50 cm 

above the box. A video camera was positioned over the arena and used to record the animals' 

behaviour. The objects were gray polyvinyl chloride shapes: cubes of 8 cm side, pyramids and 

cylinders of 8 cm height. The object recognition task consisted of a training phase (T1) and a 

testing phase (T2). Twenty-four h prior to T1, mice were habituated for two 10 min-session to 

the experimental apparatus in the absence of any object.  

In the NOR the mouse was placed for 5 min into the test arena facing the same direction and in 

the same position in the presence of two identical plastic objects (T1). T2 was performed 1 h 

after T1, during which, each mouse was again placed in the test arena for 5 min in the presence 

of one of the familiar objects and a novel object. The position of the objects (left/right) was 

randomized to prevent bias due to order or place preference. The behavior of mice during T2 

was videotaped, and the exploration time of the familiar (F) and the new object (N) were 

measured.  

NOL task was similar to that of NOR test. The only differences consisted in that during the test 

phase (T2) of NOL task, mice were re‐exposed to the test area for 5 min, with one of the 

identical sample objects moved to a novel spatial location, and the other object remained in the 

original position. Placement of the moved (“novel”)/unmoved (“familiar”) or changed 

(“novel”)/unchanged (“familiar”) objects in the OLR and NOR tasks, respectively, followed a 
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counterbalanced design between mice to control for location effects. The objects and the floor 

of the arena were cleaned with a 30% ethanol solution between each phase to eliminate possible 

odours left by other animals. The behaviour of mice was videotaped, and the time spent actively 

exploring the objects was measured. Exploration was defined as sniffing or touching the objects 

with the nose and/or forepaws. 

Open field test: Mice locomotor activity and anxiety-like level were tested in an open arena 

(60 x 70 x 30 cm) where a virtual zone (20 x 23 cm) was delimited in the centre of the arena; 

mice were allowed to freely explore the arena for 10 minutes. In between observation, the arena 

was cleaned with 30 % ethyl alcohol in water to remove possible scent cues left by the animal. 

The time spent at the centre and periphery of the open field and total distance travelled were 

measured using a video tracking system and analysed using Smart 2.5 software.  

 

Hippocampal slices preparation. As previously described (Mlinar et al. 2006, Mlinar et al. 

2008, Morini et al. 2011) hippocampal slices were prepared from male mice (C57BL/6 strain) 

~10 weeks old subsequently to social interaction test (SIT). Mice were anaesthetized with 

isoflurane and decapitated with a scissor cut. The hippocampi were rapidly removed and placed 

in ice-cold artificial cerebrospinal fluid (ACSF), which contained the following (in mM): NaCl, 

124; KCl, 2.75; NaH2PO4, 1.25; NaHCO3, 26; MgSO4, 1.3; CaCl2, 2; D-glucose 10. The 

solution was bubbled with a 95% O2 ⁄ 5% CO2 gas mixture (pH 7.4). After discarding 

approximately 2 mm of the dorsal hippocampal pole, six transversal slices of 400 µm nominal 

thickness were cut with a McIlwain tissue chopper (Gomshall, UK) and kept for at least 1 h at 

room temperature until recording. Typically, two out of the six (dorsal–central) slices were used 

for LTP experiments. 

 

Electrophysiological recordings. The slice was placed on a nylon mesh, completely 

submerged in a recording chamber and continuously superfused (1.9-2.0 mL / min) with 

oxygenated ACSF at 32–33 °C. The CA1 region was disconnected from the CA3 region by a 

surgical cut. Slices were incubated for 15 min in the recording chamber before initiating 

electrical stimulation that was continuous throughout the experiment. Synaptic responses of 

CA1 pyramidal neurons apical dendrites were elicited by stimulation of the Schaffer collateral 

/ commissural pathway. Stimulation pulses (80 µs duration; 30 s interpulse interval), triggered 

by a PC controlled by WinLTP software (Anderson & Collingridge, 2001) were delivered by a 

stimulus isolation unit (DS2, Digitimer, Welwyn Garden City, UK) through a concentric bipolar 
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Pt-Ir electrode (125 µm / Rnd / 25µm). Field potentials were recorded with a glass electrode 

(filled with 150 mM NaCl, 2–10 MΩ resistance) placed in the distal third of the stratum 

radiatum to record field excitatory postsynaptic potentials (fEPSP). The distance between 

recording electrodes and the stimulating electrode was 300–400 µm (Figure 21A). Recorded 

potentials were amplified with Neurolog NL 104 amplifier (Digitimer), digitized with 

Digidata1320A (Axon Instruments) with the sampling rate of 5 kHz and stored in a PC for off-

line analysis. At the beginning of each experiment, a stimulus–response curve (SRC), obtained 

by gradually increasing stimulus intensity, was recorded. The fEPSP was determined as the 

slope of the initial falling phase of the synaptic response recorded in the stratum radiatum. The 

stimulus intensity of test pulses was set to evoke a fEPSP that had an initial slope equal to 35–

45% of the maximum obtained in the SRC. Unless otherwise stated, stimulus intensity was held 

constant throughout the remainder of the experiment. At least 20 min of stable responses were 

used to generate the baseline values, before inducing LTP.  

 

LTP protocols. LTP was induced by theta-rhythm pattern consisting of a single train of 5 

stimuli (100 Hz intraburst frequency with 5 Hz of burst frequency; TB5). Post-TB5 responses 

were followed for 1 h following which TB10 was delivered, following effect for 15 minutes. 

The response to a single TB10 was considered to represent the maximal potentiation achievable 

in a given slice, as delivery of further TB10 stimulations do not elicit significant increase in 

LTP (Morini et al., 2011). 

 

Western blot analysis: For the neurochemical determination mice were sacrificed 24 hs after 

the end of novel object recognition test. After sacrifice, mice brains were dissected out on ice 

and cortices and hippocampi immediately isolated. The pooled structures (left and right) were 

individually homogenized in 400 μL ice-cold lysis buffer containing protease and phosphatase 

inhibitors (50mM TrisHCl (pH 7.5), 50mM NaCl, 10mM EGTA, 5mM EDTA, 2mM NaPP, 

4mM PNFF, 1mM Na3VO4, 1.1mM PMSF, 20 μg/μL Leupeptin, 50 μg/μL Aprotinin, 0.1% 

SDS) and centrifuged at 12000 rpm at 4 °C for 15 minutes. The supernatant was collected and 

total protein levels were quantified using the Pierce BCA Protein Assay (Thermo Scientific, 

USA). Homogenates were diluted in a mix of lysis buffer and loading buffer 2x (50mM Tris 

pH = 6.8, 100mM DTT, 10% Glycerol, 1% Bromophenol Blue, and 2% SDS) and boiled for 

10 minutes. Aliquots containing 15 μg of total proteins, for detection of synaptophysin, were 

resolved by electrophoresis on a 14% SDS-polyacrylamide gel (SDS-PAGE) and transferred 

onto polyvinylidene difluoride (PVDF) membranes (Immobilon Transfer Membranes, 



                                                                                                                      Part IIa: Materials and Methods  

82 
 

Millipore, USA). Blots were blocked in Tris-buffered saline, pH 7.6 containing 0.1% of Tween 

20 (TBS-T) and 5% non-fat dry milk (Bio-Rad Laboratories, USA) for 2 h at room temperature 

and then incubated overnight at 4°C with antibodies against synaptophysin (1:10000 

ThermoFisher Scientific) or tubulin (1:1000 Cell Signaling) all diluted TBS-T containing 5% 

non-fat dry milk. Immunodetection was performed with secondary antibodies (anti-rabbit IgG 

conjugated to horseradish peroxidase, Cell Signaling technology, USA) diluted 1:5000 in TBS-

T containing 1% of non-fat dry milk. Membranes were washed in TBS-T and then reactive 

bands were detected using enhanced chemiluminescence (Luminata Crescendo, Millipore, 

USA). Quantitative densitometric analysis was performed using the QuantityOne analysis 

software (Bio-Rad). For each sample, a ratio of Synaptophysin/Tubulin densities was calculated 

and then all the individual rates were expressed as a percentage of the average of ratios obtained 

from control groups (HDC+/+ Non stressed). 

 

Real-Time PCR of gene expression in the hippocampus and prefrontal cortex: The 

hippocampus and prefrontal cortex were rapidly removed and stored at –80°C (see Figure 17 

for the timeline).  RNA was extracted using TRIzol reagent (Invitrogen, Life Technologies™, 

Saint-Aubin, France). RNA concentrations were determined using a Nanodrop ND-1000 

(Labtech). Using OligodT and random primers (Invitrogen), cDNA was synthesized with 

SuperScript IV Reverse Transcriptase (Invitrogen, Life Technologies™, Saint-Aubin, France). 

Briefly, 1 µg of total RNA mixed with RNasin (Invitrogen, Life Technologies™, Saint-Aubin, 

France) and DNase (Invitrogen, Life Technologies™, Saint-Aubin, France) was incubated at 

37°C. Then, OligodT and random primers were added for incubation at 65°C. Then, the 

SuperScript IV mix was added, and the mixtures were incubated at 23°C for 10 min, followed 

by 50°C for 10 min and 80°C for 10 min.  

To measure retinoic acid receptors expression, quantitative PCR 217 was performed using 

SYBR® assay (Eurogentec, Seraing, Belgium). Real-time PCR was performed using the 

LightCycler 480 system with a ninety-six-well format (Roche Diagnostics) in a final volume of 

10 µl, containing 1×LightCycler 480 SYBR Green I Master solution, 0.5 µM of each primer 

and 7 µl of cDNA. The following program started with an initial denaturation step for 10 min 

at 95°C, then an amplification for 45 cycles (10 s denaturation at 95°C, 6 s annealing at 62°C, 

and 10 s extension at 72°C), finally a melting curve analysis was run.  

The forward- and reverse-primer sequences and the amplicon size for glyceraldehyde-3-

phosphate dehydrogenase (GAPDH), RAR-α and RXR-α are summarised in Table 
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4. GAPDH was used as the reference gene, since its expression level was unaffected under our 

experimental conditions. Quantification data were analysed using LightCycler 480 Relative 

Quantification software (version 1.5).  

 

Table 4. Primers used for LightCycler RT-qPCR 

Gene name Nucleotide sequence 5’-3’ Product length (bp) 

GAPDH 
F: CCAGTGAGCTTCCCGTTCA 

R: GAACATCATCCCTGCATCCA 
78 

RAR-α 
F: GGCGAACTCCACAGTCTTAATG 

R: GCTGGGCAAGTACACTACGAAC 
118 

RXR-α 
F: GATTCCGATACGACGACAGT 

R: CATCACCACTCTCGCCATC 
141 

 

To measure fatty acid metabolic enzymes and RXR-β, quantitative PCR was performed using 

the Applied Biosystems (Foster, CA) assay-on demand gene expression protocol as previously 

described (Mingam et al., 2008). Briefly, cDNAs for (5-LOX, 12-LOX, COX2, CYP1A1, 

soluble hydrolase (she), RXR-β and a housekeeping gene (GAPDH) will be amplified by PCR 

using an oligonucleotide probe with a 5′ fluorescent reporter dye (6-FAM) and a 3′ quencher 

dye (NFQ). PCR program consisted of 40 cycles of 95 °C for 15 s and 60 °C for 1 min. 

Fluorescence will be measured using an AB 7500 Real-Time PCR system (Applied Biosystems, 

Foster city, CA). The data of real time PCR are expressed as Relative Quantification.   

 

Statistical analysis: Data from behavioural and neurochemical experiments were analysed 

using Graphpad Software (version 6.0). The data presented in graphs or tables are expressed as 

mean and S.E.M. or mean ± S.D., respectively. Statistical significance was determined using 

Two-way ANOVA followed by Bonferroni’s multiple comparison post-hoc tests. The level of 

significance was set to p<0.05. Data from electrophysiology experiments were analysed using 

WinLTP and Prism 6 software (GraphPad Software, San Diego, CA, USA). For statistical 

comparison of changes in LTP experiments, the steady-state values were computed by 

averaging 21 consecutive responses obtained over 5 min period immediately before the theta 

burst stimulation (baseline value) and at 55-60 min after TB5. Typically, more than one slice 

was used per mouse and the results of all determinations per genotype and treatment are shown 

and analysed in Fig. X to account for the overall variability of LTP responses in the different 

genotypes. Mean values from replicates in the same animal were used for genotype vs condition 

statistical analysis reported in results. Unless otherwise stated, numbers represent experiments 

carried out in slices taken from different animals.
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Results 

ω-3 PUFA and Vitamin A enriched diet prevented body weight reduction induced by 

chronic stress in HDC+/+ mice  

Figure 18 shows the effect of ω-3 PUFA and Vitamin A enriched diet in mice submitted to the 

chronic social defeat stress on body weight and food consumption. Stressed mice fed control 

diet (SCD) of both genotypes gained less body weight compared to non-stressed controls 

(NS). The supplemented diet prevented this body weight reduction in HDC+/+, but not in HDC-

/- mice (Two-way ANOVA and Bonferroni MCT F(Interaction)2, 179=4,804; F(Diet)2, 179=14,4; 

F(Genotype)1, 179=3,511) (Figure 18A). Figure 18B show the cumulative food consumption 

expressed in grams per body weight in HDC+/+ and HDC-/- mice fed with enriched or control 

diet and subjected to the CSDS protocol Two-way ANOVA revealed no differences between 

groups (Two-way ANOVA and Bonferroni MCT F(Interaction)2, 179=2,73; F(Diet)2, 179=1,250; 

F(Genotype)1, 179=0,0003412).  

 

Figure 18. Effects of chronic social defeat stress on body weight and food consumption. (A) CSDS induced 

reduced body weight gain in HDC+/+ and HDC-/- fed with control diet compared with non-stressed control 

groups; the enriched diet prevented this reduction only in HDC+/+ mice. (B) Cumulative food consumption 

of the different experimental groups. (Two-way ANOVA and Bonferroni MCT; ***p<0.001, **p<0.01, 

n=27-34).   

 

 

 

 

 

 

 

**

0 .0

0 .5

1 .0

1 .5

2 .0

C
h

a
n

g
e

 i
n

 B
o

d
y

 W
e

ig
h

t

 (
g

)

N S S E D N S S E DS C D

H D C
+ /+

H D C
- / -

S C D

*** ***

**

**

0 .0

0 .5

1 .0

1 .5

2 .0

C
u

m
u

la
ti

v
e

 F
o

o
d

 C
o

n
s

u
m

p
ti

o
n

 (
g

/g
b

w
)

N S S E D N S S E DS C D

H D C
+ /+

H D C
- / -

S C D

A B



                                                                                                                                                Part IIa: Results 

85 
 

ω-3 PUFA and Vitamin A enriched diet reduces social avoidance induced by CSDS  

Figure 19 shows the effect of ω-3 PUFA and Vitamin A enriched diet in SED mice compared 

to SCD and NS animals. The results are expressed both as ratio (Figure 19A) and as absolute 

times (sec) of exploration in the absence or presence of the social stimulus (Figure 19B). The 

time spent in the interaction with the aggressive mouse was influenced by stress exposure. 

Defeated mice of both genotypes fed with control diet spent significantly less time in social 

interaction compared to NS mice (****p<0.0001). SED HDC+/+ mice though, spent 

significantly more time in the interaction zone compared to SCD mice (****p<0.0001). The 

surprising result is that the effect of the diet is lost in SED HDC-/- animals suggesting that the 

central histaminergic system is essential for the effects of the enriched diet (****p<0.0001) 

(Two-way ANOVA and Bonferroni MCT F(Interaction)2, 179=18,21; F(Diet)2, 179=117,9; F(Genotype)1, 

179=25,3). 

Figure 19B shows the same results expressed as seconds spent in the interaction zone in absent 

(white bar) or presence (black bar) of the social target. Again, we observed that stressed mice 

spent less time exploring the aggressive mouse compared to non-stressed controls 

(****p<0.0001) and HDC+/+ stressed mice fed with enriched spent more time exploring the 

aggressive CD1 compared to stressed mice fed with control diet (****p<0.0001). Also, SED, 

HDC-/- animals failed to respond to the beneficial effects of the supplemented 

diet(****p<0.0001; Two-way ANOVA and Bonferroni MCT F(Interaction)5,358=31,33; 

F(Group)5,358=62,39; F(Target)1,358=29,87).  

 
Figure 19. Social defeat stress induced social avoidance in HDC+/+ and HDC-/- mice. (A) Social interaction 

time is expressed as ratio between the time spent near the cage with and without the stimulus mouse. In 

HDC-/- ω-3 PUFA/Vitamin A enriched diet did not increase interaction time compared to controls. (B) Social 

interaction results expressed as absolute time spent in the interaction zone in absence (white bar) or presence 

(black bar) of social stimulus (Two-way ANOVA and Bonferroni MCT: *p<0.05; **p<0.01; ****p<0.0001; 

n=27-34).  
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ω-3 PUFA and Vitamin A enriched diet ameliorates the memory impairment induced by 

CSDS in HDC+/+ mice but not in HDC -/- 

Figure 20 shows the effect of stress and of ω-3 PUFA/Vit A enriched diet on mice performances 

in the novel object recognition (NOR) and novel object location (NOL) tests. No significant 

group effects were detected during T1 of both tests (data not shown). In the NOR, during T2 

performed 1 hour after the T1, both NS HDC+/+ and NS HDC-/- mice spent more time exploring 

the familiar object (Two-way ANOVA and Bonferroni MCT F(Interaction)5,70=5,30; 

F(Groups)5,70=7,387e-14; F(Object)1,70=20,97). Stressed mice of both genotypes did not discriminate 

between the familiar and novel object; however, HDC+/+ stressed mice fed with ω-3 PUFA and 

Vitamin A enriched diet spent significantly more time exploring the new object rather than the 

familiar one (**** p<0.0001). On the contrary, the enriched diet had no effect on the 

discrimination of HDC-/- stressed mice (Figure 20A). When we tested the spatial memory in 

NOL, we observed the same results obtained in NOR. Indeed, NS mice of both genotypes spent 

more time exploring the object placed in a new location compared to the one placed in the 

familiar zone (**p<0.01). SCD mice of both genotypes showed memory impairment because 

they did not recognize the object placed in the familiar location and they spent equal time 

exploring the novel and the familiar location (Two-way ANOVA and Bonferroni MCT 

F(Interaction)5,58=4,797; F(Groups)5,58=1,476e-14; F(Object)1,58=17,58). In this test as well, SED HDC+/+ 

mice spent more time exploring the object placed in the new location than the familiar one 

(**p<0.01) indicating a role of brain histamine in the effect of the diet in preventing recognition 

and spatial memory impairment induced by stress (Figure 20B). 
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Figure 20. Effect of ω-3 PUFA/Vitamin A enriched diet on mice performances in the novel object 

recognition and novel object location test. A-B Percentage of time spent exploring the two identical object 

A and B during training. C-D Percentage of time spent exploring the familiar (black columns) and novel 

(white columns) objects. (C) Performance of animals in NOR (D)Performance of mice in NOL. (Two-way 

ANOVA and Bonferroni’s MCT: *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001; n=5-9). 
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CSDS does not affect motility of mice tested in the open field 

When evaluated in the open field test, two-way ANOVA revealed no significant differences 

between experimental groups independently of diet, stress and genotype in term of distance 

travelled and time spent moving (Table 5). Neither stress nor diet affected the number of entries 

and time spent in the centre or the periphery of the open field indicating that CSDS did not 

induce anxiety-like behaviours (Table 5).  

 
Table 5. CSDS did not alter locomotor activity and did not induce anxiety-like behaviour when measured 

in the open field arena. Results are expressed ad means ± SD of 5-9 animals per experimental group. F ratio 

and P values were determined using Two-way ANOVA 

 
 

ω-3PUFAs and vitamin A enriched diet prevents the stress-induced changes in synaptic 

plasticity of apical dendrites in hippocampus only in HDC+/+ mice 

The hippocampus is one of the brain structures most involved in the regulation of stress 

responses (McEwen 2016). To learn the effect of stress and the enriched diet on synaptic 

plasticity in the two genotypes, we assessed the magnitude of LTP in hippocampal brain slices. 

Hippocampal LTP was evoked by one brief train of electrical stimulation, TB5, that mimics the 

physiological theta rhythm and leads to a sustained increase in synaptic transmission efficacy. 

TB5 produced a significant increase of fEPSP slope with respect to baseline in all groups (data 

not shown). Slices from both HDC+/+ SCD and HDC-/- SCD mice responded to TB5 stimulation 

with a larger LTP compared to that of non-stressed mice of the corresponding genotype (Figure 

21). Two-way ANOVA revealed a significant genotype x condition interaction 

(F(Interaction)2.57=3.263; F(Genotype)1.57=11.31; F(Conditions)2.57=8.391); Figure 21D). Post hoc analysis 

confirmed increased LTP in stressed mice of HDC+/+ (p <0.05) and HDC-/- (p<0.01) mice 

Parameter Zone NS SCD SED NS SCD SED P value

Interaction F (2, 76) = 0,4731 0,625

Genotypes F (1, 76) = 0,01577 0,9

Conditions F (2, 76) = 0,01667 0,983

Interaction F (2, 76) = 0,6784 0,51

Genotypes F (1, 76) = 1,348 0,25

Conditions F (2, 76) = 0,07071 0,931

Interaction F (2, 76) = 1,367 0,261

Genotypes F (1, 76) = 0,02911 0,865

Conditions F (2, 76) = 1,366 0,261

Interaction F (2, 76) = 0,3171 0,729

Genotypes F (1, 76) = 0,002588 0,96

Conditions F (2, 76) = 0,2941 0,74

Interaction F (2, 76) = 0,4802 0,62

Genotypes F (1, 76) = 0,3501 0,556

Conditions F (2, 76) = 0,4165 0,66

Interaction F (2, 76) = 0,4455 642

Genotypes F (1, 76) = 0,2112 0,647

Conditions F (2, 76) = 0,3085 0,735

Interaction F (2, 76) = 1,158 0,32

Genotypes F (1, 76) = 1,353 0,248

Conditions F (2, 76) = 2,776 0,069

Interaction F (2, 76) = 2,065 0,134

Genotypes F (1, 76) = 0,2534 0,616

Conditions F (2, 76) = 1,122 0,331

Interaction F (2, 76) = 1,512 0,228

Genotypes F (1, 76) = 0,08892 0,767

Conditions F (2, 76) = 1,563 0,216

Central

Peripheral

Entries

Time spent (s)

5374,947 ± 699,33

HDC
+/+

HDC
-/-

Central

Central

Peripheral

Central

Peripheral

Total

550,7584 ± 27,66 556,525 ± 11,13

459,6144 ± 140,19469,6246 ± 139,60 

4915,333 ± 692,654974,674 ± 1005,60

24,43 ± 12,03

221,57 ± 62,84 203,88 ± 89,84 

F ratios

42,91 ± 17,90 38,51 ± 10,79 44,27 ± 18,09 47,5 ±17,35 48,84 ± 27,66 43,07 ± 11,13

16,6 ±4,7 15,33 ± 5,76 16,92 ± 5,14 16,33 ± 4,76 17,08 ± 6,54 15,87 ± 4,90

544,8 ± 27,91 561,42 ± 10,97 555,43 ± 18,05 552,1 ± 17,35

520,11 ± 244,14500,39 ± 160,07467,26 ± 213,59 487,62 ± 116,21

16,26 ± 5,5617,55 ± 7,9120,06 ± 9,3921,1 ± 11,4115,42 ± 6,52

216,41 ± 40,30 

200,15 ± 39,60198,66 ± 42,37159,93 ± 61,94188,47 ± 90,10 165,67 ± 38,60

Distance travelled (cm)

Time spent Moving (s)

181,03 ± 71,26 218,72 ± 43,13 183,22 ± 42,21

197,13 ± 56,58

5444,298 ± 961,455540,20 ± 755,545403,97 ± 848,62 5776,78 ± 886,75 5456,97 ± 1288,74

Total

5020,093 ± 741,395000,23 ± 1157,675336,63 ± 798,844916,34 ± 825,80
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relative to non-stressed controls.  The enriched diet prevented the increased LTP magnitude of 

HDC+/+ SED mice, but was ineffective in HDC-/- SED mice (p<0.001; Figures 21D) indicating 

that the presence of histamine in vivo is required for the recovery of synaptic plasticity to normal 

levels promoted by the diet.  

  

 
Figure 21. Histamine deficiency prevents ω3-PUFA and Vitamin A enriched diet modulation of synaptic 

plasticity in dorsal hippocampal apical dendrites. (A) Positioning of stimulation electrode (S) on Schaffer 

collaterals and recording electrode (R) in CA1. The dashed line indicates a cut made between CA1 and CA3 

to prevent recurrent propagation of action potentials. (B) top panel, time-course of a representative 

experiment indicating the steady-state values used for fEPSP slope calculation (a, b); lower traces, 

representative steady-state averaged traces in baseline (a) and 55-60 min after TB5 (b). (C) Averaged time-

courses of responses before and after delivery of one TB5 (arrow) in slices obtained from HDC+/+ (left panel) 

and HDC-/- (right panel) mice (NS, SCD, SED HDC+/+ mice; n=6,11,9; NS, SCD, SED HDC-/- mice; n=6,5,8). 

(D) Histograms report the LTP produced by TB5 stimulation in HDC+/+ (left) and HDC-/- (right) mice. Data 

in columns are expressed as mean ± SEM of the percent increase in responses measured 55-60 min after 

LTP induction with respect to baseline as in  (C). (TB5: n=8,11,9 HDC+/+ and n=6,5,7 HDC-/-; two-way 

ANOVA, and Bonferroni MCT; *p<0.05, **p<0.01, ***p<0.0001). 
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ω-3 PUFA and Vitamin A enriched diet increases synaptophysin levels in the 

hippocampus of HDC+/+ mice  

Figure 22 shows the effects of stress and diet supplementation on synaptophysin level in the 

hippocampus (Figure 22A) and prefrontal cortex (Figure 22B). In the hippocampus, two-way 

ANOVA showed significant differences among experimental groups and significant interaction 

between variables (F(Interaction)2,35=6,121; F(Genotype)1,35=0,1190; F(Conditions)2,35=1,203). 

Bonferroni’s post hoc test showed that ω-3 PUFA and Vitamin A enriched diet significantly 

increased synaptophysin levels in the hippocampus of HDC+/+ mice compared with SCD or NS 

mice. However, ω-3 PUFA and Vitamin A enriched diet was ineffective in HDC-/- mice as 

synaptophysin expression was not different from that of HDC-/- stressed mice fed with control 

diet or non-stressed mice (Figure 22A).    

In the prefrontal cortex, two-way ANOVA revealed no differences regarding the stress, diet or 

genotype (Two-way ANOVA and Bonferroni MCT F(Interaction)2,35=2,748; F(Genotype)1,35=0,9513; 

F(Conditions)2,35=1,476) (Figure 22B).   

 

 
Figure 22. Effect of an ω-3 PUFA/Vitamin A enriched diet on synaptophysin levels of mice hippocampus 

(A) and prefrontal cortex (B). Enriched diet increased Synaptophysin levels in hippocampal homogenates 

from normal (HDC+/+) but not from histamine depleted mice (HDC-/-) subjected to 10 days-chronic social 

defeat stress (Two-way ANOVA and Bonferroni MCT; n=6-9) 
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Effects of ω3-PUFA and Vitamin A supplemented diet on hippocampal and cortical gene 

expression of enzymes of fatty acid metabolism  

To study the fatty acid metabolic pathways, we examined whether the enriched diet modulated 

the hippocampal and cortical expression of some metabolic enzymes, particularly focusing on 

lipoxygenases, such as 5-LOX and 12-LOX. 

Two-way ANOVA  revealed no effect of stress or diet on the hippocampal mRNA expression 

of 5-LOX (Two-way ANOVA and Bonferroni MCT; F(interaction)2,23=1,988; 

F(Genotypes)1,23=0,5971; F(Conditions) 2,23=1,519) (Figure 23A); indeed, an increase in mRNA 12-

LOX  levels was observed in HDC+/+ stressed mice fed the with enriched diet, but not in 

hippocampus of SED HDC-/- mice (Two-way ANOVA and Bonferroni MCT; 

F(interaction)2,24=1,785 p=0,1894; F(Genotypes)1,24=0,1961 p=0,6618; F(Conditions) 2,24=3.537 p<0.05) 

(Figure 23B).  

In the prefrontal cortex, two-way ANOVA showed a genotype effect on 5-LOX (Two-way 

ANOVA and Bonferroni MCT; F(interaction)2,24=2.157 p=0,1376; F(Genotypes)1,24=7.67 p<0.05; 

F(Conditions) 2,24=0,6399 p=0.5361; Figure 23C). We observed effects of genotype and conditions 

in 12-LOX expression (Two-way ANOVA and Bonferroni MCT; F(interaction)2,23=0.3713 

p=0.6939; F(Genotypes)1,23=10.88 p<0.01; F(Conditions) 2,23=11.22 p<0.001; Figure 23D) in the 

prefrontal cortex of SED HDC+/+ compared to NS HDC+/+ mice. Stress increased 12-LOX 

expression in the cortex of HDC-/- mice, but the diet had no effects.  

 
Figure 23. Effect of enriched diet on hippocampal and cortical fatty acid metabolic enzymes. Supplemented 

diet increased 12-LOX expression in the hippocampus of HDC+/+ mice and 12-LOX expression in HDC+/+ 

and HDC-/- animals but the increase in HDC+/+ is greater in normal mice compared to histamine-depleted 

ones.  (A-C) 5-LOX, (B-D)12-LOX mRNA expression measured by RT-qPCR. Data are represented as 

Relative Quantification vs GAPDH. (Two-way ANOVA and Bonferroni's MCT; *p<0.05; ** p<0.01 n=4-5). 
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Then we analysed the expression of other enzymes involved in the metabolism of fatty acids 

including COX-2, CYP1A1 and EPHX2. Two-way ANOVA revealed no statistical differences 

between the groups and the results are shown in Table 6 

 

 

Table 6. Expression of some enzyme involved in fatty acid metabolism. COX-2= Cyclooxygenase 2; 

CYP1A1= Cytochrome 1A1; sEH= soluble epoxide hydolases. Results are expressed as means ± SD of 4-5 

animals per experimental group. F ratios and P values were determined using Two-way ANOVA. 

 
 

 

 

Effects of ω3-PUFA and Vitamin A supplemented diet on hippocampal and cortical gene 

expression of Retinoic acid receptors: RAR-α, RXR-α, RXR-β 

To study the effect of vitamin A supplementation on stress responses, we examined whether 

the enriched diet modulated the hippocampal and prefrontal cortex expression of some retinoic 

acid receptors, such as RAR-α, RXR-α and RXR-β.  

Two-way ANOVA analysis showed no differences on hippocampal RXR-α (Two-way 

ANOVA and Bonferroni MCT; F(interaction)2,23=0.2759; F(Genotypes)1,23=0.002757; F(Conditions) 

2,23=1.447) and RXR-β expression (Two-way ANOVA and Bonferroni MCT; 

F(interaction)2,24=1.794; F(Genotypes)1,24=0.2024; F(Conditions) 2,24=1.293; Figure 24A-B). On the 

contrary a statistically significant difference was found in RAR-α expression in the 

hippocampus (Two-way ANOVA and Bonferroni MCT; F(interaction)2,24=0,6012; 

F(Genotypes)1,24=0,1648; F(Conditions) 2,24=3,028) (Figure 24C) of HDC+/+ stressed mice compared to 

NS group, but no differences were observed in HDC-/- mice, underlining, also in this case, a 

difference in the gene expression between HDC+/+ and HDC-/-.  

In the prefrontal cortex Two-way ANOVA revealed no differences in RXR-α (Two-way 

ANOVA and Bonferroni MCT; F(interaction)2.23=2.099; F(Genotypes)1.23=1.889; F(Conditions) 

2.23=0.2463), RXR-β α (Two-way ANOVA and Bonferroni MCT; F(interaction)2.24=0.3707; 
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F(Genotypes)1.24=0.4218; F(Conditions) 2.24=1.58) and RAR-α expression (Two-way ANOVA and 

Bonferroni MCT; F(interaction)2.23=1.324; F(Genotypes)1.23=1.979; F(Conditions) 2.23=0.5793) (Figure 

24D-F).  

 

 
Figure 24. Effect of enriched diet on hippocampal Retinoic acid receptors. (A-D) RXR-α, (B-E) RXR-β, (C-

F) RAR-α mRNA expression measured by RT-qPCR.  Data are represented as Relative Quantification vs 

GAPDH. (Two-way ANOVA and Bonferroni's MCT; *P<0.05; n=4-5). 
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Part IIb: Brain histamine and Oleoylethanolamide restore 

behavioural deficits induced by chronic social stress in mice.   

Histamine and oleoylethanolamide (OEA) are phylogenetically old molecules that have been 

described in several species, (Panula and Nuutinen 2013, Piomelli 2013). In our laboratory it 

was recently demonstrated that all central actions of OEA that we investigated, invariably 

necessitate the activation of the brain histaminergic system (Provensi et al. 2014, Provensi et 

al. 2017, Costa et al. 2018). Here, we explored the relationship between the histaminergic 

system and OEA on the behavioural outcomes of chronic social defeat stress (CSDS), a 

preclinical paradigm that more closely reproduces some of the symptoms observed in 

depression (Menard et al. 2017). Exposure to frequent stressful stimuli as in the case of social 

stress, may cause maladaptive emotional reactions that increase the risk of depression, anxiety 

and cognitive impairments.  

The manuscript Rani et al., has been submitted to Neurobiology of Stress.  

Materials and Methods 

Animals: Histidine decarboxylase null (C57bl/6, HDC-/-) and wild type (C57bl/6, HDC+/+) 

mice were grown in the Centro Stabulazione Animali di Laboratorio (CeSAL), Università di 

Firenze in humidity, temperature (22 - 24 °C) and light (light on 7:00-19:00)-controlled room. 

Mice were allowed free access to food and water. At postnatal (PND) day 21, mice were weaned 

and fed with standard chow diet (Mucedola s.r.l., Milan, Italy). Nine to 13-week-old male CD1 

retired breeders (Charles River, Italy) were screened for aggressive behaviour and used for the 

social defeat stress protocol according to (Golden et al. 2011). All experiments were performed 

in accordance with the EEC recommendations for the care and use of laboratory animals 

(2010/63/EU) and approved by the Animal Care Committee of the University of Florence and 

Italian Ministry of Health (authorization n. 114-2017PR) and complying to the 3R. Ethical 

policy of the Università di Firenze complies with the Guide for the Care and Use of Laboratory 

Animals of the Council Directive of the European Community (2010/63/EU) and the Italian 

Decreto Legislativo 26 (13/03/2014). Every effort was made to minimize animal suffering and 

to reduce the number of animals used. All animals were weighted, and food consumption 

calculated daily. OEA (Tocris Bioscience, UK) was dissolved in saline/polyethylene glycol/ 

Tween80 (90/5/5, v/v). OEA (10mg/kg) or vehicle treatments started 10 days before the end of 

stress procedure. 
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Chronic Social Defeat Stress: C57bl/6 mice were singly housed prior to undergoing social 

defeat stress. CD1 mice were used as resident aggressors for the social defeat stress and were 

singly-housed prior to the experiments. Aggressive CD-1 mice, as defined by demonstrating at 

least one successful act of aggression during two consecutive days toward another male CD1 

intruder mouse, were selected for use in the social defeat. A group of HDC+/+ and of HDC-/- 

mice that received vehicle and a group of mice of either genotype that received OEA were 

subjected to the CSDS protocol for 21 days (PND56 to PND76); adapted from (Golden et al. 

2011). Briefly, the procedure consisted of the introduction of an experimental mouse of either 

genotype in the cage of a CD-1 aggressor until the first aggression occurred. Mice were then 

separated for 2 hrs by a transparent, perforated Plexiglas wall to allow visual and olfactory 

exposure. The separator was then removed, and the second attack occurred. Social defeat 

sessions were carried out once daily (on days 1-4, 7-10, 15, 16, 19-21) or twice daily (on days 

6, 12 and 17). The stress protocol included overcrowding sessions: 6/8 mice were placed 

together in a standard holding cage (33 × 15 × 13 cm) for 24 h (on days 5-6, 11-12, 18-19) or 

48 h (on days 13–15) with diet and water available ad libitum. Non-stressed mice were left 

undisturbed in their own home cages with other non-stressed mice (4 mice per cage).  

 

Open field test: Mice locomotor activity and anxiety-like level were tested in an open arena 

(60 x 70 x 30 cm) where a virtual zone (20 x 23 cm) was delimited in the centre of the arena; 

mice were allowed to freely explore the arena for 10 minutes. In between observation, the arena 

was cleaned with 30 % ethyl alcohol in water to remove possible scent cues left by the animal. 

The time spent at the centre and periphery of the open field and total distance travelled were 

measured using a video tracking system and analysed using Smart 2.5 software.  

 

Social Interaction Test: Twenty-four hours after the last defeat session mice were subjected 

to the social interaction test adopting the protocol by (Golden et al. 2011). Briefly, mice were 

habituated to an arena (41 cm x 32 cm x 40 cm) containing an empty wire-mesh enclosure (7.5 

cm length, 9.5 cm width) and their movements recorded for 2.5 min to determine baseline 

exploratory behaviour and locomotion (T1). During the second session (T2) the wire-mesh 

contained an unfamiliar CD1 aggressive mouse and the time the experimental C57BL/6 mouse 

spent in its proximity was measured. Trials were video-recorded and analysed by an 

experienced observer unaware of the group assignment to time spent in the interaction zone, 

that is 5 cm around the wire mesh cage. Exploration was defined as sniffing or touching the 
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cage with the nose and/or forepaws. Social interaction (SI) was calculated as the ratio between 

the time spent in the interaction zone during T2 and T1.  

 

Behavioural sequence: experimental procedure, quantitative analysis T patterns and 

statistical analysis: The procedure is described in (Santangelo et al. 2017). Recording of mice 

behavioural components was conducted during the social interaction tests. The ethogram, which 

is a list containing the description of the behavioural elements of interest, was compiled and 

encompassed Cage related and Other behaviours as shown in Table7. Based on this ethogram, 

a trained researcher, blind to treatments, converted the continuous flow of the recorded 

behaviour in an event log file containing behavioural components and their time onset, by using 

a software coder (The Observer, Noldus Information Technology bv, The Netherlands). 

Measurements of frequency and duration of each component of the behavioural repertoire were 

based on the descriptive analysis shown in Table 8. T-pattern analysis was performed as in 

(Santangelo et al. 2017). This is a multivariate approach conceived to detect the time 

relationship among events. The software THEME, specifically developed for this purpose 

(Pattern-Vision, Ltd, Iceland) was used. By processing event log files obtained for each subject, 

THEME algorithm detects recurring sequences of events characterized by statistically 

significant constraints among the interval length separating them. THEME follows a bottom-

up procedure based on the comparison among the distribution of each possible pair of events. 

As described in (Santangelo et al. 2017):‘Assuming “A” and “B” as two behavioural 

components with a given distribution along the time window, the “A e B” pair is defined as “t-

pattern” only if a statistically significant time interval between the two events exists. In this 

case such a t-pattern is indicated as “(A B)” and considered by the algorithm as a potential “A” 

or “B” term in higher order patterns, e.g. “((A B) C)”. This procedure continues up to any level, 

to be completed when no more patterns are found.’  

Here the results are presented as T-pattern strings, which are the textual description of a pattern 

and its hierarchical composition. Frequencies and durations are presented as mean number ± 

SE performed by each subject during the testing time.  

Differences among groups were assessed using one-way ANOVA followed by Tukey's post-

hoc test for multiple comparisons. 

To detect recurrent behavioural T-pattern analysis was employed (fore details please refer to 

(Santangelo et al. 2017). 
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Novel object recognition test: This protocol measures a form of memory based on short and 

unrepeated experiments without any reinforcement, such as food or electric shocks (Ennaceur 

and Delacour 1988).  Mice were placed in a white polyvinylchloride box (70 × 60 cm and 30 cm 

high) with a grid floor that is easily cleaned and illuminated by a 75-W lamp suspended 50 cm 

above the box. The objects to be discriminated were gray polyvinyl chloride shapes: cubes of 

8 cm side, pyramids and cylinders of 8 cm height. The object recognition task consisted of a 

training phase (T1) and a testing phase (T2). Twenty-four h prior to T1, mice were habituated 

for two 10 min-session to the experimental apparatus in the absence of any object. On the day 

of the experiment, the mouse was placed for 5 min into the test arena facing the same direction 

and in the same position in the presence of two identical plastic objects (T1). The behaviour of 

mice was videotaped, and the time spent actively exploring the objects was measured. 

Exploration was defined as sniffing or touching the objects with the nose and/or forepaws. T2 

was performed 1 h after T1, during which, each mouse was again placed in the test arena for 

5 min in the presence of one of the familiar objects and a novel object. The position of the 

objects (left/right) was randomized to prevent bias due to order or place preference. The 

behaviour of mice during T2 was videotaped, and the exploration time of the familiar (F) and 

the new object (N) were measured. To avoid place preference the position of the two objects 

during T2 was randomly changed. 
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Table 7. Ethogram qualitatively describing the behaviours (events) of mice during the social interaction 

test. These comprise events that in the proximity of the cage holding the CD1 mouse (Cage Related Events) 

and Other Events that occur in the arena distant from the encaged CD1 mouse. 

 

ETHOGRAM 

CAGE RELATED EVENTS 

Cage Sniffing  CS the mouse sniffs Cage borders and/or ground 

Cage Leaning   CL  the mouse maintains an erect posture by leaning against Cage walls 

Cage Climbing  

 

CC  the mouse mounts on Cage walls and roof. At least three paws grab the 

Cage grid 

Cage Retraction  CR  the mouse suddenly retracts its head-shoulder segment or its body far 

from the Cage. 

NON CAGE RELATED (OTHER) EVENTS 

Walking  

 

Wa  the mouse walks in the arena. Sniffing activities may be produced if 

locomotion continues 

Place Sniffing  

 

PS  the mouse sniffs the surrounding arena environment without walking 

activity. Head and vibrissae movements are produced. If the mouse 

sniffs the central Cage borders and/or ground the correct annotation is 

Cage Sniffing 

Stretched Sniffing  

 

SS  the mouse stretches its head and shoulders forward and then returns to 

the original position. Anterior limbs stand still 

Wall Leaning   WL the mouse maintains an erect posture by leaning against arena walls 

Rearing  Re  the mouse maintains an erect posture without leaning against the walls 

Jumping  Ju  the mouse leaps from the surface of the arena 

Fore Body Grooming  FBG The mouse licks or rubs its face and/or its anterior limbs 

Hind Body Grooming  HBG  the mouse licks or rubs its body fur and/or its posterior limbs 

Immobility  Im  the mouse maintains a fixed posture 
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Results  

Mice of both HDC+/+ and HDC-/- genotypes were subjected to the protocol shown in Figure 25. 

Non-stressed mice of either genotype were left undisturbed in their home cage until sacrifice.  

For clarity, results of HDC+/+ and HDC-/- are shown separately. 

 

 

Figure 25. Timeline for the chronic social defeat stress experiment and OEA or vehicle injections. Mice were 

randomly assigned to three experimental groups per genotype 

 

Stress and OEA did not affect body weight change 

HDC+/+ mice gained comparable weight as two-way ANOVA showed a significant effect of 

time, independent of treatment or stress (Ftime (2.54) = 77.30; P < 0.0001; Ftreatment (2.54) = 0.3752; 

P = 0.6889; Finteraction (4.54) = 0.1983; P = 0.9382; Figure 26A), and consumed similar quantities 

of food regardless of stress and treatment (Figure 26C; Ftime (2.54) = 1867, P < 0,0001; Ftreatment 

(2.54) = 1.032, P = 0.3631; Finteraction (4.54) = 1.682, P = 0.1675). HDC-/- mice as well gained 

comparable weight during the 21 days of stress regardless of treatment (Ftime (2.48) = 137.9, P < 

0.0001; Ftreatment (2.48) = 0.8536, P = 0.4322; F interaction (4.48) = 0.7076, P = 0.5907). A two-way 

ANOVA showed an overall significant difference in food consumption among HDC-/- mice 

(FInteraction (4.48) = 20.54, P < 0.0001; F time (2.48) = 1800, P < 0.0001; F treatments (2.48) = 35.69 P < 

0.0001). Bonferroni's post hoc analysis revealed that stressed mice ate significantly more than 

non-stressed mice regardless of the treatment (Figure 26D). 
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Figure 26. Effects of stress and OEA (10 mg/kg) on weight gain at T0 before initiating stress protocol, at 

T10 before starting OEA treatment, at T21 on completion of the stress procedure. N=6-8 experimental 

group. Data are shown as means ± S.E.M. **** P < 0.0001 VEH vs NS; ### P < 0.001 OEA vs NS, by two-

way ANOVA and the Bonferroni’s post hoc test.  

 

 

OEA prevented social aversion induced by stress only in HDC+/+ mice  

The genetic lack of histamine did not affect sociability, as non-stressed mice of either genotype 

interacted similarly with the caged CD1 mouse, as shown in Figure 27 A and B. One-way 

ANOVA revealed that CSDS affected the behaviour of both HDC+/+ (F (2, 21) = 15.57 P < 0.0001) 

and HDC-/- mice (F (2, 17) = 61.26, P < 0.0001), as the total time that mice spent in the proximity 

of the caged CD1 mouse was significantly shorter than that of non-stressed mice. OEA though, 

partially prevented the social aversion of HDC+/+ but did not change the behaviour of stressed 

HDC-/- mice.  
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Figure 27. Effect of OEA administration on social-avoidance behaviour induced by stress. Repeated social 

defeat stress induced social avoidance of both HDC+/+ and HDC-/- mice expressed as the ratio of time a mouse 

spent in the interaction zone in the presence of a target CD-1 compared with the absence of a target CD-1. 

OEA partially prevented social avoidance of HDC+/+ mice, but not that of HDC-/- mice. Data are presented 

as means ± S.E.M. n = 6-9/group ****P < 0.0001, **P < 0.01 vs NS; #P < 0.05 vs Veh by one-way ANOVA 

and the Neumann Keuls’ post hoc test 

 

 

OEA restored the behavioural patterns impaired by stress in HDC+/+ but not in HDC-/- 

mice 

Stress and OEA did not affect the locomotion of mice of either genotype as the time spent in 

the central or peripheral zone of an empty arena was not affected by stress nor treatment (Figure 

28). Despite the gross similarity of behaviours between non-stressed HDC+/+ and HDC-/- mice, 

we know that brain histamine contributes to the qualitative features of displayed motor 

behaviours not only in animals (Santangelo et al. 2017), but also in humans (Baldan et al. 2014).  

 

Figure 28. Chronic social defeat stress did not alter locomotor activity in an open field arena. Distance 

travelled in the (A) centre of the arena and in the (B) peripheral zone.  
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Therefore, we analysed the complex behavioural sequence of experimental mice during the 

social interaction test. The quantitative analysis was based on an ethogram that encompassed 

Cage related (i.e. in the proximity of the cage holding the CD1 mouse) and Non cage related 

(Other) events (i.e. displayed in the arena; Table 7). Mean (± SE) numbers and duration of each 

specific component of the ethogram are shown in Table 8. The statistical analysis was possible 

only for the sufficiently represented behaviours.  

Cage sniffing was by far the most frequent and long-lasting behaviour among Cage Related 

components and was performed by both HDC+/+ and HDC-/- mice. ANOVA showed a 

statistically significant effect of treatments on mean occurrence and mean duration only among 

HDC+/+ groups. Stressed HDC+/+ mice treated with vehicle sniffed the cage less frequently and 

for a much shorter time than non-stressed mice, and OEA significantly improved both 

parameters. On the other hand, chronic stress, despite decreasing significantly the time of social 

interaction (Figure 27B), did not impact on Cage Sniffing occurrence and duration in HDC-/- 

mice at a statistical level. Nor OEA appreciably affected these parameters (Table 8). Walking 

and place sniffing were the most frequent Other events of both genotypes. The mean Walking 

occurrence of HDC+/+ mice changed with stress and stress + OEA although the results did not 

reach statistical significance; however, the mean duration of Place sniffing was significantly 

longer in stressed HDC+/+ mice treated with either vehicle or OEA. The quantitative analysis of 

HDC-/- mice behaviour was overall different from HDC+/+ mice. No significant differences were 

found in the number or duration of Cage Related and Other events among HDC-/- experimental 

groups (Table 8). The T-pattern analysis is conceived to detect events in time-ordered sequences 

characterized by statistically significant constraints among them (Casarrubea et al., 2015); 

(Santangelo et al., 2017). Mice behavioural structure was characterized by a complex temporal 

organization in the arena during the social interaction. Nine T- attern strings were detected in 

non-stressed HDC+/+ encompassing 2 or 3 events in their structure, with only 2 of them 

containing Cage Related events, namely “(ps cs)” and “(wa cs)” (Figure 29A, blue dots, see 

Table 7 for abbreviations). The stressed group showed a strikingly more complex behavioral 

structure, as HDC+/+ mice performed a total of 29 T-pattern strings, 25 of which containing 

Cage Related Events, mostly Cage Sniffing followed by Cage Retraction (cr). The Other Events 

comprised mainly Walking and Place Sniffing (yellow dots). 

Stressed HDC+/+ mice treated with OEA performed 12 T-pattern strings very similar in structure 

to non-stressed mice, although Cage Related Events within each pattern were more numerous 

(6 out of 12, exclusively Cage Sniffing and Cage Retraction). 
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Non-stressed HDC-/- mice showed a strikingly more complex behavioural structure compared 

to non-stressed HDC+/+ mice (Figure 29B), similar to that observed in CD1 mice 

pharmacologically deprived of histamine (Santangelo et al., 2017). Non-stressed HDC-/- mice 

displayed 17 T-pattern strings encompassing up to 5 events out of which 9 contained a Cage 

Related Event (Figure 29B; blue dots). Stress increased considerably the number of complex 

patterns of HDC-/- mice as well, in particular T-patterns containing Cage Related Events (16 

out of 23). Oleoylethanolamide did not significantly change the total number of T-pattern 

strings, but further increased the complexity up to 6 events per string containing Immobility, 

Place Sniffing and Walking, but did not change considerably the number of patterns containing 

Cage Related Events. The pies in Figure 29 represent the percentage of Cage Related (blue) 

and Other T-patterns (yellow) displayed by each experimental group. 
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Figure 29. Effect of stress and OEA on T-patterns of HDC+/+ mice. A) T-pattern string = textual 

representation of each pattern of different composition; brackets indicate the hierarchical structure. N = 

occurrences of patterns of different composition. L = number of patterns within each string. Pies represent 

percent distribution of T-patterns containing Cage Related (blue) and Other Events (yellow). B) Effect of 

stress and OEA on T-patterns of HDC-/- mice. T-pattern string = textual representation of each pattern of 

different composition; brackets indicate the hierarchical structure. N = occurrences of patterns of different 

composition. L = number of patterns within each string. B) Pies represent percent distribution of T-patterns 

containing Cage Related (blue) and Other Events (yellow). 
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Table 8. The table lists the occurrence and duration of each event in the total population of mice divided by 

genotype and treatment. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Mean (n) SE Mean SE Mean SE Mean (s) SE Mean SE Mean SE

cs 31.00 1.95 9.20 1.93 18.00 5.32 10.068 0.003 60.41 4.23 15.86 5.19 30.40 9.61 11.293 0.002

cl 5.60 1.63 0.40 0.24 1.00 0.63 - - 11.84 4.44 2.76 0.80 4.80 0.64 - -

cc 0.80 0.37 0.00 0.00 0.00 0.00 - - 6.28 1.83 0.00 0.00 0.00 0.00 - -

cr 3.40 2.93 4.80 0.73 6.80 1.16 0.839 0.456 2.34 1.46 1.41 0.21 2.76 0.62 1.648 0.245

wa 42.40 3.04 25.60 2.98 28.20 7.74 3.143 0.080 38.52 4.06 26.50 2.46 26.63 6.40 2.252 0.148

ps 27.40 1.96 26.80 1.66 30.40 3.16 0.674 0.528 20.87 2.51 69.34 10.41 57.20 12.85 6.816 0.011

ss 3.20 1.11 1.60 0.81 1.00 0.55 - - 2.57 0.92 3.09 0.29 1.11 0.45 - -

wl 4.00 1.48 5.20 1.74 3.60 1.17 0.315 0.736 9.96 3.08 9.24 4.33 5.76 1.15 0.408 0.675

re 2.20 1.96 1.80 1.20 0.40 0.24 - - 4.74 4.38 3.56 1.52 0.58 0.42 - -

ju 0.00 0.00 0.40 0.40 0.00 0.00 - - 0.00 0.00 2.16 0.00 0.00 0.00 - -

fbg 1.00 0.77 1.80 0.58 4.40 1.29 - - 4.24 1.80 5.66 1.43 6.84 2.53 - -

hbg 0.00 0.00 0.40 0.24 1.00 1.00 - - 0.00 0.00 1.16 0.40 6.28 0.00 - -

im 0.00 0.00 6.60 2.69 7.00 2.72 - - 0.00 0.00 27.80 2.31 23.52 7.93 - -

Mean (n) SE Mean SE Mean SE Mean (s) SE Mean SE Mean SE

cs 16.00 1.57 14.67 4.14 8.67 2.79 1.673 0.221 25.25 1.71 20.09 4.69 12.53 4.73 2.601 0.107

cl 0.67 0.49 0.50 0.34 0.17 0.17 - - 3.30 2.58 3.48 1.96 2.52 0.00 - -

cc 0.00 0.00 0.00 0.00 0.00 0.00 - - 0.00 0.00 0.00 0.00 0.00 0.00 - -

cr 8.17 0.60 9.50 2.93 6.33 1.94 0.596 0.564 3.28 0.64 3.03 1.05 1.65 0.70 1.167 0.338

wa 29.50 4.42 25.50 4.19 22.00 5.16 0.663 0.530 34.28 5.44 26.14 3.90 21.15 5.53 1.749 0.208

ps 31.83 2.77 28.00 2.53 26.50 3.59 0.840 0.451 65.83 6.69 69.62 7.49 71.11 8.14 0.133 0.877

ss 3.17 0.79 1.67 0.76 0.83 0.31 - - 3.04 0.67 1.83 0.42 1.51 0.33 - -

wl 5.67 1.63 3.83 1.08 2.33 1.17 1.613 0.232 8.46 2.74 6.75 2.00 4.37 2.24 0.720 0.504

re 0.00 0.00 0.33 0.33 0.00 0.00 - - 0.00 0.00 0.92 0.00 0.00 0.00 - -

ju 0.00 0.00 0.00 0.00 0.00 0.00 - - 0.00 0.00 0.00 0.00 0.00 0.00 - -

fbg 2.83 0.87 2.67 0.99 0.50 0.34 - - 7.26 1.17 6.07 1.59 5.82 0.18 - -

hbg 0.33 0.33 0.33 0.33 0.00 0.00 - - 3.08 0.00 1.16 0.00 0.00 0.00 - -

im 2.00 1.29 6.33 2.01 11.00 1.97 - - 5.32 1.90 19.85 7.27 36.52 8.15 - -

Behav.

F p F p
Behav.

pFF p

OEA

HDC 
-/-

OCCURRENCE DURATION

NS VEH OEA NS VEH

HDC 
+/+

OCCURRENCE DURATION

NS VEH OEA NS VEH OEA
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Figure 30 shows the mean number of T-patterns performed by each mouse with statistical 

significance. One-way ANOVA of HDC+/+ mice showed significant difference among groups 

(F2,14 =13.980; P < 0.001). Bonferroni MCT showed that on average, stressed HDC+/+ mice 

performed significantly more behavioural patterns containing Cage Related Events, whereas 

stressed HDC+/+ treated with OEA did not differ significantly from non-stressed mice (Figure 

30A). The opposite was true for T-pattern strings containing Other Events (F(2,14)= 21.203; P < 

0.001) although OEA only partially prevented the effect of stress on this parameter (Figure 

30B). No statistically significant differences of T-pattern strings containing Cage Related 

Events were found among HDC-/- mice of all experimental groups (F(2,17)= 1.365; P > 0.05; 

Figure 30C). One-way ANOVA of T-pattern mean number not containing Cage Related Events 

of stressed HDC-/- mice found significant differences among groups (F(2,17) = 6.136; P < 0.05; 

Figure 30D). Bonferroni’s MCT showed that mice treated with OEA performed significantly 

less T-patterns containing Other Events. 

 

 

Figure 30. T-pattern chart. Results were obtained from T-pattern analysis and represent the mean number 

± SE of T-pattern strings of different composition for each experimental group during the social interaction 

test. (A) and B) T-pattern strings including and excluding cage related events, respectively, of HDC+/+ mice. 
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OEA prevented the memory impairment induced by chronic stress 

Figure 31 shows the performance of mice in the novel object recognition test. Two-way 

ANOVA showed a statistical difference among HDC+/+ experimental groups (treatments F (2, 34) 

= 9.746e-015 P > 0.9999; objects F (1, 34) = 19.56 P < 0.0001; interaction F (2, 34) = 2.604 P = 

0.0887) and HDC-/- mice (treatments F (2, 32) = 3.576e-014 P > 0.9999; objects F (1, 32) = 1.231 P 

= 0.2754; interaction F (2, 32) = 5.115 P = 0,0118).  When tested 1 hr after training, both HDC+/+ 

and HDC-/- mice spent significantly more time exploring the new object demonstrating a good 

memory of the familiar one. Three weeks of CSDS had a negative effect on mice ability to 

discriminate between the familiar and new object, which indicates that stressed mice of both 

genotypes had a cognitive impairment. OEA treatment rescued the behavioural impairment of 

HDC+/+ mice only, as OEA-treated HDC-/- mice did not show any memory improvement.  

 

Figure 31. Effect of OEA administration on stress-induced cognitive impairment in the novel object 

recognition test. Social defeat stress affected the performance of both HDC+/+ and HDC-/- mice when tested 

1 h after training which was prevented by OEA administration to HDC+/+, but not to HDC-/- mice. N = 6-

8/group **P < 0.01 vs familiar object by two-way ANOVA and the Bonferroni’s post hoc test. 
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Conclusion: Part II 

Chronic uncontrollable stress is a major risk factor for the development of metabolic and 

psychiatric disorders. A useful preclinical model to understand the molecular mechanisms 

underlying affective-like disorders is the social defeat stress which results in the development 

of depressive-like behavioural impairments characterized by enduring deficits in metabolic 

processes (van der Kooij et al. 2018), social interactions (Golden et al. 2011) and memory 

(Monleón, Duque and Vinader-Caerols 2016).  

In this second part of my PhD thesis first of all I investigated the effects of the ω-3 PUFA and 

Vitamin A supplanted diet on stress-induced cognitive and neurochemical changes induced by 

chronic social defeat stress focusing my  attention on the role of the central histaminergic 

system. 

We found that the ω-3 PUFA and Vitamin A enriched diet reduces social avoidance, improves 

recognition memory in the NOR test and spatial memory in the NOL test of mice subjected to 

10 days of chronic social defeat stress (CSDS). Moreover, we observed that ω-3 PUFA and 

Vitamin A enriched diet increased synaptophysin expression in the hippocampus of normal 

mice which is in accord to the literature (Hajjar et al. 2013).  

The novelty of this study consists in using a chronic stress protocol with ethological significance 

to investigate the effectiveness of the enriched diet, and primarily, the inefficacy of the diet to 

prevent the deleterious, stress-induced cognitive effects in mice unable to synthesize histamine.  

Vitamin A and ω-3 PUFAs may modulate cerebral plasticity and memory by regulating gene 

expression through nuclear receptors that function as ligand-controlled transcription factors 

(Lane and Bailey 2005, Su 2010). We therefore explored a possible mechanism that makes the 

enriched diet work in HDC+/+ but not in HDC-/- mice. We investigated the impact of stressful 

aggressive encounters on fatty acid metabolic enzymes mRNA expression within the 

hippocampus (HIP) and prefrontal cortex (PFC) in HDC+/+ and HDC-/- mice fed a control diet 

or a diet supplemented with ω3-PUFA and vitamin A. Our results show that EPA/DHA and 

vitamin A supplemented diet produces an increase in the 12-LOX expression in the prefrontal 

cortex of HDC+/+ mice fed a supplemented diet compared to HDC-/- animal fed with the same 

diet. This indicates that the histaminergic system is necessary for the enriched diet to exert its 

effects in the hippocampus and cortex by increasing the gene expression of an enzyme (12-

LOX) which leads to the production of anti-inflammatory molecules. In the PFC we observed 

an increase in 12-LOX expression in HDC+/+ and HDC-/- stressed animals fed with 

supplemented diet compared to non-stressed control group.  
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The increase in mRNA expression of the 12-LOX enzyme produces an incremented synthesis 

of 12-HETE which promote the activation of PPARγ that is neuroprotective through its anti-

inflammatory properties (Shalini et al. 2018).  

Recently, it was reported that intracerebroventricular treatment with resolvin D1, D2, E1, E2 

and E3, which are derived from ω3-PUFA through the 5-LOX and 12-LOX enzymes, and 

infusion of these lipids to the PFC and hippocampus ameliorates depressive-like behaviours 

induced by bacterial endotoxin (Deyama et al. 2017, Deyama et al. 2018b, Deyama et al. 

2018a). The beneficial effects of resolvin D1 and D2 were also demonstrated in a mouse model 

of chronic mild stress (Ishikawa et al. 2017).  

Due to the sanitary emergency, the results are as off today incomplete. In collaboration with 

Dr. Layè of University of Bordeaux we are performing a lipidomic analysis in this two brain 

regions involved in mnemonic processes such as hippocampus and prefrontal cortex to evaluate 

any differences in lipid and their derivates oxylipins concentration that may explain, at least in 

part, the effect of the enriched diet in normal animals but not in histamine depleted animals in 

order to better understand the role of the central histaminergic system in this effect.  

 

Previous work in our laboratory showed how the central histaminergic system is essential for 

the central actions of a lipid derivate, olelylethalamide (OEA). In fact, OEA requires the 

integrity of the central histaminergic system to exert its hypofagic (Provensi et al. 2014) , 

procognitive (Provensi et al. 2017) and antidepressant-like effects (Costa et al. 2018). 

Despite being a valuable tool in drug discovery for high-throughput screening of prospective 

anti-depressants, the tail suspension test is inadequate to investigate the neurobiological 

substrates of chronic stress and the pathogenesis of mood disorders. There are several models 

of chronic stress and anxiety, including chronic social defeat (Krishnan et al. 2007). For this 

reason, in the second part of this section we investigated the effect of a fatty acid’s derived 

OEA treatment in chronic social defeat stress-induced behavioural deficits. The main finding 

of this project is the observation that repeated daily treatment with OEA prevented social 

interaction deficit short-term memory impairment and changes in the patterns of mice 

behaviours during social recognition, induced by chronic social stress. Furthermore, OEA’s 

effects required the integrity of the histaminergic system. We performed an in-depth 

investigation of dynamic behaviours by using ethograms and t-pattern analysis, which is being 

applied also to the study of patients affected by movement and behavioural disorders (Aiello et 

al. 2020). The T-pattern strings recorded during the social interaction, revealed a more complex 

picture than predicted by the quantitative evaluations of social interaction per se. We observed 
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several differences between non-stressed HDC+/+ and HDC-/- mice and differences in the impact 

of stress and OEA on the two genotypes. First of all, non-stressed HDC-/- mice showed a marked 

increase in pattern complexity (T-pattern strings) with respect to HDC+/+ mice, that involved 

both Cage Related and Other Events. The absence of histamine in the brain profoundly affected 

how single components of the T-pattern strings interacted in time, contributing to the 

configuration of repetitive patterns. A similar increased complexity and number of T-pattern 

strings was observed also in CD1 mice pharmacologically deprived of histamine with i.c.v. 

injections of α-fluoromethylhistidine, a suicide inhibitor of histidine decarboxylase (Santangelo 

et al. 2017).  

When exposed to chronic social stress, HDC+/+ mice sniffed the cage containing the aggressive 

mouse far less often and for shorter bouts (cs in table 8). However, stressed HDC+/+ mice 

displayed increased complexity and number of T-pattern strings encompassing Cage Related 

Events. We interpret this as indicative of a conflict between an engrained approaching 

behaviour and fear caused by the presence of the aggressive mouse.  In other words, HDC+/+ 

mice displayed more varied T-pattern strings in their composition and containing a higher 

number of Cage Related Events suggesting a remarkable reorganization of the anxiety-related 

behaviour. A similar reorganization of anxiety related behaviours was observed after chronic 

administration of low doses of nicotine in rats (Casarrubea et al. 2020). Oleoylethanolamide 

partially restored the behavioural sequence, similar to that displayed by non-stressed mice, in 

terms of T-pattern string complexity, mean number of T-patterns (both Cage Related and Other 

Events). In our paradigm, OEA seems to alleviate an anxiety-like behaviour induced by 

repeated social stress in mice. Interestingly, OEA decreased stressed induced binge-eating in 

female rats (Romano et al. 2020), supporting the pharmacological potential of OEA for the 

treatment of stress-related disorders.  

The social interaction ratio of stressed HDC-/- mice was not dissimilar from HDC+/+ mice, 

although T-pattern strings containing Cage Related Events were less numerous (16 vs 25), as 

well as the less complex (up to 7 components in HDC+/+ mice and up to 5 in HDC-/-). 

Furthermore, the mean frequency and duration of each component was not statistically different 

among stressed and non-stressed HDC-/- mice regardless of the pharmacological treatment. 

Apparently HDC-/- mice do remember the encounters with the aggressive CD1 mouse, as shown 

by the social interaction index, but the repertoire and duration of their behaviours, along with 

the T-pattern strings are completely different from HDC+/+ mice.  

Stressed HDC-/- mice treated with OEA showed no significant differences from vehicle-treated, 

stressed mice. OEA did not modulate the behavioural repertoire of histamine deficient mice. 
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HDC-/- mice apparently have a dysregulated striatal and prefrontal cortex function (Rapanelli 

et al. 2017a, Rapanelli et al. 2017b, Santangelo et al. 2017) that may contribute to the aberrant 

behaviours and memory impairment of these mice and the lack of response to OEA. Indeed, 

CSDS also compromised the short-term memory of both HDC+/+ and HDC-/- mice, and the 

procognitive effects of OEA (Campolongo et al. 2009) were lost in histamine-deficient mice. 

Considering these results, we suggest that peripheral signals generated by both the diet and 

OEA converge onto the central histaminergic system that provides the necessary central 

signalling to prevent stress-induced cognitive deficits and social aversion. 
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Part III: Brain histamine is necessary for long-term but not short-

term social memory 

For gregarious animals that live in societies or groups (like rodents), social memory is crucial 

to remember and recognize different conspecific individuals (i.e. having social memory) in 

order to exhibit the appropriate social behaviour such as aggression, avoidance, cooperative 

behaviour, and even mating behaviour (t. 2018, Okuyama 2018). Many neurotransmitters and 

hormones have been suggested to play key roles in social discrimination. Current evidence 

indicates that also the central histaminergic system modulates social recognition learning, 

however not much is known about the specific phases regulated by neuronal histamine 

(Provensi et al. 2018a). In this last part of my thesis work we investigate the impact of 

histaminergic neurotransmission deficiency or potentiation in short and long-term social 

recognition memory. 

Materials and methods 

Animals and Drug:   Normal and histamine-deficient adult (8-9 weeks old) and juvenile (21-

30 days old) male mice were used. Adult mice were used to perform the experiment and juvenile 

mice were used as social stimulus. Mice were housed in humidity and temperature-controlled 

room (22–24 °C) in the Centro Stabulazione Animali da Laboratorio (CeSAL), Università di 

Firenze. Mice were allowed free access to food (4RF21; Mucedola s.r.l., Italy) and water, and 

kept on a 12-h light/dark cycle (lights start at 7:00 a.m.). All the experiments were conducted 

between 9:00 a.m. and 4:00 p.m. Genotypes were confirmed using the PCR protocol according 

to (Provensi et al. 2014). Housing, animal maintenance and all experiments were conducted in 

accordance with the Council Directive of the European Community (2010/63/EU) and the 

Italian Decreto Legislativo 26 (13/03/2014), NIH guidelines on animal care and approved and 

supervised by a veterinarian. 

Reduction of brain histamine levels was achieved using three different approaches: (i) mice 

lacking the HDC gene (HDC-/-); (ii) i.c.v.)  injections of the HDC inhibitor alpha-

fluoromethylhistidine (α-FMH) and (iii) administration of the brain permeant H3 receptor 

agonist VUF16839 (5mg/kg, i.p.). We used HDC+/+ and HDC-/- mice treated with an H3 receptor 

antagonist, Ciproxifan (3mg/kg, i.p.) to increase histamine levels. Moreover, we use a last group 

treated with both VUF16839 (5mg/kg, i.p.) and Donepezil (3mg/kg, i.p.) 

Treated mice and their respective controls were evaluated in the social discrimination paradigm.  
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α-FMH, a kind gift of Dr. Carruthers Janssen Research & Development (USA) was dissolved 

in 0.9% saline and injected immediately after the habituation period; VUF16839, a kind gift of 

Prof. Leurs of Vrije Universiteit, Amsterdam (NL) was dissolved in 0.9% saline and 

administered 30 minutes after training or test or immediately after training phase depending the 

memory phase we want to study; Ciproxifan (Tocris) were dissolved in physiological saline 

and injected 30 minutes before training Donepezil (Sigma-Aldrich) and administered 

45minutes before training was dissolved in physiological saline.  

Surgery and i.c.v. infusion procedure: For α-FMH infusion, mice were anesthetised 

with zoletil and xylazine  (45mg/kg+7,5mg/kg) and placed on a stereotaxic frame (Kopf 

Instruments). A stainless steel cannula (7 mm in length, OD 0.5 mm and ID 0.25 mm) was 

implanted in the lateral ventricle and fixed to the skull using dental cement. The following 

coordinates (in mm) were used according to the mouse brain atlas (Paxinos and Franklin 2007): 

AP -0.3; L -1; DV -1. Animals were left to recover for 7 days. In the experiment day a stainless 

steel injection micro-needle (2.4 mm length; OD 0.25 mm) was connected through 

a polyethylene catheter to a 1ml Hamilton precision syringe and then lowered into the 

lateral cerebral ventricle (dorsoventral, DV 2.4 mm from bregma). α-FMH,  or saline were 

delivered via an infusion pump (5 μl) within 5 min. After infusion, the needle was left in place 

for 1 additional min. 

HDC+/+ mice were randomly assigned to the different experimental groups: HDC+/+, HDC+/+ 

and α-FMH or saline (i.c.v.), HDC+/+ and VUF16839 (5mg/kg) or saline (i.p.), tested 1 hour or 

24 hours after training; HDC+/+ injected with α-FMH or saline i.c.v.), VUF16839 or saline (i.p.) 

tested 1 hour after training;  HDC+/+ and Ciproxifan (3mg/kg) or saline i.p. test 48 hours after 

training.  

HDC-/- mice were randomly assigned to this different experimental groups: HDC-/- tested 1 hour 

or 24 hours after training, HDC-/- treated with VUF16839 or saline i.p tested 1 hour after 

training.  

Social recognition paradigm: This task relies on the animal’s innate tendency to explore a 

novel social stimulus with respect to a familiar, previously encountered congener (Okuyama 

2018). The social recognition task consisted of 3 phases: habituation, training or sociability 

phase (T1) and a testing phase (T2). Test and stimulus mice were brought to the testing room 

in their home cages and were allowed to sit undisturbed in the testing room for at least 1 hour 

before the start of behavioural testing. Stimulus mice were placed 30 minutes under the cylinder 

https://www.sciencedirect.com/topics/pharmacology-toxicology-and-pharmaceutical-science/chloral-hydrate
https://www.sciencedirect.com/topics/neuroscience/lateral-ventricles
https://www.sciencedirect.com/topics/pharmacology-toxicology-and-pharmaceutical-science/tooth-cement
https://www.sciencedirect.com/topics/pharmacology-toxicology-and-pharmaceutical-science/polyethylene
https://www.sciencedirect.com/topics/neuroscience/cerebral-ventricle
https://www.sciencedirect.com/topics/pharmacology-toxicology-and-pharmaceutical-science/infusion-pump
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in the absence of the test mouse to get used to the experimental conditions. In the habituation 

period the mice were placed for 10 minutes in a transparent polyvinylchloride box (46 × 20 cm 

and 20 cm high) with two identical empty perforated cylinders (8 × 8 cm and 12cm high) in 

two opposite side. The arena is illuminated by a 75-W lamp suspended 50 cm above the box. 

24 hours after habituation, mice were placed for 10 min into the test arena facing the same 

direction and in the same position in the presence of a juvenile mouse under one of the cylinders. 

The behaviour of mice was videotaped, and the time spent actively exploring the juvenile mouse 

or the empty cylinder was measured. Exploration was defined as sniffing or touching the 

cylinders with the nose and/or forepaws. Test section was performed 1 (Short-term memory), 

24 or 48 (Long-term Memory) hours after training, during which, each mouse was placed again 

in the test arena for 10 min in the presence of the familiar juvenile mouse under a cylinder and 

a novel juvenile mouse under the other cylinder. The position of the familiar mouse (left/right) 

was randomized to prevent bias due to place preference. The behavior of mice during T2 was 

videotaped, and the exploration time of the familiar (F) and the new juvenile mice (N) were 

measured by a trained observer who was unaware of the treatment and genotype.  

Statistical analysis: All values are expressed as means ± SEM, and the number of mice used 

in each experiment is also indicated. The presence of significant treatment effects was 

determined by a 2-way ANOVA followed by Bonferroni MCT test, as appropriate. The level 

of significance was set at P ≤ 0.05. Statistical analysis was performed using GraphPad Software. 

The data of the social recognition test are expressed as percentage of time spent exploring the 

juvenile mouse and the empty cylinder during the training section ad percentage of time spent 

exploring the novel and familiar juvenile mice during the test phase. We also express the results 

as sociability index for the training and discrimination index for the test section using the 

equations below.  
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Results 

Chronic histamine deprivation impairs long- but not short-term social recognition 

memory. 

In this first experimental set, we analyzed the performance of HDC+/+ and HDC-/- mice in social 

recognition test at two different time point: 1 hour and 24 hours after training.  

First, we evaluated the short-term memory performing the test phase 1 hour after training. 

Figure 32C shows the results of the social recognition test. Mice of both genotypes remembered 

the social stimulus presented in the training phase because they spent significantly more time 

exploring the novel social stimulus. (Two-way ANOVA e Bonferroni MCT 

(F(interaction)1,52=0,6295; F(cylinder)1,52=37,25; F(genotype)1,52=1,257e-013).  

Therefore, we deduce that histamine deprivation has no influence on short-term memory 

consolidation. This conclusion is also supported by the discrimination index as there were no 

differences between genotypes.  

In the second experimental set we studied the impact of chronic histamine depletion on long-

term social memory. The protocol used was similar to the previous one except for the time 

elapsed between the acquisition sessions and the retention test which in this case is 24 hours. 

During the test section, 24h after training, Two-way ANOVA revealed statistically significant 

differences between groups (Two-way ANOVA, F(interaction)1,30= 20,99; F(cylinder)1,30= 11,58; 

F(genotype)1,30= -3,168e-014). As shown in Figure 31C HDC+/+ animals spent more time exploring 

the novel social stimulus compared to the familiar one (p<0.001). On the contrary, HDC-/- did 

not discriminate between the two juvenile mice. To confirm this result, we observed also a 

statistically significant difference in discrimination index between HDC+/+ and HDC-/- mice 

(Unpaired t-test p<0.01).  
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Figure 32. Impact of chronic histamine depletion on short- and long-term social recognition memory. (A) 

schematic representation of the experimental protocol used in normal (HDC+/+) and chronically histamine-

depleted (HDC-/-) animals. (B) Performance of the animals during the test phase 1 hour after training. (C) 

Performance of the animals on long-term memory.  The results are calculated as a percentage of time spent 

exploring the cages containing the different stimuli (familiar vs. novel) or mediating the discrimination 

index. (two-way ANOVA and Bonferroni's MCT; **** p<0.0001; ***p<0.001;Unpaired t-test ##p<0.01;  

n=15-6)STM: short-term memory, LTM: Long-term memory. 

 

 

 

Acute histamine deprivation impairs long- but not short-term social recognition memory 

Figure 33 show the performance of HDC+/+ mice injected with α-FMH or saline i.c.v. in the 

social recognition test at two different time point: 1 hour and 24 hours after training.  

To evaluate short-term memory, we performed the test phase 1 hour after training. The results 

of the recognition test of STM are shown in Figure 33B. Normal mice or mice 

pharmacologically deprived of histamine spent more time exploring the novel mouse. (Two-

way ANOVA e Bonferroni MCT, F(interaction)1,46=0.4276; F(cylinders)1,46=26,23; F(treatment) 1,46=-

2,950e-014). Therefore, we suggest that acute histamine deprivation as well has no influence 

on short-term memory consolidation. This conclusion is also supported by the discrimination 

index because there were no differences between genotypes.  

In Figure 33C the second part of this experiment is shown. We studied the effect of an acute 

depletion of central histaminergic levels on long-term memory tested 24 hours after training.  

As show in Figure 33C HDC+/+ mice injected with vehicle spent more time exploring the novel 

social stimulus compared to the familiar one (****p<0.0001). On the contrary, mice injected 

with α-FMH did not discriminate between the two juvenile mice (Two-way ANOVA e 

Bonferroni MCT, F(interaction)1,36=22,58; F(cylinders)1,36=15,60; F(treatment) 1,36=-4,426e-014). To 

confirm this result, we observed also a statistically significant difference in discrimination index 

between mice injected with α-FMH and with vehicle (Unpaired t-test ###p<0.001).  
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Figure 33. Evaluation of short- and long-term memory in the Social recognition test of acutely histamine-

depleted animals (HDC+/+ injected with α-FMH). (A) Schematic representation of the experimental 

protocol; (B) Results of performance in short-term memory; (C) Performance of the animals in the test 

section performed 24 hour after the training. Results are expressed as a percentage of exploration time and 

through the discrimination index.  (Two-way ANOVA and Bonferroni MCT, ****p<0.0001; **p<0.01; 

Unpaired t-test ###p<0.001;  n=9-15). 

 

 

H3R agonism impairs both short and long-term social recognition memory 

In the next sets of experiment, we studied the performance of HDC+/+ mice treated with an H3R 

agonist, VUF 16839 (5mg/kg) injected 30 minutes before training section in the social 

recognition test performed 1 or 24 hours after training.  

In Figure 34 the results of HDC+/+ mice treated with VUF16839 or vehicle i.p. in short and 

long-term social recognition memory are shown.  

First of all, we performed the test 1 hour after the training phase to evaluate the short-term 

social recognition memory. Two-way ANOVA revealed a statistically significant difference 

between groups because HDC+/+ mice treated with vehicle spent more time exploring the novel 

juvenile mouse compared to the familiar one, but the animals treated with VUF16839 did not 

discriminate between the two juveniles indicating a short-term memory impairment (Two-way 

ANOVA and Bonferroni MCT;   F(interaction)1,46=10,50; F(cylinders)1,46=1,519; F(treatment) 1,46=-

4,547e-014;**p<0.01).  

In the discrimination index we observed a statistically significant difference between the two 

groups indicating a short-term memory impairment of the animals treated with VUF16839 

(Unpaired t-test, #p<0.05) involving neurotransmitters other than histamine. 
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Figure 34C show the results obtained in the long-term social memory experimental set. The test 

section was performed 24 hours after training. The results show that HDC+/+ mice treated with 

vehicle spent more time exploring the novel stimulus compared to the familiar one 

(****p<0.0001). On the contrary, mice treated with VUF16839 spent equal time exploring the 

familiar and the novel juvenile mice, so they show a long-term memory impairment (Two-way 

ANOVA and Bonferroni MCT; F(interaction)1,36=18,60; F(cylinders)1,36=17,80; F(treatment) 1,36=2,127e-

014). To confirm this result, we observed also a statistically significant difference in 

discrimination index between mice injected with α-FMH and with vehicle (Unpaired t-test 

##p<0.01).  

In this case we observed that the reduction of histamine levels mediated the injection of H3 

receptor agonist impaired both short and long-term memory on the contrary to chronic or acute 

histamine deprivation. This may be because the H3 receptor is also a heteroreceptor and 

therefore can impact the release of other neurotransmitters (Haas et al. 2008).  

Figure 34. Effects of VUF16839 treatment in HDC+/+ mice on sociability and short- and long-term social 

recognition memory. (A) schematic representation of the experimental protocol used in HDC+/+ treated with 

VUF16839 and vehicle. The results are calculated as a percentage of time spent exploring the cages 

containing the different stimuli (familiar vs. novel) or mediating the discrimination index.  (B) Performance 

of the animals 1 hour after training (STM). (C) Performance of the animals on the test phase performed 

24h after training (LTM) (Two-way ANOVA and Bonferroni's MCT; ****P<0.0001; **p<0.01; Unpaired 

t-test, ##p<0.01; #p<0.001; n9-15). 
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H3R agonist-induced amnesic is not related with histaminergic neurotransmission.  

Given the results obtained with the administration of the H3R agonist, in this experimental set 

we evaluated whether the effect of VUF16839 was related to the histaminergic system or not. 

For this reason, we administered VUF16839 to chronically (HDC-/-) or acutely (α-FMH i.c.v.) 

histamine-depleted animals 30 minutes before training and we test these mice in the social 

recognition for the short-term memory. 

Figure 35 show the results of histamine depleted mice treated with VUF16839 or vehicle i.p. in 

short-term social recognition memory. As previously observe HDC-/- didn’t have a short-term 

memory impairment and also in this casa two-way ANOVA revealed a statistically significant 

difference between groups because HDC-/- mice treated with vehicle spent more time exploring 

the novel juvenile mouse compared to the familiar one, but when treated with VUF16839 this 

animals chronically lacking of histamine did not recognize the familiar juvenile and spent the 

same time exploring the two juvenile mice (Two-way ANOVA and Bonferroni MCT; 

F(interaction)1,46=22,68; F(cylinders)1,46=12,42; F(treatment) 1,46=-7,230e-014).  

Also, in the discrimination index we observed a statistically significant difference between the 

two groups indicating a short-term memory impairment of the HDC-/- animals treated with 

VUF16839 (Unpaired t-test, ##p<0.01) involving neurotransmitters other than histamine. 

Figure 35C show the results obtained with HDC+/+ mice injected with the suicide inhibitor of 

HDC enzyme, α-FMH in order to obtain an acute depletion of histamine levels. These mice 

were tested in the social recognition memory task 1 hour after training. The results show that, 

also in this case, HDC+/+ mice injected with α-FMH i.c.v. and treated with vehicle spent more 

time exploring the novel stimulus compared to the familiar one (***p<0.001). On the contrary, 

mice treated with VUF16839 spent equal time exploring the familiar and the novel juvenile 

mice, so they show a short-term memory impairment (Two-way ANOVA and Bonferroni MCT; 

CAMBIA NUMERI F(interaction)1,36=9,248; F(cylinders)1,36=9,405; F(treatment) 1,36=0,0). To confirm 

this result, we observed also a statistically significant difference in discrimination index 

between mice injected with α-FMH and with vehicle (Unpaired t-test #p<0.05).  

So, we observed that the effect of the H3R agonist is not mediated by the histaminergic 

system but by other neurotransmitters.  
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Figure 35. Impact of H3R agonist VUF16839 in chronic and acute histamine depletion on short-term social 

recognition memory. (A) schematic representation of the experimental protocol used in chronically depleted 

(HDC-/-) mice and normal (HDC+/+) animals injected with α-FMH i.c.v. (B) Performance of HDC-/- mice. (C) 

Performance of normal (HDC+/+) animals injected with α-FMH i.c.v.. The results are calculated as a 

percentage of time spent exploring the cages containing the different stimuli (familiar vs. novel) or 

mediating the discrimination index. (two-way ANOVA and Bonferroni's MCT; ****P<0.0001; ***p<0.001; 

Unpaired t-test; ##p<0.01; #p<0.05; n=10-15) 

 

 

 

 

Donepezil prevents H3R agonist-induced memory impairment. 

Acetylcholinesterase inhibitors such as donepezil, are currently used for the relief of 

the cognitive deficits associated with mild to moderate Alzheimer’s disease (Micheau and 

Marighetto 2011), Histaminergic neurotransmission affects the ACh release  and the interplay 

between the two systems also affects memory formation (Blandina et al. 2004). 

Figure 36 shows the effect of donepezil (3mg / kg) administered 45 minutes before training in 

animals subsequently treated with the H3R agonist, VUF16839 (5mg / kg) 30 minutes before 

training. 

We evaluate short-term memory 1h after training. The results of the recognition test 

demonstrated that mice treated with VUF16839, as noted above, show memory impairment. 

But mice previously treated with Donepezil spend more time exploring the novel juvenile than 

the familiar one (Two-way ANOVA e Bonferroni MCT, F(interaction)1,36=23,58; 

F(cylinders)1,36=7,162; F(treatment) 1,36=-0,0) indicating that Acetylcholinesterase inhibitors prevents 

the VUF16839 memory impairment.  

The results are also supported by the observed differences between animals treated with 

donepezil or vehicle in the discrimination index (Unpaired t-test ##p<0.01). 
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Figure 36. Evaluation of the effect of the acetylcholinesterase inhibitor Donepezil on animals treated with 

VUF16839 in short-term memory.  (A) Schematic representation of the experimental protocol; (B) Results 

of performance in short-term memory. Results are expressed as a percentage of exploration time and 

through the discrimination index.  (Two-way ANOVA and Bonferroni MCT, ****p<0.0001, Unpaired t-

test; ##p<0.01; n=10). 

 

 

H3R agonism impairs acquisition, consolidation and retrieval of long-term social 

recognition memory. 

As we observed in Figure 34C, the administration of VUF16839 30 minutes before training 

impaired the acquisition of long-term memory. For this reason, in this experimental set we 

evaluated whether the H3R agonism could also influence other phases of mnemonic process. 

So, in Figure 37 is shown the effect of VUF16839 or vehicle injection immediately after training 

to evaluate memory consolidation (Figure 37B), or 30 minutes before LTM test section to 

evaluate memory retrieval (Figure 37C). 

Two-way ANOVA revealed statistical differences in the HDC+/+ mice treated with vehicle 

immediately after training (Two-way ANOVA e Bonferroni MCT, F(interaction)1,38=18,46; 

F(cylinders)1,38=15,41; F(treatment) 1,38=-1,245e-13) or 30 minutes before test (Two-way ANOVA e 

Bonferroni MCT, F(interaction)1,37=56,56; F(cylinders)1,37=422,6; F(treatment) 1,37=0,03392),  but 

revealed no differences in the animals treated with VUF16839 indicating that this H3R agonist 

impairs also consolidation and retrieval of memory.  
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This difference between the two treatments is also demonstrated by discrimination index 

(Unpaired t-test ##p<0.01)  

 

 

Figure 37. Effect of VUF16839 on consolidation and retrieval of long-term memory. (A) Schematic 

representation of the experimental protocol; (B) Results of H3R agonist administered immediately after 

training to evaluated consolidation phase; (C) Effect of VUF16839 when administered 30 minutes before 

test to evaluated retrieval.  Results are expressed as a percentage of exploration time and through the 

discrimination index.  (Two-way ANOVA and Bonferroni MCT, ****p<0.0001, Unpaired t-test; ##p<0.01 

***p<0.001; n=9-11). 

 

 

Increased histamine release is responsible for H3R antagonist-induced procognitive effect. 

In this final experiment, we analyzed the performance of normal and histamine depleted (HDC-

/- or HDC+/+ injected with α-FMH i.c.v.) mice treated with Ciproxifan (3mg/kg), an H3 receptor 

antagonist, or vehicle in social recognition performed 48 hours after training.  

We performed the recognition test 48 hours after training, to assess whether ciproxifan could 

ameliorate a physiologically decaying memory. 

Figure 38B shows the results of the social recognition test of HDC+/+ and HDC-/- mice. Two-

way ANOVA analysis show statistical difference between groups (Two-way ANOVA and 

Bonferroni MCT, F(interaction)3,66=11,30; F(cylinder)1,66=26,26; F(treatments)3,66= 4,203e-014) but in this 

case HDC+/+ mice treated with vehicle, did not discriminate between the two juvenile mice as 

a result of normal, time-dependent forgetting. On the contrary, we observe that HDC+/+ mice 

treated with Ciproxifan (3mg/Kg) spent more time exploring the novel mouse compared to the 

familiar one (****p<0.0001) indicating that increased histamine levels produce an amelioration 

in social memory consolidation, but HDC-/- mice treated with Ciproxifan didn’t discriminate 

between the two juveniles demonstrating that this effect is mediated by the central histaminergic 
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system.  This conclusion is also supported by the discrimination index as there is a statistically 

significant difference between animals treated with Ciproxifan or with vehicle (One-way 

ANOVA and Bonferroni MCT, F(interaction)3,34=4,998) in HDC+/+ animals. 

To confirm these results, we use also the HDC+/+ mice injected with α-FMH to observe the 

effects of an acute depletion of histamine levels and we can observe the same results seen in 

the genetic model of histamine deficiency. Two-way ANOVA demonstrated that HDC+/+ 

injected with vehicle i.c.v. and treated with Ciproxifan spent more time exploring the novel 

juvenile mouse (Two-way ANOVA and Bonferroni MCT, F(interaction)3,58=32,35; 

F(cylinder)1,58=10,18; F(treatments)3,58= 1,223e-013), but also in this case the absence of histamine 

avoids the effect of H3R antagonist. To support these results, also in this case, we calculated the 

discrimination index which showed differences between the groups of animals injected with 

vehicle i.c.v. and treated with ciproxifan or vehicle (One-way ANOVA and Bonferroni MCT, 

F(interaction)3,33=14,63) (Figure 38C). 

 

Figure 38. Evaluation of long-term memory in the Social recognition test of normal and histamine depleted 

mice treated with Ciproxifan (3mg/kg) or vehicle. (A) Schematic representation of the experimental 

protocol; (B) Results of HDC+/+ or HDC-/- animals in social recognition performed 48 hours after training; 

(C) Performance of HDC+/+ mice injected with α-FMH or vehicle and treated with Ciproxifan or vehicle. 

Results are expressed as a percentage of exploration time and through the sociability or discrimination 

index.  (Two-way ANOVA and Bonferroni MCT, ****p<0.0001, One-way ANOVA and Bonferroni MCT, 
####p<0.0001; ###p<0.001; ##p<0.01; n8-10). 
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Treatments do not affect mice sociability  

During the training phase of each experimental set, we evaluated the levels of sociability 

evaluating the time that each animal spends exploring the juvenile mouse placed under a 

cylinder compared to the time spent exploring another identical empty cylinder. The results are 

shown in table 9 and show that no treatment negatively affects sociability as all animals spent 

more time exploring the juvenile mouse compared to the inanimate object. The results are also 

expressed through the Sociability index. 

 

Table 9. Effects of different treatments on sociability. Sociability is express as percentage of time spent 

exploring the social stimulus or the non social one and as Sociability index. All the results are reported as 

mean ±SD.  

 

 

HDC
+/+ - - 1 80,30 ± 8,22 19,70 ± 8,22 0,60 ± 0,067

HDC
-/- - - 1 68,56 ± 9,54 31,44 ± 9,54 0,37 ± 0,0,78

HDC
+/+ - - 24 81,85 ± 6,85 18,14 ± 6,85 0,48 ± 0,0,62

HDC
-/- - - 24 68,6 ± 4,84 31,40 ± 4,84 0,37 ± 0,10

HDC
+/+ VEH - 1 65,70 ± 4,24 34,29 ±4,24 0,31 ± 0,085

HDC
+/+ α-FMH - 1 76,29 ± 3,17 23,71 ± 3,17 0,53 ± 0,063

HDC
+/+ VEH - 24 83,42 ± 7,92 16,46 ± 7,92 0,52 ± 0,059

HDC
+/+ α-FMH - 24 72,32 ± 10,67 27,68 ± 10,67 0,64 ± 0,19

HDC
+/+ - VEH 1 64,76 ± 9,27 36,29 ± 9,27 0,35± 0,054

HDC
+/+ - VUF16839 1 81,88 ± 7,24 18,12 ± 7,24 0,64 ± 0,12

HDC
+/+ - VEH 24 84,75 ± 6,37 15,25 ± 6,37 0,44 ± 0,068

HDC
+/+ - VUF16839 24 59,25 ± 7,53 40,75 ± 7,53 0,18 ± 0,15

HDC
-/- - VEH 1 66,99 ± 7,42 33,01 ± 7,42 0,34 ± 0,053

HDC
-/- - VUF16839 1 69,74 ± 7,58 30,25 ± 7,58 0,39 ± 0,048

HDC
+/+ α-FMH VEH 1 70,38 ± 9,90 29,62 ± 9,90 0,41 ± 0,25

HDC
+/+ α-FMH VUF16839 1 66,90 ± 12,43 33,10 ± 12,43 0,34 ± 0,16

HDC
+/+ - VEH 24 (Consolidation) 82,14 ± 7,17 17,85 ± 7,17 0,49 ± 0,066

HDC
+/+ - VUF16839 24 (Consolidation) 65,68 ± 8,82 34,32 ± 8,82 0,31 ± 0,056

HDC
+/+ - VEH 24 (Retrieval) 86,29 ± 7,27 13,71 ± 7,27 0,49 ± 0,17

HDC
+/+ - VUF16839 24 (Retrieval) 65,60 ± 7,93 34,40 ± 7,93 0,31 ± 0,17

HDC
+/+ - VEH 48 71,21 ± 6,47 28,78 ± 6,47 0,43 ± 0,14

HDC
+/+ - CIPROXIFAN 48 63,59 ± 10,25 36,41 ± 10,25 0,12 ± 0,064

HDC
-/- - VEH 48 62,76 ± 12,19 37,24 ± 12,19 0,26 ± 0,24

HDC
-/- - CIPROXIFAN 48 76,23 ± 5,07 23,77 ± 5,07 0,52 ± 0,10

HDC
+/+ VEH VEH 48 71,84 ± 2,79 28,16 ± 2,79 0,49 ± 0,19

HDC
+/+ VEH CIPROXIFAN 48 64,32 ± 2,72 35,68 ± 2,72 0,12 ± 0,065

HDC
+/+ α-FMH VEH 48 69,47 ± 6,51 30,53 ± 6,51 0,39 ± 0,13

HDC
+/+ α-FMH CIPROXIFAN 48 70,70 ± 8,66 29,30 ± 8,66 0,41 ± 0,17

TIME SPENT EXPLORING  (Mean ± SD)

Experiment 

2

Genotype Sociability index

Experiment 

1

i.c.v. i.p
Inter trial 

interval (h)

Social: Time 

spent exploring 

(%)

Non Social: Time 

spent exploring 

(%)

Experiment 

3

Experiment 

4

81,88 ± 7,24 18,12 ± 7,24 0,64 ± 0,12

HDC+/+ -

Experiment 

5

HDC
+/+ -

VEH + 

VUF16839
1

69,45 ± 6,95 30,55 ± 6,95 0,37 ± 0,12

Experiment 

6

DONEPEZIL

+VUF
1

Experiment 

7
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Treatments do not affect general motor activity  

General motor activity is evaluated indirectly by evaluating the total time that the animals spend 

exploring the two cylinders during the test phase. As we can see in table 10, no treatment 

produces statistically significant differences in the total exploration time thus indicating that 

there are no differences in the motor activity of mice belonging to different genotypes or 

treatments group. 

 

Table 10. Effects of different treatments in locomotion. Motor activity is express as mean ±SD of the time 

spent in seconds (s) exploring the two cylinders during the test phase. 

 

HDC
+/+ - - 1 137,50 ± 39,55

HDC
-/- - - 1 134,77 ± 34,09

HDC
+/+ - - 24 149,69 ± 64,50

HDC
-/- - - 24 150,62 ± 28,90

HDC
+/+ VEH - 1 130,47 ± 45,30

HDC
+/+ α-FMH - 1 138,91 ± 65,54

HDC
+/+ VEH - 24 149,69 ± 64,50

HDC
+/+ α-FMH - 24 127,87 ± 61,59

HDC
+/+ - VEH 1 135,65 ± 44,83

HDC
+/+ - VUF16839 1 148,27 ± 69,40

HDC
+/+ - VEH 24 149,69 ± 64,50

HDC
+/+ - VUF16839 24 122,2 ± 63,3

HDC
-/- - VEH 1 134,77 ± 34,09

HDC
-/- - VUF16839 1 91,78 ± 32,44

HDC
+/+ α-FMH VEH 1 138,91 ± 65,54

HDC
+/+ α-FMH VUF16839 1 88,46 ± 39,90

HDC
+/+ - VEH 24 (Consolidation) 66,61 ± 22,33

HDC
+/+ - VUF16839 24 (Consolidation) 86,71 ± 19,81

HDC
+/+ - VEH 24 (Retrieval) 73,29 ± 21,45

HDC
+/+ - VUF16839 24 (Retrieval) 102,57 ± 42,60

HDC
+/+ - VEH 48 111,42 ± 23,04

HDC
+/+ - CIPROXIFAN 48 95,03 ± 18,02

HDC
-/- - VEH 48 93,33 ± 42,28

HDC
-/- - CIPROXIFAN 48 101,5 ± 36,22

HDC
+/+ VEH VEH 48 111,42 ± 23,04

HDC
+/+ VEH CIPROXIFAN 48 95,03 ± 18,02

HDC
+/+ α-FMH VEH 48 151,56 ± 84,60

HDC
+/+ α-FMH CIPROXIFAN 48 154,68 ± 37,16

1,038

1,105

2,699

1,27

3,944

1,633

1,362

5,184

1,633

3,314

4,981

1,346

2,094

1,097

2,396

119,36 ± 38,12 

Experiment 

6

Experiment 

7
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Experiment 

5
1
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VUF16839
-HDC

+/+ 1 148,27 ± 69,40
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1
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Experiment 

3

Experiment 

4
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i.c.v. i.p
Inter trial 
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Conclusion: part III 

Histaminergic pharmacology and in particular the effects of H3 receptors are very complex. H3 

receptors act as both auto and hetero-receptors and therefore they modulate several downstream 

systems in the brain. Histamine acting in different brain sites, has an important role as a 

regulator of memory consolidation/retrieval in various learning paradigms. The role of 

histamine receptors in recognition memory has been extensively studied using both specific 

ligands and also transgenic animals.   

Data obtained until now indicate that alterations in the histaminergic system are associated with 

cognitive deficits observed in many neurodegenerative diseases, suggesting histaminergic 

receptors as possible targets for the discovery of new drugs (Provensi et al. 2018a). Due to its 

actions as an auto/heteroreceptor, regulating not only histamine synthesis but also the release 

of other neurotransmitters critically involved in cognition, the H3 receptor has received great 

attention by the scientific community as a good target for the development of new centrally 

acting drugs, and many academic groups as well as pharmaceutical companies have synthesized 

numerous selective and potent H3 receptor ligands (Sadek et al. 2016).  

This part of my thesis focused on social recognition test, a protocol used for the evaluation of 

memory. We studied the effects of brain histamine in sociability and in short and long-term 

social recognition memory. We evaluated the effect on memory of genetic or pharmacological 

depletion of histamine levels by using HDC-/- mice or HDC+/+ mice treated with i.c.v injection 

of α-FMH, or i.p. injection of the H3 receptor agonist VUF16839. 

We found that the lack of acute or chronic histamine did not induce sociability deficits. HDC-/- 

mice or HDC+/+ mice treated with α-FMH showed intact short-term memory, but long-term 

memory deficit. However, HDC+/+ mice treated with VUF16839 showed short-term memory 

impairments as well. Hence, VUF16839 that presumably abrogates histamine synthesis and 

release, had an amnesic effect on both short-term and long-term memory, contrary to HDC-/- or 

α-FMH treated mice. A plausible explanation for this phenomenon may lie in the fact that the 

H3 receptor is also a heteroreceptor that controls the release of other neurotransmitters (Haas et 

al. 2008). Presumably, its heterogeneous distribution induced a reduction of other 

neurotransmitters’ release which are mainly involved in short-term memory.  

To validate our hypothesis, we treated HDC-/- and α-FMH mice with VUF16839 and we 

observed a similar result as with the H3 receptor agonist, i.e. impaired short-term memory. We 

speculate that deletion of the HDC gene in HDC-/- mice and α-FMH treatment are highly 
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selective procedures to abolish histamine and, for this reason, they induced only long-term 

memory impairment. 

To evaluate whether the effect of VUF16839 was mediated by other neurotransmitters, we 

treated the animals with Donepezil, an inhibitor of the acetylcholinesterase enzyme, commonly 

used for the treatment of Alzheimer's disease (Micheau and Marighetto 2011). The data show 

that pretreatment with Donepezil prevented the negative effect of VUF16839 on social memory 

acquisition confirming the involvement of neurotransmitters other than histamine, specifically 

acetylcholine, in the effect of VUF16839.  

If therefore a deficit of histamine inevitably leads to mnemonic impairment, its increase should 

enhance the consolidation of memory. We performed the test 48 hours after training when mice 

experience physiological forgetting. We treated the normal or histamine-lacking mice with a 

systemic administration of Ciproxifan, an H3 receptor antagonist to confirm this hypothesis and 

we observed an amelioration in memory consolidation of HDC+/+ mice, but not in that of 

chronically or acutely histamine-depleted animals, indicating that the effect of Ciproxifan it is 

mediated by the central histaminergic system and not by other neurotransmitters. 
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Discussion  

A healthy nutritional status is essential for proper brain development and for the maintenance 

of optimal cognitive function during adulthood and aging. We demonstrated that a diet enriched 

with ω-3 polyunsaturated fatty acids (ω-3 PUFAs) and vitamin A protects against the cognitive 

and neurochemical consequences of chronic stress during adolescence. Furthermore, we 

showed that the amelioration is maintained through adulthood. In this regard, it is known that 

inclusion of ω-3 PUFAs in the diet can affect neurotransmission by modulating 

neurotransmitter reuptake and improves the cholinergic transmission in the brain, and 

consequently improves cognitive performances (Willis et al., 2009). Contrary to the effects of 

ω-3 PUFAs consumption, a diet high in saturated fats is a risk factor for various mental health 

problems including depression and cognitive dysfunction (Sánchez-Villegas et al., 2011). 

Our data, therefore, strongly suggest that a healthy diet supplemented with ω-3 PUFAs and 

vitamin A prevents deleterious cognitive impairment induced by social instability stress during 

adolescence, and that amelioration is maintained through adulthood, suggesting that a healthy 

diet may have long-lasting beneficial effects and help fight off neurodegenerative diseases.  

A working hypothesis in our laboratory holds that the brain histaminergic system allocates to 

peripheral stimuli i.e. hormones, diet-derived micronutrients or microbiota-derived products 

the salience necessary to unfold the appropriate behaviours.  

The histaminergic system holds a key position in the regulation of basic body functions, 

including the sleep–wake cycle, energy and endocrine homeostasis, synaptic plasticity and 

learning (Haas and Panula 2003). Histamine release is a sensitive indicator of stress (Taylor 

and Snyder 1971a, Verdière, Rose and Schwartz 1977), and chronic restraint and/or metabolic 

stress are among the most potent activators of histamine neurons in the TMN (Miklós and 

Kovács 2003). Not surprisingly, current research is providing evidence that malfunctioning of 

the histaminergic system is associated with neuropathological disorders (Shan et al. 2017). 

There is extensive evidence that histaminergic neurons detect acute stress-induced signals. 

Exposure to restraint and cold increased histamine turn over in the rat hypothalamus (Taylor 

and Snyder 1971b); hypercapnic loading (Haxhiu et al. 2001), insulin-induced hypoglycaemia, 

and foot shock (Haxhiu et al. 2001, Miklós and Kovács 2003) activated histaminergic neurons 

in a stressor- and neuron subgroup-specific manner.  

Distinct subgroups of hypothalamic histamine neurons respond to immobility, foot shock, 

hypoglycemia, and dehydration, suggesting a functional heterogeneity of histaminergic TMN 

neurons (Miklós and Kovács 2003). TMN neurons are influenced by a number of 



                                                                                                                                                       Discussion 

129 
 

neuroendocrine signals (Gotoh et al. 2005) and may integrate exteroceptive and interoceptive 

state cues in the control of stress induced arousal. Histamine mediates the stress-induced 

neuroendocrine hormone surges of ACTH, β-endorphin, and AVP from the pituitary (Kjaer et 

al. 1992) and controls stress related activity of aminergic systems, including serotonin-, 

norepinephrine-, dopamine-, and acetylcholine-containing neurons. As an integral part of the 

neural networks generating autonomic patterns (Saper 2002), histamine neurons interfere with 

AVP- and CRH-positive sympathetic command neurons (Krout, Mettenleiter and Loewy 2003) 

in the PVN and LHA (Whitcup et al. 2004) to influence sympathoadrenal outflow, 

cardiovascular functions, and complex stress-related behaviours such as flight-fight or 

grooming.  

In addition, histamine can be involved in the beneficial effects of ω-3 PUFAs. In rats fed a high-

saturated fat diet, a reduced H1 receptor binding density in many brain areas was observed (Wu 

et al., 2013). Interestingly, the reduction of H1 receptor binding densities in some of these areas 

(substantia nigra and caudate putamen) was prevented by supplementing the high-fat diet with 

the ω-PUFA DHA; the supplemented diet also prevented the negative effect of high-fat diet in 

cognitive functions. H1 receptor expression is reduced in depressed patients, whereas ω-3 

PUFAs, specifically DHA, levels in serum and red blood cells membranes are reduced in 

bipolar and major depression patients, with a greater deficit in bipolar disorder patients 

(McNamara et al., 2010). As a consequence, evidence suggests that coincident alterations in 

histaminergic system and lipid composition in depression could be causally linked.  

Therefore, during my doctorate, I explored the relationship between the brain histaminergic 

system and the enriched diet or the lipid OEA on the behavioural outcomes of chronic social 

defeat stress, a preclinical paradigm that more closely reproduces some of the symptoms 

observed in depression (Menard et al., 2017). Indeed, our data demonstrate that both a diet 

enriched in -3 PUFA and Vitamin A as well as the administration of a gut hormone such as 

OEA reduces social avoidance induced by stress and improves the cognitive performance of 

stressed mice. However, these effects are lost in mice that do not synthesise histamine, 

strengthening our hypothesis that peripheral signals generated by both the enriched diet and 

OEA converge onto the central histaminergic system that in turn provides the necessary central 

signalling to prevent stress-induced cognitive deficits and social aversion. 

Most CNS functions may be modulated so as to be activated or deactivated, accelerated or 

slowed down, and enhanced or diminished, but the exact course of action is determined by the 

needs relevant for a particular moment (Izquierdo and Medina 1997). Memory is no exception 
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to this rule and can thus be modulated by experiences occurring about the time when it is 

learned, consolidated, or retrieved (Cahill, McGaugh and Weinberger 2001). The major 

modulatory systems are composed of diffusely spread fibres bundles that reach a broad area in 

the CNS. These fibres originate from nuclei in the brainstem, diencephalon, and basal forebrain. 

They act by means of several neurotransmitters, including acetylcholine, noradrenaline, 

dopamine, serotonin, and histamine (Cahill and McGaugh 1998, Izquierdo and McGaugh 2000, 

Brown, Stevens and Haas 2001). 

Histamine is known to decrease calcium-dependent membrane conductance in the 

hippocampus, to increase neuronal excitability (Selbach et al. 1997), and control high-

frequency oscillations (Knoche et al. 2003, Ponomarenko et al. 2003), and it also facilitates 

NMDA glutamatergic receptor mediated responses (Bekkers 1993). However, the part 

histaminergic circuits play in mnemonic systems is complex. Histamine seems to have different 

effects in distinct brain regions and may have modulatory effects that differ according to 

memory type. Various preclinical studies using KO mice have shown that histaminergic 

dysfunction induces learning and memory impairment (Dere et al. 2010). 

All four histamine receptors are expressed in the brain, but the H3 receptor became the most 

promising drug target for the treatment of neuropathic pain, sleep–wake disorders and cognitive 

impairment associated with ADHD, schizophrenia, AD and PD (Passani and Blandina 2011).  

Consistently, systemic treatment with H3 antagonists, known to increase synaptic levels of 

endogenous histamine by blocking inhibitory histamine autoreceptors (Arrang, Garbarg and 

Schwartz 1983), enhanced the performance of rat pups in a multi-trial, inhibitory avoidance 

response, a task modelling aspects of ADHD and other disorders in which vigilance, impulsivity 

and/or cognitive performance are impaired (Fox et al. 2002, Komater et al. 2003). 

Early work by the group of Blandina et al. demonstrated that systemic administration of the H3 

agonists Imetit or R-α-methylhistamine prior to the acquisition session in the object 

discrimination test impaired short-term (1h) memory (Blandina et al. 1996). Furthermore, 

scopolamine-induced memory impairment was prevented by pretreatment with the H3 receptor 

antagonists thioperamide or Clobenpropit (Giovannini et al. 1999). Our research group recently 

demonstrated that administration of the non-imidazole H3 receptor antagonist, ABT-239, to 

wild-type mice before training and retention test improved memory in the object recognition 

paradigm (Provensi et al. 2016b). 

Our results reported in this thesis are in line with these findings because they show that agonism 

or antagonism of H3 receptors can modulate also the social recognition memory. I observed that 

H3 receptor agonist (VUF16839) induced social recognition memory impairment when tested 
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both for short and long-term memory; as discuss before, this implies the involvement of other 

neurotransmitters including acetylcholine. On the contrary, the H3 receptor antagonist 

(Ciproxifan) improved social memory in wild type, but not in HDC-/- mice suggesting that 

endogenous histamine is crucial for the mnemonic effects of these H3 receptor ligands.  

A wide variety of studies agree that the neuronal histaminergic system regulates some forms of 

cognition, and, inevitably, reports that pharmacological blockade of central H3 receptors exerted 

procognitive activity in several cognitive tasks has raised considerable interest.  

Recent data indicate that alterations in several components of the histaminergic system may 

contribute to the pathogenesis of neuropsychiatric disorders such as narcolepsy, schizophrenia, 

depression, AD and PD (Shan et al. 2017). The increased number of histamine neurons in the 

narcoleptic brain is hypothesized to contribute to the hypnagogic/hypnopompic hallucinations 

(types of sleep hallucinations that can feel real and often frightening. They can be mistaken for 

nightmares and can occur during falling asleep, hypnagogic, or awakening, hypnopompic) of 

this disorder. 

A reduction of H1 receptor binding in the cerebral cortex was observed in AD, depression and 

schizophrenia, which may imply that H1 receptor availability is associated with cognitive 

functions and mood states (Kano et al. 2004, Higuchi et al. 2000). The H1 receptor knockout 

animal seems to provide a great opportunity for further studies such an involvement in cognition 

and anxiety. H1 receptor antagonists are a potential effective treatment for insomnia (Roth et al. 

2007). Although no H3 receptor inverse agonists has been approved for the treatment of AD, 

several H3 receptor inverse agonists have shown therapeutic potential for the treatment of 

cognitive dysfunction in preclinical studies (Zlomuzica et al. 2016). Preliminary results have 

shown that H2 receptor antagonists induced a significant improvement in both positive and 

negative symptoms of schizophrenic symptoms (Meskanen et al. 2013).  

An H3 receptor inverse agonist, Pitolisant has been approved in 2016 for the treatment of 

narcolepsy (Syed 2016) and several H3 receptor antagonists/inverse agonists have already 

entered Phase II–III clinical trials.  

The results describe in this thesis demonstrate that H3 receptor ligands are good 

pharmacological tools for the more in-depth study of the histaminergic system in various 

pathologies including those affecting memory and learning.  

Ligands of histamine receptors are among the most used drugs worldwide; hence, 

understanding the impact of these compounds on learning and memory, mood and anxiety may 

help improve their pharmacological profile and unravel unexplored therapeutic applications. 
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