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Examining modifications 
of execution strategies 
during a continuous task
Erez James Cohen1, Kunlin Wei2 & Diego Minciacchi1*

How strategies are formulated during a performance is an important aspect of motor control. 
Knowledge of the strategy employed in a task may help subjects achieve better performances, as it 
would help to evidence other possible strategies that could be used as well as help perfect a certain 
strategy. We sought to investigate how much of a performance is conditioned by the initial state and 
whether behavior throughout the performance is modified within a short timescale. In other words, 
we focus on the process of execution and not on the outcome. To this scope we used a repeated 
continuous circle tracing task. Performances were decomposed into different components (i.e., 
execution variables) whose combination is able to numerically determine movement outcome. By 
identifying execution variables of speed and duration, we created an execution space and a solution 
manifold (i.e., combinations of execution variables yielding zero discrepancy from the desired 
outcome) and divided the subjects according to their initial performance in that space into speed 
preference, duration preference, and no-preference groups. We demonstrated that specific strategies 
may be identified in a continuous task, and strategies remain relatively stable throughout the 
performance. Moreover, as performances remained stable, the initial location in the execution space 
can be used to determine the subject’s strategy. Finally, contrary to other studies, we demonstrated 
that, in a continuous task, performances were associated with reduced exploration of the execution 
space.

When we consider a redundant goal directed task as a motor problem, the ways to solve the problem are con-
sidered as the possible strategies for said task. The number of possible strategies in a task may be immense and 
is dependent on various factors. It was shown that factors such as motor variability1–3, working memory4, visual 
processing5, visual-motor connectivity6, to previous experience7, age8, as well as subjects’ specific preference of 
a strategy9,10 could influence performances, all of which may not be predictable a priori. In fact, it was argued 
that observed patterns of execution are more emergent rather than prescribed properties and, as such, are 
dependent on various constraints which were summarized as environmental-, organism-, and task-related11. 
Therefore, it is difficult to determine what strategy may be employed by subjects when left to their own devices 
as it is not feasible to account for all of these factors. Still, depending on what is being examined, there may be 
a way to overcome this.

If a performance is considered as an exploration (i.e., a systematic pattern over time that emerges from the 
interaction between individual and environment in pursuit of the task goal)12, the exploration in itself could 
represent a quantifiable measure, independent of outcome, which could provide additional information regarding 
the performance. In fact, several studies have investigated evolution of performances in terms of exploration by 
using decomposition methods13–15. These decomposition methods all share a common feature, that of examining 
certain parameters during movement and mapping the relationships of said parameters relative to performance 
outcome. Such methods have been used for classification13, solutions to (cope with) redundancy14, identifica-
tion of task relevant and irrelevant variability15, and success in relation to variability16. To our knowledge these 
techniques were not fully implemented to examine modifications of strategies during a performance based on 
the initial conditions.

It is worth mentioning that King and colleagues, 20129, by examining the interplay of execution variables, 
demonstrated that specific strategies can be identified by the initial performance. Furthermore, the study reported 
high exploration across subjects. However, the study used a discrete approach which may favor exploration. In 
fact, it was shown that when reducing inter-trial interval and pre-movement planning, people tend to rely less on 
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a specific strategy but more on error based modifications17,18. As such, in discrete tasks, as more time is present 
to elaborate previous performance, subsequent performances may vary greatly. In continuous tasks on the other 
hand, pre-movement planning is less important, consequently there is an ongoing regulation of control19,20. 
Hence, when it comes to exploration patterns, it is possible that in a continuous task subjects would only make 
incremental changes, as tasks are to be performed smoothly. Consequently, abrupt changes in performance (e.g., 
following an unsuccessful trial) are less likely to occur, which could provide different results compared to those 
reported by King et al., 2012.

With these considerations in mind, in the present study a circle tracing task was asked to be performed as 
fast and accurate as possible. Given the continuous nature of the task and the short time span of execution, we 
hypothesize that no abrupt changes in behavior would occur. Therefore, specific execution strategies could be 
identified by the initial state and remain relatively fixed throughout the performance. Furthermore, we hypoth-
esize that exploration would be greatly reduced. Moreover, similarly to King and Colleagues, we hypothesize that 
subjects could be classified into distinct groups, based on their execution, with distinct characteristics.

Material and methods
Participants.  40 healthy adults were recruited for this study (age: 20.27 ± 2.93 years; 17 males). All partici-
pants were right-handed. Participants were naive to the task and the purpose of the study, and free of docu-
mented neurological impairments. All participants reported to have a corrected-to-normal visual acuity. The 
study protocol was approved by the Institutional Review Board of Peking University and all procedures con-
formed to the code of ethics of the Declaration of Helsinki. All participants gave written informed consent and 
were paid for their time.

Set up and task.  The setup is similar to the one used in Cohen et al.20, and is briefly summarized here. 
Participants were presented a circle template projected on a monitor mounted vertically in front of them at eye 
level (Fig. 1). A black paperboard occluded vision of the hand in order to facilitate fixation on the screen. On the 
circle template (2.27 cm in radius) a small moveable red dot represented the starting point (set to 12 o’clock). The 
participants were instructed to execute tracings of a circle, using graphic pen tablet (Wacom Intuos PTK-1240, 
Tokyo, Japan; active area: 462 × 305 mm; sample rate 60 Hz), while seated without the support of either wrist, 
arm, or elbow, in such a way that the only contact with the tablet was made through the pen. Further instructions 
included tracing the target circle counterclockwise as fast and as accurate as possible. Before starting the task, 
each participant was asked whether the instructions were understood. Once participants positioned themselves 
at the correct point, the small dot turned to green indicating the start of the trial and the cursor became invisible. 
During execution, the cursor position, represented by the small dot, was visible. The cursor trajectory was also 
visible, and was reset every revolution (defined as return to 12 o’clock that occurs in a direction from right to 
left, i.e., anticlockwise). Each participant was tested individually and was asked to continuously trace the circle 
without stopping. Once 48 revolutions of the circle were traced, the trial ended automatically. On average, the 
duration of the trial lasted 42.3 ± 12.16 s.

Figure 1.   Setup. Diagram illustrating the experimental setup. Each subject was presented a circle template 
projected on a monitor in front of her/him at eye level. A black paperboard occluded vision of the hand. The 
subjects executed tracings of a circle, while seated without the support of either wrist, arm, or elbow, in such a 
way that the only contact with the tablet was made through the pen.
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Analysis.  Circle analysis.  Circle tracing analysis consisted of calculation of traced circle radii, measured as 
point distances from the template’s center (i.e., radius). To avoid over estimations, the tracing of the circle was 
first reduced to 360 points (1 point per angle). Following that, all other calculations were performed. Specifically, 
for each point drawn, the distance from said point to the template center was calculated and was considered as 
a measure for the radius for said point. In order to obtain a radius value for each revolution, the mean value of 
the radii measured for each revolution was considered along with the standard deviation for said revolution. For 
each measured radius, deviations from the template’s radius were also calculated (i.e., radius error) which were 
used to calculate the mean radius error for each revolution. Since we are interested in overall error reduction, the 
radius error values were considered as absolute values. The sum of the radius errors for each revolution was con-
sidered as the total error. In addition, for each revolution the travelled distance was calculated. This measure was 
further used along with the duration of each revolution to estimate the speed for said revolution (derived from 
Speed = Distance / Duration). Finally, for evaluation of inter-revolution differences, the differences between two 
successive revolutions were calculated, for both duration and speed.

Speed profile.  The number of peaks within the speed profile of the entire performance of each subject was 
used as an estimate for movement smoothness21,22. Speed data of the performances was first filtered using local 
regression with weighted linear least squares and a 1st degree polynomial model setting, span was set for 1% of 
the dataset’s length. Following that using Matlab R2019b, the find peaks algorithm was implemented in order to 
calculate the number of peaks.

Timing variability.  In order to evaluate timing variability within the performances, the detrended windowed 
lag-one autocorrelation (detrended-wγ(1)) was used on the measured duration of each revolution for each 
subject23. This type of analysis further allows for a separation of two types of timing control mechanisms: event-
based, which assumes that timing is controlled according to an internal representation24,25, and would there-
fore be characterized by negative detrended-wγ(1); and emergent-based, which considers that timing control 
emerges from performance dynamics rather than being actively compared with an internal representation26, and 
is characterized by positive detrended-wγ(1). We computed wγ(1) over a window of the 30 first points, moving 
the window by one point, all along the sets. For each point moved the data was first linearly detrended on the 
window, and then the lag-one autocorrelation was computed. Following that the mean detrended-wγ(1) was 
calculated for each subject, and was considered as an estimator of the overall autocorrelation.

Creation of execution space and solution manifold.  In order to examine exploration patterns within the data, 
an execution space (i.e., a numerical representation of all possible execution patterns based on specific perfor-
mance variables) is needed to be created. To achieve this, first a result variable is to be chosen. This variable must 
represent some measure that could be compared with the desired outcome. In the circle tracing task, since the 
distance travelled each revolution could be readily compared with the target distance (i.e., circumference of the 
template circle), it was chosen as the result variable. Following this, two execution variables are to be chosen. 
The relationship of these execution variables must be able to quantify the result variable. When examining the 
measurable quantities retrieved in this task (i.e., trajectory and time), as well as the result variable, it seems fit-
ting to define the execution variables from the distance and time relationship (i.e., Distance = Speed × Duration). 
Consequently, since the distance measure is considered as the result variable, we may use Speed and Duration 
as the execution variables. This allows for the creation of an execution space based on the various combinations 
of speed and duration, and a solution manifold for the combinations yielding zero discrepancy between the 
circumference of the target circle and the given combination28 (Fig. 2).

The execution space was created by pairing the possible values of each of the execution variables. The limits 
of the space were chosen a posteriori following the examination of the dataset and were set to maximum values 
of 2.2 s for duration, and 600 mm/s for speed. Following that, the distances calculated using the various combi-
nations of speed and duration were mapped. For visualization purposes, we have arbitrarily chosen a 600 × 600 
matrix of distances calculated using the various combinations of speed and duration (0–2.2 s for duration; 
0–600 mm/s for speed). Each value obtained was thereafter compared with the template’s circumference (meas-
ured 142.85 mm) using the formula: (calculated distance)/(template’s circumference) to yield a ratio which later is 
used as a measure of the discrepancy between the given combination and the circumference of the template (i.e., 
solution manifold; Fig. 2). We considered 0 as no discrepancy between the calculated distance and the template’s 
circumference. The closer the value was to 0, the whiter the area corresponding to the combination of variables.

Cluster analysis and data division.  A k-means algorithm was used in order to divide subjects into groups based 
on their initial performance, specifically based on speed and duration values. The reason for choosing k-means 
clustering was that it does not require any prior assumption regarding the performance. In order to determine 
how many clusters should be used for k-means clustering, we have conducted a Cluster Solutions Evaluation 
analysis using the silhouette criterion. The silhouette value is a measure of how similar an object is to its own 
cluster (compactness) compared to other clusters (separation)27. We have examined division of the data up to 
10 clusters.

Tolerance, noise and covariance‑cost analysis.  To examine determinants of performance the Tolerance, Noise 
and Covariance—Cost (TNC-Cost) analysis28 was implemented. The analysis method is fully described in Cohen 
and Sternad, 2009, and is briefly summarized here. According TNC-Cost analysis, Tolerance Cost is considered 
to quantify the cost (measured as distance) related to an insufficient exploration of the solution space. Noise Cost 
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is considered to measure the cost for a less than optimal dispersion. Finally, Covariance Cost quantifies the cost 
of not sufficiently exploiting the redundancy of the already explored space.

To evaluate Tolerance Cost (T-Cost), an optimized set of data was generated in which the mean of the speeds 
and the mean of the durations were shifted to location that provided the best overall result, while still maintain-
ing the dispersion of original data along the axes. To achieve this, first a grid of 600 × 600 was created on which 
the dataset was shifted. For each shift the difference between the mean distance (product of the execution vari-
ables) and the circumference were compared. The location that yielded the best overall performance result was 
compared with the result of the actual dataset to define the T-Cost (Fig. 3A).

For Noise Cost (N-Cost), the radial distances between each point and the mean value of the dataset were 
calculated. Following that, radial distances were divided to 100 steps, each step was used to “shrink” the data 
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Figure 3.   TNC-cost. Example for the calculation of the TNC-Cost for taken from a single subject throughout 
the performance. Each dot represents a single revolution performed; colors correspond to the original data 
(orange) compared to the optimized data (purple). (A) It is possible to see that for T-Cost, the entire data set 
was shifted to the location within the execution space that provided the best mean solution, while maintaining 
dispersion of data. (B) For the N-Cost, the data remained in the same location but the dispersion was 
minimized to the point which provided the best overall solution. (C) C-cost was calculated as the best possible 
combination of the actual performed values compared the original combinations.
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closer to its mean until finally all points collapsed to the mean duration and speed at the 100th step. At each step 
the mean distance was calculated and compared with the circumference. The step that yielded the best overall 
result was considered as the optimal noise for the performance and was compared with the mean distance of the 
original dataset, defining the N-Cost (Fig. 3B).

Covariance Cost (C-Cost) was evaluated by first ranking pairs of durations and speeds from best to worst. 
Then systematically swapping the speed values in a manner that first worst duration was paired with second 
worst speed (and vice versa). If the mean result improved over the original, the swap was accepted. This was 
continued until the worst duration was paired with the best speed. The same process was repeated for duration. 
The number of profitable swaps was recorded and the process repeated until no further profitable swaps could 
be made (optimal permutation of the data was obtained). The algebraic difference between the mean distance of 
the actual data set and the mean distance of the optimally recombined set defined C-Cost (Fig. 3C).

Statistics.  To evaluate the suitability of distance as the result variable, Pearson correlation with Bonferroni 
correction was implemented on the distance measured per revolution and the average radius measured per 
revolution, across all subjects and revolutions.

To evaluate the improvement of the performance, paired sample t-tests were implemented on the initial error 
and end error (i.e., average of the first and last revolutions, respectively, across subjects) for both radius error 
as well as for total error.

A non-parametric analysis was conducted due to the small number of participants following group division 
and the fact that 1 (speed) out of 3 (radius, duration, and speed) main variables was not normally distributed 
(Shapiro–Wilk test, p < 0.001). For comparisons between groups, the Kruskal–Wallis test was used followed by a 
Dunn-Bonferroni adjusted post hoc test in case of multiple comparisons. The analyses were conducted specifically 
on inter-revolution differences for speed and duration, as well as on the peak numbers in the speed profiles and 
on the detrended-wγ(1) values. Unless stated otherwise, the values reported in the study are considered as mean 
and standard deviation. All of the statistical analyses performed in this study were done using Matlab R2019b.

Results
As a first measure, we evaluated the task execution according to the instructions. We assume that if the instruc-
tions were indeed followed, there should be a gradual reduction in error (Fig. 4). In fact, the initial radius error 
for the first revolution measured 5.65 ± 3.35 mm, reducing to 2.81 ± 1.83 mm (t(39) = 4.402, p < 0.001) by the 
last revolution (Fig. 4B), total error reduced from 329.2 ± 151.7 mm to 133.47 ± 81 mm (t(39) = 6.578, p < 0.001) 
(Fig. 4C).
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To evaluate the suitability of distance as the result variable, which is a pre-requisite for the creation of the 
solution manifold, the Pearson correlation coefficient, along with a Bonferroni correction (considering a sample 
size of 40), was used and revealed a significant correlation between distance and radius across all subjects and 
revolutions. This was done on a subject level so as to assure the suitability of distance as the result variable for all 
subjects, regardless of their patterns of execution. Specifically, all r-values were found to be larger than 0.9 with 
p-values < 0.001. The average correlation measured 0.97 ± 0.016 across all subjects and revolutions (Table 1). 
Therefore, since the radius error derives from the radius measurement, it is safe to say that the distance measure, 
by having a very high correlation with the radius, may represent a suitable result variable.

The solution manifold within the execution space assumes curved conformation. Furthermore, it is possible 
to see that the solution manifold becomes larger toward the center (i.e., larger area in light gray shade) of the 
curve and narrower at the extremes (see Fig. 2). This larger area is considered to be less prone to error or to 
possess a greater tolerance, meaning that performances within that area are less sensitive to small variations of 
both execution variables. It was demonstrated that as performances progress there is a general tendency toward 
this area of greater tolerance as it allows for the best exchange between the variables28. Therefore, we can assume 

Table 1.   Radius and distance correlation results. In the table, the left column refers to the subject, whereas the 
right column reports the correlation results between the radius and distance measured across all revolutions.

Subject r-value

1 0.97

2 0.98

3 0.97

4 0.98

5 0.98

6 0.95

7 0.97

8 0.98

9 0.98

10 0.96

11 0.97

12 0.97

13 0.97

14 0.96

15 0.95

16 0.97

17 0.96

18 0.99

19 0.96

20 0.94

21 0.94

22 0.97

23 0.93

24 0.98

25 0.98

26 0.96

27 0.98

28 0.98

29 0.97

30 0.97

31 0.90

32 0.98

33 0.98

34 0.97

35 0.97

36 0.97

37 0.97

38 0.98

39 0.97

40 0.98
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that if performances do indeed respect the architecture of the solution manifold, there should be a tendency to 
converge toward the area of greater tolerance.

It appears that the solution manifold could be divided into two parts relative to the area of greater tolerance, 
one part would correspond to relatively small changes in speed with large changes in duration, and the second 
part with the opposite trend. From this, two strategies emerge, the first is that of maintaining a relatively con-
stant speed, the other of maintaining a relatively constant duration. Therefore, the initial location of the subject 
within the execution space, would very likely determine said subject’s exploration strategy. We should however 
also consider the possibility that certain subjects, specifically those around the area of greater tolerance in 
the solution manifold, may present intermediate values, similarly to what was found by King and colleagues9. 
Therefore, in order to avoid assumptions, we have conducted a Cluster Solutions Evaluation analysis using 
Matlab, which revealed that 3 clusters are the most appropriate for the data in this study (criterion value = 0.73). 
This a priori knowledge was used to divide the subjects into 3 groups using a k-means algorithm, using only 
the speed and duration of the first revolution (results for 2 groups division are included in the Supplementary 
Material S1 of this manuscript). The 3 groups obtained were that of steady speed (i.e., Speed Preference, SP) and 
steady duration (i.e., Duration Preference, DP) and No-Preference (NP) group (SP; n = 9, DP; n = 8, NP; n = 23; 
Fig. 5A). Particularly, the average duration measured 0.63 ± 0.01 s for the DP group, 1.2 ± 0.12 s for the SP group 
and 0.8 ± 0.04 s for the NP group. The average speed measured 254 ± 16 mm/sec for the DP group, 122 ± 9.1 for 
the SP group and 195 ± 7.6 for the NP group. Both duration and speed were found to be significantly different 
among groups (duration: Chi sq(2) = 127.1, p < 0.001; speed: Chi sq(3) = 127.1, p < 0.001). Post hoc analyses also 
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Figure 5.   Group division. Subjects were subdivided into 3 groups following the implementation of k-means 
on the speed and duration values of the first revolution. (A) Scatter plot of the speed and duration values 
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Preference Group (i.e., NP; n = 23; green). Arrows represent the quiver plot obtained by taking the mean of the 
first revolution and the last revolution for each group. (B) Duration results throughout the performance for 
the 3 groups. It is possible to note that the DP group (red) remains relatively stable compared to the SP group 
(blue). Specifically, the DP group mean duration measured 0.63 ± 0.104 s for the first revolution, and remained 
relatively stable throughout the performance reaching 0.64 ± 0.168 s by the last revolution. The SP group 
measured 1.59 ± 0.23 s for the first revolution, reaching 1.08 ± 0.18 s by the last revolution, and the NP group 
measured 1.01 ± 0.14 s for the first revolution, reaching 0.75 ± 0.174 s by the last revolution. (C) Speed results 
throughout the performance for the 3 groups, demonstrating that SP group (blue) remains relatively stable 
compared to the DP group (red). Specifically, the DP group averaged 331.6 ± 67.2 mm/s for the first revolution, 
reaching 233.8 ± 68.05 for the last revolution. The SP group averaged 104.2 ± 20.5 mm/s for the first revolution 
and remained relatively stable measuring 129.1 ± 17.7 mm/s by the last revolution. The NP group averaged 
165.5 ± 31.1 mm/s for the first revolution, increasing to 197.4 ± 55.9 mm/s by the last revolution.



8

Vol:.(1234567890)

Scientific Reports |         (2021) 11:4829  | https://doi.org/10.1038/s41598-021-84369-5

www.nature.com/scientificreports/

confirmed significance between all groups (duration p < 0.001 for DP vs SP, SP vs NP, DP vs NP; speed p < 0.001 
for DP vs SP, SP vs NP, DP vs NP).

If strategies are indeed fixed, there should be a minimal change in duration for the DP group along with 
large changes in duration for the SP group (Fig. 5B). The opposite should be visible when examining the speed 
parameter (Fig. 5C). Consequently, performances would be accommodated by a greater modification of a single 
execution variable. Since using the speed and duration values would evidently be significantly different, as the 
values themselves are already very different (Fig. 5), we examined inter-revolution difference to evaluate the 
consistency of each parameter (speed and duration) throughout the performance for each subject. Both values 
were found to be significantly different among groups (duration difference: Chi sq(2) = 19, p < 0.001; speed differ-
ence: Chi sq(2) = 18.7, p < 0.001) (Fig. 6A,B). Specifically, the mean inter-revolution difference for duration were 
low for the DP group compared to the SP (0.137 ± 2.134 ms and 10.88 ± 5.7 ms, respectively, p < 0.001); the mean 
inter-revolution difference for speed presented the opposite trend, with larger differences for DP group compared 
to the SP group (2.081 ± 0.413 mm/s and 0.531 ± 0.473 mm/s, respectively, p = 0.008). Inter-revolution differ-
ences for the NP group presented intermediate values (5.6 ± 4 ms for duration and 0.67 ± 1.24 mm/s for speed). 
Significant differences between the NP group and the DP were found for both duration and speed (p = 0.008, 
and p < 0.001, respectively), whereas no significant differences were found between the NP and the SP groups 
for duration and speed (p = 0.06, and p = 0.99, respectively).

To broaden our examination of the potential differences between the groups, the number of peaks within 
the speed profiles for each group were evaluated revealing that a smoother performance is present for the 
SP (124.8 ± 7.2 average peaks) regarding speed compared to the DP group (145.8 ± 18.4), also in this case the 
NP group presented intermediate values (131.7 ± 13.1). Significant differences were found among groups (Chi 
sq(2) = 7.1, p = 0.02). Specifically, between DP and SP groups (p = 0.02) but not between DP and NP group 
(p = 0.17) or between the SP and NP groups (p = 0.44).

In addition, we implemented a timing variability analysis using a detrended windowed lag(1)-autocorrelation 
(detrended-wγ(1)) on the duration values of the 3 groups (Fig. 7). For the DP group (with the exception of 2 
subjects) values were negative (− 0.138 ± 0.255), suggesting that the group as a whole employs a more event-
based type of control. For the SP group, values were invariably positive (0.290 ± 0.211), suggestive for a more 
emergent-based type of control. The NP group represented the intermediate case with both positive and negative 
values (with 9 subjects showing negative values, group average 0.105 ± 0.223). Finally, significant differences were 
found among groups (Chi sq(2) = 10.45, p = 0.005). Post hoc analysis revealed that the differences among the 
groups were mainly due to the differences between the SP and the DP groups (p = 0.003), whereas no significant 
differences were found for other comparisons (p = 0.07 for DP vs NP, p = 0.26 for SP vs NP).

To better understand whether or not strategies tend to change during the performances we implemented a 
Tolerance, Noise and Covariance analysis (TNC). The TNC-cost analysis was first implemented on the complete 
performances. Following that, in order to get a clearer image of the performance as it progresses, we divided 
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Figure 6.   Inter-revolution differences. Box plot representing the group inter-revolution differences for duration 
(A) and for speed (B). It is possible to see that, for duration, DP group (red) presents very small differences 
compared to SP (blue), suggesting that DP group maintains the duration relatively constant. The opposite 
trend is visible for speed in which the SP group (blue) presents smaller differences compared to the DP group 
(red). The NP groups presented intermediate values for both duration and speed (green). The colored dots 
superimposed on the plots represent the individual subject and are color coded according to their group (red for 
DP group, blue for SP group, and green for NP group). Crosses represent extreme outliers.
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the data into to 3 segments, initial (16 revolutions), middle (16 revolutions) and end (16 revolutions), and re-
implemented TNC analysis (Figs. 8 and 9; Table 2).

It is possible to note that for all groups the major cost component was represented by the T-Cost. This is 
especially evident when considering the percentage of the cost of the overall performance, in which tolerance was 
responsible for 79% of the all cost for the NP group, compared to 55% and 63% for the DP and SP groups (respec-
tively). When reviewing the segmented data, it is evident that Tolerance continued to play an important factor 
throughout the performance (Figs. 8 and 9). On the other hand, changes of the N-Cost, which invariably reduced 
throughout the performances for all groups (Fig. 9), could account for the improvement of the performances.

For the SP group, improvements seem to be mostly due to optimizing dispersion rather than exploration, as 
T-Cost values in the segmented analysis increase. That being said, T-Cost still represented the major contributor 
for the overall cost for the SP group, suggesting that exploration was lacking. For the DP group, while all costs 
reduced with the progression of the performance, the major component remained the T-Cost. For the NP group, 
T-Cost remained relatively stable, suggesting very little exploration. Improvements in this group appear to be 
sustained mostly by optimizing dispersion.

Significant differences among groups were found for T-Cost (Chi sq(2) = 7.3, p = 0.02) as well as for the 
N-Cost (Chi sq(2) = 12.9, p = 0.001). Specifically, for the T-Cost, significant differences were found between DP 
and NP (p = 0.02), whereas other comparisons did not reveal significant differences (DP vs SP p = 0.48, SP vs 
NP p = 0.54). For N-Cost, significant differences were found between DP and SP (p = 0.001), but not for other 
comparisons (DP vs NP p = 0.1, SP vs NP p = 0.07). No significant differences among groups were found for 
C-Cost (Chi sq(2) = 0.24, p = 0.8). Finally, for the segmented results, significant differences were found among 

0

100

200

300

400

500

600

S
pe

ed
 1

st
 re

vo
lu

tio
n 

(m
m

/s
ec

)

Duration 1st revolution (sec)
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

detrended-wγ(1) <0
detrended-wγ(1) >0
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for each group. It is possible to see that for the overall performance, the weight of Noise is very large for the 
SP group (B, left side) and Covariance is negligible, whereas for the DP group (A, left side) both noise and 
covariance has a relatively equal weight. When investigating the segmented performances, it is possible to see 
that throughout the performance for the DP group (A, right side) noise reduces very quickly, accounting for 
small weight already in the middle of the performance, whereas for the SP (B, right side) it tends to reduce more 
gradually. It is also possible to note that the relative weight of tolerance was very high for the NP group for the 
overall performance (C, left side) as well as throughout the performance (C, right side).
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groups only for the N-Cost at the end segment (Chi sq(2) = 10.8, p = 0.004). Specifically, post hoc analysis revealed 
significant differences between DP and SP (p = 0.004) and between DP and NP (p = 0.02), but not between SP 
and NP groups (p = 0.5).
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throughout the performance, for the SP group, only noise shows a very big reduction is visible whereas the 
tolerance and covariance remain relatively stationary.

Table 2.   TNC-cost analysis results. In the table are reported the results obtained from the TNC-Cost analysis 
for each group (Duration Preference, Speed Preference, and No-Preference). Results for the individual costs are 
reported in the relevant columns (T = Tolerance, N = Noise, and C = Covariance) and are expressed as relative 
weight for each cost (in percentage) as well as the measured cost in mm (in parenthesis). Each row corresponds 
to the relative segment of the performance (initial, middle, and end), each composed of 16 revolution. The last 
row reports values of the overall performance (i.e., 48 revolutions).

Duration preference Speed preference No preference

T N C T N C T N C

Initial 81 ± 17% 
(18.9 ± 30.6 mm)

12 ± 17% 
(0.44 ± 0.31 mm)

6.3 ± 11% 
(0.6 ± 0.71 mm)

66 ± 22% 
(4.4 ± 4 mm)

26 ± 23% 
(1.6 ± 2 mm)

7 ± 9% 
(0.2 ± 0.13 mm)

82 ± 22% 
(10.8 ± 17.3 mm)

13 ± 22% 
(0.9 ± 1.1 mm)

4.2 ± 2.4% 
(0.21 ± 0.14 mm)

Middle 93 ± 3% 
(8.4 ± 13.1 mm)

1.7 ± 1.2% 
(0.07 ± 0.05 mm)

4.2 ± 3.7% 
(0.19 ± 0.14 mm)

84 ± 14% 
(6.4 ± 3.3 mm)

11 ± 15% 
(0.87 ± 1.1 mm)

4 ± 5.3% 
(0.18 ± 0.12 mm)

87 ± 12% 
(8.7 ± 9.4 mm)

7 ± 8.9% 
(0.38 ± 0.44 mm)

5 ± 6.9% 
(0.22 ± 0.16 mm)

End 93 ± 8% 
(6.6 ± 5.1 mm)

0.9 ± 0.7% 
(0.06 ± 0.06 mm)

5.5 ± 7.8% 
(0.2 ± 0.19 mm)

91 ± 5% 
(7.3 ± 2.8 mm)

5.6 ± 4.5% 
(0.45 ± 0.41 mm)

3.1 ± 2% 
(0.23 ± 0.16 mm)

91 ± 8% 
(8.8 ± 6.8 mm)

4.6 ± 5.8% 
(0.34 ± 0.5 mm)

3.8 ± 6.6% 
(0.16 ± 0.2 mm)

Overall 55 ± 35% 
(3.36 ± 5.2 mm)

25 ± 31% 
(0.31 ± 0.23 mm)

19 ± 25% 
(0.41 ± 0.46 mm)

63 ± 22% 
(4.4 ± 2.2 mm)

33 ± 22% 
(2.37 ± 1.56 mm)

3.1 ± 2% 
(0.2 ± 0.12 mm)

79 ± 18% 
(9 ± 9.8 mm)

17 ± 17% 
(1 ± 0.8 mm)

3.2 ± 4.5% 
(0.2 ± 0.22 mm)
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Discussion
In this paper we have shown that specific execution strategies may be identified in a continuous task and that 
strategies remain relatively stable throughout the performance (Figs. 5, 6). The identified strategies were those 
of maintaining a relatively constant speed or a relatively constant duration. Moreover, as the strategies remained 
relatively stable, the initial location of the performances in the execution space can be used to determine the 
subjects’ strategies. Finally, we demonstrated that, given the continuous nature of the task, exploration of the 
execution space was limited.

The two strategies identified in this study (i.e., maintaining speed or maintaining duration) could suggest 
different types of control. While duration is defined by a periodic measure (i.e., interval between repetition) 
and is best maintained when controlled periodically29,30, speed on the other hand is a more dynamic measure 
which is controlled continuously. This view may suggest that the SP group utilizes a more active type of control 
whereas the DP group a more intermittent one. In fact, examination of the peak number within the speed profile 
of the performances revealed a lower number of peaks for the SP compared to the DP, suggesting a smoother 
performance21,22. Also, the positive detrended-wγ(1) values for the SP further support the notion of a more 
dynamic type control, compared to negative values for the DP group which are suggestive for a more discrete 
type of control31. This is an interesting finding as it suggests that some people take a discrete approach and some 
a continuous approach for the same motor problem, specifically in this study, some subjects appear to take a 
discrete strategy in a continuous task. It was previously shown that continuous tasks, when performed intermit-
tently, could present a more discrete type of control32. Conversely, discrete tasks could transition to continuous 
rhythmic movements under certain constraints33. However, the findings presented in this study demonstrate 
that even when un-provoked by any specific constraints which could favor a certain strategy, subjects still do 
diverge into different modes of control.

In terms of performance optimization, it is interesting to note that, differently to what was shown in other 
studies9,28, results here suggest that subjects tend not to sufficiently explore the execution space. As demonstrated 
by Cohen and Sternad 2009, tolerance cost was the first one to reduce during a performance, reaching values that 
are near zero relatively quickly, thus leaving noise and covariance as the determining factors for optimization as 
performances progress. In our study, although an initial reduction was found for tolerance in all groups, it still 
invariably represented the main component of the overall cost. If subjects indeed tended to change strategies 
during the performances, a greater reduction in T-Cost would have been expected. Therefore, taking together 
the inter-revolution data (Fig. 8), the detrended-wγ(1) (Fig. 7), as well as the apparent lack of exploration, results 
seem to suggest that subjects do not change their strategy during the performance. This is more evident for 
subjects in the NP group, who already at the beginning of the performance were located at the area of greater 
tolerance and, as such, demonstrated the least change in tolerance cost (i.e., least exploration).

The premise of this study, of emergence and identification of strategies during a performance, is similar to 
a previously published study. King and colleagues, 20129, examined exploitation of different strategies in a star 
tracing task with the goal of minimizing a performance score that was given as feedback. Specifically, 3 clusters 
of individuals, corresponding to different search strategies (i.e., maintaining speed, maintaining accuracy, and 
a mixed strategy), were identified from the initial performance. The study reported that differences between the 
groups also persisted during the performance, and were reflected as a differential modification of spatial and 
temporal components throughout the performances between the groups.

While the general premise of the study goes in line with our findings, (i.e., separation of subjects, persistence 
of strategies), some key differences should be noted. King’s study employed a more discrete approach, in which 
the tracings of the shape were performed one tracing at a time, presenting a score to the participants upon com-
pletion of each trial. The interval between trials could allow for elaborations and corrections for the following 
trial, which would lead to greater exploration and possibly also strategy changes. In fact, the researchers reported 
a high exploration index for all groups, and the mixed group included in the study was composed of subjects 
that took advantage of both strategies. In this current study, we employed a continuous approach, in which the 
subjects did not stop to assess their performance, thus minimizing possible elaborations and making it less likely 
to introduce abrupt changes in strategy. In fact, the results in this study suggest that exploration is insufficient 
across groups and also that subjects do not seem to shift from one strategy to another.

The discrepancies between the results of the two studies are most likely due to the difference in the nature 
of the task (discrete vs continuous). As stated earlier, in continuous tasks, pre-movement planning is less 
important19,20, which could translate into small incremental changes in performance and, therefore, could account 
for the reduced exploration. Another possible explanation for the discrepancy in exploration between King’s study 
and this study, is that subjects received feedback regarding their performance and knew, prior to the task, that 
improvements of their score could be obtained by means of modifying one of the variables (speed or accuracy). 
On the other hand, in our study, even though subjects received a continuous visual feedback regarding their 
performance, knowledge on improvement was only implicit, as the given instructions only indicated to trace as 
fast and as accurate as possible.

We should also note that in order to examine exploration in this study, we used the TNC-Cost analysis instead 
of the Exploration Index used by King and colleagues. The exploration index was based on a cumulative measure 
of the distance travelled within the space across trial, normalized by the maximum Euclidean distance between 
any two trials. While this is an appropriate measure when performances are dispersed within the execution 
space, we believe that for clustered performances (i.e., performances in which all trials are relatively centered 
around one point), this type of analysis could cause an over-estimation of the exploration, providing more an 
estimation of exploration within the cluster, rather than the entire execution space, which could also account 
for the discrepancy between the two studies.
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A few limitations of this study should be noted. The first, it is important to note that while the execution 
variables in this task demonstrate differences, these variables are chosen and are a small example of many. In 
this study since we have focused on the distance measure as the result variable, the choice of the execution vari-
ables (i.e., speed and duration) was based on their ability to quantify the result variable. However, by choosing 
different variables there is also the possibility for other patterns to emerge. Since the goal of this paper was 
limited to the presentation of an approach for identifying strategies from the initial conditions, the examination 
of other execution variables, though highly encouraged for future studies, is beyond the scope of this study. 
Another limitation is related to the result variable in this study (i.e., distance), which was used as a surrogate of 
the radius variable. Since the result variable used was not explicitly part of the instructions (i.e., perform as fast 
and as accurate as possible), part of the differences observed could be due to different interpretations of the task 
by the participants. We believe however that, as there is a high correlation between the result variable and the 
radius (which is considered as a measure for accuracy), as well as the gradual reduction in radius error observed 
(Fig. 4), the possibility of different interpretations is minimal.

Given the short time span of each trial (averaging 42.3 ± 12.1 s across all subjects), the role of learning in the 
current study is debatable. Although some motor adaptation studies have described that adaptation could also 
occur in a relatively short time span20,34,35, the role of learning in this current study was not investigated as the 
scope was that of determining the existence and predictability specific strategies during the performance of a 
continuous task. Therefore, though we cannot confirm the specific contribution of learning in accounting for 
the observed results, we cannot fully exclude it either. It should also be considered that though initial strategies 
used do not change appreciably in this study, it may be due to the short time interval of the execution. Future 
studies would benefit also examining strategy modifications over different time scales.

Also, it should be considered that performances are likely to vary greatly depending on the task as well as 
the task requirements. This study was concentrated on a continuous task, and the results reported present dif-
ferences compared to those obtained by a discrete task9. Though a side-by-side comparison of the two was not 
included in this study, it would be interesting to examine whether subjects maintain performance patterns also 
across tasks. Finally, though this study focused on a group division of the subjects, this division was based on 
the observation that subjects at the extremes of the spectrum possess different characteristics in terms of perfor-
mance. The small sample size following the group division renders it difficult to draw definitive conclusions, and 
future studies would benefit from increasing the sample size. Still, the decision for group separation was made 
in order to evidence and quantify these differences, however, we believe that the trend shown in the study is not 
as net as presented but much more gradual and would be better viewed as a continuum.

There is a plethora of possible explanations as to why a performance may occur in a certain way. In this study 
we focused mostly on the existence and modification of execution strategies. However, since these strategies 
are determined already at the beginning of the performance, it is possible that subjects present certain biases/
inclination toward a certain strategy, which would then after determine their initial location within the execu-
tion space. It is known that while the possibilities for movement execution are infinite, most subjects tend to 
demonstrate certain stereotypical patterns36. In fact, previous work on exploration strategies demonstrated that 
individuals approach differently motor problems in a way that is dependent on the subject’s perception and 
action repertoire10, and that strategies remain consistent across various manipulations and are dependent on 
individual preferences9,10,12. These individual preferences were also found in reaching as directional biases37 as 
well as differences in feedback reliance among individuals38. Therefore, it is also possible that subjects possess 
some estimation of their own control, and consequently, by being aware of their own limitations would be more 
inclined toward one direction or the other. Though it is debatable whether the results provided in this study are 
indeed a manifestation of personal biases, it would be interesting in future studies to examine how knowledge 
of these possible biases/inclinations by the subjects may affect their performance in successive trials.

Conclusions
The ability to determine how a task will be performed may help subjects become more aware of certain aspects 
of their performances, allowing them to revise their execution strategies, as well as make them aware of cer-
tain execution patterns they were not previously aware of, thus allowing them to achieve better performances. 
Though there are different factors that were suggested to influence performances, by focusing solely on success 
as an outcome measure, their predictive power may be limited. Here we shifted the focus away from “how well a 
task is performed”, and investigated the differences in “how the task is performed” between individuals. Indeed, 
we identified two specific execution strategies in the given task suggestive for engagement of different types of 
control. We believe that by examining the strategies employed, it could be easier to understand which aspects of 
performances could be improved and individual differences could be better investigated.
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