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Abstract

In this paper we model the flow of a generalized Casson fluid in a channel of

non uniform amplitude. We assume that the rheological parameters are given

functions of the pressure and we suppose that the aspect ratio of the channel

is small, so that we can apply the lubrication approximation. We formulate

the mathematical problem writing the balance of the linear momentum of the

unyielded phase in an integral form. At the leading order of the approximation

and when the flow is driven by a given inlet discharge, we may transform the

problem is a system of two nonlinear differential equation for the pressure and

for the yield surface. When the flow is driven by a given pressure drop the

system becomes integro-differential. The solution of the mathematical problem

provides the exact location of the yield surface and the velocity field within the

channel.

Keywords: Viscoplastic fluid, Casson medium, Lubrication flows,Asymptotic

solution

1. Introduction

The viscometric flow of inelastic fluids is commonly modeled by means of

constitutive laws of generalized Newtonian fluids, that is fluids in which the

shear stress is a function of the shear rate but not dependent on the defor-

mation history. The constitutive response of such fluids allows one to model
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many interesting features that are characteristic of non-Newtonian fluids, such

as shear-thinning, shear thickening and also yield stress. The simplest gen-

eralized Newtonian model is Ostwald-de Waele model (power-law) [18] where

the stress is proportional to the rate of shear raised to the power of n > 0.

When the constitutive response exhibits a yield stress the fluid is called visco-

plastic, meaning that a critical value of the stress must be exceeded to start

the flow. Among visco-plastic models we mention the Bingham model [2], the

Herschel-Bulkley model [12], the Casson model [3] and the Heinz-Casson model

[4]. All these models have various practical applications: the Bingham and the

Herschel-Bulkley models, for instance, are employed to study flow behavior of

muds, foams, ceramics and slurries. The Casson model is widely used to model

blood flow, while the Heinz-Casson model is typically employed in the food

industry.

In this paper we consider an extension of the Casson model, namely the

generalized Casson model. The constitutive response of a generalized Casson

fluid is analogous to the one of a Casson fluid with the only difference that the

exponent appearing in the constitutive equation can be any positive number

n > 0 and not necessarily n = 2 as in the classical Casson model. The rheological

parameters in the constitutive equation of a generalized Casson fluid are the

plastic viscosity and the yield stress. Following [7], [10] and [16] we assume that

the latter may depend on the pressure.

We model the flow of a generalized Casson fluid in a symmetric channel of

varying amplitude under the hypothesis that the characteristic height of the

channel is smaller than the length (thin-film flow). We formulate the mathe-

matical problem following the approach introduced in [7] and [8] in which the

equation of motion of the unyielded part of the fluid is written in an integral

form. This method allows one to predict the correct shape of the yield surface.

We remark that the exact form of the yield surface can be determined using

other methods that involve higher order terms of thin-film approximation, such

as the ones used in [6],[17], [14], [15]. After rescaling the governing equations we

focus on the leading order of the lubrication approximation and we determine
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an explicit expression for the velocity in terms of the pressure and the the yield

surface. The latter are determined using the equation of motion of the unyielded

plug and imposing that the unyielded region moves as a rigid body.

When the inlet flow rate is prescribed the problem consists of a system of

two nonlinear first order differential equations for the pressure and for the yield

surface in which the initial conditions are free parameters that must be selected

in order to guarantee the absence of deformations in the unyielded part. When

the flow is driven by a given pressure drop between the inlet and the outlet of

the channel, the system becomes integro-differential. This result is consistent

with what found in [11] in the case of a Herschel-Bulkley fluid.

We initially study the system for constant yield stress and plastic viscosity

and we solve the problem for various channel profiles. We find that the behavior

of the yield surface is opposite to that of the wall function, meaning that the

unyielded core expands when the channel width is reduced and vice versa. This

is consistent with the results obtained in [7] and [16] for the Bingham and

Herschel-Bulkley model respectively.

Subsequently we consider the case in which the rheological parameters de-

pend on the pressure and solve the problem to investigate the effects that this

dependence has on the flow. Besides the increasing complexity of the mathe-

matical problem due to the non constancy of the viscosity and yield stress we

find that, differently from the constant case and from the cases studied in [7]

and [16], the monotonicity of the yield surface and of the wall function are not

necessarily opposite. This means that we can have a reduction of the channel

width and of the inner plug at the same time, depending on the particular form

of the viscosity and of the yield stress.

A fundamental hypothesis of the present work is that the plug extends con-

tinuously from the inlet to the outlet of the channel. This assumption is crucial

and our analysis is not applicable when the plug is broken.
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2. The mathematical model

We consider a general Casson Fluid whose constitutive equation is given by

Σ∗ = −p∗I + τ ∗ and where the deviatoric part τ ∗ is expressed as
τ ∗ =

µ∗ 1
n +

τ∗
1
n

y

|γ̇∗| 1n

n

γ̇∗, |τ ∗| > τ∗y ,

γ̇∗ = 0, |τ ∗| 6 τ∗y ,

(1)

with n > 0 being a real number. Throughout the paper symbols with stars

denote dimensional quantities. In (1) µ∗ is the plastic viscosity, τ∗y is the yield

stress and

γ̇∗ = ∇v∗ +∇v∗
T

,

is the strain-rate tensor. In the classical generalized Casson model the quantities

µ∗ and τ∗y are positive constants. Here we assume that the viscosity and the

yield stress are positive known functions of the pressure, i.e.

µ∗ = µ∗oµ
(
α∗(p∗ − p∗o)

)
, τ∗y = τ∗o τy

(
β∗(p∗ − p∗o)

)
. (2)

In (2) the functions µ and τy are positive and such that µ(0) = τy(0) = 1, while

µ∗o and τ∗o are the viscosity and the yield stress at the reference pressure p∗o.

The quantities

|τ ∗| =
√

1

2
τ ∗ · τ ∗, |γ̇∗| =

√
1

2
γ̇∗ · γ̇∗,

represent the norm of the deviatoric stress τ ∗ and the norm of the strain-rate

γ̇∗ respectively. The stress-strain relation can be represented in a Cartesian

plot taking the norm of (1)1, namely

|τ ∗| =
[(
µ∗|γ̇∗|

) 1
n

+ τ∗
1
n

y

]n
. (3)

Setting

η =

∣∣∣∣τ ∗τ∗y
∣∣∣∣ , ξ =

(
µ∗|γ̇∗|
τ∗y

)
,
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Figure 1: The function η = f(ξ) for different values of n.

the stress strain relation can be investigated through the function

η = f(ξ) =
(

1 + ξ
1
n

)n
: R+ ∪ {0} −→ R+ ∪ {0}. (4)

as shown in Fig. 1. We observe that f(ξ)→∞ for ξ →∞ and that f(ξ) has an

oblique asymptote for ξ →∞ only if 0 < n 6 1. More precisely, the asymptote

oblique is 
η = ξ, n ∈ (0, 1),

η = 1 + ξ, n = 1.

For ξ sufficiently large and n ∈ (0, 1), we have that f(ξ) ∼ ξ and (3) becomes

|τ ∗| = µ∗|γ̇∗|, |γ̇∗| � 1, (5)

while, for ξ sufficiently large and n = 1

|τ ∗| = µ∗|γ̇∗|+ τ∗y , |γ̇∗| > 0. (6)

When n = 1 we recover the Bingham model with pressure dependent rheological

moduli, while for n = 2 we obtain the Casson model with pressure dependent

rheological moduli. In our model we simply assume that n > 0, i.e. we consider

a generalized Casson model with pressure-dependent yield stress and viscosity.
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Let us consider the flow in a symmetric channel of length L∗ whose walls are

expressed by y∗ = ±h∗(x∗). The velocity field is given by

v∗(x∗, y∗, t∗) = u∗(x∗, y∗, t∗)e1 + v∗(x∗, y∗, t∗)e2.

The flow domain is dividend in a yielded region

Ω∗y(t∗) =
{

(x∗, y∗) : x∗ ∈ [0, L∗], y∗ ∈ [−h∗,−σ∗] ∪ [σ∗, h∗]
}
,

and an unyielded region

Ω∗u(t) =
{

(x∗, y∗) : x∗ ∈ [0, L∗], y∗ ∈ [−σ∗, σ∗]
}
,

where y∗ = ±σ∗(x∗, t∗) represent the yield surfaces. Within Ω∗u(t∗) the fluid

is unyielded and |τ ∗| 6 τ∗y while in Ω∗y(t∗) the fluid is yielded and we have

|τ ∗| > τ∗y . Notice that both Ω∗u(t∗) and Ω∗y(t∗) are not material volumes. We

make the assumption that the core extends from the inlet to the outlet, so that

the rigid plug never breaks. Assuming incompressibility and neglecting the body

forces, the governing equations of the system are

divv∗ = 0 (x∗, y∗) ∈ Ω∗u(t∗) ∪ Ω∗y(t∗), (7)

ρ∗v̇∗ = −∇p∗ + div(τ ∗) (x∗, y∗) ∈ Ω∗y(t∗), (8)

∫
Ω∗
u(t∗)

ρ∗v̇∗dV ∗ =

∫
∂Ω∗

u(t∗)

σ∗ndS∗. (9)

where the dot means material differentiation. The balance of linear momentum

in Ω∗u(t∗) is written in the integral form (9) because the body is undeformable

in the unyielded domain (the continuum behaves as rigid body below the yield

limit) and hence the stress is undetermined, see [5]. Boundaries of the plug

region are located via the yield criterion

|τ ∗|
∣∣∣
y∗=±σ∗

= τ∗y , (10)
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that, recalling (3), can be written also as

|γ̇∗|
∣∣∣
y∗=±σ∗

= 0. (11)

We assume the continuity of the stress and velocity across y∗ = ±σ∗ and im-

pose the no-slip conditions v∗ = 0 on y∗ = ±h∗. We notice that, because of

symmetry, the velocity in Ω∗u(t∗) is given by v∗c (t
∗) = u∗c(t

∗)e1. Following the

approach of [9], we limit our analysis to the upper part of the channel y∗ > 0

and we write the governing equations component-wise as

u∗x∗ + v∗y∗ = 0, (12)

ρ∗
(
u∗t∗ + u∗x∗u∗ + u∗y∗ v

∗
)

= −p∗x∗ + (τ∗11)x∗ + (τ∗12)y∗ , (13)

ρ∗
(
v∗t∗ + v∗x∗u∗ + v∗y∗ v

∗
)

= −p∗y∗ + (τ∗12)x∗ + (τ∗22)y∗ , (14)

ρ∗u̇∗c

L∗∫
0

σ∗dx∗ =

L∗∫
0

(
− σ∗p∗x − σ∗xτ∗11 + τ∗12

)∣∣∣
σ∗
dx∗. (15)

We remark that the last equation represents the first component of the balance

equation (9) since the second is automatically satisfied if one assumes that on

the lateral surfaces x∗ = 0, x∗ = L∗ the tangential stresses are zero (no torque

is applied on the rigid plug). We rescale the problem as follows

x∗ = L∗x, y∗ = H∗y, t∗ =

(
L∗

U∗

)
t,

u∗ = U∗u, v∗ = εU∗v, u∗c = Uuc,

h∗ = H∗h, σ∗ = H∗σ, τ ∗ =

(
µ∗oU

∗

H∗

)
τ ,

γ̇∗ =

(
U∗

H∗

)
γ̇, p∗ − p∗o =

(
µ∗oU

∗L∗

H∗2

)
p,
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α∗ =

(
H∗

2

µ∗oU
∗L∗

)
α, β∗ =

(
H∗

2

µ∗oU
∗L∗

)
β,

where L∗ is the length of the channel and H∗ = max[0,L∗] h
∗(x∗). We make the

assumption of small aspect ratio

ε =
H∗

L∗
� 1.

Following [16], without loss of generality we assume that p∗o = p∗out, where p∗out

is the constant pressure at the outlet of the channel. Hence the non dimensional

inlet pressure becomes

p
∣∣∣
x=0

= ∆p =
∆p∗(

µ∗
oU

∗L∗

H∗2

) =
p∗in − p∗out(
µ∗
oU

∗L∗

H∗2

) , (16)

while the non dimensional outlet pressure is identically zero. Equations (12)-

(15) become

ux + vy = 0, (17)

εRe (ut + uxu+ uyv) = −px + ε(τ11)x + (τ12)y, (18)

ε3Re (vt + vxu+ vyv) = −py + ε2(τ12)x + (τ22)y, (19)

εReu̇c

1∫
0

σdx =

1∫
0

[−pxσ − εσxτ11 + τ12]|σ dx, (20)

where

Re =

(
ρ∗U∗H∗

µ∗o

)
is the Reynolds number. The non dimensional stress becomes

τ =

µ(αp)
1
n +

(
Bτy(βp)

) 1
n

| ˙̃γ| 1n


n

γ̇,

where

B =

(
τ∗oH

∗

µ∗oU
∗

)
,
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is the Bingham number. The non-dimensional strain rate norm is

|γ̇| =
√

2ε2
(
u2
x + v2

y

)
+ (uy + ε2vx)

2
. (21)

The yield criterion is given by

|τ |
∣∣∣
σ

= Bτy(βp) ←→ |γ̇|
∣∣∣
σ

= 0.

3. Zero order problem

We focus on the leading order approximation assuming that Re, B = O(1).

Neglecting all the terms containing ε we get

ux + vy = 0,

(τ12)y = px,

py = 0,

(Yielded phase) y ∈ [σ, h], (22)



1∫
0

(−pxσ + τ12)|σ dx = 0,

u = uc, v = 0,

(Unyielded phase) y ∈ [0, σ], (23)

where

τ12 = uy

µ(αp)
1
n +

(
Bτy(βp)

) 1
n

|uy|
1
n


n

.

On the yield surface ∣∣∣γ̇∣∣∣
σ

= |uy|σ = 0.

In the upper yielded part uy < 0. Therefore

τ12 = −
[
(µ(αp) |uy|)

1
n +

(
Bτy(βp)

) 1
n

]n
, (24)

and the yield condition becomes

τ12

∣∣∣
σ

= −
(
Bτy(βp)

)
.
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From (22)3 we see that p = p(x, t) so that, integrating (22)2 between σ and y

we find

τ12 = −Bτy(βp) + px(y − σ). (25)

Subtracting (24) from (25) we find

uy = −
(
Bτy(βp)

µ(αp)

)[(
1 +

px
Bτy(βp)

(σ − y)

) 1
n

− 1

]n
. (26)

Assuming that the pressure drop ∆p > 0 we expect px < 0 and px(σ − y) > 0

in the yielded phase, so that (26) is well defined for every n > 0. We define

P =

∫
dp

Bτy(βp)
, −→ Px =

px
Bτy(βp)

,

and we integrate (26) between y and h exploiting the no-slip condition getting

u

B
= g(p)

h∫
y

[
(1 + Px(σ − ξ))

1
n − 1

]n
dξ, (27)

where for simplicity we have set

g(p) =
τy(βp)

µ(αp)
. (28)

The velocity of the core is thus

uc
B

= g(p)

h∫
σ

[
(1 + Px(σ − ξ))

1
n − 1

]n
dξ. (29)

Subtracting (29) from (27) we find

u

uc
= 1−

y∫
σ

[
(1 + Px(σ − ξ))

1
n − 1

]n
dξ

h∫
σ

[
(1 + Px(σ − ξ))

1
n − 1

]n
dξ

. (30)

Exploiting the mass balance ux = −vy we write

v =

y∫
σ

vydy = −
y∫
σ

uxdy,
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that is

v = uc

y∫
σ

d

dx



ỹ∫
σ

[
(1 + Px(σ − ξ))

1
n − 1

]n
dξ

h∫
σ

[
(1 + Px(σ − ξ))

1
n − 1

]n
dξ

︸ ︷︷ ︸
=uc/(Bg(p))


dỹ.

Recalling that uc does not depend on x and y we find

v = B

y∫
σ

d

dx

 ỹ∫
σ

g(p)
[
(1 + Px(σ − ξ))

1
n − 1

]n
dξ

 dỹ,
or equivalently

v = B

y∫
σ

dỹ

ỹ∫
σ

d

dx

[
g(p)

[
(1 + Px(σ − ξ))

1
n − 1

]n]
dξdỹ. (31)

Exploiting again the mass balance we see that

d

dx

 h∫
σ

udy

 = −ucσx +

 h∫
σ

uxdy


︸ ︷︷ ︸

=0

,

implying

d

dx

 h∫
σ

u

uc
dy + σ

 = 0. (32)

In conclusion we find that
h∫
σ

u

uc
dy + σ = Q, (33)

where Q > 0 is a constant representing the non dimensional discharge on a

generic cross section x of the channel normalized with the core velocity uc.

Inserting (30) into (33) we get

h−

h∫
σ

dy

y∫
σ

[
(1 + Px(σ − ξ))

1
n − 1

]n
dξ

h∫
σ

[
(1 + Px(σ − ξ))

1
n − 1

]n
dξ

= Q. (34)
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The core equation (23)1 becomes

1∫
0

[
− pxσ −Bτy(βp)

]
dx = 0,

and can be rewritten as

1∫
0

[1 + Pxσ] τy(βp)dx = 0. (35)

Finally, recalling that uc must be independent of x and recalling (29), we write

d

dx

g(p)

h∫
σ

[
(1 + Px(σ − ξ))

1
n − 1

]n
dξ

 = 0. (36)

Equations (34), (35),(36) provide the mathematical formulation of the problem.

In order to have a lighter notation we introduce the new variable

z = Px(σ − h) > 0.

It is easy to show that with this substitution equations (34), (35),(36) become

1

Px

1+z∫
1

dy

y∫
1

[
ζ

1
n − 1

]n
dζ

1+z∫
1

[
ζ

1
n − 1

]n
dζ

= Q− h, (37)

1∫
0

[1 + z + Pxh] τy(βp)dx = 0, (38)

d

dx

g(p)

Px

1+z∫
1

[
ζ

1
n − 1

]n
dζ

 = 0. (39)

Now we introduce the functions

N(z) =

1+z∫
1

dy

y∫
1

[
ζ

1
n − 1

]n
dζ, (40)

D(z) =

1+z∫
1

[
ζ

1
n − 1

]n
dζ, (41)
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and we note that N ′(z) = D(z). The system (37), (38),(39) can be rewritten as

px =
BN(z)τy(βp)

D(z)(Q− h)
,

1∫
0

[
1 + z +

N(z)h

D(z)(Q− h)

]
τy(βp)dx = 0,

d

dx

[
g(p)(Q− h)D(z)2

N(z)

]
= 0.

(42)

Now, differentiating the last expression we find

g′(p)px
(Q− h)D2

N
+

+g(p)

[
−hxD2N + zx(Q− h)D(2D′N −N ′D)

N2

]
= 0.

Recalling (42)1, the above can be rewritten as

zx =
hxD(z)N(z)−Bg′(p)g−1(p)τy(βp)N2(z)

(Q− h)(2D′(z)N(z)−D2(z))
.

Suppose that the inlet flux Q is given. Then we must solve the system
px =

BNτy(βp)

D(Q− h)
, p

∣∣∣
x=0

= po,

zx =
hxDN − g′g−1BτyN

2

(Q− h)(2D′N −D2)
, z

∣∣∣
x=0

= zo,

(43)

where zo and po are pivotable parameters at this stage. The equation for the

plug is
1∫

0

[
1 + z +

N(z)h

D(z)(Q− h)

]
τy(βp)dx = 0, (44)

and can be rewritten as

1∫
0

[B(1 + z)τy(βp) + pxh] dx = 0. (45)

Now, from (43)1, we see that

pxh = pxQ−
BN(z)τy(βp)

D(z)
,
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which, once inserted into (45), provides

Q =
B

∆p

1∫
0

(
1 + z − N(z)

D(z)

)
τy(βp)dx. (46)

To determine the parameters zo and po we proceed in the following way. The

solution of (43) is given by the functions

z = z(x; zo, po), p = p(x; zo, po), (47)

that depend on the choice of the inlet conditions zo and po. The functions p

and z must satisfy equations (45) and (46). Recalling that p|x=0 = po = ∆p we

must therefore choose po and zo such that the system

1∫
0

[B(1 + z)τy(βp) + pxh] dx = 0,

1∫
0

(
1 + z − N(z)

D(z)

)
τy(βp)dx− Qpo

B
= 0,

(48)

is satisfied. Indeed, from (47), it is clear that (48) is a nonlinear algebraic system

for the unknowns po and zo. When ∆p is given, then Q is given by (46) and the

system (43) becomes integro-differential with the initial conditions that must

be chosen in order to satisfy (44). Once the problem (43), (48) is solved σ can

be evaluated noticing that

Px =
z

σ − h
=

N(z)

D(z)(Q− h)
,

which implies

σ = h

(
1− zD(z)

N(z)

)
+
zD(z)

N(z)
Q. (49)

3.1. Flow conditions

We can easily prove that

lim
z→0

zD(z)

N(z)
= 2 + n, lim

z→∞

zD(z)

N(z)
= 3
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Figure 2: The function zD/N .

and 

3 <
zD(z)

N(z)
< 2 + n, n > 1,

3 =
zD(z)

N(z)
, n = 1,

2 + n <
zD(z)

N(z)
< 3, n < 1,

(50)

as shown in Fig. 2. Following (49) we see that the condition σ ∈ (0, 1) is

guaranteed if

h

(
1− N(z)

zD(z)

)
︸ ︷︷ ︸

>0 ∀n

< Q <
N(z)

zD(z)
+ h

(
1− N(z)

zD(z)

)
,

or equivalently if

h

(
1− N(z)

zD(z)

)
1∫

0

(
1 + z − N(z)

D(z)

)
︸ ︷︷ ︸

>0 ∀n

τy(βp)dx

<
B

∆p
<

N(z)

zD(z)
+ h

(
1− N(z)

zD(z)

)
1∫

0

(
1 + z − N(z)

D(z)

)
τy(βp)dx

.
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Figure 3: The function Er(z).

When n = 1
zD(z)

N(z)
= 3,

so that

σ = −2h+ 3Q −→ σx = −2hx,

consistently with the expression for σ obtained in [7] for a Bingham fluid.

3.2. Approximated solution

We notice that for z 6 1/n the function zD(z)/N(z) can be safely approxi-

mated by the constant (n+ 2). Indeed let us consider the function

Er(z) = 100 ·
∣∣∣∣1− zD(z)/N(z)

n+ 2

∣∣∣∣ %, (51)

that provides the relative error made when one approximates the function

zD(z)/N(z) with (n + 2). As one can see from the plots in Fig. 3 this er-

ror is less than 5% when z 6 (1/n) and for n = 1 the error is identically null.

Therefore, if z 6 1/n we may approximate σ with

σ = −h(1 + n) + (n+ 2)Q,
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Figure 4: The function L(z).

so that

σx = −hx(1 + n).

The above relation shows that the monotonicity of the yield surface is opposite

to the one of the wall. This behavior is visible in the numerical simulations of

the next section.

4. Constant rheological parameters

When τy = µ = g = 1 the constitutive moduli are constant and the system

(43) simplifies to
px =

BN

D(Q− h)
, p

∣∣∣
x=0

= po,

zx =
hxDN

(Q− h)(2D′N −D2)
, z

∣∣∣
x=0

= zo,

(52)

and
1∫

0

[
1 + z +

N(z)h

D(z)(Q− h)

]
dx = 0. (53)
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In this case equation (52)2 becomes independent of p and so does the integral

equation (53). Therefore we can solve the problem (52)2 for z and we adjust

the parameter zo to satisfy (53). Once the solution is found we evaluate the

pressure through (52)1 adjusting the parameter po = ∆p so that

Q =
B

∆p

1∫
0

(
1 + z − N(z)

D(z)

)
dx, (54)

is satisfied. From (49) we notice that

σx = hx

(
1− zD

N

)
+

d

dz

(
zD

N

)
(Q− h)zx.

Substituting zx with (52)2 in the relation above we find

σx = hx

[
1− zD

N
+
D

N

(
zD′N − zD2 +DN

2D′N −D2

)]
.

After some extra algebra we get

σx = hx

(
2D′N − zD′D

2D′N −D2

)
= hxL(z).

The function L(z) is strictly negative for z > 0 for all n > 0, as shown in Fig.

4. This proves that, in the case of constant rheological parameters, the wall

and the yield surface have opposite monotonicity and σx = 0 whenever hx = 0.

Moreover, recalling the expression for the transversal velocity (31), we see that

in the case of constant viscosity and yield stress the transversal velocity can be

rewritten as

v =
∂

∂x

 BP2
x

1+Px(σ−y)∫
1

dỹ

ỹ∫
1

(ζ
1
n − 1)ndζ


Now recall that Px(σ − h) = z so that

v =
∂

∂x

B(σ − h)2

z2

1+z( σ−yσ−h )∫
1

dỹ

ỹ∫
1

(ζ
1
n − 1)ndζ


︸ ︷︷ ︸

F(z,σ,h;y)

,

and

v =
∂

∂x

[
F(z, σ, h; y)

]
=
∂F
∂z

zx +
∂F
∂σ

σx +
∂F
∂h

hx. (55)

When hx = 0 we get zx = σx = 0 and the transversal velocity v is identically

zero whenever hx = 0, as we shall see from the numerical simulations.
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Figure 5: The function Q(z̄) for n = 0.2, 1, 2.3, 3.5.

4.1. Flat channel

When h = 1 we find that zx = 0 and z = z̄ = const. From (53)

Q = Q(z̄) = 1− 1

1 + z̄

N(z̄)

D(z̄)
.

It is easy to prove that

lim
z̄→0

Q(z̄) = 1, lim
z̄→∞

Q(z̄) =
2

3
,

dQ(z̄)

dz̄
< 0,

for all n > 0, as shown in Fig. 5 Therefore we determine a unique solution z̄

only if we impose a discharge Q ∈ (2/3, 1). Moreover, since we want z̄ = O(1)

we must ensure that the selected Q provides a z̄ = O(1). Looking at Fig. 5

we realize that for large values of n the imposed flux Q must be close to one in

order to guarantee that z̄ = O(1). On the other hand, if ∆p is given instead of

Q from (54) we have

B

∆p

(
1 + z̄ − N(z̄)

D(z̄)

)
=

(
1− 1

1 + z̄

N(z̄)

D(z̄)

)
, (56)

so that

z̄ =
∆p

B
− 1, (57)
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for all n > 0. In this case the solution has a physical meaning only if z̄ > 0,

that is if ∆p > B. This proves that in a flat channel with constant yield stress

and viscosity the flow condition for a generalized Casson fluid is exactly the one

of a classical Bingham fluid, see [13].

4.2. Case 1: n integer

When n is integer the functions N(z) and D(z) can be evaluated through

the binomial theorem

(ζ
1
n − 1)n =

n∑
k=0

 n

k

 (−1)kζ1− kn .

Inserting the above into (40), (41) and calculating the integrals we find

N(z) =

n∑
k=0

ank


(

1 + z
)3− kn − z

(
3− k

n

)
− 1(

2− k
n

) (
3− k

n

)
 , (58)

D(z) =

n∑
k=0

ank


(

1 + z
)2− kn − 1(

2− k
n

)
 . (59)

When n = 1 we retrieve the Bingham model studied in [7]. Indeed in this case

it is easy to verify that
px =

Bz

3(Q− h)
, p

∣∣∣
x=0

= po,

zx =
hxz

(Q− h)
, z

∣∣∣
x=0

= zo,

(60)

and

Q =
B

∆p

1∫
0

(
1 +

2z

3

)
dx. (61)

Recalling that Bz = px(σ−h) from (60)1 we easily check that (σ−h) = 3(Q−h)

and (σx − hx) = −3hx. Hence

z =
3px
B

(Q− h),
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which inserted into (61) yields

3Q =
1

∆p

B − 2

1∫
0

pxhdx

 . (62)

Finally, we observe that

px
zx

=
B

3hx
, −→ pxx(σ − h) + px(σx − hx) = 3pxhx,

leading to

pxx +
6hx3h+

1

∆p

2

1∫
0

pxhdx−B

 = 0, (63)

which is exactly the integro-differential euqation for the pressure that has been

determined in [7].

4.3. Numerical examples

Here we perform some numerical simulations in the case of constant rhe-

ological parameters. We investigate the behavior of the yield surface and of

the velocity field for some values of the parameters of the model. We consider

three different situations: i) convergent channel; ii) divergent channel; iii) non

monotonic channel. For each case we plot the velocity components and the

yield surface. In Table 1, 2, 3 we indicate the values of the parameters and the

channel profiles for each case.

Channel profile Q B n zo Figure

h(x) = 1− 0.1x2 0.78 2 0.5 0.636 Fig. 6, 7

h(x) = 1− 0.1x2 0.78 10 2.0 1.9 Fig. 8, 9

Table 1: Case i) Convergent channel.

As proved earlier the spatial derivative of the yield surface and of the wall

function have opposite sign. For simplicity we consider only the case in which

the flow is driven imposing a given volumetric flow rate Q at the inlet. In the
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Figure 6: Case i) n = 0.5. Velocity component u.

Figure 7: Case i) n = 0.5. Velocity component v.
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Figure 8: Case i) n = 2. Velocity component u.

Figure 9: Case i) n = 2. Velocity component v.
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Figure 10: Case ii) n = 0.5. Velocity component u.

Figure 11: Case ii) n = 0.5. Velocity component v.
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Figure 12: Case ii) n = 3.5. Velocity component u.

Figure 13: Case ii) n = 3.5. Velocity component v.
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Channel profile Q B n zo Figure

h(x) = 0.9 + 0.1x2 0.78 5 0.5 0.904 Fig. 10, 11

h(x) = 0.9 + 0.1x2 0.82 10 3.5 1.37 Fig. 12, 13

Table 2: Case ii) Divergent channel.

case of a converging channel i) we observe that an increase of the Bingham

number B and of the exponent n produces a reduction of the amplitude of the

plug, see Figs. 6-9. The same occurs in the case of a diverging channel ii),

see Figs. 10-13. The non-monotonic case iii) is studied assuming a sinusoidal

wall function, see Figs. 14-17. In this case the increase of B and n results

in a reduction of the plug amplitude when the channel is expanding and in

an expansion of the plug amplitude when the channel is narrowing. The cross

sections corresponding to hx = 0 are such that v = σx = 0, as expected.

Channel profile Q B n zo Figure

h(x) = 0.9 + 0.1 sin(2πx) 0.72 5 0.5 0.36 Fig. 10, 11

h(x) = 0.9 + 0.1 sin(2πx) 0.79 15 2 0.11 Fig. 12, 13

Table 3: Case iii) Non monotonic channel.

5. Numerical simulations with non constant viscosity and yield stress

We now perform some numerical simulations for the case with non constant

rheological parameters, Figs. 18, 19, 20. In particular we shall assume that

τy = eβp, µ = eαp,

so that

g(p) = e(β−α)p,
dg

dp
= (β − α)g(p).
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Figure 14: Case iii) n = 0.5. Velocity component u.

Figure 15: Case iii) n = 0.5. Velocity component v.
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Figure 16: Case iii) n = 2.5. Velocity component u.

Figure 17: Case iii) n = 2.5. Velocity component v.
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Figure 18: Non constant viscosity and yield stress.

Notice that the assumption µ = eαp corresponds to the Barus formula for the

viscosity [1]. We consider a converging channel of the form

h(x) = 1− 0.15x4.

We begin by studying the dependence of the yield surface on the parameter n,

see Fig. 18. In this case we consider the set of data shown in Table 4, As one can

Channel profile Q B α β

h(x) = 1− 0.15x4 0.83 5 1 0.5

Table 4: Non constant viscosity and yield stress. Fig. 18

see the plug reduces its amplitude as n increases. Then we study the dependence

on the parameter α. In this case we use the values of the Table 5. Looking

Channel profile Q B n β

h(x) = 1− 0.15x4 0.81 15 3 0.5

Table 5: Non constant viscosity and yield stress. Fig. 19
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Figure 19: Non constant viscosity and yield stress.

at Fig. 19, we notice that the plug becomes narrower as α increases. Finally

we consider the dependence on β using the parameters of Table 6, see Fig. 20.

In this case the increase of β produces an increase of the plug amplitude. An

Channel profile Q B n α

h(x) = 1− 0.15x4 0.83 15 3 1

Table 6: Non constant viscosity and yield stress. Fig. 20

interesting feature that we observe is that, differently from the case of constant

rheological parameter, here the monotonicity of the yield surface and of the

wall function are not necessarily opposite. This property is clearly visible in

Fig. 19This is in contrast with all the models with constant viscosity and yield

stress applied to various types of visco-plastic flows, see [16], [7], [8], [9].
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