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Abstract. We consider an evolution equation whose time-diffusion is of fractional type, and we provide
decay estimates in time for the Ls -norm of the solutions in a bounded domain. The spatial operator that we
take into account is very general and comprises classical local and nonlocal diffusion equations.

1. Introduction

1.1. General time-fractional diffusion equations

The goal of this paper is to consider evolutionary equations with nonlocal time-
diffusion of fractional type, which is modeled by an integro-differential operator. The
space-diffusion that we take into account can be both local and nonlocal, and in fact our
approach aims at general energy estimates in an abstract framework which will in turn
provide asymptotic decay estimates in a series of concrete cases, including nonlocal
nonlinear operators, nonlocal porous medium equations and possibly nonlocal mean
curvature operators.
More specifically, we consider equations of the form

∂α
t u + N[u] = 0, (1.1)

with α ∈ (0, 1). In this setting, the solution u is a function u = u(x, t), with x lying in
a nice Euclidean domain, t > 0, and Dirichlet boundary data. The variable x will be
referred to as “space,” and in the examples that we take into account, the operator N
possesses some kind of “elliptic” features, which make (1.1) a sort of “diffusive,”
or “parabolic,” equation. In this spirit, the variable t , which will be referred to as
“time,” appears in (1.1) with a fractional derivative of order α ∈ (0, 1), and we
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thereby consider (1.1) as a fractional time-diffusion. In the examples that we take
into account, the diffusion modeled on the operator N can be either “classical” (i.e.,
involving derivatives of integer order, up to order two) or “anomalous” (since it can
involve fractional derivatives as well, in which case we refer to it as a fractional
space-diffusion).
Wealso recall that integro-differential equations are a classical topic inmathematical

analysis, see, e.g., [54,70]. Fractional calculus also appears under different forms
in several real-world phenomena, see, e.g., [42,51,66]. In particular, time-fractional
derivatives find applications in the magneto-thermoelastic heat conduction [30], wave
equations [17,49], hydrodynamics [7], quantum physics [9], etc. See also [47,65] for
existence and uniqueness results and [4,5,68] for related regularity results in the local
and nonlocal spatial regime. The recent literature has also widely considered time-
fractional diffusion coupledwith p-Laplacian space-diffusion, see, e.g., [18,45,46,73]
and the references therein.
In the framework of nonlocal equations, a deep and useful setting is that pro-

vided by the Volterra integral equations, which often offers a general context in
which one develops existence, uniqueness, regularity and asymptotic theories, see,
for instance, [6,21,22,33,36,37,56,63,71,72] and the references therein.
The setting in which we work in this paper is the following. We consider the so-

called Caputo derivative of order α ∈ (0, 1), defined as

∂α
t u(t) := d

dt

∫ t

0

u(τ ) − u(0)

(t − τ)α
dτ, (1.2)

up to a positive normalization constant that we neglect (see, e.g., [14]).
Goal of this paper is to study solutions

u = u(x, t) : Rn × [0,+∞) → [0,+∞)

of the initial value problem
⎧⎨
⎩

∂α
t u(x, t) + N[u](x, t) = 0 for any x ∈ � and t > 0,
u(x, t) = 0 for any x ∈ R

n\� and t � 0,
u(x, 0) = u0(x) for any x ∈ �.

(1.3)

In our notation,� is a bounded subset ofRn with smooth boundary andN is a possibly
nonlinear operator. For concreteness, we suppose that the initial datum u0 does not
vanish identically and lies in Lq(�) for any q ∈ [1,+∞) (as a matter of fact, weaker
assumptions can be taken according to suitable choices of the parameters). In any case,
fromnowon, the initial datum u0 will be always implicitly supposed to be nonnegative,
nontrivial and integrable at any power and the solution u to be nonnegative and smooth.

The main structural assumption that we take is that there exist s ∈ (1,+∞), γ ∈
(0,+∞) and C ∈ (0,+∞) such that if u is as in (1.3), then

‖u‖s−1+γ

Ls (�) (t) � C
∫

�

us−1(x, t)N[u](x, t) dx, (1.4)
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where we used the notation

‖u‖Ls (�)(t) :=
(∫

�

us(x, t) dx

)1/s

.

For simplicity,we considered smooth solutions of (1.3) (in concrete cases, the notion of
weak solutionsmay be treated similarly, see, e.g., the regularizationmethods discussed
on page 235 of [69]).
After providing a general result on the decay of the solutions of (1.3), we will

specify the operator N to the following concrete cases:

• the case of the Laplacian,
• the case of the p-Laplacian,
• the case of the porous medium equation,
• the case of the doubly nonlinear equation,
• the case of the mean curvature equation,
• the case of the fractional Laplacian,
• the case of the fractional p-Laplacian,
• the sum of different space-fractional operators,
• the case of the fractional porous medium equation,
• the case of the fractional mean curvature equation.

The general result will be obtained by energy methods for nonlinear operators (see,
e.g., [27]). Our approach will largely exploit a very deep and detailed analysis of the
time-fractional evolution problems recently performed in [39,69], and in a sense, our
results can be seen as a generalization of those in [39,40,69] to comprise cases arising
from space-fractional equations, nonlinear nonlocal operators, geometric operators
and nonlocal porous medium equations.
Also, the general framework that we provide can be useful to give a unified setting

in terms of energy inequalities.
Our “abstract” result is the following:

THEOREM 1.1. Let u be as in (1.3), under the structural condition in (1.4). Then,

∂α
t ‖u‖Ls (�)(t) � −‖u‖γ

Ls (�)(t)

C
. (1.5)

Furthermore,

‖u‖Ls (�)(t) � C�

1 + tα/γ
, (1.6)

for some C� > 0, possibly depending on C, γ , α and ‖u0‖Ls (�).

We point out that the result in (1.6) is quite different from the decay estimates for
classical time-diffusion (compared, e.g., with [27]).
Indeed, in (1.6), a power-lawdecay is provided,while the classical uniformly elliptic

time-diffusion case presents exponential decays. The power-law decay can be under-
stood by looking at the solution of

∂α
t e(t) = −e(t)
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for t ∈ (0,+∞) with initial datum e(0) = 1 and at the first Dirichlet eigenfunction φ

of a ball B normalized in such a way that the corresponding eigenvalue is equal to 1,
namely,

⎧⎨
⎩

	φ = −φ in B,

φ = 0 on ∂B,

‖φ‖L2(B) = 1.

Then, the functionu(x, t) := e(t) φ(x) satisfies the fractional heat equation ∂α
t u = 	u

in B, with zero Dirichlet datum, and

‖u‖L2(B) = |e(t)|. (1.7)

The function e is explicit in terms of theMittag-Leffler function (see, e.g., [48,53] and
the references therein), and it satisfies e(t) ∼ 1

tα as t → +∞.
This fact and (1.7) imply a polynomial decay of the L2-norm of the solution, in

agreement with (1.6).
Thedecaypresented in (1.6) is also different from the case of fast nonlinear diffusion,

in which the solution gets extinct in finite time, see, e.g., Theorem 17 in [27].
We now specify Theorem 1.1 to several concrete cases, also recovering the main

results in [40,69] and providing new applications. Several new applications will be
also given in [3].

1.2. The cases of the Laplacian, of the p-Laplacian, of the porous medium equation
and of the doubly nonlinear equation

The doubly nonlinear operator (see, e.g., [58]) is a general operator of the form

u �−→ 	pu
m, (1.8)

with m ∈ (0,+∞) and p ∈ (1,+∞).
When m = 1, this operator reduces to the p-Laplacian

	pu := div
(|∇u|p−2∇u

)
,

which in turn reduces to the classical Laplacian as p = 2.
When p = 2, the operator in (1.8) reduces to the porous medium operator (see,

e.g., [67] and the references therein)

u �−→ 	um,

which again reduces to the Laplacian when m = 1.
In this setting, we have the following result:

THEOREM 1.2. Suppose that u is a solution of

∂α
t u = 	pu

m
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in � × (0,+∞), with u(x, t) = 0 for any x ∈ ∂� and any t � 0. Then, for any s ∈
(1,+∞),

‖u‖Ls (�)(t) � C

1 + t
α

m(p−1)
, (1.9)

for some C > 0.

As special cases of Theorem 1.2, we can takem := 1 and p := 2, which correspond
to the p-Laplacian case and to the porous medium case, respectively. We state these
results explicitly for the convenience of the reader.

COROLLARY 1.3. Suppose that u is a solution of

∂α
t u = 	pu

in � × (0,+∞), with u(x, t) = 0 for any x ∈ ∂� and any t � 0. Then, for any s ∈
(1,+∞),

‖u‖Ls (�)(t) � C

1 + tα/(p−1)
,

for some C > 0.

COROLLARY 1.4. Suppose that u is a solution of

∂α
t u = 	um

in � × (0,+∞), with u(x, t) = 0 for any x ∈ ∂� and any t � 0. Then, for any s ∈
(1,+∞),

‖u‖Ls (�)(t) � C

1 + tα/m
,

for some C > 0.

When p ∈ (2,+∞) in Corollary 1.3, the case α ↗ 1 recovers the classical decay,
see, e.g., Theorem 21 in [27].
For results related to Corollary 1.3 when p = 2, see [50,52]. Corollaries 1.3 and 1.4

can be compared with Theorems 8.1 and 9.1 in [69], respectively.

1.3. The case of the mean curvature equation

The setting in Theorem 1.1 is general enough to deal with nonlinear operators of
mean curvature type and to consider equations of the type

∂α
t u(x, t) = div

(
∇u(x, t)√

1 + |∇u(x, t)|2
)

. (1.10)

We recall that the right-hand side of (1.10) corresponds to the mean curvature of the
hypersurface described by the graph of the function u, see, e.g., formula (13.1) in [35].
The result obtained in this setting goes as follows:
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THEOREM1.5. Suppose that u is a solution of (1.10) in�×(0,+∞), with u(x, t)
= 0 for any x ∈ ∂� and any t � 0. Assume that either

n ∈ {1, 2} and sup
t>0

∫
�

√
1 + |∇u(x, t)|2 dx < +∞ (1.11)

or
sup

x∈�, t>0
|∇u(x, t)| < +∞. (1.12)

Then, for any s ∈ (1,+∞),

‖u‖Ls (�)(t) � C

1 + tα
, (1.13)

for some C > 0.

1.4. The case of the fractional Laplacian, of the fractional p-Laplacian and of the sum
of different space-fractional operators

The setting in Theorem 1.1 is general enough to comprise also the case of operators
modeling spatial nonlocal diffusion of fractional kind. The main example of such
operators is given by the fractional Laplacian of order σ ∈ (0, 1), which can be
defined (up to a multiplicative constant that we neglect for simplicity) by

(−	)σu(x) :=
∫
Rn

u(x) − u(y)

|x − y|n+2σ dy. (1.14)

Here and in the following, we implicitly suppose that these types of singular integrals
are taken in the principal value sense. The fractional Laplacian provides a natural
framework for many problems in theoretical and applied mathematics, see, e.g., [10,
44,64] and the references therein.
Several nonlinear variations in the fractional Laplacian can be taken into account,

see, e.g., [23,28,38,43,57] and the references therein. In particular, for any p ∈
(1,+∞), one can consider the operator

(−	)σpu(x) :=
∫
Rn

∣∣u(x) − u(y)
∣∣p−2(

u(x) − u(y)
)

|x − y|n+σ p
dy. (1.15)

Of course, when p = 2 the operator in (1.15) reduces to that in (1.14). In this setting,
we have the following decay result for solutions of fractional time equations whose
spatial diffusion is driven by the nonlinear fractional operator in (1.15).

THEOREM 1.6. Suppose that u is a solution of

∂α
t u(x, t) + (−	)σpu(x, t) = 0

in � × (0,+∞), with u(x, t) = 0 for any x ∈ R
n \ � and for any t > 0. Then, for

any s ∈ (1,+∞),

‖u‖Ls (�)(t) � C

1 + tα/(p−1)
, (1.16)

for some C > 0.
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When p = 2, decay estimates for nonlocal equations have been very recently
obtained in [40].
An extension of Theorem 1.6 holds true also for sums of different, possibly nonlin-

ear, space-fractional diffusion operators:

THEOREM 1.7. Let N ∈ N, N � 1. Let σ1, . . . , σN ∈ (0, 1), p1, . . . , pN ∈
(1,+∞) and β1, . . . , βN ∈ (0,+∞). Suppose that u is a solution of

∂α
t u(x, t) +

N∑
j=1

β j (−	)
σ j
p j u(x, t) = 0

in � × (0,+∞), with u(x, t) = 0 for any x ∈ R
n \ � and for any t > 0. Then, for

any s ∈ (1,+∞),

‖u‖Ls (�)(t) � C

1 + tα/(pmax−1)
, (1.17)

for some C > 0, where

pmax := max{p1, . . . , pN }.

More general settings for superpositions of fractional operators can be also consid-
ered in our setting, see, e.g., [12].
Another interesting case arises from the sum of fractional operators in different

directions. Precisely, fixed j ∈ {1, . . . , n} one can consider the unit vector e j (i.e.,
the j th element of the Euclidean basis of Rn), and define the fractional Laplacian in
direction e j , namely,

(−∂2x j )
σ j u(x) :=

∫
R

u(x) − u(x + ρe j )

ρ1+2σ j
dρ,

with σ j ∈ (0, 1). Then, given β1, . . . , βn > 0, one can consider the superposition of
such operators, that is,

(−	β)σu(x) :=
n∑
j=1

β j (−∂2x j )
σ j u(x).

Here, we are using the formal notation σ := (σ1, . . . , σn) and β := (β1, . . . , βn).
Notice that (−	β)σ is similar to, but structurally very different from, the fractional
Laplacian, since the nonlocal character of the fractional Laplacian also takes into
account the interactions in directions different than e1, . . . , en : for instance, even
if σ1 = · · · = σn = 1/2 and β1 = · · · = βn = 1, the operator (−	β)σ does not
reduce to the square root of the Laplacian.
These types of anisotropic fractional operators (and even more general ones) have

been considered in [31,59–61]. In our setting, we have the following decay result:
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THEOREM 1.8. Suppose that u is a solution of

∂α
t u(x, t) + (−	β)σu(x, t) = 0

in � × (0,+∞), with u(x, t) = 0 for any x ∈ R
n \ � and for any t > 0. Then, for

any s ∈ (1,+∞),

‖u‖Ls (�)(t) � C

1 + tα
,

for some C > 0.

More general operators, such as the sum of fractional Laplacians along linear sub-
spaces of Rn , as well as operators in integral superposition, may also be taken into
account in Theorem 1.8, but we focused on an explicit case for simplicity of notations.

1.5. The case of the fractional porous medium equation

We consider here a porous medium diffusion operator of fractional type, given by

u �−→ (−	)σum,

with σ ∈ (0, 1) and m ∈ (0,+∞), where (−	)σ is the fractional Laplace operator
defined in (1.14).

In the classical time-diffusion case, such equation has been introduced and analyzed
in [25,26] (remarkably, in this case, any nontrivial nonnegative solution becomes
strictly positive instantaneously, and this is a different feature with respect to the
classical porous medium equation).

In our setting, we will consider the time-fractional version of the space-fractional
porous medium equation and establish the following decay estimate:

THEOREM 1.9. Suppose that u is a solution of

∂α
t u + (−	)σum = 0

in � × (0,+∞), with u(x, t) = 0 for any x ∈ R
n \ � and any t � 0. Then, for

any s ∈ (1,+∞),

‖u‖Ls (�)(t) � C

1 + t
α
m

, (1.18)

for some C > 0.

Similar results may also be obtained in more general settings for doubly nonlinear
and doubly fractional porous medium equations. We also observe that, for m = 1,
Theorem 1.9 boils down to Theorem 1.6 with p := 2.
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1.6. The case of the fractional mean curvature equation

The notion of nonlocal perimeter functional has been introduced and analyzed in
[13]. While the first variation in the classical perimeter functional consists in the mean
curvature operator, the first variation in the nonlocal perimeter produces an object,
which can be seen as a nonlocal mean curvature and which corresponds to a weighted
average of the characteristic function of a set with respect to a singular kernel. The
study of such fractional mean curvature operator is a very interesting topic of research
in itself, and the recent literature produced several contributions in this context, see,
e.g., [1,8,11,20,24,32,34,55]. The nonlocal mean curvature also induces a geometric
flow, as studied in [15,16,19,62]. See also [29] for a recent survey on the topic of
nonlocal minimal surfaces and nonlocal mean curvature equations.
For smooth hypersurfaceswith a structure of complete graphs, the notion of nonlocal

mean curvature can be introduced as follows (see, e.g., formula (3.5) in [32]). For
any r ∈ R and σ ∈ (0, 1), we set

F(r) :=
∫ r

0

dτ

(1 + τ 2)(n+1+σ)/2
(1.19)

and we consider the (minus) nonlocal mean curvature operator corresponding to the
choice

N[u](x, t) :=
∫
Rn

1

|y|n+σ
F

(
u(x, t) − u(x + y, t)

|y|
)

dy. (1.20)

In this setting, we provide a decay estimate for graphical solutions of the fractional
mean curvature equation, as stated in the following result:

THEOREM 1.10. Suppose that u is a solution of

∂α
t u(x, t) =

∫
Rn

1

|y|n+σ
F

(
u(x + y, t) − u(x, t)

|y|
)

dy

with u(x, t) = 0 for any x ∈ R
n \ � and for any t > 0.

Assume that
sup

x∈�, t>0
|∇u(x, t)| < +∞. (1.21)

Then, for any s ∈ (1,+∞),

‖u‖Ls (�)(t) � C

1 + tα
,

for some C > 0.

The recent literature has considered the evolution of graphs under the fractional
mean curvature flow, see Section 6 of [62]. In this respect, Theorem 1.10 here can be
seen as the first study of evolution equations driven by the fractional mean curvature
in which the flow possesses a memory effect.
The rest of the paper is devoted to the proofs of the abovementioned results. First we

prove the general statement of Theorem 1.1, and then, we check that condition (1.4)
is verified in all the concrete cases taken into consideration.
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2. Proofs

We will exploit the following result, which follows from Corollary 3.1 in [69].

LEMMA 2.1. Let s > 1, u : �×[0,+∞) → R and u0(x) := u(x, 0). Let v(t) :=
‖u‖Ls (�)(t) and suppose that u0 ∈ Ls(�), and for every T > 0, that u ∈ Ls((0, T ),

Ls(�)). Then,

vs−1(t) ∂α
t v(t) �

∫
�

us−1(x, t) ∂α
t u(x, t) dx .

As a technical remark, we recall that in our setting u is supposed to be smooth
in (space and) time, and this allows us to exploit Corollary 3.1 in [69]. Indeed, in
Corollary 3.1 of [69], the interaction kernel is in principle assumed to be in H1

1 ((0, T )),
and in particular, no singularity is permitted at t = 0. Nevertheless, in [69] there is
also a remark after Corollary 3.1, stating that the desired inequality remains true
in the singular case provided that u is sufficiently smooth (which is the case under
consideration in our setting), and hence, Lemma 2.1 here follows fromCorollary 3.1 in
[69], e.g., by means of a Yosida approximation argument for the fractional derivative.

2.1. Proof of Theorem 1.1

Without loss of generality, we can suppose that ‖u0‖Ls (�) 
= 0, and we set v(t) :=
‖u‖Ls (�)(t). Hence, recalling (1.3) and Lemma 2.1,

vs−1(t) ∂α
t v(t) � −

∫
�

us−1(x, t)N[u](x, t) dx . (2.1)

Using this and (1.4), we thus find that

vs−1(t) ∂α
t v(t) � − 1

C
‖u‖s−1+γ

Ls (�) (t) = −vs−1+γ (t)

C
. (2.2)

From (2.2), we plainly obtain (1.5) at all t for which v(t) 
= 0.
But at the points t at which v(t) = 0, we see that (1.5) is also automatically1

satisfied in view of the following observation: using that u is smooth, combined with
the Hölder’s Inequality with exponents s/(s − 1) and s, we have that, a.e. t > 0,
∣∣∣∣ ddt v(t)

∣∣∣∣ =
∣∣∣∣∣
∂

∂t

(∫
�

|u(x, t)|s dx
)1/s

∣∣∣∣∣
�

(∫
�

|u(x, t)|s dx
)(1−s)/s ∫

�
|u(x, t)|s−1

∣∣∣∣∂u∂t (x, t)

∣∣∣∣ dx

�
(∫

�
|u(x, t)|s dx

)(1−s)/s (∫
�

|u(x, t)|s dx
)(s−1)/s (∫

�

∣∣∣∣∂u∂t (x, t)

∣∣∣∣
s
dx

)1/s

=
∥∥∥∥∂u

∂t

∥∥∥∥
Ls (�)

(t).

1For another approach allowing for the division by the prefactor in (2.2), see Lemma 2.1 in the recent
preprint [41].
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Hence, v is Lipschitz continuous, and therefore, we see that

lim
τ↗t

v(t) − v(τ)

(t − τ)α
= 0,

and as a consequence,

d

dt

∫ t

0

v(t) − v(τ)

(t − τ)α
dτ =

∫ t

0

∂tv(t)

(t − τ)α
dτ − α

∫ t

0

v(t) − v(τ)

(t − τ)1+α
dτ

= ∂tv(t) t1−α

1 − α
− α

∫ t

0

v(t) − v(τ)

(t − τ)1+α
dτ.

Comparing this with (1.2), we find that

∂α
t v(t) = d

dt

∫ t

0

v(τ) − v(t)

(t − τ)α
dτ + d

dt

∫ t

0

v(t) − v(0)

(t − τ)α
dτ

= −∂tv(t) t1−α

1 − α
+ α

∫ t

0

v(t) − v(τ)

(t − τ)1+α
dτ + d

dt

(
v(t) − v(0)

)
t1−α

1 − α

= −∂tv(t) t1−α

1 − α
+ α

∫ t

0

v(t) − v(τ)

(t − τ)1+α
dτ + ∂tv(t) t1−α

1 − α
+ v(t) − v(0)

tα

= α

∫ t

0

v(t) − v(τ)

(t − τ)1+α
dτ + v(t) − v(0)

tα
.

Therefore, at points t where v(t) = 0, using that v � 0, we see that

∂α
t v(t) = −α

∫ t

0

v(τ)

(t − τ)1+α
dτ − v(0)

tα
� 0,

which gives that (1.5) is satisfied in this case as well.
Now, we prove (1.6). To this aim, we consider the solution w(t) of the nonlinear

fractional differential equation
⎧⎪⎪⎨
⎪⎪⎩

∂α
t w(t) = −wγ (t)

C
for any t > 0,

w(0) = v(0).

(2.3)

Whenγ = 1, the functionw is explicitly known in terms of theMittag-Leffler function,
see [48,53]. The general case γ > 0 has been dealt with in detail in Section 7 of [69].
In particular (see Theorem 7.1 in [69]), it holds that

w(t) � C�

1 + tα/γ
, (2.4)

for some C� > 0, possibly depending on C , γ , α and v(0). Moreover, by (1.5), (2.3)
and the comparison principle (see, e.g., Lemma 2.6 in [69]), we have that v(t) � w(t)
for all t � 0. Using this and (2.4), we obtain (1.6). �
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REMARK 2.2. We observe that the constant C in (1.5) is exactly the one coming
from (1.4). If needed, the long-time behavior in (1.6) can be also made more precise
in terms of ‖u0‖Ls (�). Indeed, recalling formula (41) in [69], in the notation used for
the proof of Theorem 1.1 one can define

t0 := C̄ w(1−γ )/α(0),

with C̄ > 0 depending only on α, γ and C and

w̄(t) :=
{

w(0) if t ∈ [0, t0],
w(0) (t0/t)α/γ if t ∈ (t0,+∞),

and conclude that w(t) � w̄(t). In this way, for large t , we have that

‖u‖Ls (�)(t) = v(t) � w̄(t) = w(0) tα/γ
0

tα/γ
= ‖u0‖Ls (�)

(
C̄ ‖u0‖(1−γ )/α

Ls (�)

)α/γ

tα/γ

= C̃ ‖u0‖1/γLs (�)

tα/γ
,

with C̃ > 0 depending only on α, γ and C .

2.2. Proof of Theorem 1.2

We set
v := u

s−2+p+(m−1)(p−1)
p (2.5)

and we point out that

|∇v|p =
(
s − 2 + p + (m − 1)(p − 1)

p

)p
us−2+(m−1)(p−1) |∇u|p

=
(
s − 2 + p + (m − 1)(p − 1)

p

)p
us−2∇u · (

u(m−1)(p−1)|∇u|p−2∇u
)

=
(
s − 2 + p + (m − 1)(p − 1)

p

)p 1

(s − 1)mp−1 ∇us−1 · (|∇um |p−2∇um
)
.

(2.6)
Now, when p ∈ (1, n), we recall the Sobolev exponent

p� := np

n − p

and we claim that if p ∈ (1, n) and q ∈ [1, p�], as well as if p ∈ [n,+∞) and q ∈
[1,+∞), it holds that

‖v‖p
Lq (�)(t) � C0

∫
�

|∇v(x, t)|p dx, (2.7)

for some C0 > 0. Indeed, when p ∈ (1, n], the inequality in (2.7) follows from the
Sobolev Embedding Theorem. When instead p ∈ (n,+∞), we can use the Sobolev
Embedding Theorem with exponent n to write
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‖v‖nLq (�)(t) � C0

∫
�

|∇v(x, t)|n dx .

Combining this with the Hölder’s Inequality for the norm of the gradient, we
obtain (2.7) (up to renaming constants).

We also observe that when p ∈ (1, n) and

s � max

{
m − 1

p − 1
,
n
(
1 − m(p − 1)

)
p

}
, (2.8)

it holds that
sp

s − 2 + p + (m − 1)(p − 1)
∈ [1, p�]. (2.9)

Indeed, we have that

s − 2 + p + (m − 1)(p − 1) > 1 − 2 + p + (m − 1)(p − 1) = m(p − 1) � 0.

Moreover,

s − 2 + p + (m − 1)(p − 1) − sp = m(p − 1) − 1 − s(p − 1) � 0

thanks to (2.8). This gives that sp
s−2+p+(m−1)(p−1) � 1.

In addition,

s(n − p) − n
(
s − 2 + p + (m − 1)(p − 1)

) = −sp − n
(
p − 2 + (m − 1)(p − 1)

) � 0,

due to (2.8), which gives that sp
s−2+p+(m−1)(p−1) � p�. These considerations

prove (2.9).
Bymeans of (2.9), when either p ∈ [n,+∞) or (2.8) holds true, we can choose q :=

sp
s−2+p+(m−1)(p−1) in (2.7). Hence, recalling (2.5), we find that

‖u‖s−2+p+(m−1)(p−1)
Ls (�) (t) =

(∫
�

us(x, t) dx

) s−2+p+(m−1)(p−1)
s

=
(∫

�

u
s−2+p+(m−1)(p−1)

p · sp
s−2+p+(m−1)(p−1) (x, t) dx

) s−2+p+(m−1)(p−1)
s

=
(∫

�

v
sp

s−2+p+(m−1)(p−1) (x, t) dx

) s−2+p+(m−1)(p−1)
s

= ‖v‖p

L
sp

s−2+p+(m−1)(p−1) (�)

(t)

� C0

∫
�

|∇v(x, t)|p dx .

As a consequence, making use of (2.6), we conclude that

‖u‖s−2+p+(m−1)(p−1)
Ls (�) (t) � C1

∫
�

∇us−1 · (|∇um |p−2∇um
)
dx,

provided that either p ∈ [n,+∞) or (2.8) holds true.
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This gives that condition (1.4) is satisfied in this case with γ := m(p − 1). This
and (1.6) imply that if either p ∈ [n,+∞) or (2.8) holds true, then

‖u‖Ls (�)(t) � C�

1 + t
α

m(p−1)
, (2.10)

for some C� > 0. Also, when (2.8) is not satisfied, we have that

s < max

{
m − 1

p − 1
,
n
(
1 − m(p − 1)

)
p

}
=: s̄

and in this case the Hölder’s Inequality implies that ‖u‖Ls (�)(t) � C ‖u‖Ls̄ (�)(t), for
some C > 0, and s̄ lies in the range satisfying (2.10).
This observation and (2.10) imply (1.9), as desired. �

2.3. Proof of Theorem 1.5

We set v := us/2. Notice that

|∇v|2 = s2

4
us−2|∇u|2 = s2

4(s − 1)
∇u · ∇us−1. (2.11)

We distinguish two cases, according to (1.11) and (1.12). We first consider the case in
which (1.11) holds true. Then, by Cauchy–Schwarz Inequality,

∫
�

|∇v(x, t)| dx =
∫

�

|∇v(x, t)|(
1 + |∇u(x, t)|2)1/4

(
1 + |∇u(x, t)|2)1/4 dx

�
√∫

�

|∇v(x, t)|2√
1 + |∇u(x, t)|2 dx

√∫
�

√
1 + |∇u(x, t)|2 dx .

(2.12)

Moreover, when n > 1, from the Gagliardo–Nirenberg–Sobolev Inequality, we know
that

(∫
�

u
sn

2(n−1) (x, t) dx

) n−1
n = ‖v‖

L
n

n−1 (Rn)
(t) � C0

∫
Rn

|∇v(x, t)| dx

for some C0 > 0. Also, when n = 1, one can use the Fundamental Theorem of
Calculus and check that, for any q ∈ [1,+∞),

(∫
�

u
sq
2 (x, t) dx

) 1
q = ‖v‖Lq (Rn)(t) � C1

∫
Rn

|∇v(x, t)| dx

for some C1 > 0.
Using this, (2.11) and (2.12), we obtain that

(∫
�

u
sq
2 (x, t) dx

) 1
q

� C2

√∫
�

∇u(x, t) · ∇us−1(x, t)√
1 + |∇u(x, t)|2 dx

√∫
�

√
1 + |∇u(x, t)|2 dx,
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where q = n
n−1 when n = 2, and any q ∈ [1,+∞) when n = 1. From this and

assumption (1.11), we find that

(∫
�

u
sq
2 (x, t) dx

) 2
q

� C3

∫
�

∇u(x, t) · ∇us−1(x, t)√
1 + |∇u(x, t)|2 dx,

where q = n
n−1 when n = 2, and any q ∈ [1,+∞) when n = 1. In any case,

when n ∈ {1, 2}, we have that we can take q = 2 and write
∫

�

us(x, t) dx � C3

∫
�

∇u(x, t) · ∇us−1(x, t)√
1 + |∇u(x, t)|2 dx .

Therefore, we have that (1.4) is satisfied for any s ∈ (1,+∞) and γ := 1. This and
(1.6) imply (1.13), as desired.
Nowwedealwith the case inwhich (1.12) is satisfied.We can also assume that n � 3

(since the cases n ∈ {1, 2} are covered by (1.11)). Then, exploiting the Gagliardo–
Nirenberg–Sobolev Inequality in this situation and recalling (2.11), we see that

s2

4(s − 1)

∫
�

∇u(x, t) · ∇us−1(x, t) dx =
∫

�

|∇v(x, t)|2 dx
� C0 ‖v‖2

L
2n
n−2 (�)

= C0

(∫
�

u
sn
n−2

) n−2
n

,

for some C0 > 0. Hence, by Hölder’s Inequality,
∫

�

∇u(x, t) · ∇us−1(x, t) dx � C1 ‖u‖sLs (�),

for some C1 > 0. Thus, in light of (1.12),
∫

�

∇u(x, t) · ∇us−1(x, t)√
1 + |∇u(x, t)|2 dx � C2 ‖u‖sLs (�).

This gives that (1.4) holds true in this case with γ := 1. Therefore, by means of (1.6)
we obtain (1.13), as desired. �

2.4. Proof of Theorem 1.6

We define v := u(s−2+p)/p, and we claim that

|v(x, t) − v(y, t)|p � C0|u(x, t) − u(y, t)|p−2(u(x, t) − u(y, t))(us−1(x, t) − us−1(y, t)),

(2.13)

for some C0 > 0. To this aim, we consider the auxiliary function

(1,+∞) � λ �−→ g(λ) := (λ(s−2+p)/p − 1)p

(λ − 1)p−1(λs−1 − 1)
.
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We recall that s − 2 + p > −1 + p > 0 and observe that

lim
λ→+∞ g(λ) = lim

λ→+∞

(
1 − 1

λ(s−2+p)/p

)p

(
1 − 1

λ

)p−1
(
1 − 1

λs−1

) = (1 − 0)p

(1 − 0)p−1(1 − 0)
= 1

and that

lim
λ↘1

g(λ) = lim
ε↘0

(
(1 + ε)(s−2+p)/p − 1

)p
(
(1 + ε) − 1

)p−1(
(1 + ε)s−1 − 1

)

= lim
ε↘0

(
1 + ((s − 2 + p)/p)ε + o(ε) − 1

)p
ε p−1

(
1 + (s − 1)ε + o(ε) − 1

) = ((s − 2 + p)/p)p

s − 1
.

Consequently,

C0 := sup
λ∈(1,+∞)

g(λ) < +∞.

Now, to prove (2.13),wemay suppose, up to exchanging x and y, thatu(x, t) � u(y, t).
Also, when either u(y, t) = 0 or u(x, t) = u(y, t), then (2.13) is obvious. Therefore,
we can assume that u(x, t) > u(y, t) > 0 and set

λ(x, y, t) := u(x, t)

u(y, t)
∈ (1,+∞)

and conclude that

C0 � g(λ(x, y, t))

=
(
u(s−2+p)/p(x,t)
u(s−2+p)/p(y,t)

− 1
)p

(
u(x,t)
u(y,t) − 1

)p−1 (
us−1(x,t)
us−1(y,t)

− 1
)

=
(
u(s−2+p)/p(x, t) − u(s−2+p)/p(y, t)

)p
(u(x, t) − u(y, t))p−1 (

us−1(x, t) − us−1(y, t)
) ,

(2.14)

and this proves (2.13).
Now, when p ∈ (

1, n
σ

)
, we consider the fractional critical exponent

pσ := np

n − σ p
. (2.15)

We claim that

‖v‖p
Lq (�)(t) � C1

∫∫
R2n

|v(x, t) − v(y, t)|p
|x − y|n+σ p

dx dy, (2.16)

for some C1 > 0, for every q ∈ [1, pσ ] when p ∈ (
1, n

σ

)
, and for every q ∈ [1,+∞)

when p ∈ [ n
σ
,+∞)

. Indeed, when p ∈ (
1, n

σ

)
, then (2.16) follows by the Gagliardo–

Sobolev Embedding (see, e.g., Theorem 3.2.1 in [10]). If instead p ∈ [ n
σ
,+∞)

and q ∈ [1,+∞), we set q̃ := 1 + max{p, q}. Notice that
0 <

n

p
− n

q̃
<

n

p
� σ < 1.
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Hence, we can take

σ̃ ∈
(
n

p
− n

q̃
,
n

p

)
,

and since

p ∈
(
1,

n

σ̃

)
and q̃ � np

n − σ̃ p
= pσ̃ ,

we can make use of Gagliardo–Sobolev Embedding (see, e.g., Theorem 3.2.1 in [10])
with exponents σ̃ and q̃ . In this way, we find that

‖v‖p
Lq̃ (�)

(t) � C�

∫∫
R2n

|v(x, t) − v(y, t)|p
|x − y|n+σ̃ p

dx dy, (2.17)

for some C� > 0. Now, we fix M > 0, to be taken appropriately large, and we observe
that

∫∫
R2n∩{|x−y|�M}

|v(x, t) − v(y, t)|p
|x − y|n+σ̃ p

dx dy

� M (σ−σ̃ )p
∫∫

R2n∩{|x−y|�M}
|v(x, t) − v(y, t)|p

|x − y|n+σ p
dx dy

and

C�

∫∫
R2n∩{|x−y|>M}

|v(x, t) − v(y, t)|p
|x − y|n+σ̃ p

dx dy

� C ′
∫∫

R2n∩{|x−y|>M}
|v(x, t)|p

|x − y|n+σ̃ p
dx dy

= C ′′

M σ̃ p

∫
�

|v(x, t)|p dx � C ′′′

M σ̃ p
‖v‖p

Lq̃ (�)
(t) � 1

2
‖v‖p

Lq̃ (�)
(t),

as long as M is large enough. Here above, we have denoted byC ′,C ′′ andC ′′′ suitable
positive constants and used that q̃ > p in order to use the Hölder’s Inequality. These
inequalities and (2.17) imply that

1

2
‖v‖p

Lq̃ (�)
(t) � C� (1 + M (σ−σ̃ )p)

∫∫
R2n

|v(x, t) − v(y, t)|p
|x − y|n+σ̃ p

dx dy. (2.18)

We also have that

‖v‖Lq (�)(t) � C ‖v‖Lq̃ (�)(t), (2.19)

for some C > 0, in view of the Hölder’s Inequality and the fact that q̃ > q. Thanks
to (2.18) and (2.19), we have completed the proof of (2.16).
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Using (2.13), (2.16) and the fact that u and v vanish outside �, we see that, for
every q ∈ [1, pσ ] when p ∈ (

1, n
σ

)
, and for every q ∈ [1,+∞) when p ∈ [ n

σ
,+∞)

,
(∫

�
u(s−2+p)q/p(x, t) dx

)p/q

=
(∫

Rn
vq (x, t) dx

)p/q

= ‖v‖pLq (Rn)
(t)

� C1

∫∫
R2n

|v(x, t) − v(y, t)|p
|x − y|n+σ p dx dy

� C2

∫∫
R2n

|u(x, t) − u(y, t)|p−2(u(x, t) − u(y, t))(us−1(x, t) − us−1(y, t))

|x − y|n+σ p dx dy

= 2C2

∫∫
R2n

|u(x, t) − u(y, t)|p−2(u(x, t) − u(y, t)) us−1(x, t)

|x − y|n+σ p dx dy

= 2C2

∫
Rn

(−	)σpu(x, t) us−1(x, t) dx

= 2C2

∫
�

(−	)σpu(x, t) us−1(x, t) dx,

(2.20)
for some C2 > 0.
We also claim that when p ∈ (

1, n
σ

)
and

s � n(2 − p)

σ p
, (2.21)

it holds that
sp

s − 2 + p
∈ [1, pσ ]. (2.22)

Indeed, s − 2 + p > 1 − 2 + 1 = 0 and sp − s + 2 − p = s(p − 1) + 2 − p >

(p − 1) + 2 − p = 1, which gives that sp
s−2+p � 1. In addition,

s(n − σ p) − n(s − 2 + p) = −sσ p + n(2 − p) � 0,

thanks to (2.21), which, recalling (2.15), says that sp
s−2+p � pσ . These considerations

prove (2.22).
From (2.22) it follows that if either s � n(2−p)

σ p or p � n
σ
, then we can choose q :=

sp
s−2+p in (2.20). Consequently, we have that

(∫
�

us(x, t) dx

) s−2+p
s

� 2C2

∫
�

(−	)σpu(x, t) us−1(x, t) dx . (2.23)

This says that (1.4) is satisfied with γ := p − 1. Hence, we are in position of exploit-
ing (1.6), obtaining that if either s � n(2−p)

σ p or p � n
σ
,

‖u‖Ls (�)(t) � C�

1 + tα/(p−1)
. (2.24)
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We also observe that when s ∈
(
1, n(2−p)

σ p

)
, we have that

‖u‖Ls (�) � Ĉ ‖u‖
L

n(2−p)
σ p (�)

,

thanks to the Hölder’s Inequality. This and (2.24) imply (1.16) for all s > 1 and p >

1. �

2.5. Proof of Theorem 1.7

The main idea is to use (2.23) for each index j ∈ {1, . . . , N }. That is, we fix

s̃ := max

{
s,

n(2 − p1)

σ1 p1
, . . . ,

n(2 − pN )

σN pN

}

and we exploit (2.23) to write that

‖u‖s̃−2+p j

Ls̃ (�)
(t) =

(∫
�

us̃(x, t) dx

) s̃−2+p j
s̃

� C
∫

�

(−	)
σ j
p j u(x, t) us̃−1(x, t) dx,

(2.25)
for some C > 0.

We also observe that
‖u‖Ls̃ (�)(t) � ‖u‖Ls̃ (�)(0). (2.26)

Indeed, we have that
(
u(x, t) − u(y, t)

)(
us̃−1(x, t) − us̃−1(y, t)

)
� 0,

and therefore,

2
∫

�

us̃−1(x, t)N[u](x, t) dx

= 2
N∑
j=1

β j

∫
�

us̃−1(x, t) (−	)
σ j
p j u(x, t) dx

= 2
N∑
j=1

β j

∫∫
R2n

∣∣u(x, t) − u(y, t)
∣∣p−2(

u(x, t) − u(y, t)
)

|x − y|n+σ j p j
us̃−1(x, t) dx dy

=
N∑
j=1

β j

∫∫
R2n

∣∣u(x, t) − u(y, t)
∣∣p−2(

u(x, t) − u(y, t)
)(
us̃−1(x, t) − us̃−1(y, t)

)
|x − y|n+σ j p j

dx dy

� 0.
(2.27)

Furthermore, from (2.1), we know that

‖u‖s̃−1
Ls̃ (�)

(t) ∂α
t ‖u‖Ls̃ (�)(t) � −

∫
�

us̃−1(x, t)N[u](x, t) dx .

This and (2.27) give that

‖u‖s̃−1
Ls̃ (�)

(t) ∂α
t ‖u‖Ls̃ (�)(t) � 0. (2.28)
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We now observe that if μ > 0, f � 0, and

f μ(t) ∂α
t f (t) � 0 with f (0) > 0, then ∂α

t f (t) � 0. (2.29)

We prove2 this by contradiction, supposing that ∂α
t f (t�) > 0 for some t� > 0. Hence,

we find an open interval (a�, b�), with 0 < a� < t� such that ∂α
t f (t) > 0 for

all t ∈ (a�, b�), f (t) = 0 for all t ∈ (a�, b�), and f (t) > 0 for all t ∈ [0, a�). This
gives that f (a�) = 0. Now, from (1.2), integrating by parts twice we obtain that

∂α
t f (t) = 1

α − 1

d

dt

∫ t

0

(
f (τ ) − f (0)

) d

dτ
(t − τ)1−α dτ

= 1

1 − α

d

dt

[∫ t

0

d

dτ

(
f (τ ) − f (0)

)
(t − τ)1−α dτ

]

= 1

1 − α

d

dt

[∫ t

0
ḟ (τ )(t − τ)1−α dτ

]

=
∫ t

0
ḟ (τ )(t − τ)−α dτ

=
∫ t

0

d

dτ

(
f (τ ) − f (t)

)
(t − τ)−α dτ

= f (t) − f (0)

tα
+ α

∫ t

0

f (t) − f (τ )

(t − τ)1+α
dτ

Consequently,

0 � lim
t↘a�

∂α
t f (t)

= ∂α
t f (a�)

= f (a�) − f (0)

aα
�

+ α

∫ a�

0

f (a�) − f (τ )

(a� − τ)1+α
dτ

= − f (0)

aα
�

− α

∫ a�

0

f (τ )

(a� − τ)1+α
dτ

< 0.

This contradiction establishes (2.29).
By (2.28) and (2.29), we find that ∂α

t ‖u‖Ls̃ (�)(t) � 0. From this, we obtain (2.26) by
inverting the Caputo derivative by a Volterra integral kernel (see, e.g., formula (2.61)
in [2]; alternatively, one could also use the comparison principle, e.g., Lemma 2.6 in
[69]).
Then, using (2.25) and (2.26), we conclude that

‖u‖s̃−2+pmax

Ls̃ (�)
(t) � C ′ ‖u‖s̃−2+p j

Ls̃ (�)
� C ′′

∫
�

(−	)
σ j
p j u(x, t) us−1(x, t) dx,

2After thisworkwas completed, archived and submitted, the very interesting preprint [41] became available:
with respect to this, we mention that formula (2.29) here also follows from Lemma 2.1 in [41].
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for some C ′, C ′′ > 0, and so, multiplying by β j > 0 and summing up over j ∈
{1, . . . , N },

‖u‖s̃−2+pmax

Ls̃ (�)
(t) � C ′′′

∫
�

N∑
j=1

β j (−	)
σ j
p j u(x, t) us̃−1(x, t) dx .

This says that (1.4) is satisfied with s replaced by s̃ and γ := pmax − 1. Accordingly,
we can exploit (1.6) and find that

‖u‖Ls̃ (�)(t) � C�

1 + t
α

pmax−1
. (2.30)

Since, by Hölder’s Inequality and the fact that s � s̃, we have that ‖u‖Ls (�) �
C‖u‖Ls̃ (�), for some C > 0, we deduce from (2.30) that (1.17) holds true, as
desired. �

2.6. Proof of Theorem 1.8

We fix j ∈ {1, . . . , n} and (ρ1, . . . , ρ j−1, ρ j+1, . . . , ρn) ∈ R
n−1 and denote � j

(ρ1, . . . , ρ j−1, ρ j+1, . . . , ρn) := � ∩ R j (ρ1, . . . , ρ j−1, ρ j+1, . . . , ρn), where

R j (ρ1, . . . , ρ j−1, ρ j+1, . . . , ρn) := {
(ρ1, . . . , ρ j−1, 0, ρ j+1, . . . , ρn) + re j , r ∈ R

}
.

The functionR � ρ j �→ u(ρ1e1 +· · ·+ρnen, t) is supported inside the closure of the
bounded set � j (ρ1, . . . , ρ j−1, ρ j+1, . . . , ρn), and using (2.23) with p := 2, we get
that

∫
R

us(ρ1e1 + · · · + ρnen, t) dρ j

=
∫

� j (ρ1,...,ρ j−1,ρ j+1,...,ρn)

us(ρ1e1 + · · · + ρnen, t) dρ j

� C
∫
R

(−∂2x j )
σ j u(ρ1e1 + · · · + ρnen, t) u

s−1(ρ1e1 + · · · + ρnen, t) dρ j ,

for some C > 0.
We now integrate such inequality over the other coordinates (ρ1, . . . , ρ j−1, ρ j+1,

. . . , ρn), and we thus obtain that
∫

�

us(x, t) dx =
∫
Rn

us(x, t) dx

=
∫
Rn

us(ρ1e1 + · · · + ρnen, t) dρ

� C
∫
Rn

(−∂2x j )
σ j u(ρ1e1 + · · · + ρnen, t) u

s−1(ρ1e1 + · · · + ρnen, t) dρ

= C
∫

�

(−∂2x j )
σ j u(x, t) us−1(x, t) dx .
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We multiply this inequality by β j > 0 and we sum over j , and we find that

∫
�

us(x, t) dx � C ′
∫

�

(−	β)σu(x, t) us−1(x, t) dx,

for some C ′ > 0. Hence, (1.4) holds true with γ := 1, and then, the desired result
follows from (1.6). �

2.7. Proof of Theorem 1.9

It is convenient to define ũ := um , s̃ := 1+ s−1
m and ṽ := ũs̃/2. Let also v := u

m+s−1
2 .

We remark that

ũs̃−1 = us−1, and ṽ = ums̃/2 = u(m+s−1)/2 = v. (2.31)

We also exploit (2.13) with p := 2 to the functions ũ and ṽ, with exponent s̃. In this
way, we have that

|ṽ(x, t) − ṽ(y, t)|2 � C0(ũ(x, t) − ũ(y, t))(ũs̃−1(x, t) − ũs̃−1(y, t)),

for some C0 > 0. This estimate and (2.31) give that

|v(x, t) − v(y, t)|2 � C0(u
m(x, t) − um(y, t))(us−1(x, t) − us−1(y, t)). (2.32)

Also, exploiting formula (2.16) with p := 2, we have that

(∫
�

u
q(m+s−1)

2 (x, t) dx

)2/q

= ‖v‖2Lq (�)(t) � C1

∫∫
R2n

|v(x, t) − v(y, t)|2
|x − y|n+2σ dx dy,

(2.33)

for some C1 > 0, for every q ∈
[
1, 2n

n−2σ

]
when 2 ∈ (

1, n
σ

)
, and for every q ∈

[1,+∞) when 2 ∈ [ n
σ
,+∞)

.
Now we observe that when

s � m − 1, (2.34)

it holds that
2s

m + s − 1
∈

[
1,

2n

n − 2σ

]
. (2.35)

Indeed, we have that

s(n − 2σ) − n(m + s − 1) = −2σ s − n(m − 1) � 0,

which says that 2s
m+s−1 � 2n

n−2σ . On the other hand, from (2.34), we see that

2s − (m + s − 1) = s − m + 1 � 0,

giving that 2s
m+s−1 � 1. This proves (2.35).
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Now, by (2.35), when either 2 ∈ [ n
σ
,+∞)

or s � m − 1, we are allowed to
choose q := 2s

m+s−1 in (2.33) and conclude that

(∫
�

us(x, t) dx

)(m+s−1)/s

� C1

∫∫
R2n

|v(x, t) − v(y, t)|2
|x − y|n+2σ dx dy.

Combining this with (2.32), we find that

(∫
�

us(x, t) dx

)(m+s−1)/s

� C2

∫∫
R2n

(um(x, t) − um(y, t))(us−1(x, t) − us−1(y, t))

|x − y|n+2σ dx dy

= 2C2

∫∫
R2n

(um(x, t) − um(y, t)) us−1(x, t)

|x − y|n+2σ dx dy,

provided that either 2 ∈ [ n
σ
,+∞)

or s � m − 1.

This says that, under these circumstances, condition (1.4) is fulfilled with γ := m.
Therefore, we can exploit (1.6) and obtain (1.18), provided that either 2 ∈ [ n

σ
,+∞)

or s � m − 1.

Then, when 2 < n
σ
, we first establish (1.18) for a large exponent of the Lebesgue

norm, and then, we reduce it by using the Hölder’s Inequality.

This completes the proof of (1.18) in all the cases, as desired. �

2.8. Proof of Theorem 1.10

We claim that

F

(
u(x, t) − u(y, t)

|x − y|
) (

us−1(x, t) − us−1(y, t)
)

� c0

(
u(x, t) − u(y, t)

)(
us−1(x, t) − us−1(y, t)

)
|x − y|

(2.36)

for some c0 > 0. To check this, we observe that, by (1.19), F is odd; hence, we can
reduce to the case in which

u(x, t) � u(y, t). (2.37)

Also, by (1.19), we see that when |r | is bounded, then F(r) � r , and therefore,
by (1.21) and (2.37),

F

(
u(x, t) − u(y, t)

|x − y|
)

� c0
u(x, t) − u(y, t)

|x − y| ,

and this implies (2.36).
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Now, we let v := us/2. We use (2.13) (with p := 2) and (2.36) to deduce that

2
∫∫

R2n

1

|y|n+σ
F

(
u(x, t) − u(x + y, t)

|y|
)

us−1(x, t) dx dy

= 2
∫∫

R2n

1

|x − y|n+σ
F

(
u(x, t) − u(y, t)

|x − y|
)

us−1(x, t) dx dy

=
∫∫

R2n

1

|x − y|n+σ
F

(
u(x, t) − u(y, t)

|x − y|
)

us−1(x, t) dx dy

+
∫∫

R2n

1

|x − y|n+σ
F

(
u(y, t) − u(x, t)

|x − y|
)

us−1(y, t) dx dy

=
∫∫

R2n

1

|x − y|n+σ
F

(
u(x, t) − u(y, t)

|x − y|
) (

us−1(x, t) − us−1(y, t)
)
dx dy

� c0

∫∫
R2n

(
u(x, t) − u(y, t)

)(
us−1(x, t) − us−1(y, t)

)
|x − y|n+σ+1 dx dy

� c0
C0

∫∫
R2n

∣∣v(x, t) − v(y, t)
∣∣2

|x − y|n+2σ ′ dx dy,

(2.38)
where σ ′ := σ+1

2 ∈ (0, 1).
Furthermore, we recall (2.16), used here with fractional exponent σ ′ and with p :=

2, and we see that

(∫
�

usq/2(x, t) dx

)2/q

= ‖v‖2Lq (�)(t) � C1

∫∫
R2n

∣∣v(x, t) − v(y, t)
∣∣2

|x − y|n+2σ ′ dx dy,

(2.39)

for some C1 > 0, for every q ∈
[
1, 2n

n−2σ ′
]
when 2 ∈ (

1, n
σ ′

)
, and for every q ∈

[1,+∞) when 2 ∈ [ n
σ ′ ,+∞)

.
In any case, since 2n

n−2σ ′ > 2, we can always choose q := 2 in (2.39) and conclude
that ∫

�

us(x, t) dx � C1

∫∫
R2n

∣∣v(x, t) − v(y, t)
∣∣2

|x − y|n+2σ ′ dx dy.

Combining this with (2.38), we infer that
∫

�

us(x, t) dx � C2

∫∫
R2n

1

|y|n+σ
F

(
u(x, t) − u(x + y, t)

|y|
)

us−1(x, t) dx dy

for some C2 > 0, which, together with (1.20), establishes (1.4) with γ := 1. This
and (1.6) yield the thesis of Theorem 1.10. �
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