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COHESIVE FRACTURE WITH IRREVERSIBILITY:

QUASISTATIC EVOLUTION FOR A MODEL SUBJECT TO FATIGUE

VITO CRISMALE, GIULIANO LAZZARONI, AND GIANLUCA ORLANDO

Abstract. In this paper we prove the existence of quasistatic evolutions for a cohesive

fracture on a prescribed crack surface, in small-strain antiplane elasticity. The main
feature of the model is that the density of the energy dissipated in the fracture process

depends on the total variation of the amplitude of the jump. Thus, any change in the

crack opening entails a loss of energy, until the crack is complete. In particular this
implies a fatigue phenomenon, i.e., a complete fracture may be produced by oscillation

of small jumps.

The first step of the existence proof is the construction of approximate evolutions
obtained by solving discrete-time incremental minimum problems. The main difficulty

in the passage to the continuous-time limit is that we lack of controls on the variations of

the jump of the approximate evolutions. Therefore we resort to a weak formulation where
the variation of the jump is replaced by a Young measure. Eventually, after proving the

existence in this weak formulation, we improve the result by showing that the Young
measure is concentrated on a function and coincides with the variation of the jump of

the displacement.

Keywords: variational models, quasistatic evolution, cohesive fracture, fatigue, irreversibility,
Young measures
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1. Introduction

In this paper we investigate the quasistatic evolution of cohesive cracks in a material subject
to a fatigue phenomenon. Compared to brittle fracture, cohesive models provide a more accurate
description of the process of crack growth. Indeed, in Griffith’s theory of brittle fracture [33], the
energy spent to produce a crack only depends on the geometry of the crack itself, the simplest case
being a surface energy proportional to the measure of the crack set. In contrast, cohesive energies,
introduced by Barenblatt in [9], also depend on the crack opening, i.e., on the difference between
the traces of the displacement on the two sides of the crack. In fact, fracture should be regarded
as a gradual process, where the material is considered completely cracked at a point only when the
amplitude of the jump of the displacement is sufficiently large.

Thus, when the crack opening gradually increases in time, some energy is dissipated, until the
opening overcomes a certain threshold. On the other hand, mechanical systems may present different
responses when the crack opening happens to decrease: in our model, some energy is dissipated
also in this phase (until a maximal dissipation is reached), because of the contact between the two
sides of the crack. In this respect, the behaviour of our system differs from those considered up to

1



2 V. CRISMALE, G. LAZZARONI, AND G. ORLANDO

now in the mathematical literature on quasistatic cohesive fracture. For instance, when the crack
opening decreases one may assume that no energy is dissipated [28] or that some dissipated energy
is recovered [14, 4, 42, 41]. (See also Remark 2.5.) The peculiar response modelled here leads to a
fatigue phenomenon affecting crack growth and gives further mathematical difficulties as we outline
below.

We now describe the formulation of the problem in the setting of small-strain antiplane elasticity,
referring to Section 2 for all details on the mathematical assumptions. More precisely, the reference
configuration of the body is supposed to be an infinite cylinder Ω×R , with Ω ⊂ Rn (n = 2 being the
physically relevant case), and the deformation v : Ω×R → Ω×R takes the form v(x1, . . . , xn+1) =
(x1, . . . , xn, xn+1 +u(x1, . . . , xn)) , where u : Ω→ R is the vertical displacement. According to the
small-strain assumption, the linearized elastic energy is

1

2

∫
Ω

|∇u|2 dx .

The body may present cracks of the form Γ̂×R , where Γ̂ is contained in a prescribed (n−1)-di-
mensional manifold Γ ⊂ Rn . Removing the restriction of a prescribed fracture is by now out of
reach in the mathematical modelling of cohesive crack growth; this is also due to issues with the
lower semicontinuity of functionals with cohesive terms (cf. [10, 26]). In contrast, in the brittle case,
several existence results were obtained under more general hypotheses [27, 15, 30, 7, 32, 23, 24, 37].

As mentioned above, the energy dissipated during the fracture process here depends on the
evolution of the amplitude of the jump, denoted by [u(t)] : Γ → R , where t ∈ [0, T ] is the time
variable. To describe the response of the system to loading, we start by considering the situation
where [u(0)] = 0 on Γ and t 7→ [u(t)] is nondecreasing on Γ in a time interval [0, t1] . In this case,
the energy dissipated in [0, t1] is ∫

Γ

g
(∣∣[u(t1)]

∣∣)dHn−1,

where g : [0,+∞)→ [0,+∞) is a concave (thus nondecreasing) function satisfying: g(0) = 0; g′(0)
exists, finite; and g(ξ) → κ ∈ (0,∞) as ξ → ∞ . (See Section 2 for more general assumptions on
g .) If, afterwards, t → [u(t)] is nonincreasing in an interval [t1, t2] , there is still some dissipated
energy in [t1, t2] , which amounts to∫

Γ

g
(∣∣[u(t1)]

∣∣+
∣∣[u(t2)]− [u(t1)]

∣∣)dHn−1 −
∫
Γ

g
(∣∣[u(t1)]

∣∣)dHn−1.

As a consequence, a complete fracture (corresponding to g = κ) may occur not only after a large
crack opening, but even after oscillations of small jumps (e.g. by a cyclic loading).

In fact, on the contact area between the two parts of the material, the repeated relative surface
motion can induce damage by a fatigue process. In applications, this wear phenomenon is known
as fretting [17] and occurs as a result of relative sliding motion of the order from nanometres to
millimetres. This explains the dissipation of energy also on the interval [t1, t2] where t 7→ [u(t)] is
nonincreasing.

Fatigue effects related to cohesive fracture have been already observed e.g. in [2, 3], where a
cohesive crack appears in an elastoplastic material subject to damage. In that model, damage
occurs more easily in regions where the material has suffered cyclic plastic deformations. Moreover,
a cohesive law relates the damage state with the amplitude of the jump of the displacement (i.e.,
the plastic slip). Thus, due to the irreversibility of damage, oscillations of the crack opening result
in energy dissipation until damage is complete. The existence of quasistatic evolutions for coupled
elastoplastic-damage models has been proved in [18, 20, 22, 19]. The limit of such a model when
damage is forced to concentrate on hypersurfaces has been studied in [25] in a static setting and
gives rise to cohesive surface energies.

These motivations lead us to study cohesive fracture starting from the following discrete-time
problem, which is a generalisation of the incremental scheme proposed in [1]. (We wish to thank
Jean-Jacques Marigo for pointing out the relationship between the two models.) Given an initial
condition u(0) = u0 and a time-dependent Dirichlet datum w(t) on ∂DΩ ⊂ ∂Ω (cf. Section 2 for

the complete list of assumptions), for every k ∈ N we fix a subdivision 0 = t0k < t1k < · · · < tk−1
k <
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tkk = T and we define recursively uik and V ik by

uik ∈ argmin
u

{
1

2

∫
Ω

|∇u|2 dx+

∫
Γ

g
(
V i−1
k +

∣∣[u]− [ui−1
k ]

∣∣) dHn−1 : u = w(tik) on ∂DΩ

}
, (1.1)

V ik := V i−1
k +

∣∣[uik]− [ui−1
k ]

∣∣ ,
where u0

k := u0 and V 0
k =

∣∣[u0]
∣∣ . The function V ik describes the cumulated jump of the approximate

evolutions at each point of Γ.
We shall pass to the limit as k → ∞ and prove that the resulting continuous-time evolution

satisfies the usual properties of quasistatic processes: stability and energy balance. This strategy
has been common when proving existence of quasistatic evolutions in fracture mechanics since the
seminal paper [31] (see also [11]), and, more in general, when looking for energetic solutions to
rate-independent systems [40]. Loosely speaking, following this approach one selects equilibria of
the system among the global minimisers of the sum of the mechanical energy and of the dissipated
energy. Such restriction is advantageous from the mathematical point of view, but may lead to
unphysical phenomena when the solution presents time discontinuities. For this reason one might
resort to notions of solutions based on local minimality, e.g. by means of a vanishing viscosity
approach, cf. [35, 34, 38, 39, 21] in the brittle case and [13, 4, 6] for cohesive models.

In order to study the continuous-time limit, we define uk(t) and Vk(t) as the piecewise constant
interpolations of uik and V ik in time, respectively. The main difficulty in the passage to limit as
k →∞ is that we lack of controls on Vk(t) . In fact, by (1.1) we can only infer that

∫
Γ
g(Vk(t)) dHn−1

is uniformly bounded, but this gives no information on the equi-integrability of Vk(t) , since g is
bounded. (This would not be the case if g had e.g. linear growth as in a model for perfect plasticity
constrained on Γ.) In the first instance, in order to pass to the limit as k →∞ , the only chance is
to employ compactness properties of the wider class of Young measures (as already done in [14] in
a different model). Indeed, because of the monotonicity of Vk(t) , a Helly-type selection principle
[14, Theorem 3.20] guarantees that Vk(t) generates a Young measure ν(t) = (νx(t))x∈Γ for every
t , up to a subsequence independent of t .

As for the displacements, from the uniform a priori bounds we obtain that there is a subsequence
ukj (t) weakly converging to a function u(t) . Yet the subsequence kj = kj(t) may depend on t .
This is a technical inconvenience, since we need to keep track of the relation between Vk(t) and
[uk(t)] , namely, to pass to the limit in the irreversibility relation

Vk(t) ≥ Vk(s) +
∣∣[uk(t)]− [uk(s)]

∣∣ for any s ≤ t .
Indeed, notice that uk(t) and uk(s) may converge along different subsequences! This difficulty is
solved by rewriting the previous inequality as a system of two inequalities

Vk(t) + [uk(t)] ≥ Vk(s) + [uk(s)] for any s ≤ t , (1.2)

Vk(t)− [uk(t)] ≥ Vk(s)− [uk(s)] for any s ≤ t . (1.3)

In fact, we can now pass to the limit in these relations by means of a Helly-type theorem, extracting
a further subsequence (not relabelled) independent of t and exploiting the monotonicity of Vk(t)±
[uk(t)] . Moreover, thanks to this trick it turns out that we can identify the limit jump [u(t)] without
extracting further subsequences. Ultimately, also the displacement u(t) is the limit of the whole
sequence uk(t) , since u(t) is the solution of a minimum problem among functions with prescribed
jump [u(t)] . This property is relevant for the approximation of the solutions.

At this point of the analysis, we can pass to the limit in the global stability and in the energy bal-
ance, obtaining that (u(t), ν(t)) complies with a weak notion of quasistatic evolution. Specifically,
in the expression of the dissipated energy, the variation of jumps on Γ is replaced by the Young
measure ν(t) . On the other hand, we can define the variation of the jumps of u(t) , denoted by
Vu(t) . We refer to Section 2 for a rigorous definition; here we only notice that, if u is an absolutely
continuous function of time, then we have

Vu(t) =

t∫
0

∣∣[u̇(s)]
∣∣ ds .

Actually, we improve the existence result by proving that (u(t), Vu(t)) satisfies the same properties
of global stability and energy balance: this shows the existence of a quasistatic evolution in a
stronger formulation that does not employ Young measures. Furthermore, we prove that for Hn−1 -
a.e. x ∈ Γ, either the measure νx(t) is concentrated on Vu(t;x) , or it is supported where g is
constant, i.e., where the energy is not dissipated any longer. Therefore also the limit of the discrete
variations Vk(t) is characterised.
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The variation of the jumps Vu(t) is thus the relevant memory variable describing the fracture
process. Since Vu(t) is nondecreasing, cohesive fracture is unidirectional in the case described in
the present paper. More precisely, if in a subinterval [t1, t2] ⊂ [0, T ] the jump t 7→ [u(t)] is not
constant in a part of Γ, then the evolution in [t1, t2] is irreversible and the state of the system at t1
is never recovered later on, even if u(t1) = u(t2) ; indeed the maximal tensile stress has decreased
(cf. Propositions 2.7 and 2.8). In this respect our model differs from those studied in [28, 14], where,
in general, cyclic loadings result into reversible evolutions. The scheme of our proof can be readily
adapted to further models that account for asymmetric responses to loading and unloading, as we
show in Remark 6.4. In particular, these cover the case where the dissipation only depends on the
positive variation of the crack opening.

The notion of quasistatic evolution and the main existence result are presented in Section 2,
which contains also some results on a strong formulation that is satisfied by the energetic solutions
under suitable regularity assumptions. The final part of Section 2 contains a short outline of the
existence proof, which is presented in more detail in the remaining part of the paper. After recalling
some preliminary results on Young measures (Section 3), we introduce the discrete-time problems
in Section 4 and we pass to the continuous-time limit in Section 5, obtaining the formulation based
on Young measures. Finally, in Section 6 we prove the existence of quasistatic evolutions according
to the notion based on functions and we discuss how to treat asymmetric responses to loading and
unloading.

2. Assumptions on the model and statement of the main result

Notation. If Ξ is a metric space, we denote by B(Ξ) the σ -algebra of Borel sets on Ξ. The
Lebesgue measure in Rn is denoted by Ln , while Hn−1 is the (n−1)-dimensional Hausdorff mea-
sure.

Given a Hilbert space X , we recall that AC([0, T ];X) is the space of all absolutely continuous
functions defined in [0, T ] with values in X . For the main properties of these functions we refer,
e.g., to [12, Appendix]. Given γ ∈ AC([0, T ];X) , the time derivative of γ , which exists a.e. in
[0, T ] , is denoted by γ̇ . It is well-known that γ̇ is a Bochner integrable function with values in X .

In the sequel, we will often consider time-dependent functions t 7→ v(t) , where v(t) is a function
depending on a space variable x . We will write v(t;x) to refer to the value of v(t) in x .

Reference configuration and boundary conditions. Throughout the paper, Ω is a bounded,
Lipschitz, open set in Rn representing the cross-section of a cylindrical body in the reference
configuration (in the setting of antiplane shear). The cracks of the body will be contained in
a prescribed crack surface Γ, where Γ is a (n−1)-dimensional Lipschitz manifold in Rn with

0 < Hn−1(Γ ∩ Ω) < ∞ . Moreover, we assume that Ω \ Γ = Ω+ ∪ Ω− , where Ω+ and Ω− are
disjoint open connected sets with Lipschitz boundary. The normal ν(x) = νΓ(x) to the surface Γ
is chosen in such a way that it coincides with the outer normal to ∂Ω− .

We consider evolutions driven by a time-dependent boundary condition assigned on the Dirich-
let part of the boundary ∂DΩ. We assume that ∂DΩ is a relatively open set of ∂Ω and that
Hn−1(∂DΩ ∩ ∂Ω±) > 0, in order to apply the Poincaré Inequality separately in Ω+ and Ω− . We
denote by ∂NΩ the remaining part of the boundary, i.e., ∂NΩ := ∂Ω \ ∂DΩ.

For every w ∈ H1(Ω), we define the set of admissible displacements corresponding to w by

A (w) := {u ∈ H1(Ω \ Γ) : u = w on ∂DΩ} . (2.1)

We assign a function t 7→ w(t) defined on [0, T ] with values in H1(Ω) and we assume that

t 7→ w(t) belongs to AC([0, T ];H1(Ω)) . (2.2)

For simplicity in this paper we do not consider volume or boundary forces, which may be included
in the model with minor modifications.

Variation of jumps and initial data. In order to give the notion of quasistatic evolution, we
introduce a function Vu(t) describing the variation of the jumps on Γ of an evolution s 7→ u(s) in
a time interval [0, t] .

Before defining Vu(t) , we recall the definition of the essential supremum of a family of measurable
functions, that is the least upper bound in the sense of a.e. inequality. We give this definition in the
case of functions defined on the measure space (Γ;Hn−1) . Indeed, this will be the relevant setting
for our model.

Definition 2.1. Let (vi)i∈I be a family of measurable functions from Γ to [−∞,∞] . Let v : Γ→
[−∞,∞] be a measurable function such that
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(i) v ≥ vi Hn−1 -a.e. on Γ, for every i ∈ I ;
(ii) if v : Γ → [−∞,∞] is a measurable function such that v ≥ vi Hn−1 -a.e. on Γ, for every

i ∈ I , then v ≥ v Hn−1 -a.e. on Γ.

We say that v is an essential supremum of the family (vi)i∈I .

Remark 2.2. Given a family of measurable functions (vi)i∈I , there exists a unique (up to Hn−1 -a.e.
equivalence) essential supremum v of the family (vi)i∈I . We denote it by ess sup

i∈I
vi := v .

We now define the essential variation, namely the variation for a time-dependent family of
measurable functions, in the sense of a.e. inequality. As done for the essential supremum, we give
this definition in the case of functions defined on the measure space (Γ;Hn−1) .

Definition 2.3. Let us consider a function t 7→ γ(t) , with γ(t) : Γ → R measurable for every
t ∈ [0, T ] . For every 0 ≤ t1 ≤ t2 ≤ T , the essential variation of γ in [t1, t2] is the function
ess Var(γ; t1, t2) : Γ→ [0,∞] defined by

ess Var(γ; t1, t2) := ess sup
{ j∑
i=1

|γ(si)− γ(si−1)| : j ∈ N , t1 = s0 < s1 < · · · < sj−1 < sj = t2
}
.

Remark 2.4. The essential variation satisfies the usual property that

ess Var(γ; t1, t3) = ess Var(γ; t1, t2) + ess Var(γ; t2, t3) Hn−1-a.e. on Γ ,

for any 0 ≤ t1 < t2 < t3 ≤ t .

Given a function t 7→ u(t) defined on [0, T ] with values in H1(Ω \ Γ), we define the variation
Vu(t) : Γ→ [0,∞] of its jumps on Γ with initial condition V0 by

Vu(t) := ess Var([u]; 0, t) + V0 , (2.3)

for every t ∈ [0, T ] , where V0 : Γ→ [0,∞] is an assigned measurable function.

Initial data. We fix an initial displacement

u0 ∈ A (w(0)) (2.4)

and a function V0 : Γ→ [0,∞] accounting for the variation of previous jumps until the initial time
t = 0. Indeed we assume that

V0(x) ≥
∣∣[u0(x)]

∣∣ for Hn−1-a.e. x ∈ Γ . (2.5)

If V0 =
∣∣[u0]

∣∣ , a monotone crack opening has occurred before the initial time t = 0. In general, the
crack opening may have oscillated before the initial time in such a way that its variation in time
equals V0 .

The surface energy density. We assume that the surface energy density g depends on the point
on Γ and on the history of the jump. More precisely, g : Γ×[0,∞)→ [0,∞) satisfies the following
assumptions:

(g1) g is a Carathéodory integrand, i.e., g(x, ·) is continuous for Hn−1 -a.e. x ∈ Γ and g(·, ξ)
is Hn−1 -measurable for every ξ ∈ [0,∞) ;

(g2) g(x, 0) = 0 and g(x, ·) is concave for Hn−1 -a.e. x ∈ Γ;
(g3) lim

ξ→∞
g(x, ξ) = κ(x) ∈ [κ1, κ2] for Hn−1 -a.e. x ∈ Γ, where κ1, κ2 ∈ (0,∞) ;

(g4) the limit

lim
ξ→0+

g(x, ξ)

ξ
=: g′(x, 0)

exists for Hn−1 -a.e. x ∈ Γ and g′(·, 0) ∈ L∞(Γ).

In particular, for Hn−1 -a.e. x ∈ Γ it turns out that g(x, ·) is nondecreasing and can be extended
to a function in Cb([0,∞]) by setting g(x,∞) := κ(x) .

It will be convenient to introduce a measurable function θ : Γ → [0,∞] that represents the
threshold after which the function g(x, ·) becomes constant, i.e.,

θ(x) := inf{ξ > 0 : g(x, ξ) = κ(x)} ∈ (0,∞] . (2.6)

The function g(x, ·) is strictly increasing if and only if θ(x) =∞ .
Notice that the set ΓN (0) := {V0 ≥ θ(x)} represents the part of Γ which is already completely

broken at the beginning of the process.
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As already discussed in the Introduction, the energy dissipated by the crack opening (cf. Figure 1)
is a function of the variation of the jump Vu(t) defined in (2.3) (cf. Figure 2):∫

Γ

g
(
x, Vu(t;x)

)
dHn−1(x) .

e
n
e
rg

y
d
is
si
p
a
te
d

[u(t1)][u(t0)] [u(t2)] [u(t3)][u(t4)]

Figure 1. Energy dissipated by a jump t 7→ [u(t)] with a non-monotone history in a time
interval [t0, t4] : t 7→ [u(t)] increases in [t0, t1] and in [t2, t3] , whereas it decreases in [t1, t2]
and in [t3, t4] .

Vu(t0) Vu(t1) Vu(t2) Vu(t3) Vu(t4)

e
n
e
rg

y
d
is
si
p
a
te
d

Figure 2. Energy dissipated as a function of the variation of the jumps Vu(t) corresponding
to a jump history as in Figure 1. Notice that the variation Vu(t) is nondecreasing in time.

Remark 2.5. In the cohesive models studied in [28] and [14], the dissipated energy depends on the
supremum of the absolute value of the jumps reached during the evolution. There it is assumed that,
when the crack opening decreases, no energy is dissipated or some dissipated energy is recovered.
This behaviour complies with models where the cohesive phenomenon is due to an interplay between
elasticity and damage [16, 8]. In contrast, the behaviour described here is related to the interplay
between plasticity and damage [25]. For this reason we expect a dissipation of energy even when
the crack decreases, which entails the irreversibility of evolutions.

Cohesive models share also some similarities with problems of delamination and adhesive contact,
see e.g. [36, 43] for the energetic formulation of quasistatic evolutions. However, in such models
the surface energy density depends on two different unknowns: the jump of the displacement and
a memory variable. Moreover, the dissipation potential is a one-homogeneous functional of the
memory variable. In contrast, in our model the memory variable, that is Vu , is uniquely determined
by the history of [u] and appears nonlinearly in the dissipated energy, without further regularisation.

Definition of quasistatic evolution and strong formulation. We are now in a position to
give the definition of quasistatic evolution.

Definition 2.6. Let w , u0 , and V0 be as in (2.2)–(2.5). Let t 7→ u(t) be a function defined
on [0, T ] with values in H1(Ω \ Γ) and let Vu(t) be the variation of its jumps on Γ, defined in
(2.3). We say that t 7→ u(t) is a quasistatic evolution with initial conditions (u0, V0) and boundary
datum w if u satisfies u(0) = u0 and the following conditions:

(GS) Global stability : For every t ∈ [0, T ] we have u(t) ∈ A (w(t)) and

1

2

∫
Ω\Γ

|∇u(t)|2 dx+

∫
Γ

g
(
x, Vu(t)

)
dHn−1 ≤ 1

2

∫
Ω\Γ

|∇ũ|2 dx+

∫
Γ

g
(
x, Vu(t) +

∣∣[ũ]−[u(t)]
∣∣)dHn−1 ,
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for every ũ ∈ A (w(t)) .
(EB) Energy-dissipation balance: For every t ∈ [0, T ]

1

2

∫
Ω\Γ

|∇u(t)|2 dx+

∫
Γ

g
(
x, Vu(t)

)
dHn−1

=
1

2

∫
Ω\Γ

|∇u0|2 dx+

∫
Γ

g
(
x, V0

)
dHn−1 +

t∫
0

〈∇u(s),∇ẇ(s)〉L2 ds .

In order to give an insight into the strong formulation of the model studied in the paper, we
state two results regarding necessary conditions satisfied by a quasistatic evolution. For simplicity,
we derive these differential conditions under the assumption that g(x, ·) is of class C1 . We denote
by g′(x, ξ) the derivative of g(x, ξ) with respect to ξ .

Proposition 2.7. Assume that g(x, ·) is of class C1 for Hn−1 -a.e. x ∈ Γ . Let t 7→ u(t) be a
function defined on [0, T ] with values in H1(Ω \ Γ) and satisfying (GS) . Then for every t ∈ [0, T ]
the following hold:

(i) The function u(t) is a weak solution to the problem
∆u(t) = 0 in Ω \ Γ ,

u(t) = w(t) on ∂DΩ ,

∂νu(t) = 0 in H−
1
2 (∂NΩ) .

(ii) Let u(t)+ := u(t)|Ω+ and u(t)− := u(t)|Ω− . Then ∂νu(t)+ = ∂νu(t)− in H−
1
2 (Γ) .

(iii) Let ∂νu(t) := ∂νu(t)+ = ∂νu(t)− . Then ∂νu(t) ∈ L∞(Γ) and

|∂νu(t;x)| ≤ g′(x, Vu(t;x)) for Hn−1-a.e. x ∈ Γ . (2.7)

To keep the presentation clear, the proof of Proposition 2.7 is given in Section 6.
Condition (iii) in Proposition 2.7 expresses the fact that the surface tension on Γ due to the

displacement is constrained to stay below a suitable threshold. The material exhibits an irreversible
softening behaviour on Γ, since this threshold decreases in time. Indeed g′(x, ·) is nonincreasing
and Vu(· ;x) is nondecreasing in time. However, this condition is static and is not enough to
characterise an evolution.

[u(t1)][u(t0)]

g′(Vu(t1))

−g′(Vu(t1))

∂νu(t)

g′(0)

Figure 3. Crack opening versus surface tension corresponding to a jump history as in Figure 1.

Nonetheless, in the following proposition we employ the energy-dissipation balance to show that
the evolution satisfies a flow rule: in the points where a crack opening grows, the surface tension
actually must reach the maximal threshold. (See Figure 3 for a possible evolution of the surface
tension.) The result is proved under regularity assumptions on the evolution t 7→ u(t) . To make
the statement concise, we denote by Sign the multifunction given by

Sign(ξ) :=


1 if ξ > 0 ,

[−1, 1] if ξ = 0 ,

−1 if ξ < 0 .
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Proposition 2.8. Assume that g(x, ·) is of class C1 for Hn−1 -a.e. x ∈ Γ . Let t 7→ u(t) be a
quasistatic evolution in the sense of Definition 2.6 and assume that u ∈ AC([0, T ];H1(Ω \ Γ)) .
Then

∂νu(t;x) ∈ g′(x, Vu(t;x)) Sign
(
[u̇(t;x)]

)
for Hn−1-a.e. x ∈ Γ and a.e. t ∈ [0, T ] ,

where [u̇(t)] is the derivative in time of [u(t)] with respect to the strong topology in L2(Γ) .

Proposition 2.8 is proved in Section 6.

Statement of the main result. We now introduce the tools needed to state our main result,
which concerns the existence of a quasistatic evolution and the approximation by means of discrete-
time evolutions.

As usual in the proof of existence of quasistatic evolutions for rate-independent systems, we
construct discrete-time evolutions by solving incremental minimum problems. For every k ∈ N , let
us consider a subdivision of the time interval [0, T ] given by k+1 nodes

0 = t0k < t1k < · · · < tk−1
k < tkk = T, lim

k→∞
max

1≤i≤k
|tik − ti−1

k | = 0 ,

and let us define wik := w(tik) .
We assume that the initial condition (u0, V0) is globally stable, namely

1

2

∫
Ω\Γ

|∇u0|2 dx+

∫
Γ

g
(
x, V0

)
dHn−1 ≤ 1

2

∫
Ω\Γ

|∇ũ|2 dx+

∫
Γ

g
(
x, V0 +

∣∣[ũ]−[u0]
∣∣)dHn−1 , (2.8)

for every ũ ∈ A (w(0)) .
As the first step of the incremental process, we set u0

k := u0 and V 0
k := V0 . Let i ∈ {1, . . . , k}

and assume that we know uhk and V hk for h = 0, . . . , i− 1. Then we define uik as a solution to the
problem

min
u

{
1

2

∫
Ω\Γ

|∇u|2 dx+

∫
Γ

g
(
x, V i−1

k +
∣∣[u]−[ui−1

k ]
∣∣)dHn−1 : u ∈ A (wik)

}
, (2.9)

and we set

V ik := V i−1
k +

∣∣[uik]−[ui−1
k ]

∣∣ = V0 +

i∑
j=1

∣∣[ujk]−[uj−1
k ]

∣∣ . (2.10)

The existence of a solution to (2.9) is obtained by employing the direct method of the Calculus of
Variations.

The discrete-time evolutions are then defined as piecewise constant interpolations of the solutions
to the incremental problems. Namely, we set

uk(t) := uik , Vk(t) := V ik , wk(t) := wik for tik ≤ t < ti+1
k (2.11)

and uk(T ) := ukk , Vk(T ) := V kk , wk(T ) := w(T ) .
Passing to the limit as k → ∞ , we prove that uk converges to a quasistatic evolution u . A

major point of our result is that the convergence holds for a subsequence independent of t . We also
provide a convergence result for the variations of the jumps. Specifically, the truncated functions
Vk(t) ∧ θ converge to Vu(t) ∧ θ , where θ is as in (2.6), and ∧ denotes the minimum between
two functions. We remark that when Vu(t;x) overcomes the threshold θ(x) , we have no control
on Vu(t;x) , which may increase without further dissipation of energy. Moreover, we obtain that
t 7→ u(t) and t 7→ Vu(t) are continuous (in a suitable sense), except for countably many times.

These results are stated in the following theorem, whose proof is given in Section 6.

Theorem 2.9 (Existence and approximation of quasistatic evolutions). Assume that g satisfies
(g1)–(g4) . Let w , u0 , and V0 be as in (2.2)–(2.5) and assume that (u0, V0) is globally stable in
the sense of (2.8). Consider the piecewise constant evolutions t 7→ uk(t) and the piecewise constant
variations t 7→ Vk(t) defined in (2.11). Then there exist a subsequence (independent of t and not
relabelled) and a quasistatic evolution t 7→ u(t) with initial conditions (u0, V0) and boundary datum
w such that, for every t ∈ [0, T ] ,

uk(t)→ u(t) strongly in H1(Ω \ Γ) , (2.12)

Vk(t) ∧ θ → Vu(t) ∧ θ in measure , (2.13)

where Vu(t) is the function defined in (2.3) and θ is given in (2.6).
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Moreover, there exists a set E ⊂ [0, T ] , at most countable, such that, for every t ∈ [0, T ]\E and
every s→ t ,

u(s)→ u(t) strongly in H1(Ω \ Γ) . (2.14)

Vu(s) ∧ θ → Vu(t) ∧ θ in measure . (2.15)

We underline that, if θ(x) is finite and Vu(t;x) ≥ θ(x) , the material is completely broken at x .
Therefore Vu(t) ∧ θ , appearing in the theorem above, is the relevant state variable for the system.

Remark 2.10. If θ ∈ L∞(Γ), then the convergence in (2.13) and (2.15) is also strong in Lp(Γ) for
every p ∈ [1,∞) . In contrast, if θ ≡ ∞ (that is g(x, ·) is strictly increasing for Hn−1 -a.e. x ∈ Γ),
then Vk(t)→ Vu(t) in measure as k →∞ and Vu(s)→ Vu(t) in measure as s→ t .

Guidelines for the proof of the main result. The main difficulty in the passage to the
continuous-time limit as k → ∞ is that we lack of controls on Vk(t) . In fact, by (2.9), we can
only infer that

∫
Γ
g(x, Vk(t)) dHn−1 is uniformly bounded, but this gives no information on Vk(t) ,

since g is bounded. For this reason we resort to a weaker notion of quasistatic evolution, where
the variation of jumps on Γ is replaced by a Young measure. Notwithstanding, after establishing
the properties of such an evolution, we are able to show that the Young measure found in the
limit is concentrated on a function. Eventually, we obtain a quasistatic evolution in the sense of
Definition 2.6. We describe here the strategy followed to prove Theorem 2.9.

Following the scheme of the proof of existence of energetic solutions to rate-independent systems
[40], the starting point of our analysis is to obtain a global stability and an energy-dissipation
inequality for the discrete-time evolutions t 7→ uk(t) (Proposition 4.1). As usual, the energy-
dissipation inequality provides a priori bounds in H1(Ω \Γ) for the functions uk(t) , independently
of k and t . In order to study the limit of the functions Vk(t) , it is convenient to introduce the
Young measures concentrated on the graph of Vk(t) , namely

νk(t) := δVk(t) ∈ Y(Γ; [0,∞]) for every t ∈ [0, T ] . (2.16)

We refer to Section 3 for the notation and the basic properties of Young measures. Since the
functions Vk(t) are nondecreasing with respect to t , we can apply a Helly-type selection principle
(proved in [14]) to infer that the Young measures νk(t) converge narrowly to a Young measure ν(t) ∈
Y(Γ; [0,∞]) on a subsequence independent of t . Thanks to the a priori bounds on uk(t) , it is
possible to extract a subsequence kj(t) (depending on t) such that ukj(t)(t) converges to u(t)

weakly in H1(Ω \ Γ). These convergences allow us to pass to the limit in the global stability of
the discrete-time evolutions (Proposition 4.4), and thus to deduce that t 7→ (u(t), ν(t)) satisfies a
suitable notion of global stability (condition (GSY) in Definition 5.1).

Afterwards, we show that the evolution t 7→ (u(t), ν(t)) satisfies an energy-dissipation balance
(condition (EBY) in Definition 5.1). One inequality in this balance is a consequence of the energy-
dissipation inequality of the discrete-time evolutions t 7→ uk(t) . On the contrary, the proof of the
opposite inequality requires a thorough analysis. The main reason is that the Helly Selection Prin-
ciple adopted before does not give any information about the relation between the Young measure
ν(t) and Vu(t) . This relation is though encoded in a property satisfied by t 7→ ν(t) (the irre-
versibility condition (IRY) in Definition 5.1), that we derive from the analogous condition (IRY)k
for the approximating Young measures t 7→ νk(t) . This property relates ν(t) to [u(t)] and allows
us to conclude the proof of the other inequality in the energy-dissipation balance by employing the
global stability.

In addition, we prove that uk(t) actually converges to u(t) strongly in H1(Ω \ Γ) on a sub-
sequence independent of t . This convergence result is proved in Section 5 by showing that the
jump γ(t) := [u(t)] is determined de facto independently of t (cf. equation (5.9)). Indeed this
implies that the function u(t) is the unique solution of a minimum problem among functions with
a prescribed jump γ(t) (Proposition 5.7). With similar arguments, we prove that t 7→ u(t) is
continuous in t except for a countable set E ⊂ [0, T ] .

Finally, in Section 6 we prove that u is actually a quasistatic evolution in the sense of Defini-
tion 2.6. Notice that for this step we need the assumption on the concavity of g(x, ·) . Moreover,
this allows us to prove that the Young measure ν(t) (suitably truncated with θ ) is concentrated
on the function Vu(t) . As a consequence of this fact, we are able to deduce also the convergences
in (2.13) and (2.15) in Theorem 2.9.

3. Preliminary results about Young measures

In this section we recall some basic facts about Young measures that will be fundamental to
prove the existence of a quasistatic evolution in the weak sense of Definition 5.1.
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Measures. Let us fix a σ -compact locally compact metric space Ξ. The reader may think of Ξ
as R or [−∞,∞] , since these will be the relevant cases for this paper. We denote by M+

b (Ξ) the
set of positive bounded measures, and by P(Ξ) the set of probability measures on Ξ, i.e., measures
µ ∈ M+

b (Ξ) such that µ(Ξ) = 1. The space M+
b (Ξ) can be put in duality with the space of

bounded continuous functions Cb(Ξ) by defining

〈f, µ〉 :=

∫
Ξ

f(ξ)µ(dξ) =

∫
Ξ

f(ξ) dµ(ξ) , (3.1)

for every µ ∈M+
b (Ξ) and f ∈ Cb(Ξ).

If Ξ is a separable metric space and µ ∈M+
b (Ξ), the support of µ is the smallest closed subset

of Ξ where the measure µ is concentrated, i.e.,

supp(µ) :=
⋂

C closed
µ(Ξ\C)=0

C .

Let Ξ1 and Ξ2 be two metric spaces, let ϕ : Ξ1 → Ξ2 be a Borel map, and let µ ∈ M+
b (Ξ1) .

The push-forward of µ through the map ϕ is the measure ϕ#µ ∈M+
b (Ξ2) defined by

ϕ#µ(A) := µ(ϕ−1(A)) for every A ∈ B(Ξ2) . (3.2)

We will later deal with measures in the space M+
b ([−∞,∞]) , where [−∞,∞] is endowed with

the metric induced by an increasing homeomorphism

φ : [−∞,∞]→ [−1, 1] , (3.3)

e.g. φ(ξ) := 2
π

arctan(ξ) . Measures in M+
b ([−∞,∞]) are in duality with bounded continuous

functions f ∈ Cb([−∞,∞]) , i.e., continuous functions with a finite limit at ±∞ .
We also recall that for every probability measure µ ∈ P([−∞,∞]) we can define the cumulative

distribution function Fµ : [−∞,∞]→ [0, 1] by

Fµ(ξ) := µ([−∞, ξ]) for every ξ ∈ [−∞,∞] . (3.4)

By the right continuity of Fµ , it is possible to define its pseudo-inverse F
[−1]
µ : [0, 1]→ [−∞,∞] by

F [−1]
µ (m) := min{ξ ∈ R : Fµ(ξ) ≥ m} . (3.5)

Young measures. Young measures on Γ×Ξ are parametrised measures (νx)x∈Γ usually employed
to provide compactness of sequences of functions defined on Γ with values in Ξ. For each point
x ∈ Γ, νx is a probability measure which records the possible oscillations in the x variable of such
sequences of functions.

For an introduction to the general theory of Young measures we refer, e.g., to [44]. Here we
recall some basic notions and properties. Let us fix a metric space Ξ.

Definition 3.1. The collection of Young measures on Γ×Ξ with respect to the measure Hn−1 is
the set

Y(Γ; Ξ) := {ν ∈M+
b (Γ×Ξ) : πΓ

#ν = Hn−1 Γ} ,
where πΓ : Γ×Ξ→ Γ is the projection on Γ.

Remark 3.2. We recall that a family (νx)x∈Γ of probability measures νx ∈ P(Ξ) parametrised on Γ
is said to be measurable if the function x 7→ νx(A) is Hn−1 -measurable for every A ∈ B(Ξ). By
the Disintegration Theorem (see [5, Theorem 2.28]), it is always possible to associate a measurable
family of probability measures (νx)x∈Γ with a Young measure ν ∈ Y(Γ; Ξ) in such a way that∫

Γ×Ξ

f(x, ξ) dν =

∫
Γ

∫
Ξ

f(x, ξ)νx(dξ) dHn−1 for every f ∈ L1
ν(Γ×Ξ) . (3.6)

Moreover, the family (νx)x∈Γ is unique up to Hn−1 -negligible sets, i.e., if (ν̃x)x∈Γ is any other
measurable family of probability functions satisfying (3.6), then ν̃x = νx for Hn−1 -a.e. x ∈ Γ.

If ν = (νx)x∈Γ ∈ Y(Γ; Ξ), for every f ∈ Cb(Γ×Ξ) the duality between ν and f reads∫
Γ×Ξ

f(x, ξ) dν(x, ξ) =

∫
Γ

∫
Ξ

f(x, ξ)νx(dξ) dHn−1 =

∫
Γ

〈f(x, ·), νx〉dHn−1 .

Example 3.3. The simplest example of a Young measure is obtained by fixing a measurable function
v : Γ → Ξ and by considering the Young measure concentrated on the graph of the function v ,
identified by the measurable family of probability measures δv := (δv(x))x∈Γ .
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We will consider the space Y(Γ; Ξ) endowed with the narrow topology. In this framework, a
general compactness result holds (see Theorem 3.6).

Definition 3.4. We say that νj converges narrowly to ν (and denote νj ⇀ ν ) if and only if∫
Γ

〈f(x, ·), νxj 〉 dHn−1 →
∫
Γ

〈f(x, ·), νx〉 dHn−1, (3.7)

for every f ∈ Cb(Γ×Ξ).

Remark 3.5. If Ξ is a compact metric space, by [44, Theorem 2] the convergence in (3.7) also
holds for every Carathéodory integrand f , i.e., a measurable function such that f(x, ·) ∈ Cb(Ξ) for
Hn−1 -a.e. x ∈ Γ and such that x 7→ ‖f(x, ·)‖∞ belongs to L1(Γ).

Theorem 3.6. [44, Theorem 2] Assume that Ξ is a compact metric space. Then Y(Γ; Ξ) , endowed
with the narrow topology, is sequentially compact.

Remark 3.7. The assumption on the compactness of the space Ξ is crucial to guarantee the com-
pactness of Y(Γ; Ξ) with respect to the narrow convergence. For instance, if Ξ = R , it may happen
that a sequence νj ∈ Y(Γ;R) has some mass escaping to infinity.

We will later need to infer the compactness of sequences νj ∈ Y(Γ;R) with no tightness assump-
tions. Thus, we will consider a compactification of R , i.e., we will regard νj as Young measures in
Y(Γ; [−∞,∞]) . In this way, we can conclude that a subsequence of νj ∈ Y(Γ;R) (not relabelled)
converges narrowly to a Young measure ν ∈ Y(Γ; [−∞,∞]) .

To deal with these Young measures, it is convenient to introduce the map

Φ: Γ×[−∞,∞]→ Γ×[−1, 1] , Φ(x, ξ) := (x, φ(x)) , (3.8)

where φ is the homeomorphism defined in (3.3). In this way, for every ν ∈ Y(Γ; [−∞,∞]) we
have Φ#ν ∈ Y(Γ; [−1, 1]) . The elements of Y(Γ; [−∞,∞]) are in duality with functions f ∈
Cb(Γ×[−∞,∞]) , i.e., such that f ◦ Φ−1 ∈ Cb(Γ×[−1, 1]) .

In general, a sequence of Young measures concentrated on functions vj does not converge nar-
rowly to a Young measure concentrated on a function. When the limit Young measure is concen-
trated on a function v , one can rule out oscillations of the sequence vj , that actually converges
pointwise. For the proof of the following proposition, we refer to [44, Proposition 6].

Proposition 3.8. Assume that Ξ is a compact metric space. Let vj , v : Γ → Ξ be measurable
functions. Then δvj ⇀ δv if and only if vj → v in measure.

Remark 3.9. In the case where Ξ is [−∞,∞] endowed with the metric induced by φ in (3.3), then
vj → v in measure if and only if Hn−1({|φ(vj)− φ(v)| ≥ ε})→ 0 for every ε > 0.

Translation. We now recall how to shift real-valued Young measures. This tool will be used to
define the notion of irreversibility in Remark 4.2. For every measurable function γ : Γ → R we
define the translation map Sγ : Γ×[−∞,∞] → Γ×[−∞,∞] by Sγ(x, ξ) := (x, ξ + γ(x)) , with the
usual convention that a±∞ = ±∞ for every a ∈ R . For every ν ∈ Y(Γ; [−∞,∞]) we set

ν ⊕ γ := Sγ#ν ∈ Y(Γ; [−∞,∞]) , (3.9)

ν 	 γ := S(−γ)
# ν ∈ Y(Γ; [−∞,∞]) . (3.10)

Remark 3.10. Let νj , ν ∈ Y(Γ; [−∞,∞]) be such that νj ⇀ ν and let γ : Γ→ R be a measurable
function. By Remark 3.5 we have νj ⊕ γ ⇀ ν ⊕ γ .

Moreover, if γ, γj : Γ→ R are such that γj → γ in measure, then it is easy to see that νj⊕γj ⇀
ν ⊕ γ .

Partial order. Following [14, Definition 3.10], we introduce a partial order in the space of Young
measures on Γ×R . This notion is fundamental for providing a Helly-type principle for Young
measures (cf. Theorem 5.5). We recall here the definition of this order and its main properties.

Definition 3.11. Let ν1 = (νx1 )x∈Γ , ν2 = (νx2 )x∈Γ ∈ Y(Γ;R) . We say that ν1 � ν2 if one of the
following equivalent conditions is satisfied:

(i) for every Carathéodory integrand f : Γ×R→ R nondecreasing with respect to the second
variable we have ∫

Γ

〈f(x, ·), νx1 〉dHn−1 ≤
∫
Γ

〈f(x, ·), νx2 〉dHn−1 ;

(ii) Fνx1 (ξ) ≥ Fνx2 (ξ) for Hn−1 -a.e. x ∈ Γ and for every ξ ∈ R .
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Remark 3.12. If ν1 and ν2 are concentrated on some measurable functions γ1 and γ2 , respectively,
then

ν1 � ν2 if and only if γ1(x) ≤ γ2(x) for Hn−1-a.e. x ∈ Γ .

The partial order � is naturally extended to Young measures Y(Γ; [−∞,∞]) by employing the
homeomorphism Φ defined in (3.8). Namely, for every ν1 , ν2 ∈ Y(Γ; [−∞,∞]) we have ν1 � ν2 if
and only if Φ#ν1 � Φ#ν2 .

In the following we recall the definition of supremum of a family of Young measures. (See [14,
Proposition 3.16] for the existence of such a Young measure.)

Definition 3.13. Let (νi)i∈I be a family of Young measures in Y(Γ; [−∞,∞]) . We say that
ν ∈ Y(Γ; [−∞,∞]) is the supremum over i ∈ I of the family (νi)i∈I , and we write

ν = sup
i∈I

νi ,

if the following two conditions hold:

(i) ν � νi for every i ∈ I ;
(ii) if ν ∈ Y(Γ; [−∞,∞]) such that ν � νi for every i ∈ I , then ν � ν .

Remark 3.14. In the case where νi are concentrated on measurable functions vi : Γ → [−∞,∞] ,
i ∈ I , we have

sup
i∈I

δvi = δv ,

where v = ess sup
i∈I

vi (cf. [14, Remark 3.17]).

Remark 3.15. If a map t 7→ ν(t) from [0, T ] to Y(Γ; [−∞,∞]) is nondecreasing with respect to � ,
then there exists a countable set E ⊂ [0, T ] such that t 7→ ν(t) is continuous in [0, T ] \ E . The
proof of this fact is an easy consequence of [14, Lemma 3.19].

4. Discrete-time evolutions

We study here the discrete-time evolutions already introduced in Section 2.
Let uk(t) , Vk(t) , and wk(t) be the piecewise constant interpolations given in (2.11). Let νk(t) ∈

Y(Γ; [0,∞]) be the Young measures concentrated on Vk(t) defined in (2.16). In the following
proposition we state the main properties satisfied by such approximate evolutions and we provide
a priori bounds for uk(t) .

Proposition 4.1. The discrete evolutions t 7→ uk(t) defined in (2.11) satisfy the following condi-
tions:

(GS)k Global stability: For every t ∈ [0, T ] we have uk(t) ∈ A (wk(t)) and

1

2

∫
Ω\Γ

|∇uk(t)|2 dx+

∫
Γ

g
(
x, Vk(t)

)
dHn−1 ≤ 1

2

∫
Ω\Γ

|∇ũ|2 dx+

∫
Γ

g
(
x, Vk(t) +

∣∣[ũ]−[uk(t)]
∣∣)dHn−1,

for every ũ ∈ A (wk(t)) .
(EI)k Energy-dissipation inequality: There exists a sequence ηk with ηk → 0 as k → ∞ such

that for every t ∈ [0, T ] we have

1

2

∫
Ω\Γ

|∇uk(t)|2 dx+

∫
Γ

g
(
x, Vk(t)

)
dHn−1

≤ 1

2

∫
Ω\Γ

|∇u0|2 dx+

∫
Γ

g
(
x, V0

)
dHn−1 +

tik∫
0

〈∇uk(s),∇ẇ(s)〉L2 ds+ ηk ,

where i ∈ {0, . . . , k} is the largest integer such that tik ≤ t .
Moreover, there exists a constant C > 0 independent of k and t such that

‖uk(t)‖H1(Ω\Γ) ≤ C for every k ∈ N and t ∈ [0, T ] . (4.1)

Proof. In order to prove the global stability (GS)k , we notice that if i is the largest integer such

that tik ≤ t , then by (2.10) we get that

Vk(t) +
∣∣[ũ]− [uk(t)]

∣∣ = V ik +
∣∣[ũ]− [uik]

∣∣ = V i−1
k +

∣∣[uik]− [ui−1
k ]

∣∣+
∣∣[ũ]− [uik]

∣∣
≥ V i−1

k +
∣∣[ũ]− [ui−1

k ]
∣∣ .
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Then we infer (GS)k by the fact that uk(t) = uik is a solution to (2.9) and by the monotonicity
of g(x, ·) .

Let us prove the energy-dissipation inequality (EI)k . Let us fix t ∈ [0, T ] , k ∈ N , and i ∈
{1, . . . , k} as in the statement (the case i = 0 being trivial). For 1 ≤ h ≤ i , the function

uh−1
k −wh−1

k +whk is an admissible competitor for the minimum problem (2.9) solved by uhk . Hence

1

2

∫
Ω\Γ

|∇uhk |2 dx+

∫
Γ

g
(
x, V hk

)
dHn−1 ≤ 1

2

∫
Ω\Γ

|∇uh−1
k |2 dx+

∫
Γ

g
(
x, V h−1

k

)
dHn−1

+

∫
Ω\Γ

∇uh−1
k · (∇whk−∇wh−1

k ) dx+
1

2

∫
Ω\Γ

|∇whk−∇wh−1
k |2 dx

≤ 1

2

∫
Ω\Γ

|∇uh−1
k |2 dx+

∫
Γ

g
(
x, V h−1

k

)
dHn−1

+

thk∫
th−1
k

〈∇uk(s),∇ẇ(s)〉L2 ds+
1

2

( thk∫
th−1
k

‖∇ẇ(s)‖L2 ds

)2

,

(4.2)

where we used our assumption (2.2) on w to deduce that

∇whk −∇wh−1
k =

thk∫
th−1
k

∇ẇ(s) ds ,

as a Bochner integral in L2 . Summing up the inequalities given by (4.2) for h = 1, . . . , i , we
get (EI)k with

ηk :=
1

2

(
max

1≤h≤k

thk∫
th−1
k

‖∇ẇ(s)‖L2 ds

)( T∫
0

‖∇ẇ(s)‖L2 ds

)
.

In particular, from (EI)k we readily deduce that there exists a constant C > 0 independent of k
and t such that ‖∇uk(t)‖L2 ≤ C . Then, by the Poincaré inequality, we get (4.1) (up to changing
the name of the constant). �

Remark 4.2. It is convenient to express the properties satisfied by uk(t) also in terms of the Young
measures νk(t) ∈ Y(Γ; [0,∞]) defined in (2.16). In Section 5, we will pass to the limit in these
conditions.

(IRY)k Irreversibility : νk(t) � νk(s)⊕
∣∣[uk(t)]− [uk(s)]

∣∣ for every s, t ∈ [0, T ] with s ≤ t .
(GSY)k Global stability : For every t ∈ [0, T ] we have uk(t) ∈ A (wk(t)) and

1

2

∫
Ω\Γ

|∇uk(t)|2 dx+

∫
Γ

〈g(x, ·), νxk (t)〉 dHn−1 ≤ 1

2

∫
Ω\Γ

|∇ũ|2 dx+

∫
Γ

〈g(x, ·), ν̃xk 〉dHn−1,

for every ũ ∈ A (wk(t)) , where ν̃k := νk(t)⊕
∣∣[ũ]− [uk(t)]

∣∣ ∈ Y(Γ; [0,∞]) .
(EIY)k Energy-dissipation inequality : For every t ∈ [0, T ]

1

2

∫
Ω\Γ

|∇uk(t)|2 dx+

∫
Γ

〈g(x, ·), νxk (t)〉 dHn−1

≤ 1

2

∫
Ω\Γ

|∇u0|2 dx+

∫
Γ

g
(
x, V0

)
dHn−1 +

tik∫
0

〈∇uk(s),∇ẇ(s)〉L2 ds+ ηk ,

where i ∈ {0, . . . , k} is the largest integer such that tik ≤ t .
Notice that (GSY)k trivially implies that

1

2

∫
Ω\Γ

|∇uk(t)|2 dx+

∫
Γ

〈g(x, ·), νxk (t)〉 dHn−1 ≤ 1

2

∫
Ω\Γ

|∇ũ|2 dx+

∫
Γ

〈g(x, ·), ν̃x〉 dHn−1,

for every ũ ∈ A (wk(t)) and for every ν̃ ∈ Y(Γ; [0,∞]) with ν̃ � νk(t)⊕
∣∣[ũ]− [uk(t)]

∣∣ .
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Remark 4.3. By passing to the limit as k →∞ in (IRY)k , we may formally obtain the irreversibility
condition for the continuous-time quasistatic evolution. (See Definition 5.1 in Section 5 below.)
Unfortunately, it is not immediate to rigorously pass to the limit in (IRY)k : as we shall see
below, in the construction of the continuous-time evolution the jumps [uk(t)] converge to [u(t)] on
subsequences possibly depending on t , thus precluding the possibility to have convergence on the
same subsequence for both [uk(t)] and [uk(s)] in (IRY)k . For this reason, we reformulate (IRY)k
in a more convenient way. We start by noticing that the condition

Vk(t) ≥ Vk(s) +
∣∣[uk(t)]− [uk(s)]

∣∣ for every s, t ∈ [0, T ] with s ≤ t ,

is equivalent to the system of inequalities

Vk(t) + [uk(t)] ≥ Vk(s) + [uk(s)] for every s, t ∈ [0, T ] with s ≤ t , (4.3)

Vk(t)− [uk(t)] ≥ Vk(s)− [uk(s)] for every s, t ∈ [0, T ] with s ≤ t . (4.4)

Let us notice that since V0 ≥
∣∣[u0]

∣∣ by (2.5), we have Vk(t)+ [uk(t)] ≥ 0 and Vk(t)− [uk(t)] ≥ 0 for
every t ∈ [0, T ] . In terms of the Young measures νk , the inequalities (4.3) and (4.4) are equivalent
to stating that the functions

t 7→ νk(t)⊕ [uk(t)] =: λ⊕k (t) ∈ Y(Γ; [0,∞]) , (4.5)

t 7→ νk(t)	 [uk(t)] =: λ	k (t) ∈ Y(Γ; [0,∞]) (4.6)

are nondecreasing with respect to t . Thanks to the Helly Selection Principle for Young measures
(Theorem 5.5), (4.5) and (4.6) are easier to handle than (IRY)k , as we shall see later in Section 5.

We conclude this section with the following proposition, which shall be used to pass to the limit
in (GSY)k as k →∞ .

Proposition 4.4. Let wk ⇀ w weakly in H1(Ω) . Let vk ∈ A (wk) and v ∈ H1(Ω \ Γ) be such
that vk ⇀ v weakly in H1(Ω \Γ) and let µk, µ ∈ Y(Γ; [0,∞]) be such that µk ⇀ µ . Let us assume
that for every k ∈ N

1

2

∫
Ω\Γ

|∇vk|2 dx+

∫
Γ

〈g(x, ·), µxk〉dHn−1 ≤ 1

2

∫
Ω\Γ

|∇ṽ|2 dx+

∫
Γ

〈g(x, ·), µ̃xk〉dHn−1 , (4.7)

for every ṽ ∈ A (wk) , where µ̃k := µk ⊕
∣∣[ṽ]− [vk]

∣∣ ∈ Y(Γ; [0,∞]) . Then v ∈ A (w) and

1

2

∫
Ω\Γ

|∇v|2 dx+

∫
Γ

〈g(x, ·), µx〉 dHn−1 ≤ 1

2

∫
Ω\Γ

|∇ṽ|2 dx+

∫
Γ

〈g(x, ·), µ̃x〉 dHn−1 , (4.8)

for every ṽ ∈ A (w) , where µ̃ := µ⊕
∣∣[ṽ]− [v]

∣∣ ∈ Y(Γ; [0,∞]) .

Proof. By the continuity of the trace operator on ∂DΩ with respect to the weak convergence in
H1(Ω\Γ) we have v ∈ A (w) . To prove (4.8), fix ṽ ∈ A (w) . Define µ̃ := µ⊕

∣∣[ṽ]−[v]
∣∣ ∈ Y(Γ; [0,∞])

and

ṽk := vk + ṽ − v ∈ A (wk) , (4.9)

µ̃k := µk ⊕
∣∣[ṽ]− [v]

∣∣ = µk ⊕
∣∣[ṽk]− [vk]

∣∣ .
Since vk ⇀ v and µk ⇀ µ , by Remark 3.10 we have

ṽk ⇀ ṽ weakly in H1(Ω \ Γ) , (4.10)

µ̃k ⇀ µ̃ narrowly. (4.11)

From (4.7) we get that

1

2

∫
Ω\Γ

|∇vk|2 dx+

∫
Γ

〈g(x, ·), µxk〉 dHn−1 ≤ 1

2

∫
Ω\Γ

|∇ṽk|2 dx+

∫
Γ

〈g(x, ·), µ̃xk〉 dHn−1. (4.12)

We now use a classical quadratic trick. By (4.9), we infer that

1

2

∫
Ω\Γ

|∇vk|2 dx− 1

2

∫
Ω\Γ

|∇ṽk|2 dx =
1

2

∫
Ω\Γ

(∇vk −∇ṽk) · (∇vk +∇ṽk) dx

=
1

2

∫
Ω\Γ

(∇v −∇ṽ) · (2∇vk +∇ṽ −∇v) dx .

(4.13)
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Thanks to (4.11) we deduce that∫
Γ

〈g(x, ·), µ̃xk〉 dHn−1 →
∫
Γ

〈g(x, ·), µ̃x〉 dHn−1. (4.14)

Since vk ⇀ v and µk ⇀ µ , by (4.12)–(4.14) we have

1

2

∫
Ω\Γ

(∇v −∇ṽ) · (∇v +∇ṽ) dx+

∫
Γ

〈g(x, ·), µx〉 dHn−1 ≤
∫
Γ

〈g(x, ·), µ̃x〉 dHn−1,

from which we easily conclude that (4.8) holds. �

5. Quasistatic evolution in the setting of Young measures

In this section we study the continuous-time limit of the discrete evolutions uk(t) constructed in
Section 4. The limit of the sequence of (Young measures concentrated on) functions νk(t) defined
in (2.16) can only be found in the space of Young measures Y(Γ; [0,∞]) . For this reason we require
a definition of quasistatic evolution in a generalised sense.

Definition 5.1. Let w , u0 , and V0 be as in (2.2)–(2.5). A quasistatic evolution in the sense
of Young measures with initial conditions (u0, V0) and boundary datum w is a function t 7→
(u(t), ν(t)) defined in [0, T ] with values in H1(Ω \ Γ) × Y(Γ; [0,∞]) that satisfies u(0) = u0 ,
ν(0) = δV0 , and the following conditions:

(IRY) Irreversibility : ν(t) � ν(s)⊕
∣∣[u(t)]− [u(s)]

∣∣ for every s, t ∈ [0, T ] with s ≤ t .
(GSY) Global stability : For every t ∈ [0, T ] , u(t) ∈ A (w(t)) and

1

2

∫
Ω\Γ

|∇u(t)|2 dx+

∫
Γ

〈g(x, ·), νx(t)〉 dHn−1 ≤ 1

2

∫
Ω\Γ

|∇ũ|2 dx+

∫
Γ

〈g(x, ·), ν̃x〉 dHn−1,

for every ũ ∈ A (w(t)) , where ν̃ := ν(t)⊕
∣∣[ũ]− [u(t)]

∣∣ ∈ Y(Γ; [0,∞]) .
(EBY) Energy-dissipation balance: For every t ∈ [0, T ]

1

2

∫
Ω\Γ

|∇u(t)|2 dx+

∫
Γ

〈g(x, ·), νx(t)〉dHn−1

=
1

2

∫
Ω\Γ

|∇u0|2 dx+

∫
Γ

g(x, V0) dHn−1 +

t∫
0

〈∇u(s),∇ẇ(s)〉L2 ds .

Remark 5.2. In order to recognise the connection with the classical notion of quasistatic evolution,
we notice that t 7→ u(t) is a quasistatic evolution (Definition 2.6) if and only if t 7→ (u(t), δVu(t)) is
a quasistatic evolution in the sense of Young measures (Definition 5.1), where Vu(t) is the function
defined in (2.3). Indeed, the irreversibility condition (IRY) of Definition 5.1 automatically holds
for t 7→ δVu(t) by definition of essential variation. Moreover, (GS) and (EB) correspond to (GSY)
and (EBY), since the Young measure considered in this case is concentrated on Vu(t) .

Remark 5.3. Notice that (GSY) trivially implies that

1

2

∫
Ω\Γ

|∇u(t)|2 dx+

∫
Γ

〈g(x, ·), νx(t)〉 dHn−1 ≤ 1

2

∫
Ω\Γ

|∇ũ|2 dx+

∫
Γ

〈g(x, ·), ν̃x〉 dHn−1,

for every ũ ∈ A (w(t)) and for every ν̃ ∈ Y(Γ; [0,∞]) with ν̃ � ν(t)⊕
∣∣[ũ]− [u(t)]

∣∣ .
Moreover we underline that (IRY) is a stronger condition than the monotonicity of t 7→ ν(t)

and dictates a relationship between ν and [u] .

In the following theorem we prove the existence of a quasistatic evolution in the sense of Young
measures. As explained in Section 2, this result will be then improved in Section 6 by showing that
the truncated Young measures T θ#ν(t) are concentrated on the function Vu(t)∧ θ which represents
the cumulation of the jumps on Γ.

Theorem 5.4 (Existence of quasistatic evolutions in the sense of Young measures). Assume that
g satisfies (g1)–(g4) and let w , u0 , and V0 be as in (2.2), (2.4), and (2.5). Assume that the pair
(u0, δV0) is globally stable, i.e., (2.8) holds. Then there exists a quasistatic evolution in the sense of
Young measures t 7→ (u(t), ν(t)) with initial conditions (u0, V0) and boundary datum w .
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Before starting the proof of Theorem 5.4, we recall the following Helly Selection Principle for
Young measures due to Cagnetti and Toader ([14, Theorem 3.20]). This is a key tool for the proof
of our result. Notice that [14, Theorem 3.20] is stated for Young measures with values in R instead
of [−∞,∞] .

Theorem 5.5. Let t 7→ νk(t) , k ∈ N , be functions defined on [0, T ] with values in Y(Γ; [−∞,∞])
that are nondecreasing with respect to � . Then there exists a subsequence νkj , independent of
t , and a nondecreasing map t 7→ ν(t) from [0, T ] to Y(Γ; [−∞,∞]) such that νkj (t) ⇀ ν(t) , as
j →∞ , for every t ∈ [0, T ] .

Proof. The result follows from a straightforward application of [14, Theorem 3.20] to the sequence
of nondecreasing maps Φ#νk(t) ∈ Y(Γ; [−1, 1]) , where Φ is the homeomorphism Φ defined in (3.8).

�

In the rest of this section, we give a proof of Theorem 5.4.

Construction of the evolution. Let us consider the Young measures νk(t) defined in (2.16). The
starting point of the proof is the construction of a limit of νk(t) as k → ∞ . Since the functions
t 7→ νk(t) ∈ Y(Γ; [0,∞]) are increasing with respect to the order � , we can apply Theorem 5.5 to
deduce that there exists a subsequence (independent of t and still denoted by νk ) and an increasing
function t 7→ ν(t) from [0, T ] to Y(Γ; [0,∞]) such that

νk(t) ⇀ ν(t) narrowly for every t ∈ [0, T ] . (5.1)

Unfortunately, the convergence in (5.1) is not enough to guarantee that the irreversibility condi-
tion (IRY) holds for ν(t) . In other words, it is nontrivial to pass to the limit in the discrete version
of the irreversibility condition (IRY)k . Nonetheless, by Remark 4.3, we know that the functions

t 7→ λ⊕k (t) and t 7→ λ	k (t) defined in (4.5) and (4.6) are increasing. Hence we can apply again
Theorem 5.5 and deduce that there exists a subsequence independent of t (not relabelled) and two
increasing functions t 7→ λ⊕(t) ∈ Y(Γ; [0,∞]) and t 7→ λ	(t) ∈ Y(Γ; [0,∞]) such that

λ⊕k (t) ⇀ λ⊕(t) narrowly for every t ∈ [0, T ] , (5.2)

λ	k (t) ⇀ λ	(t) narrowly for every t ∈ [0, T ] . (5.3)

The monotonicity of both the functions λ⊕ and λ	 encodes the irreversibility of the process in the
continuous-time evolution.

We are now in a position to construct a limit of the sequence uk(t) . Thanks to (4.1), we have
‖uk(t)‖H1(Ω\Γ) ≤ C , where the constant C is independent of k and t . Let t ∈ [0, T ] and let kj(t)
be a subsequence of k such that

ukj(t)(t) ⇀ u(t) weakly in H1(Ω \ Γ) , (5.4)

for some function u(t) ∈ H1(Ω \ Γ).

Remark 5.6. A priori, the function u(t) depends on the subsequence kj(t) such that (5.4) holds.
Nevertheless, we shall prove that

uk(t)→ u(t) strongly in H1(Ω \ Γ) (5.5)

on the whole sequence (independent of t) found by the Helly Selection Principle (cf. (5.1)–(5.3)).
We remark that also the topology of the convergence is improved. The convergence in (5.5) will

be proved later in this section by showing that the function u(t) is characterised as the unique
solution to a minimum problem (Proposition 5.7). The convergence with respect to the strong
topology of H1(Ω \ Γ) will be a consequence of the energy-dissipation balance (EBY).

Proof of irreversibility. We can now infer (IRY) from the monotonicity of the functions λ⊕
and λ	 obtained in (5.2) and (5.3). Indeed, from (5.4) we deduce that [ukj(t)]→ [u(t)] strongly in

L2(Γ). By (5.1) and by Remark 3.10 this implies that λ⊕kj(t)(t) = νkj(t)(t)⊕[ukj(t)(t)] ⇀ ν(t)⊕[u(t)] .

Thus, from (5.2) we deduce that
λ⊕(t) = ν(t)⊕ [u(t)] , (5.6)

and therefore that the function t 7→ ν(t) ⊕ [u(t)] is increasing. Similarly one can prove that
λ	(t) = ν(t)	 [u(t)] and that t 7→ ν(t)	 [u(t)] is increasing. Therefore, for every s, t ∈ [0, T ] with
s ≤ t we have

ν(t)⊕ [u(t)] � ν(s)⊕ [u(s)] ,

ν(t)	 [u(t)] � ν(s)	 [u(s)] .

It is immediate to see that the previous inequalities imply (IRY).
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In order to prove (5.5), it is convenient to make the following key observations:

• the Young measures λ⊕(t) and ν(t) are obtained as limits of a sequence independent of t ;
• the jump [u(t)] can be recovered just from λ⊕(t) and ν(t) thanks to (5.6).

We now make precise the previous statements. We start by observing that if x ∈ Γ is such that
λx⊕(t) = νx(t) = δ∞ , then [u(t;x)] is not uniquely determined by (5.6). For this reason we introduce
the set

ΓN (t) := {x ∈ Γ : νx(t) � δθ(x)} , (5.7)

which corresponds to the subset of Γ where the material is completely fractured. For Hn−1 -a.e.

x ∈ Γ \ ΓN (t) there exists a mass mx ∈ (0, 1] such that F
[−1]

νx(t)(mx) ∈ [0, θ(x)) , where F
[−1]

νx(t) is

the pseudo-inverse of the cumulative distribution function Fνx(t) of νx(t) (cf. (3.4) and (3.5)). In

particular, we have that F
[−1]

νx(t)(mx) is finite. By (5.6) and by the definition of pseudo-inverse, it is

easy to see that

F
[−1]

λx⊕(t)(mx)− F [−1]

νx(t)(mx) = [u(t;x)] for Hn−1-a.e. x ∈ Γ \ ΓN (t) . (5.8)

(We remark that, if instead x ∈ ΓN (t) , it may happen that νx(t) = δ∞ , and thus F
[−1]

νx(t)(m) =∞
for every m ∈ (0, 1] . This does not allow us to infer (5.8).) Therefore, we can define a measurable
function γ(t) : Γ \ ΓN (t)→ R by

γ(t;x) := F
[−1]

λx⊕(t)(mx)− F [−1]

νx(t)(mx) , (5.9)

for Hn−1 -a.e. x ∈ Γ \ ΓN (t) . We stress that the function γ(t) is obtained independently of the
subsequence kj(t) . The proof of (5.5) will be continued after the proof of (GSY) and (EBY).

Proof of global stability. The global stability (GSY) directly follows from Proposition 4.4, since
ukj(t)(t) and νkj(t)(t) satisfy condition (GSY)k and by (5.4) and (5.1).

In general, the function u(t) is not uniquely determined by (GSY), because u(t) appears both
in the left-hand side and in the right-hand side of (GSY); specifically, ν̃ depends on u(t) . However,
we have shown that the jump of u(t) is given by the function γ(t) defined in (5.9) independently
of the subsequence kj(t) . This allows us to prove the following result.

Proposition 5.7. The function u(t) obtained in (5.4) is the unique solution to the minimum
problem

min
ũ

{1

2

∫
Ω\Γ

|∇ũ|2 dx : ũ ∈ A (w(t)) such that [ũ(x)] = γ(t;x) for Hn−1-a.e. x ∈ Γ \ ΓN (t)
}
,

(5.10)
where ΓN (t) is the set defined in (5.7) and γ(t) is the function defined in (5.9).

Remark 5.8. Notice that Proposition 5.7 holds true also when Hn−1(Γ \ΓN (t)) = 0, i.e., when the
material is completely fractured on the whole surface Γ. In this case, the competitors in (5.10) are
all functions ũ ∈ A (w(t)) (without any constraint on the jump).

Proof of Proposition 5.7. We have already observed (see (5.8)) that [u(t)] = γ(t) Hn−1 -a.e. on
Γ \ ΓN (t) . Let us fix ũ ∈ A (w(t)) such that [ũ] = γ(t) = [u(t)] Hn−1 -a.e. on Γ \ ΓN (t) . Setting
ν̃ := ν(t)⊕

∣∣[ũ]− [u(t)]
∣∣ , by (GSY) we have

1

2

∫
Ω\Γ

|∇u(t)|2 dx+

∫
Γ

〈g(x, ·), νx(t)〉 dHn−1 ≤ 1

2

∫
Ω\Γ

|∇ũ|2 dx+

∫
Γ

〈g(x, ·), ν̃x〉 dHn−1. (5.11)

Since ν̃x � νx(t) � δθ(x) for Hn−1 -a.e. x ∈ ΓN (t) and since g(x, ξ) = κ(x) for every ξ ∈ [θ(x),∞] ,
we deduce that∫

ΓN (t)

〈g(x, ·), νx(t)〉dHn−1 =

∫
ΓN (t)

〈g(x, ·), ν̃x〉dHn−1 =

∫
ΓN (t)

κ(x) dHn−1(x) .

Therefore (5.11) is equivalent to

1

2

∫
Ω\Γ

|∇u(t)|2 dx+

∫
Γ\ΓN (t)

〈g(x, ·), νx(t)〉 dHn−1 ≤ 1

2

∫
Ω\Γ

|∇ũ|2 dx+

∫
Γ\ΓN (t)

〈g(x, ·), ν̃x〉dHn−1.
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Since [ũ] = [u(t)] Hn−1 -a.e. on Γ \ΓN (t) , we have ν̃x = νx(t) for Hn−1 -a.e. x ∈ Γ \ΓN (t) , hence
the previous inequality reads

1

2

∫
Ω\Γ

|∇u(t)|2 dx ≤ 1

2

∫
Ω\Γ

|∇ũ|2 dx .

This proves that u(t) is a solution to (5.10).
The argument to prove uniqueness is standard: if u1 and u2 were two different solutions to

(5.10), then ũ := 1
2
(u1 + u2) would be an admissible competitor; by strict convexity,

1

2

∫
Ω\Γ

|∇ũ|2 dx =
1

2

∫
Ω\Γ

∣∣∣∇u1 +∇u2

2

∣∣∣2 dx <
1

4

∫
Ω\Γ

|∇u1|2 dx+
1

4

∫
Ω\Γ

|∇u2|2 dx =
1

2

∫
Ω\Γ

|∇u1|2 dx .

This contradicts the minimality. �

Remark 5.9. The minimum problem (5.10) is independent of the subsequence kj(t) . As a conse-
quence, we have shown that if kj(t) is such that ukj(t) ⇀ u(t) , then u(t) is the unique solution

to (5.10). Thus u(t) does not depend on kj(t) , and this implies that

uk(t) ⇀ u(t) weakly in H1(Ω \ Γ) for every t ∈ [0, T ] (5.12)

on the whole sequence (independent of t) found by the Helly Selection Principle (cf. (5.1)–(5.3)).
In particular, by (4.1) we have

‖u(t)‖H1(Ω\Γ) ≤ C . (5.13)

After proving the energy-dissipation balance, it will turn out that the convergence is strong in
H1(Ω \ Γ).

Proof of energy-dissipation balance. Before proving (EBY), we show that the function t 7→
u(t) is continuous with respect to the weak topology for almost every time. This result allows for
a simple proof of the energy-dissipation balance.

Lemma 5.10. There exists a countable set E ⊂ [0, T ] such that for every t ∈ [0, T ] \ E

u(s) ⇀ u(t) weakly in H1(Ω \ Γ) , (5.14)

ν(s) ⇀ ν(t) narrowly in Y(Γ; [0,∞]) . (5.15)

as s→ t .

Proof. Since the functions t 7→ λ⊕(t) and t 7→ ν(t) are nondecreasing, we can find a countable set
E ⊂ [0, T ] such that both λ⊕ and ν are continuous (with respect to the narrow topology) in t for
every t ∈ [0, T ] \E . (See Remark 3.15.) Thus, given t ∈ [0, T ] \E and a sequence sk → t , we have

λ⊕(sk) ⇀ λ⊕(t) , ν(sk) ⇀ ν(t) . (5.16)

Thanks to (5.13), we can extract a subsequence (not relabelled) such that

u(sk) ⇀ u∗ weakly in H1(Ω \ Γ) (5.17)

for some u∗ ∈ H1(Ω \ Γ). By Proposition 4.4, we infer that u∗ ∈ A (w(t)) and

1

2

∫
Ω\Γ

|∇u∗|2 dx+

∫
Γ

〈g(x, ·), νx(t)〉 dHn−1 ≤ 1

2

∫
Ω\Γ

|∇ũ|2 dx+

∫
Γ

〈g(x, ·), ν̃x〉 dHn−1 ,

for every ũ ∈ A (w(t)) , where ν̃ = ν(t)⊕
∣∣[ũ]− [u∗]

∣∣ .
On the other hand, by (5.6), we have λ⊕(sk) = ν(sk) ⊕ [u(sk)] . By (5.16), (5.17), and Re-

mark 3.10 we deduce that λ⊕(t) = ν(t) ⊕ [u∗] . Hence, by (5.9), we obtain that [u∗(x)] = γ(t;x)
for Hn−1 -a.e. x ∈ Γ \ ΓN (t) . Therefore, arguing as in the proof of Proposition 5.7, we infer that
u∗ is a solution to the minimum problem (5.10). By uniqueness of the solution we get u∗ = u(t) ,
which concludes the proof. �

Remark 5.11. Lemma 5.10 will be improved in Proposition 5.13 below by showing that the continuity
actually holds with respect to the strong topology.

Let us now prove (EBY). We start by proving the inequality

1

2

∫
Ω\Γ

|∇u(t)|2 dx+

∫
Γ

〈g(x, ·), νx(t)〉dHn−1

≤ 1

2

∫
Ω\Γ

|∇u0|2 dx+

∫
Γ

g(x, V0) dHn−1 +

t∫
0

〈∇u(s),∇ẇ(s)〉L2 ds .
(5.18)
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By (5.1), (5.12), and by (EIY)k , for every t ∈ [0, T ] we have

1

2

∫
Ω\Γ

|∇u(t)|2 dx+

∫
Γ

〈g(x, ·), νx(t)〉 dHn−1

≤ lim inf
k→∞

[
1

2

∫
Ω\Γ

|∇uk(t)|2 dx+

∫
Γ

〈g(x, ·), νxk (t)〉 dHn−1

]

≤ 1

2

∫
Ω\Γ

|∇u0|2 dx+

∫
Γ

g(x, V0) dHn−1 + lim sup
k→∞

tik∫
0

〈∇uk(s),∇ẇ(s)〉L2 ds ,

(5.19)

where i ∈ {0, . . . , k} is the largest integer such that tik ≤ t . Thanks to (5.12) we know that

〈∇uk(s),∇ẇ(s)〉L2 → 〈∇u(s),∇ẇ(s)〉L2 for every s ∈ [0, t] .

Moreover, from (4.1) we deduce that

〈∇uk(s),∇ẇ(s)〉L2 ≤ ‖∇uk(s)‖L2‖∇ẇ(s)‖L2 ≤ C‖∇ẇ(s)‖L2 ,

for every s ∈ [0, T ] . By our assumption (2.2) on w , the function t 7→ ∇ẇ(t) is L1([0, T ];L2(Ω\Γ)),
so we can apply the Dominated Convergence Theorem to infer that

lim sup
k→∞

tik∫
0

〈∇uk(s),∇ẇ(s)〉L2 ds = lim
k→∞

t∫
0

〈∇uk(s),∇ẇ(s)〉L2 ds =

t∫
0

〈∇u(s),∇ẇ(s)〉L2 ds . (5.20)

Together with (5.19), the previous inequality yields (5.18).
We now exploit the global stability to prove, for a fixed t ∈ [0, T ] , the opposite inequality

1

2

∫
Ω\Γ

|∇u(t)|2 dx+

∫
Γ

〈g(x, ·), νx(t)〉dHn−1

≥ 1

2

∫
Ω\Γ

|∇u0|2 dx+

∫
Γ

g(x, V0) dHn−1 +

t∫
0

〈∇u(s),∇ẇ(s)〉L2 ds .
(5.21)

For every k ∈ N , let us consider the subdivision of the time interval [0, t] given by the k+1
equispaced nodes

shk := h
k
t for h = 0, . . . , k .

Let h ∈ {1, . . . , k} . By the irreversibility condition (IRY), we have ν(shk) � ν(sh−1
k ) ⊕

∣∣[u(shk)] −
[u(sh−1

k )]
∣∣ =: ν̃h . Since u(shk)− w(shk) + w(sh−1

k ) ∈ A (w(sh−1
k )) , by (GSY) we obtain

1

2

∫
Ω\Γ

|∇u(sh−1
k )|2 dx+

∫
Γ

〈g(x, ·), νx(sh−1
k )〉 dHn−1

≤ 1

2

∫
Ω\Γ

|∇u(shk)|2 dx+

∫
Γ

〈g(x, ·), ν̃xh〉 dHn−1

−
∫

Ω\Γ

∇u(shk) · (∇w(shk)−∇w(sh−1
k )) dx+

1

2

∫
Ω\Γ

|∇w(shk)−∇w(sh−1
k )|2 dx

≤ 1

2

∫
Ω\Γ

|∇u(shk)|2 dx+

∫
Γ

〈g(x, ·), νx(shk)〉dHn−1

−

shk∫
sh−1
k

〈∇uk(s),∇ẇ(s)〉L2 ds+
1

2

( shk∫
sh−1
k

‖∇ẇ(s)‖L2 ds

)2

,

(5.22)

where

uk(s) := u(shk) for every s ∈ (sh−1
k , shk ] .

Summing up the inequalities given by (5.22) for h = 1, . . . , k , we get

1

2

∫
Ω\Γ

|∇u(t)|2 dx+

∫
Γ

〈g(x, ·), νx(t)〉 dHn−1

≥ 1

2

∫
Ω\Γ

|∇u0|2 dx+

∫
Γ

g(x, V0) dHn−1 +

t∫
0

〈∇uk(s),∇ẇ(s)〉L2 ds− ηk ,
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where

ηk :=
1

2

(
max

1≤h≤k

shk∫
sh−1
k

‖∇ẇ(s)‖L2 ds

)( T∫
0

‖∇ẇ(s)‖L2 ds

)
.

In order to infer (5.21), we notice that by Lemma 5.10 we have uk(s) ⇀ u(s) for almost every
s ∈ [0, t] , and therefore

lim
k→∞

t∫
0

〈∇uk(s),∇ẇ(s)〉L2 ds =

t∫
0

〈∇u(s),∇ẇ(s)〉L2 ds ,

by the Dominated Convergence Theorem. This concludes the proof of (EBY) and of Theorem 5.4.

Approximation of the evolution and continuity for almost every time. Thanks to (EBY),
we prove the convergence of the approximating evolutions (5.5) and we improve Lemma 5.10.

Proposition 5.12. We have

uk(t)→ u(t) strongly in H1(Ω \ Γ)

on the whole sequence (independent of t) such that (5.1)–(5.3) hold.

Proof. By (5.1) and (5.12), for every t ∈ [0, T ] we have

1

2

∫
Ω\Γ

|∇u(t)|2 dx+

∫
Γ

〈g(x, ·), νx(t)〉dHn−1 ≤ lim inf
k→∞

[
1

2

∫
Ω

|∇uk(t)|2 dx+

∫
Γ

〈g(x, ·), νxk (t)〉dHn−1

]
.

(5.23)

On the other hand, by (5.20), (EBY), and (EIY)k we get

lim sup
k→∞

[
1

2

∫
Ω

|∇uk(t)|2 dx+

∫
Γ

〈g(x, ·), νxk (t)〉 dHn−1

]

≤ 1

2

∫
Ω\Γ

|∇u0|2 dx+

∫
Γ

g(x, V0) dHn−1 +

t∫
0

〈∇u(s),∇ẇ(s)〉L2 ds

=
1

2

∫
Ω\Γ

|∇u(t)|2 dx+

∫
Γ

〈g(x, ·), νx(t)〉 dHn−1.

(5.24)

Thus all inequalities in (5.23) and (5.24) are equalities. Since∫
Γ

〈g(x, ·), νxk (t)〉 dHn−1 →
∫
Γ

〈g(x, ·), νx(t)〉 dHn−1,

we have ‖∇uk(t)‖L2 → ‖∇u(t)‖L2 . Thanks to (5.12), this concludes the proof. �

Proposition 5.13. There exists a countable set E ⊂ [0, T ] such that for every t ∈ [0, T ] \ E

u(s)→ u(t) strongly in H1(Ω \ Γ) , (5.25)

ν(s) ⇀ ν(t) narrowly in Y(Γ; [0,∞]) . (5.26)

as s→ t .

Proof. By (EBY) we have for every s, t ∈ [0, T ]

1

2

∫
Ω\Γ

|∇u(t)|2 dx+

∫
Γ

〈g(x, ·), νx(t)〉dHn−1

=
1

2

∫
Ω\Γ

|∇u(s)|2 dx+

∫
Γ

〈g(x, ·), νx(s)〉dHn−1 +

t∫
s

〈∇u(r),∇ẇ(r)〉L2 dr .

Thus, if t is a continuity point for the nondecreasing function s 7→ ν(s) , we have ‖∇u(s)‖L2 →
‖∇u(t)‖L2 as s → t , since r 7→ 〈∇u(r),∇w(r)〉L2 is in L1([0, T ]) by (2.2) and (5.13). By
Lemma 5.10, this gives the desired convergence. �

This concludes the proof of Theorem 5.4.
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6. Quasistatic evolution in the setting of functions

This section is devoted to the proof of Theorem 2.9. Besides, we also give a proof of Proposi-
tion 2.7 and of Proposition 2.8 regarding the strong formulation of the quasistatic evolution. Finally,
we mention some possible extensions of the model studied in this paper.

In Section 5 we have shown the existence of a quasistatic evolution (u(t), ν(t)) in the sense
of Young measures. We will now exploit the concavity of g(x, ·) to prove that the very same
displacement t 7→ u(t) found in Section 5 is also a quasistatic evolution in the sense of Definition 2.6.
We recall that g(x, ·) is strictly increasing in the interval [0, θ(x)] , where θ(x) is the threshold
defined in (2.6). This allows us to prove that the Young measure ν(t) truncated by θ is actually
concentrated on Vu(t) ∧ θ , i.e., Vu(t) ∧ θ is the limit of Vk(t) ∧ θ .

By truncation of a Young measure we mean the following. Given ν ∈ Y(Γ; [0,∞]) and a mea-
surable function θ : Γ→ [0,∞] , we consider the map T θ : Γ×[0,∞]→ Γ×[0,∞] defined by

T θ(x, ξ) := (x, ξ ∧ θ(x)) (6.1)

and we say that the push-forward T θ#ν (see the definition (3.2)) is the truncation of ν by θ .

Remark 6.1. In this case, the cumulative distribution function of the measure (T θ#ν)x is given by

F(T θ
#
ν)x(ξ) =

{
Fνx(ξ) if ξ < θ(x) ,

1 if ξ ≥ θ(x) ,

for Hn−1 -a.e. x ∈ Γ. Moreover, if νj ⇀ ν in Y(Γ; [0,∞]) , then by Remark 3.5 we have T θ#νj ⇀ T θ#ν
in Y(Γ; [0,∞]) .

Proof of Theorem 2.9. By Theorem 5.4 and Proposition 5.12, we know that there exists a quasistatic
evolution in the sense of Young measures t 7→ (u(t), ν(t)) such that, for every t ∈ [0, T ] , we
have (2.12) and

δVk(t) = νk(t) ⇀ ν(t) in Y(Γ; [0,∞]) , (6.2)

up to a subsequence independent of t (not relabelled).
In order to prove (GS), we first prove that

ν(t) � δVu(t) for every t ∈ [0, T ] . (6.3)

By definition of Vu(t) and Remark 3.14, it is enough to show that for any partition P of [0, t] ,
P = {0 = s0 < s1 < · · · < sj−1 < sj = t} , we have

ν(t) � δV P(t) , (6.4)

where

V P(t) := V0 +

j∑
i=1

∣∣[u(si)]− [u(si−1)]
∣∣ .

The irreversibility condition (IRY) satisfied by s 7→ ν(s) yields

ν(si) � ν(si−1)⊕
∣∣[u(si)]− [u(si−1)]

∣∣ for i = 1, . . . , j . (6.5)

Employing (6.5) inductively, we obtain the chain of inequalities

ν(t) = ν(sj) � ν(sj−1)⊕
∣∣[u(sj)]− [u(sj−1)]

∣∣
� ν(sj−2)⊕

(∣∣[u(sj−1)]− [u(sj−2)]
∣∣+
∣∣[u(sj)]− [u(sj−1)]

∣∣) � . . .
� ν(s1)⊕

j∑
i=2

∣∣[u(si)]− [u(si−1)]
∣∣

� ν(0)⊕
j∑
i=1

∣∣[u(si)]− [u(si−1)]
∣∣ = δV P(t) ,

and thus (6.3) holds true.
Recalling the definition of cumulative distribution function (3.4), we have FδVu(t;x)

(ξ) = 0 for

ξ < Vu(t;x) . Thus, by (ii) in Definition 3.11, we deduce that

supp νx(t) ⊂ [Vu(t;x),∞] (6.6)

for every t ∈ [0, T ] and for Hn−1 -a.e. x ∈ Γ.



22 V. CRISMALE, G. LAZZARONI, AND G. ORLANDO

We are now in a position to prove that t 7→ u(t) satisfies the global stability condition (GS).
We start by fixing t ∈ [0, T ] and ũ ∈ A (w(t)) , and by setting

ν̃ := ν(t)⊕
∣∣[ũ]− [u(t)]

∣∣ . (6.7)

Condition (GSY) for t 7→ (u(t), ν(t)) gives

1

2

∫
Ω\Γ

|∇u(t)|2 dx+

∫
Γ

〈g(x, ·), νx(t)〉 dHn−1 ≤ 1

2

∫
Ω\Γ

|∇ũ|2 dx+

∫
Γ

〈g(x, ·), ν̃x〉 dHn−1,

and thus (GS) follows if we show that∫
Γ

(
〈g(x, ·), ν̃x〉−〈g(x, ·), νx(t)〉

)
dHn−1 ≤

∫
Γ

(
g
(
x, Vu(t)+

∣∣[ũ]−[u(t)]
∣∣)−g(x, Vu(t)

))
dHn−1. (6.8)

In order to prove (6.8), notice that by (6.6) and (6.7) we have

〈g(x, ·), ν̃x〉 − 〈g(x, ·), νx(t)〉 =

∫
[0,∞]

(
g
(
x, ξ +

∣∣[ũ(x)]−[u(t;x)]
∣∣)− g(x, ξ)

)
νx(t)(dξ)

=

∫
[Vu(t;x),∞]

(
g
(
x, ξ +

∣∣[ũ(x)]−[u(t;x)]
∣∣)− g(x, ξ)

)
νx(t)(dξ) ,

(6.9)

for Hn−1 -a.e. x ∈ Γ. Since g(x, ·) is a concave function, for every ξ ≥ Vu(t;x) it holds

g
(
x, ξ +

∣∣[ũ(x)]−[u(t;x)]
∣∣)− g(x, ξ) ≤ g

(
x, Vu(t;x) +

∣∣[ũ(x)]−[u(t;x)]
∣∣)− g(x, Vu(t;x)

)
. (6.10)

Let us observe that the right hand side in the inequality above does not depend on ξ . There-
fore, by (6.9), (6.10), and recalling that νx(t) is a probability measure for Hn−1 -a.e. x ∈ Γ, we
deduce (6.8). This completes the proof of (GS).

Let us now prove that t 7→ u(t) satisfies (EB). Arguing as in the proof of (5.21), using (GS) it
is possible to see that

1

2

∫
Ω\Γ

|∇u(t)|2 dx+

∫
Γ

g
(
x, Vu(t)

)
dHn−1

≥ 1

2

∫
Ω\Γ

|∇u0|2 dx+

∫
Γ

g
(
x, V0

)
dHn−1 +

t∫
0

〈∇u(s),∇ẇ(s)〉L2 ds .

On the other hand, the opposite inequality follows immediately from (EBY) since by (6.3) we have∫
Γ

g
(
x, Vu(t)

)
dHn−1 ≤

∫
Γ

〈g(x, ·), νx(t)〉 dHn−1.

Therefore, t 7→ u(t) is a quasistatic evolution in the sense of Definition 2.6.
We now claim that the truncation T θ#ν(t) (see (6.1) for the definition) is concentrated on Vu(t)∧

θ . To this end, we compare (EB) and (EBY), and deduce that for every t ∈ [0, T ]∫
Γ

g
(
x, Vu(t)

)
dHn−1 =

∫
Γ

〈g(x, ·), νx(t)〉 dHn−1. (6.11)

Since by (6.3) and Definition 3.11 we have g
(
x, Vu(t;x)

)
≤ 〈g(x, ·), νx(t)〉 , equality (6.11) implies

that
g
(
x, Vu(t;x)

)
= 〈g(x, ·), νx(t)〉 (6.12)

for Hn−1 -a.e. x ∈ Γ. Let us now fix t and let x be such that (6.6) holds. To prove the claim, we
need to show that if Vu(t;x) < θ(x) , then νx(t)

(
(Vu(t;x),∞]

)
= 0. Let us assume, on the contrary,

that νx(t)
(
(Vu(t;x),∞]

)
= c ∈ (0, 1] . By (6.6) we know that

〈g(x, ·), νx(t)〉 = g(x, Vu(t;x))(1− c) +

∫
(Vu(t;x),∞]

g(x, ξ) νx(t)(dξ) ,

and thus

〈g(x, ·), νx(t)〉 − g
(
x, Vu(t;x)

)
=

∫
(Vu(t;x),∞]

(
g(x, ξ)− g(x, Vu(t;x))

)
νx(t)(dξ) . (6.13)

Since g(x, ·) is strictly increasing in [0, θ(x)] and νx(t) ((Vu(t;x),∞]) > 0, we get that the right-
hand side in (6.13) is strictly positive. This contradicts (6.12), and therefore we have proved that
T θ#ν(t) is concentrated on Vu(t) ∧ θ .
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Eventually, using also (6.2) and Remark 6.1, we deduce that

δVk(t)∧θ = T θ#νk(t) ⇀ T θ#ν(t) = δVu(t)∧θ in Y(Γ; [0,∞]) . (6.14)

By Proposition 3.8, (6.14) is equivalent to (2.13).
As for the proof of (2.14) and (2.15), we notice that by Proposition 5.13 there exists a set E , at

most countable, such that we have (2.14) and ν(s) ⇀ ν(t) in Y(Γ; [0,∞]) , for t ∈ [0, T ] \ E and
s→ t . The convergence in (2.15) then follows with an argument analogous to the one used to show
(2.13).

This concludes the proof. �

Remark 6.2. In the proof of Theorem 2.9, we have shown that T θ#ν(t) = δVu(t)∧θ . In particular,
this allows us to rewrite the set ΓN (t) introduced in (5.7) (corresponding to the part of Γ where the
material is completely fractured) in terms of the variation of the jumps Vu(t) and the threshold θ .
Namely, we have

ΓN (t) = {x ∈ Γ : Vu(t;x) ≥ θ(x)} .

We now give the proof of the results concerning the strong formulation of the quasistatic evo-
lution discussed in Section 2. The derivation of the Euler-Lagrange conditions follows by standard
arguments illustrated below.

Proof of Proposition 2.7. Let consider the set ΓN (t) = {x ∈ Γ : Vu(t;x) ≥ θ(x)} . Let ψ ∈
H1(Ω \ Γ) with ψ = 0 on ∂DΩ and let ε ∈ R . Since∫

ΓN (t)

g
(
x, Vu(t)

)
dHn−1 =

∫
ΓN (t)

κ(x) dHn−1 =

∫
ΓN (t)

g
(
x, Vu(t) +

∣∣ε[ψ]
∣∣)dHn−1

and u(t) + εψ ∈ A (w(t)) , by (GS) we have

1

2

∫
Ω\Γ

|∇u(t)|2 dx+

∫
Γ\ΓN (t)

g
(
x, Vu(t)

)
dHn−1

≤ 1

2

∫
Ω\Γ

|∇u(t) + ε∇ψ|2 dx+

∫
Γ\ΓN (t)

g
(
x, Vu(t) +

∣∣ε[ψ]
∣∣)dHn−1 .

Since g is of class C1 , differentiating the previous inequality with respect to ε for ε > 0 and ε < 0,
we get

−
∫

Γ\ΓN (t)

g′
(
x, Vu(t)

)∣∣[ψ]
∣∣ dHn−1 ≤

∫
Ω\Γ

∇u(t) · ∇ψ dx ≤
∫

Γ\ΓN (t)

g′
(
x, Vu(t)

)∣∣[ψ]
∣∣dHn−1.

Using the fact that g′(x, ξ) = 0 for ξ ≥ θ(x) , we also get

−
∫
Γ

g′
(
x, Vu(t)

)∣∣[ψ]
∣∣dHn−1 ≤

∫
Ω\Γ

∇u(t) · ∇ψ dx ≤
∫
Γ

g′
(
x, Vu(t)

)∣∣[ψ]
∣∣ dHn−1. (6.15)

By (6.15) for arbitrary ψ ∈ H1(Ω) with ψ = 0 on ∂DΩ and ψ = 0 in Ω− , we infer that ∆u(t) = 0

in Ω+ and ∂νu(t) = 0 in H−
1
2 (∂NΩ ∩ ∂Ω+) . With similar arguments, we obtain analogous

properties in Ω− and we eventually deduce (i) .
Let us prove (ii) . Since νΓ is chosen in such a way that it coincides with the outer normal

to ∂Ω− , by definition of normal derivative of the function u(t)+ = u(t)|Ω+ on Γ we have that

∂νu(t)+ ∈ H−
1
2 (Γ) is given by

〈∂νu(t)+, ψ+〉 = −
∫

Ω+

∇u(t) · ∇ψ+ dx ,

for every ψ+ ∈ H1(Ω+) with ψ+ = 0 on ∂DΩ ∩ ∂Ω+ . Similarly, the normal derivative ∂νu(t)− ∈
H−

1
2 (Γ) is given by

〈∂νu(t)−, ψ−〉 =

∫
Ω−

∇u(t) · ∇ψ− dx ,

for every ψ− ∈ H1(Ω−) with ψ− = 0 on ∂DΩ ∩ ∂Ω− . Hence, by testing (6.15) with functions
ψ ∈ H1(Ω \ Γ) with ψ = 0 on ∂DΩ and [ψ] = 0 on Γ, we infer

−〈∂νu(t)+, ψ〉+ 〈∂νu(t)−, ψ〉 = 0 ,

which implies (ii) by the arbitrariness of ψ .
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In order to prove (iii) , we note that since g′(x, ξ) ≤ g′(x, 0) for Hn−1 -a.e. x ∈ Γ and for every
ξ ∈ [0,∞] , by inequality (6.15) we get∣∣〈∂νu(t), [ψ]〉

∣∣ ≤ ‖g′(·, 0)‖L∞‖[ψ]‖L1 ,

for every ψ ∈ H1(Ω \ Γ) with ψ = 0 on ∂DΩ. Thus ∂νu(t) is a linear and continuous operator
on the space X := {[ψ] : ψ ∈ H1(Ω \ Γ) such that ψ = 0 on ∂DΩ} . By density of X in L1(Γ),
this implies that ∂νu(t) can be extended to a linear and continuous operator on L1(Γ), and hence
∂νu(t) ∈ L∞(Γ). From (6.15) we deduce that

−
∫
Γ

g′
(
x, Vu(t)

)
|z|dHn−1 ≤ −

∫
Γ

∂νu(t)z dHn−1 ≤
∫
Γ

g′
(
x, Vu(t)

)
|z| dHn−1,

for every z ∈ L1(Γ). This concludes the proof of (iii) . �

In order to give a proof of Proposition 2.8, we need to prove the following lemma regarding the
differentiability in time of the essential variation of a function that is absolutely continuous in time
with values in L2(Γ).

Lemma 6.3. Let γ ∈ AC([0, T ];L2(Γ)) . Then ess Var(γ; 0, ·) ∈ AC([0, T ];L2(Γ)) and

lim
s→t

ess Var(γ; s, t)

t− s (x) = |γ̇(t;x)| for Hn−1-a.e. x ∈ Γ and for a.e. t ∈ [0, T ] , (6.16)

where the limit and the derivative γ̇ are defined with respect to the strong topology in L2(Γ) .

Proof. We fix s, t ∈ [0, T ] with s < t and we consider a partition of the interval [s, t] , namely
s = s0 < · · · < sj = t . By the absolute continuity of γ , for every i = 1, . . . , j we have

|γ(si;x)− γ(si−1;x)| =

∣∣∣∣∣
si∫

si−1

γ̇(τ ;x) dτ

∣∣∣∣∣ ≤
si∫

si−1

∣∣γ̇(τ ;x)
∣∣ dτ for Hn−1-a.e. x ∈ Γ ,

where the integrals are Bochner integrals and γ̇(τ) is the derivative in L2(Γ) of γ(τ) . Summing
up the previous inequalities for i = 1, . . . , j , we obtain

j∑
i=1

|γ(si;x)− γ(si−1;x)| ≤
t∫
s

|γ̇(τ ;x)| dτ for Hn−1-a.e. x ∈ Γ . (6.17)

By Definition 2.3, (6.17) implies that

ess Var(γ; s, t)(x) ≤
t∫
s

|γ̇(τ ;x)|dτ for Hn−1-a.e. x ∈ Γ . (6.18)

In particular, choosing s = 0 in (6.18) we deduce that ess Var(γ; 0, t) belongs to L2(Γ), for every
t ∈ [0, T ] . By taking the L2 norm in (6.18) we infer

‖ ess Var(γ; s, t)‖L2 ≤
t∫
s

‖γ̇(τ)‖L2 dτ .

Since the function τ 7→ ‖γ̇(τ)‖L2 belongs to L1([0, T ];R) , we conclude that ess Var(γ; 0, ·) ∈
AC([0, T ];L2(Γ)) .

We now compute the derivative of ess Var(γ; 0, ·) . Since 1
t−s

∫ t
s
|γ̇(τ)| dτ → |γ̇(t)| strongly in

L2(Γ) as s→ t , dividing all terms in (6.18) by t− s and letting s→ t we deduce that

lim
s→t

ess Var(γ; s, t)

t− s (x) ≤ |γ̇(t;x)|

for Hn−1 -a.e. x ∈ Γ. On the other hand, since {s, t} is a particular partition of the interval [s, t] ,
by definition of essential variation we have

|γ(t;x)− γ(s;x)| ≤ ess Var(γ; s, t)(x) ,

for Hn−1 -a.e. x ∈ Γ. Dividing by t − s and letting s → t in the inequality above, we obtain
(6.16). �

We are now in a position to prove Proposition 2.8.



COHESIVE FRACTURE SUBJECT TO FATIGUE 25

Proof of Proposition 2.8. Since by assumption u ∈ AC([0, T ];H1(Ω \ Γ)), we have

d

dt

∫
Ω\Γ

|∇u(t)|2 dx =

∫
Ω\Γ

∇u(t) · ∇u̇(t) dx . (6.19)

Moreover we claim that

d

dt

∫
Γ

g(x, Vu(t)) dHn−1 =

∫
Γ

g′
(
x, Vu(t)

)∣∣[u̇(t)]
∣∣dHn−1. (6.20)

Let us prove (6.20). The absolute continuity of u implies that [u] ∈ AC([0, T ];L2(Γ)) . Let us
consider the set ΓN (0) = {x ∈ Γ : V0(x) ≥ θ(x)} . Thanks to Lemma 6.3 and by the definition (2.3)
of Vu(t) , for every t ∈ [0, T ] we have Vu(t;x) < ∞ for Hn−1 -a.e. x ∈ Γ \ ΓN (0) . Then, since
g(x, ξ) = κ(x) for ξ ∈ [θ(x),∞] , since g(x, ·) is monotone, and since Vu(t) is monotone in t ,∫

Γ

g
(
x, Vu(t+ h)

)
− g
(
x, Vu(t)

)
h

dHn−1 =

∫
Γ\ΓN (0)

g
(
x, Vu(t+ h)

)
− g
(
x, Vu(t)

)
h

dHn−1.

Since Vu(t+h;x)−Vu(t;x) = ess Var([u]; t, t+h)(x) for Hn−1 -a.e. x ∈ Γ\ΓN (0) and g′(x, Vu(t;x)) =
0 for Hn−1 -a.e. x ∈ ΓN (0) , by taking the limit as h→ 0+ in the previous equality, by Lemma 6.3,
and since g is of class C1 , we eventually deduce (6.20).

The equalities (6.19) and (6.20) combined with (EB) imply that∫
Ω\Γ

∇u(t) · ∇(u̇(t)− ẇ(t)) dx+

∫
Γ

g′(x, Vu(t))
∣∣[u̇(t)]

∣∣ dHn−1 = 0 .

Since u̇(t)− ẇ(t) = 0 on ∂DΩ, by definition of ∂νu(t) we obtain∫
Γ

∂νu(t)[u̇(t)] dHn−1 =

∫
Γ

g′(x, Vu(t))
∣∣[u̇(t)]

∣∣ dHn−1,

and thus ∫
{[u̇(t)]6=0}

(
g′(x, Vu(t)) Sign([u̇(t)])− ∂νu(t)

)
[u̇(t)] dHn−1 = 0 .

By (iii) in Proposition 2.7, this proves the claim. �

Remark 6.4. The method presented in this paper can be used to treat other models where the
system exhibits asymmetric responses to loading and unloading. For instance, we can study a
model where some energy is dissipated when the jump [u(t)] increases in time, while no energy
is dissipated when [u(t)] decreases. Notice that here we are considering [u(t)] and not |[u(t)]| .
Accordingly, Definition 2.6 is modified by replacing the total variation Vu(t) of t 7→ [u(t)] by its
positive variation given by

Pu(t) = ess sup
{ j∑
i=1

[(
[u(si)]− [u(si−1)]

)
∨ 0
]

: j ∈ N , 0 = s0 < s1 < · · · < sj−1 < sj = t
}
.

Specifically, the dissipation is given by∫
Γ

g
(
x, Pu(t)

)
dHn−1.

For a related model, see [11, Section 5.2].
In order to prove the existence of a quasistatic evolution in this case, we pass to the limit in the

approximate evolutions obtained by solving the incremental minimisation problems

uik ∈ argmin
u

{
1

2

∫
Ω

|∇u|2 dx+

∫
Γ

g
(
x, P i−1

k +
(
[u]− [ui−1

k ]
)
∨ 0
)

dHn−1 : u = w(tik) on ∂DΩ

}
,

P ik := P i−1
k +

(
[uik]− [ui−1

k ]
)
∨ 0 .

(See also [29] for a related incremental scheme in a model of one-dimensional debonding.) As above,
we denote by uk(t) and Pk(t) the piecewise constant interpolations of uik and P ik , respectively.

Here we do not provide the details of the proof, which follows the lines of the proof of Theorem 2.9.
Let us only mention that, in order to pass to the limit in the irreversibility relation

Pk(t) ≥ Pk(s) +
(
[uk(t)]− [uk(s)]

)
∨ 0 for any s ≤ t ,
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we rewrite it as a system of two inequalities

Pk(t)− [uk(t)] ≥ Pk(s)− [uk(s)] ,

Pk(t) ≥ Pk(s) .

By Helly’s Selection Principle, in the limit as k → +∞ , Pk(t) generates a Young measure π(t) and
Pk(t)− [uk(t)] generates a Young measure λ	(t) , both nondecreasing in time. As in Section 5, we
can pass to the limit in the two irreversibility relations and we characterise [u(t)] as the limit of
a subsequence of [uk(t)] extracted independently of t . At this stage of the analysis, the proof is
concluded as in Section 6.

Other responses can be studied: for instance, one can assume that the dissipation is given by∫
Γ

g
(
x, αPu(t) + β Nu(t)

)
dHn−1,

where α, β > 0 and Nu(t) is the negative variation of t 7→ [u(t)] .
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Napoli Federico II, Via Cintia, Monte S. Angelo, 80126 Napoli, Italy

E-mail address, Giuliano Lazzaroni: giuliano.lazzaroni@sissa.it

TUM, Boltzmannstrasse 3, 85747 Garching bei München, Germany
E-mail address, Gianluca Orlando: orlando@ma.tum.de


