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1 Introduction and results

In the past few years much progress has been made on computing exactly non-trivial ob-

servables in superconformal gauge theories, nicely interpolating between weak and strong

coupling regimes. Particular attention has been devoted to the study of anomalous dimen-

sions of local operators, quantities that at large N can be powerfully calculated by means

of integrability [2–4]. On the other hand, localization techniques [5] have produced exact,

– 1 –



J
H
E
P
1
0
(
2
0
1
7
)
0
5
0

finite N results for partition functions on curved manifolds [6–11] and non-local supersym-

metric operators as Wilson or ’t Hooft loops [6, 7, 12, 13]. A natural generalization of this

line of investigation is to incorporate anomalous dimensions into particular Wilson loop

operators and to exploit the above techniques in their evaluation. There are two basic

options on the market: the presence of cusps and/or operator insertions into Wilson loops

may produce divergences in perturbation theory, implying the appearance of anomalous

dimensions [14–16]. This strategy was indeed considered in N = 4 SYM introducing cusps

and/or operator insertions into 1/2 BPS Wilson lines and circular Wilson loops: in particu-

lar a set of boundary TBA ansatz equations [17] that calculate their spectrum was derived,

leading to a solution for the quark-antiquark potential in this theory [18]. Moreover, taking

the small angle limit of a cusped Wilson loop, one can define the so-called Bremsstrahlung

function B(λ) that computes the energy radiated by a moving quark in the low energy

regime [17, 19, 20]. This is a non-trivial function of the coupling and can be calculated

exactly using localization [19, 20] (see also [21] for the case of N=2 supersymmetry) or

solving the boundary TBA equations in the appropriate limit1 [24, 25]. The comparison of

these two results allows to determine the interpolating function h(λ) which features all the

integrability computations. Whereas for N = 4 SYM this function is trivial, for ABJ(M)

theory weak [26–31] and strong [32–35] coupling results showed a non-trivial dependence on

the coupling and a conjecture for the exact form of this function was recently put forward

in [36] (see also [37] for the generalization to ABJ theory).

Interestingly, the Bremsstrahlung function is also obtained by inserting into the straight

1/2 BPS Wilson line a suitable operator and computing its two-point function [20, 38]: the

relevant object is called displacement operator [20] and generates the small deformations

of the Wilson line (for a recent thorough discussion of its role in the contest of defect CFTs

see [39] and references therein). More generally, operator insertions are organized according

to the symmetry preserved by the 1/2 BPS Wilson line [40]: the set of correlation functions

obtained in this way defines a defect conformal field theory. Anomalous dimensions and

structure constants are associated to operator insertions in the usual way but further

data come into play: they are the coefficients of the two-point functions, that are well

defined physical quantities since the operators are normalized in the theory without the

defect.2 Recently this defect conformal field theory was considered from the point of view of

AdS/CFT correspondence [41] and concrete strong coupling computations were successfully

compared with localization results.

We would like to extend the above investigations to the three-dimensional N = 6

superconformal ABJM theories [42] but a first difference with the four-dimensional case

immediately arises: in ABJM models not only bosonic but also fermionic matter can be

used to construct generalized (super-)connections whose holonomy generates supersymmet-

1The TBA equations actually refer to a more general system with a local operator inserted at the tip of

the cusp. Notably also this configurations is accessible by localization [22, 23].
2In general the spectrum of a conformal defect is not related to that of the original CFT and one may

have defect operators that were not present in the theory without the defect. Nevertheless, Wilson loops

are given by the holonomy of a connection built out of gauge and matter fields and possible defect operators

were already present in the original CFT.
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ric loop operators. Supersymmetric Wilson lines can be obtained using a generalized gauge

connection that includes couplings to bosonic matter only, preserving 1/6 of the original

supersymmetries [43, 44], while adding local couplings to the fermions the operator is pro-

moted to be 1/2 BPS [45]. The latter is dual to the fundamental string on AdS4 × CP 3.

Cusped Wilson loops formed with 1/6 BPS rays or 1/2 BPS rays are actually different [46]

and, consequently, different Bremsstrahlung functions can be defined and, hopefully, eval-

uated exactly. In particular, in [47] a formula for the exact Bremsstrahlung function of the

1/6 BPS cusp was proposed, based on the localization result for the 1/6 BPS circular Wil-

son loop [7, 48–50], and an extension to the 1/2 BPS case was argued. An exact expression

for the Bremsstrahlung function of 1/2 BPS quark configurations was instead conjectured

in [1]: this proposal was suggested by the analogy with the N = 4 SYM case [20] and

supported by an explicit two-loop computation consistent with the direct analysis of the

cusp with 1/2 BPS rays [51]. It was based on relating the Bremsstrahlung function with

the derivative of some fermionic Wilson loop on a sphere S2 with respect to the latitude

angle [1]. Recently, a non-trivial three-loop test of the above proposal has been performed

by computing the Bremsstrahlung function associated to the 1/2 BPS cusp in ABJM the-

ory [52]: the final result precisely reproduces the formula appeared in [1] including color

subleading corrections.

In this paper we take a different approach to the study of the Bremsstrahlung function

for the 1/2 BPS cusp in ABJM theory, exploiting its definition in terms of two-point

correlators inserted into the Wilson line. More generally, we initiate the investigation

of the defect conformal field theory associated to the 1/2 BPS straight line in N = 6

superconformal Chern-Simons theory, very much in the same spirit of [20, 40]. As already

done in [38, 51], we consider a cusped Wilson line depending on two parameters: the

geometric euclidean angle ϕ between the two 1/2 BPS lines defining the cusp, and an

internal angle θ describing the change in the orientation of the couplings to matter between

the two rays [38, 51]. At ϕ2 = θ2 the cusped Wilson loop is BPS and its anomalous

dimension vanishes. For small angles, the expansion of the cusp anomalous dimension

around the BPS point reads

Γcusp(λ, θ, ϕ) ' (θ2 − ϕ2)B(λ) (1.1)

where B(λ) is the Bremsstrahlung function, a non-trivial function of the coupling constant

of the theory. From this equation we can read off the Bremsstrahlung function equivalently

from the θ or the ϕ expansions of Γcusp, setting the other angle to zero. Working only with

the internal angle θ, we show that the Bremsstrahlung function can be extracted from

the (traced) correlation function of two super-matrix operators inserted into the line. The

computation is in turn reduced, using some symmetry consideration, to the evaluation of a

bosonic and a fermionic two-point functions. The latter’s kinematic part is fully determined

by conformal symmetry and the entire dynamical content is encoded into two coefficients,

cs and cf . Therefore the Bremsstrahlung function is expressed for any coupling as a linear

combination of those. The very same combination can be also obtained deforming the 1/2

BPS circular Wilson loop to the 1/6 BPS latitude and performing a suitable derivative

with respect to the deformation parameter ν. These results allow to justify the expression
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proposed in [1]

B(λ,N) =
1

4π2

∂

∂ν
log 〈Wν〉

∣∣∣∣
ν=1

(1.2)

and further confirm the possibility of an exact calculation by localization.

A crucial step in our derivation is the non-renormalization properties of some opera-

tors inserted into the Wilson line: to prove them and to connect our procedure with the

definition in terms of the displacement operator we carefully analyze the symmetry struc-

ture of the defect conformal field theory associated to the 1/2 BPS Wilson line and its

representation theory. We find that the theory preserves SU(1, 1|3) whose bosonic sub-

group is SU(1, 1) × SU(3) × U(1)M . Defect operators (local operators of the full ABJM

theory inserted along the line) are therefore characterized by a set of four quantum numbers

(∆,m, j1, j2) associated to the 4 Cartan generators of the bosonic subalgebra. We study the

structure of short and long multiplets representing this subalgebra and we identify those

associated to the defect operators relevant for our case. In the same supermultiplets we find

some of the components of the displacement operator which we express as a super-matrix

with operatorial entries. Since the scaling dimension of the displacement operator is fixed

by a Ward identity all the components of its supermultiplet are protected, including those

of interest for us.

As a check of our results we perform a concrete two-loop computation. We evaluate

the Bremsstrahlung function using its relation to the two-point defect correlation functions

of bosonic and fermionic operators and we compare it to the two-loop result of [1, 51].

The plan of the paper is the following: in section 2 we briefly recall the structure

of the 1/2 BPS Wilson loops in ABJM theory, the construction of the generalized cusp

and of deformed circular loop on S2 in relation with the Bremsstrahlung function. In

section 3 we define the relevant defect correlation functions and describe the symmetry

structure of the defect conformal field theory. In section 4 we derive the expression of

the Bremsstrahlung function in terms of defect correlators and explain the relation with a

suitable derivative of the deformed circular Wilson loop. The super-displacement operator

is instead studied in section 5, where also the structure of its super-multiplet is discussed.

Section 6 is devoted to the perturbative checks. Appendix A contains our conventions

while in appendix B we recall the osp(6|4) algebra. Appendix C is quite important being

devoted to the SU(1, 1|3) subalgebra that is the symmetry of our defect correlators: we

discuss its representations and the displacement multiplets. In appendix D we write down

for completeness the supersymmetry transformations of the theory.

2 Wilson loops in ABJM and Bremsstrahlung function

The task of finding supersymmetry preserving line operators in ABJM theory is notably

more intricate than in the four-dimensional relative N = 4 SYM. The first proposal for

a supersymmetric Wilson loop was put forward in [43, 44, 53] as a natural generalization

of the four-dimensional Wilson-Maldacena loop [54]. However, in three dimensions, such

Wilson loop turns out to be 1/6 BPS and in order to obtain a 1/2 BPS object one needs to

introduce couplings with fermions and consider the holonomy of a superconnection of the
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U(N |N) supergroup [45, 55]. A generalization of this construction for arbitrary contour

was given in [56] where the Wilson loop was expressed as

W = Str

[
P exp

(
−i
∮
dτL(τ)

)
T
]

(2.1)

with a superconnection L(τ)

L =

Aµẋµ − 2πi
k |ẋ|MJ

ICIC̄
J −i

√
2π
k |ẋ|ηI ψ̄

I

−i
√

2π
k |ẋ|ψI η̄

I Âµẋ
µ − 2πi

k |ẋ|M̂
I
J C̄

JCI

 (2.2)

Here the contour of the loop is parametrized by xµ(τ) and the quantities MJ
I(τ), M̂ I

J , ηI(τ)

and η̄I(τ) are local couplings, whose form is determined in terms of the contour xµ(τ) by

the requirement of preserving some of the supercharges. The key idea of [45, 55, 56] is to

relax the condition δsusyL = 0 and replace it with the weaker requirement

δsusyL = DτG = ∂τG + i[L,G] (2.3)

where G is a u(N |N) supermatrix. This implies a vanishing variation for the (super)traced

Wilson loop, provided the correct periodicity of G. The twist supermatrix T in (2.1) is

introduced with the precise aim of closing the loop after a supersymmetry transformation

and its defining equation is

T G(τ0) = G(0)T (2.4)

where τ0 is the period of the loop. In the following we shall be interested in two particular

configurations: the generalized cusp and the 1/6 BPS latitude Wilson loop. The latter

is a two-parameter deformation of the 1/2 BPS circular Wilson loop running around the

sphere [1]. We will comment more on the contour of the loop in section 2.2. Let us introduce

the two Wilson loop configurations separately. A summary of notations and conventions

is given in appendix A.

2.1 The generalized cusp

Let us start by deforming the straight Wilson line by a generalized cusp. This configuration

was first introduced in [38, 57] for N = 4 SYM and then adapted to ABJM theory in [51].

As pictured in figure 1, a cusp on the plane R3 can be conformally mapped to a pair of

anti-parallel lines on S2 × R.

In the generalized cusp setting we introduce an additional angle θ, which we take

to be non-vanshing only on one branch of the cusp (or equivalently on one of the two

lines on the cylinder). This additional angle is purely internal and does not affect the

physical contour of the line. In particular for the setting in figure 1 the couplings in the

– 5 –
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ϕ

ϕϕ

Figure 1. The cusp setting on the plane and on the cylinder. The two configurations are mapped

to each other by a conformal transformation and this relates the cusp anomalous dimension to the

quark-antiquark potential for any conformal gauge theory.

superconnection (2.2), for the second branch of the cusp, read

MI
J = M̂I

J =


− cos θ sin θ 0 0

sin θ cos θ 0 0

0 0 1 0

0 0 0 1

 , T =

(
1N 0

0 −1N

)
(2.5)

ηαI =


cos θ2
− sin θ

2

0

0


I

√
2η+ , η̄Iα = i

(
cos θ2 − sin θ

2 0 0
)I √

2η̄+ (2.6)

where η+ = η̄T+ = 1√
2

(
1 1
)

.

In general, deforming a straight line by a cusp does not preserve any of the supersym-

metries of the original setting, but it is still very interesting from a physical point of view.

The expectation value of the cusped Wilson loop is logarithmically divergent and can be

parametrized as

log 〈W〉 ∼ −Γcusp(θ, ϕ, λ,N) log
L

ε
+ finite (2.7)

The coefficient of the logarithm is the celebrated cusp anomalous dimension, controlling

IR divergences for scattering amplitudes of massive colored particles. Here L is identified

with the infrared cut-off while ε with the ultraviolet one. Recently, Γcusp was studied in

depth at weak and strong coupling. Its value is known up to two loops via perturbation

theory [51] and exactly in the scaling limit where only ladder diagrams contribute (λ→ 0,

iθ → ∞ and λeiθ/2 = const) [58]. Using the HQET formalism, Γcusp was computed up

to three-loop in the ϕ = 0 case [52]. At strong coupling, it was studied up to next to

leading order in [46, 59]. Furthermore, the plane to cylinder mapping relates the cusp to

antiparallel lines, whose expectation value yields the generalized potential between a quark

– 6 –
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and an anti-quark sitting on S2 at an angle π − ϕ

log 〈W〉 ∼ −V (θ, ϕ, λ,N)T (2.8)

where T , the length of the lines, is the IR cut-off in this setting. The precise change

of coordinates relating the two cut-offs is made explicit, together with a precise list of

conventions, in appendix A.

There are also some interesting limits of the generalized cusp anomalous dimension.

Let us review some of them:

• First we consider the (almost trivial) limit of vanishing angle, in which case we recover

the 1/2 BPS straight line configuration. In section 3 and appendix C we carry out a

thorough analysis of the supergroup preserved by this configuration.

• By analytic continuation one can investigate the cusp anomalous dimension for imag-

inary values of the angle ϕ relating it, for infinite purely imaginary ϕ, to the light-like

cusp anomalous dimension, whose value has been famously computed exactly using

integrability [60, 61].

• When the physical angle ϕ equals the internal angle θ one finds another BPS config-

uration and the expectation value of the line is no longer divergent [38, 51]

Γcusp(ϕ,ϕ, λ,N) = 0 (2.9)

• As mentioned in the introduction, expanding the cusp anomalous dimension for small

angles, imposing parity and using (2.9), one finds

Γcusp(θ, ϕ, λ,N) ∼ B(λ,N)(θ2 − ϕ2) (2.10)

where B(λ,N) is the Bremsstrahlung function, so called because it determines the

energy emitted by a moving heavy probe [20]. One of the goal of this paper is to

relate this function to the expectation value of some circular Wilson loop.

2.2 Circular Wilson loops

It is a well-known fact that, despite being related by a conformal transformation, the

expectation value of a circular and a straight line 1/2 BPS Wilson loops are not the

same [6, 62, 63]. In particular for ABJM theory, a matrix model for the 1/6 BPS case

was derived in [7] and solved in [48, 49]. The 1/2 BPS circular Wilson loop is also known

exactly thanks to its cohomological equivalence with a linear combination of the 1/6 BPS

ones [43]. The question of deforming the maximally supersymmetric 1/2 BPS configuration

preserving some supersymmetry was thoroughly addressed in [1, 56] where, for instance, a

two-parameter 1/6 BPS deformation was written down. In that case the deformation for

the circle was derived by moving the contour on the sphere S2 from the equator to a latitude

with angle θ0. In general this has consequences both on the integration contour and on

the explicit expression of the superconnection, whose coupling can be written in terms of

– 7 –
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the contour. However let us stress that moving the physical contour from the equator to

the latitude has no effect on the expectation value of the Wilson loop since it is equivalent

to a conformal transformation. Therefore the only variation that is actually relevant for

the expectation value of the loop is that in the superconnection. In the following this

property will prove crucial for our arguments. The second parameter of the deformation is

a purely internal angle α whose value range in the interval [0, π4 ] [1, 56]. Despite apparently

dependent on two parameters, it turns out one can write down the superconnection (2.2)

in terms of a single parameter

ν = sin 2α cos θ0 (2.11)

with couplings given by

MI
J = M̂I

J =


−ν e−iτ

√
1− ν2 0 0

eiτ
√

1− ν2 ν 0 0

0 0 1 0

0 0 0 1

 , T =

(
e−

iπν
2 1N 0

0 e
iπν
2 1N

)
(2.12)

ηαI = e
iντ
2


√

1+ν
2

−
√

1−ν
2 eiτ

0

0


I

(
1 −ie−iτ

)α
, η̄Iα = ie

−iντ
2

(√
1+ν

2 −
√

1−ν
2 e−iτ 0 0

)I( 1

ieiτ

)
α

Because of our previous argument on the independence of the expectation value on θ0

through the contour, we can safely conclude that the expectation value of the loop will

depend only on ν. In the following we will show that the derivative of this Wilson loop

with respect to the parameter ν gives the Bremsstrahlung function.

3 Symmetry considerations

Before starting the derivation, let us make some considerations on the symmetries preserved

by the Wilson line. We focus on the straight line case, but all our consideration can be

extended, by conformal mapping, to the circular case. The 1/2 BPS Wilson line breaks

the OSP (6|4) symmetry down to a SU(1, 1|3) subgroup. Consequently the operators of

the theory, in presence of the line, reorganize themselves into representations of SU(1, 1|3).

The bosonic subgroup of SU(1, 1|3) is SU(1, 1) × SU(3) × U(1)M . The first factor is

simply the conformal algebra in one dimension, generated by {P1,K1, D}. According to

this symmetry we split the spacetime coordinates as

xµ = (x1, xm) (3.1)

with m = 2, 3. Occasionally we will find convenient to use complex coordinates in the

orthogonal directions

z =
x2 + ix3

√
2

z̄ =
x2 − ix3

√
2

(3.2)

– 8 –
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Moreover, fermions will be expressed in a basis of eigenvalues of γ1 = σ1 (see appendix A)

ψ+ =
1√
2

(ψ1 + ψ2) ψ− =
1√
2

(ψ1 − ψ2) (3.3)

with the rules ψ− = −ψ+ and ψ+ = ψ−.

The SU(3) subgroup of SU(1, 1|3) is the residual R-symmetry group generated by

a subset Ra
b (a, b = 1, 2, 3) of the former SU(4) generators JI

K as shown explicitly in

appendix C. Finally, the U(1)M factor is a recombination of the rotation around the line

and a broken R-symmetry generator. This can be understood by the following argument.

The fermionic couplings η and η̄ in (2.2) break rotational symmetry in the orthogonal

plane. Nevertheless for the straight-line case the couplings are particularly simple (as

one can immediately observe by taking the limit θ → 0 in (2.5) and (2.6)) and the only

fermionic combination appearing in the superconnection (2.2) (see also (3.9) below) is ψ1
+

together with its conjugate. This combination is an eigenstate under rotations around the

line (generated by M23 in the notation of appendix B) and under the action of the broken

R-symmetry generator J1
1. It is not hard to check that the combination3

M = 3iM23 − 2J1
1 (3.4)

annihilates ψ1
+ making the superconnection a singlet under the full su(1, 1|3) algebra. As a

consequence, defect operators (i.e. local operators of the theory inserted along the line) can

be characterized by a set of four quantum numbers (∆;m; j1, j2) associated to the 4 Cartan

generators of the bosonic subalgebra (see appendix C.1 for a classification of irreducible

representations).

On the fermionic side, 12 of the 24 original supersymmetry generators QIJ± and SIJ±
are preserved by the defect. Those are given by {Q1I

+ , Q
IJ
− , S

1I
+ , SIJ− } for I, J = 2, 3, 4,

which we reorganize in (anti-)fundamental representations of SU(3) as {Qa, Q̄a, Sa, S̄a} for

a = 1, 2, 3. R-symmetry and spinor indices have been raised and lowered with epsilon

tensors as customary (see appendix A).

Scalar and fermionic fields can be accommodated in the new R-symmetry pattern

CI = (Z, Ya) C̄I = (Z̄, Ȳ a) (3.5)

ψ±I = (ψ±, χ±a ) ψ̄I± = (ψ̄±, χ̄
a
±) (3.6)

where Ya (Ȳ a) and χ±a (χ̄a±) change in the 3 (3̄) of SU(3), whereas Z and ψ+ are singlet.

Also the gauge fields can be split according to the new spacetime symmetry

Aµ = (A1, A = A2 − iA3, Ā = A2 + iA3) (3.7)

and similarly for Â. In this notation the superconnection for the straight Wilson line simply

reads

L = A+ LB + LF (3.8)

3The coefficient in the linear combination below are due to the normalization of the generators (see

appendix B).
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with

A =

(
A1 0

0 Â1

)
LB =

2πi

k

(
ZZ̄ − YaȲ a 0

0 Z̄Z − Ȳ aYa

)
LF = 2

√
π

k

(
0 −iψ̄+

ψ+ 0

)
(3.9)

3.1 Defect correlation functions

As usual, symmetries put constraints on correlation functions. Here we focus on defect

correlation functions, i.e. correlators of local operators inserted along the Wilson line.

Since in this case the Wilson line is a U(N |N) supermatrix, the natural insertion is a

supermatrix X , whose defect two-point function is defined as

〈X1(τ1)X2(τ2)〉W =
〈TrPX1(τ1)W(τ1, τ2)X2(τ2)W(τ2, τ1)〉

〈W〉
(3.10)

with W(τ1, τ2) = P exp
(
−i
∫ τ1
τ2
dτL(τ)

)
. Nevertheless, in the following we will use also

two-point functions of objects changing in some representation of U(N)×U(N) instead of

U(N |N). These two-point functions has to be interpreted as the two-point function (3.10)

with appropriate non-vanishing entries for the supermatrices X1 and X2. To give a spe-

cific example consider the two-point function 〈ψ+(τ1)ψ̄+(τ2)〉W . The color indices of the

fermions immediately indicate the possible position of ψ+(τ1) and ψ̄+(τ2) inside the super-

matrices, such that

〈ψ+(τ1)ψ̄+(τ2)〉W = 〈

(
0 0

ψ+(τ1) 0

)(
0 ψ̄+(τ2)

0 0

)
〉
W

(3.11)

and the r.h.s. of (3.10) is now well-defined.

In the following we will be interested in defect two-point functions of local operators

with classical dimension one. Those are fermions and scalar bilinears. The latter organize

in irreducible representations of SU(3) once the operator CIC̄
J is properly decomposed.4

In particular we have

4⊗ 4̄ = 1⊕ 1⊕ 3⊕ 3̄⊕ 8 (3.12)

Therefore we consider the five operators

OZ = ZZ̄ OY = YaȲ
a Oa = YaZ̄ Ōa = ZȲ a Oba = YaȲ

b − 1

3
δbaYcȲ

c (3.13)

Notice that these operators change in the bifundamental representation of the first fac-

tor of the gauge group U(N) × U(N), therefore we have also a mirror set of operators

{ÔZ , ÔY , Ôa, Ôa, Ôba} where the order of the factors in (3.13) is exchanged. The kinemati-

cal part of the two-point functions of these operators are fixed by the residual symmetry.

We list them here for the straight line case

〈Oa(s1)Ōb(s2)〉W = cs
δba
s12

2
〈Oba(s1)Odc (s2)〉W = ks

δbcδ
d
a − 1

3δ
b
aδ
d
c

s12
2∆O

(3.14)

4Remember that combinations involving two C’s or two C̄’s are forbidden by the color structure.
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where s12 = s1 − s2 and we neglected the correlators involving singlet operators OY and

OZ since in general they mix and they are not important in the following. Moreover we

assumed that the operator Oa has conformal dimension one at the quantum level. In

section 5.1 we will show that Oa is the highest weight operator of a 1/3 BPS multiplet

containing the displacement operator, which guarantees that its dimension is protected

from quantum corrections.

Let us analyse also fermionic operators. Notice that, despite descending from the

three-dimensional spinors, the fermions in the defect theory (equivalent in this respect to

a one-dimensional CFT) do not carry any spinor index and their correlation functions are

similar to the scalar case, but for their Grassmann nature.5 Notice that fermions, unlike

the scalar bilinears (3.13), are charged also under U(1)M which prevents a coupling between

+ and −. Therefore we are left with

〈ψ+(s1)ψ̄+(s2)〉W = i kf
s12

|s12|2∆ψ++1
〈ψ−(s1)ψ̄−(s2)〉W = i k̃f

s12

|s12|2∆ψ−+1
(3.15)

〈χ+
a (s1)χ̄b+(s2)〉W = i cf

s12δ
b
a

|s12|3
〈χ−a (s1)χ̄b−(s2)〉W = i c̃f

s12δ
b
a

|s12|2∆χ−+1
(3.16)

where the factors of i are purely conventional. In this case we didn’t indicate the conformal

dimension of χ+
a implying that it is protected. In section 5.1 we will show that χ+

a is part

of a 1/2 BPS multiplet containing the fermionic part of the displacement operator.

All the arguments in this section have been carried out explicitly for the straight

Wilson line with parametrization (A.13). Similar result can be derived for the cylinder

parametrization (A.37) and for the circular Wilson line by taking the appropriate conformal

mapping. The former case is particularly convenient if the two points sit on the same branch

of the cusp in figure 1. In this case the corresponding correlation functions can be simply

obtained by the formal replacement

s12 →
√

2(cosh τ12 − 1) (3.17)

For the circular case, on the other hand, one also needs to replace the fermions with

appropriate eigenstates of ẋµγµ (for the line ẋµγµ is simply γ1 and the label ± on fermions

refers exactly to eigenstates of γ1). Those are given by

ψ↑ =
1√
2

(e−i
τ
2ψ1 + iei

τ
2ψ2) ψ↓ =

1√
2

(e−i
τ
2ψ1 + iei

τ
2ψ2) (3.18)

ψ̄↑ =
1√
2

(ei
τ
2 ψ̄1 − ie−i

τ
2 ψ̄2) ψ̄↓ =

1√
2

(ei
τ
2 ψ̄1 + ie−i

τ
2 ψ̄2) (3.19)

and similarly for χ. Given these identifications one can find the correlation functions on

the circle starting by (3.14), (3.15) and (3.16) and performing the formal replacements

s12 →
√

2(1− cos τ12) +→↑ − →↓ (3.20)

5In the derivation of the correlation functions we use also that the theory is parity invariant, which

prevents us from easily extending these arguments to ABJ theory.
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4 Bremsstrahlung function and circular Wilson loop

In the following the main goal is to prove a connection between the Bremsstrahlung function

for the 1/2 BPS Wilson cusp and the circular Wilson loop, whose exact result is accessible,

at least in principle, to supersymmetric localization. The derivation goes along the lines

of the four-dimensional case [20], with the notable complication of the fermionic degrees of

freedom in the superconnection. We start by deriving an expression for the Bremsstrahlung

function in terms of two-point functions of operators inserted along the line.

4.1 Bremsstrahlung function and two-point functions

We consider the generalized cusp configuration described in section 2 and we set to zero

the physical angle ϕ. Thanks to the condition (2.10), the second-order expansion for small

θ gives the Bremsstrahlung function. Therefore we consider the double derivative of the

Wilson line expectation value (2.1) with couplings (2.5) and (2.6). This simply gives

1

2

∂2

∂θ2
log 〈Wθ〉

∣∣∣∣
θ=0

= − 1

2N

∫ ∞
−∞

dτ1

∫ τ1

−∞
dτ2 〈L(1)(τ1)L(1)(τ2)〉W0

(4.1)

where we used the cylinder parametrization (A.37) and both points τ1 and τ2 are on one

of the two antiparallel lines in figure 1 (or equivalently on one branch of the cusp). We

indicated with L(1)(τ) the first-order expansion of the superconnection for small θ

L(τ) = L(0)(τ) + θL(1)(τ) +O(θ2) (4.2)

Notice that we stopped the expansion at the first order since the second order would be

related to one-point functions of local operators which vanish for the residual conformal

invariance. The explicit expression of L(1)(τ) is

L(1) =

(
−2πi

k

(
O1 + Ō1

)
i
√

π
k χ̄

1
+

−
√

π
kχ

+
1 −2πi

k

(
Ô1 + ˆ̄O1

)) (4.3)

with the operators defined in (3.13) and (3.6). Taking the products and using the properties

of the correlation functions (3.14), (3.15) and (3.16) we find

−〈(L(1)(τ1)L(1)(τ2))〉W0
=

8π2

k2

(
〈O1(τ1)Ō1(τ2)〉W0

+ 〈Ô1(τ1) ˆ̄O1(τ2)〉W0

)
+

2πi

k
〈χ̄1

+(τ1)χ+
1 (τ2)〉W0

(4.4)

Now we simply need to use (3.14) and (3.16) after the replacement (3.17) and keep in mind

that τ1 > τ2. This gives

1

2

∂2

∂θ2
log 〈Wθ〉

∣∣∣∣
θ=0

=
1

N

(
4π2

k2
(cs + ĉs)−

π

k
cf

)∫ ∞
−∞

dτ1

∫ τ1

−∞
dτ2

1

2(cosh τ12 − 1)
(4.5)

The resulting integral is identical to the four-dimensional case [20] and we can follow the

same steps. We symmetrize the contour, factor out an overall divergence T =
∫∞
−∞ dτ and

perform the last integral (∫ −ε
−∞

+

∫ ∞
ε

)
dτ

1

2(cosh τ − 1)
= −1 (4.6)
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with a cut-off regularization and discarding power-law divergences. This leads to

1

2

∂2

∂θ2
log 〈Wθ〉

∣∣∣∣
θ=0

= − T

2N

(
4π2

k2
(cs + ĉs)−

π

k
cf

)
(4.7)

Comparing with (2.10) and (2.7) we conclude that

B =
1

2N

(
4π2

k2
(cs + ĉs)−

π

k
cf

)
(4.8)

4.2 Two-point functions and circular Wilson line

Since we derived an expression for the Bremsstrahlung function in terms of scalar and

fermion two-point functions, we would like to relate such two-point functions to some

circular Wilson loop. We therefore consider the latitude Wilson loop with couplings (2.12)

and we take the derivative

∂

∂ν
log 〈Wν〉

∣∣∣∣
ν=1

= − ∂2

∂θ2
0

log 〈Wν〉
∣∣∣∣
θ0=0

(4.9)

As for the linear case we start by expanding the superconnection at small θ0 (we set α = π
4 )

L(τ) = L(0)(τ) + θ0L(1)(τ) +O(θ2
0) (4.10)

with

L(1)(τ) =

(
−2πi

k

(
eiτO1 + e−iτ Ō1

)
i
√

π
k e

iτ χ̄1
↑

−
√

π
k e
−iτχ↑1 −2πi

k

(
eiτ Ô1 + e−iτ ˆ̄O1

)) (4.11)

where we used the definitions (3.18) and (3.19). The matrix T in (2.12) can be safely taken

at the value θ0 = 0 and it transforms the supertrace in (2.1) into a trace yielding

∂2

∂θ2
0

log 〈Wν〉
∣∣∣∣
θ0=0

= − 1

N

∫ 2π

0
dτ1

∫ τ1

0
dτ2 〈L(1)(τ1)L(1)(τ2)〉W1

(4.12)

Taking products and using the properties of the correlation functions (3.14), (3.15), (3.16)

after the replacements (3.20), (3.18) and (3.19) we get

−〈(L(1)(τ1)L(1)(τ2))〉W1
=

8π2

k2
cos τ12

(
〈O1(τ1)Ō1(τ2)〉W1

+ 〈Ô1(τ1) ˆ̄O1(τ2)〉W1

)
+

2πi

k
cos τ12 〈χ̄1

↑(τ1)χ↑1(τ2)〉W1
(4.13)

and, keeping in mind that τ1 > τ2

∂2

∂θ2
0

log 〈Wν〉
∣∣∣∣
θ0=0

=
2

N

(
4π2

k2
(cs + ĉs)−

π

k
cf

)∫ 2π

0
dτ1

∫ τ1

0
dτ2

cos τ12

2(1− cos τ12)
(4.14)

As for the line case we find an integral that already appeared in the four-dimensional

case [20]. Again, we symmetrize the contour, factor out a factor 2π and solve the last

integral ∫ 2π−ε

ε

cos τ

1− cos τ
= −2π (4.15)
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disregarding power-law divergences. The final result reads

∂

∂ν
log 〈Wν〉

∣∣∣∣
ν=1

=
2π2

N

(
4π2

k2
(cs + ĉs)−

π

k
cf

)
(4.16)

Comparing with (4.8) we conclude that

B(λ,N) =
1

4π2

∂

∂ν
log 〈Wν〉

∣∣∣∣
ν=1

(4.17)

which is the main result of our analysis.

5 The superdisplacement operator

The excitation of a conformal field theory by the insertion of an extended probe (a defect)

clearly breaks translation invariance. In particular, the stress tensor is no longer conserved

and the usual conservation law needs to be modified by some additional terms localized on

the defect. For the case at hand, the conformal defect is a Wilson line in three-dimensional

space and, for particularly symmetric configurations, such as the straight line or the circle,

coordinates can be split in parallel and orthogonal ones, as we did in (3.1). In these

coordinates the stress tensor conservation law can be written as

∂µTµm(x) = δ2(x⊥)Dm(x1) (5.1)

However, one has to put particular care in interpreting this equation. Indeed, as we will see,

in our case the r.h.s. is a U(N |N) supermatrix while the l.h.s. is a bosonic bulk operator.

The puzzle is solved by remembering that equation (5.1) is meaningful only when both

sides are inserted inside a correlation function. In that case, being the r.h.s. localized

on the Wilson line by the delta function, its supermatrix structure is very natural and

equation (5.1) is well defined.

The operator on the r.h.s. of (5.1) is called displacement operator and, thanks to this

Ward identity, it accounts for the variation of an arbitrary correlation function when the

shape of the defect undergoes a small deformation. More specifically, let us consider the

deformation of a linear defect parametrized by x1(s) = s by a profile δxm(s). An immediate

consequence of the Ward identity (5.1) is that a correlation function of arbitrary operators

〈X〉W+δW taken in presence of the deformed Wilson line, at first order in the deformation

reads

〈X〉W+δW =

∫
ds 〈XDm(s)〉W δxm(s) +O(δx2) (5.2)

This expression can be extended to the limit when no additional field X is present, i.e.

for the expectation value of the Wilson line. In that case however the first order variation

vanishes, as it involves a defect one-point function, and the first non-trivial contribution

shows up at second order in the deformation

δ log 〈W〉 =

∫
s1>s2

ds1ds2 〈Dm(s1)Dn(s2)〉W δxm(s1)δxn(s2) +O(δx3) (5.3)
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For the case of interest here, we can immediately make an interesting observation. The form

of the displacement operator for a Wilson line can be computed explicitly by exploiting

the formula for the variation of a Wilson line

δ log 〈W(s1, s2)〉
δxm(s)

= −i
〈W(s1, s)

δL(x)
δxm(s)W(s, s2)〉

〈W(s1, s2)〉
= −i 〈 δL(x)

δxm(s)
〉
W

(5.4)

from which one can immediately identify

Dm(s) = −i δL(x)

δxm(s)
(5.5)

In the present case the connection is a supermatrix and consequently, as we anticipated,

the displacement operator is also a supermatrix. For the straight line case we get

Dm = Fm1 +Dm(LB + LF ) (5.6)

with the definitions (3.9) and the covariant derivative Dm taken with respect to the gauge

part of the superconnection

DmX = ∂mX + i[Am, X] Am =

(
Am 0

0 Âm

)
(5.7)

The field strength supermatrix is given by

Fm1 = ∂mA1 − ∂1Am + i[Am,A1] (5.8)

The Ward identity (5.1), relating the divergence of the bulk stress tensor with the

displacement operator protects the conformal dimension of the latter from quantum cor-

rections. Furthermore, the fact that Dm is a supermatrix does not affect the general ar-

guments according to which its two-point function is fully fixed by the residual symmetry

leading to

〈Dm(s1)Dn(s2)〉W =
δmnCD
|s12|4

(5.9)

As shown by the authors of [20], the coefficient CD, non-trivial function of the parameters

of the theory, for the case of the Wilson line is just the Bremsstrahlung function. More

precisely they found that

CD = 12B (5.10)

Their argument, which we shortly review, goes along the lines of our previous derivation of

formula (4.1). They implement a deformation of the straight line into a cusp by considering

an infinitesimal variation δxm(s) = ϕsδm2 for s > 0 and small ϕ. Inserting this into (5.3)

and using (5.9) one gets

δcusp log 〈W 〉 = ϕ2CD

∫ L

0
ds1

∫ s1−ε

0
ds2

s2s1

s4
12

(5.11)
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After a change of variable si = eτi with τi ∈ R, which is perfectly equivalent to map the

problem on the cylinder as in figure 1 (see also the end of appendix A) they obtain

δcusp log 〈W 〉 = ϕ2CD

∫
τ1>τ2

dτ1dτ2
1

4(cosh τ12 − 1)
(5.12)

which is again the integral (4.5). Following the same steps below (4.5) one gets

Γcusp = ϕ2CD
1

2

∫ ∞
−∞

dτ
1

4(cosh τ − 1)
= −CD

12
ϕ2 (5.13)

which proves the relation between CD and B for an arbitrary conformal field theory.

5.1 The displacement supermultiplet

Given the surprising relation between the two-point function of a complicated operator

like the displacement and that of simple operators like O1 and χ+
1 it is natural to ask

whether supersymmetry relates those operators in some way. This would also guarantee

that the operators O1 and χ+
1 are protected from quantum corrections, a fact that we

tacitly assumed in our derivation. Therefore in this section we want to understand which

su(1, 1|3) supermultiplet the displacement operator belongs to. In appendix C.1 we spell

out short and long representations of su(1, 1|3), labelling them with the four Dynkin labels

{∆,m, j1, j2} of the highest weight state, as we pointed out in section 3. The displacement

operator has a free index in the orthogonal directions and it is convenient to separate it

into two components with definite quantum numbers for rotations around the line. To do

this we define

D = D2 − iD3 D̄ = D2 + iD3 (5.14)

such that

[iM23,D] = D [iM23, D̄] = −D̄ (5.15)

Similarly we define

F = F21 − iF31 F̄ = F21 + iF31 (5.16)

Notice that the previous operators are associated to the complex coordinates z and z̄. After

this recombination, we can assign to the two components of the displacement operator

definite su(1, 1|3) quantum numbers

D→ {2, 3, 0, 0} D̄→ {2,−3, 0, 0} (5.17)

By means of the equations of motion (D.22) we can eliminate the field strengths appearing

in the displacement operator in favour of scalar and fermion currents:

D = DB + DF (5.18)

with

DB =
4πi

k

(
ZDZ̄−DYaȲ a+ψ̄+ψ

−+χ̄a+χ
−
a 0

0 DZ̄Z−Ȳ aDYa−ψ−ψ̄+−χ−a χ̄a+

)
(5.19)

DF = 2

√
π

k

(
0 −iDψ̄+

Dψ+ 0

)
(5.20)
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and similarly for D̄. Given these expressions we can locate any of the entries of the dis-

placement supermultiplet in the appropriate su(1, 1|3) multiplet. Four good candidates are

listed in appendix C.2. To select the appropriate ones, we could follow [64] and impose the

condition that every supersymmetry transformation on the displacement operator would

yield a conformal descendant. However, the present case involves several complications.

First of all, the preserved supersymmetry transformations, as a consequence of (2.3), do not

annihilate the super-holonomy, but only its supertrace. Secondly, the supermatrix nature

of the displacement operator prevents from imposing strong conditions on the single en-

tries. Despite these difficulties, let us attempt to derive a condition on the supersymmetry

transformation of the displacement operator. We start from∫
dτ 〈D(τ)O1(x1) . . . On(xn)〉W = −

n∑
i=1

∂xi 〈O1(x1) . . . On(xn)〉W (5.21)

and we assume, for notational simplicity, that all the operators Oi are in the bulk. This

has no influence on the final result. By taking the supersymmetry variation of the previous

equation we find∫
dτ 〈δsusy (Tr[W(+∞, τ)D(τ)W(τ,−∞)])O1(x1) . . . On(xn)〉 = 0 (5.22)

where we made explicit the operator insertion (3.10). Using

∂τ 〈O(τ) . . .〉W = 〈DτO(τ) . . .〉W (5.23)

with the covariant derivative defined in (2.3), we find that, for (5.22) to be true, we need

to have

δsusy (Tr[W(+∞, τ)D(τ)W(τ,−∞)]) = Tr[W(+∞, τ)DτO(τ)W(τ,−∞)] (5.24)

This expression can be further simplified by noticing that (2.3) implies

δsusyW(τ1, τ2) = i[W(τ1, τ2)G(τ2)− G(τ1)W(τ1, τ2)] (5.25)

Using this variation in (5.24) and imposing that G vanishes at infinity (which is equivalent to

ask that the straight infinite Wilson line is invariant under the preserved supersymmetries)

we obtain

δsusyD(τ) = DτO(τ)− i[G(τ),D(τ)] (5.26)

To find the explicit form of the operator O we use the explicit supersymmetry transforma-

tions in appendix D. First we find that the supermatrix G in (2.3) reads

G = 4

√
π

k

(
0 θ̄aYa

−iθaȲ a 0

)
(5.27)

where the action of Qa and Q̄a can be extracted by the differential operators Qa = ∂
∂θa

and

Q̄a = ∂
∂θ̄a

. Then we can also see that

O(τ) = −4

√
π

k

(
2
√

π
k θ̄

a(Yaψ
− − Zχ−a + εabcχ̄

b
+Ȳ

c) −θ̄aDYa
iθaDȲ

a 2
√

π
k θ̄

a(ψ−Ya − χ−a Z + εabcȲ
cχ̄b+)

)
(5.28)

The conjugate matrix would appear in the supersymmetry variation of D̄
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The condition (5.26) is too weak to put constraints on the allowed su(1, 1|3) supermul-

tiplets. Furthermore, constraining the whole supermatrix D and not the single components,

its precise analysis would require combining the su(1, 1|3) multiplets into U(N |N) repre-

sentations, task which goes beyond the scope of this paper. Here we are only interested

in identifying to which su(1, 1|3) multiplets the entries of (5.19) and (5.20) belong to. To

do that we perform the explicit supersymmetry variation of the highest weights associated

to the four candidate multiplets in appendix C.2 and we locate the operators appearing

in (5.19) and (5.20). The details are given in appendix C.2. Here we only report the final

result, reading

DF ∈

 0 B̄
1
2
3
2
,0,0

B̄
1
6
5
2
,0,1

0

 DB ∈

B̄
1
3
2,1,0 ⊕ B̄

1
6
5
2
,0,1

0

0 B̄
1
3
2,1,0 ⊕ B̄

1
6
5
2
,0,1

 (5.29)

and conjugate ones for the D̄. Among the multiplets appearing in this result we notice

the presence of B̄
1
2
3
2
,0,0

and B̄
1
3
2,1,0 which also include the operators χ+

a and Oa = ZȲ a

respectively. Those are the same operators appearing in (4.4), giving a further confirmation

that they are protected from quantum corrections. Furthermore, the fact that they belong

to the displacement supermultiplet may lead to a supersymmetry-based explanation for

the fact that their defect two-point functions are closely related (more precisely the two-

point function of L(1) equals — up to an overall coefficient– that of D, since they are both

proportional to B). A precise understanding of this fact would require a precise analysis

of the supersymmetric Ward identities, which we leave for future investigations.

As a last check of our derivation we now perform a perturbative computation of the

Bremsstrahlung function, using (4.8).

6 Perturbative checks

Since both cf and cs in (4.8) starts at order k0 in a large k expansion, the one-loop

contribution to B receives contributions only from the former (cs multiplies 1
k2

in (4.8)), i.e.

B(1) = − π

2kN
c

(0)
f (6.1)

The leading order for cf is easily extracted by comparing the correlators (3.16) with the

propagator (A.24) traced over color indices

c
(0)
f = −N

2

4π
(6.2)

and this gives

B(1) =
N

8k
(6.3)

in agreement with the literature.

At two loops the scalars start playing a role and we have

B(2) =
1

2N

(
4π2

k2
(c(0)
s + ĉ(0)

s )− π

k
c

(1)
f

)
(6.4)
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By looking at the scalar propagator (A.18) we can easily extract

c(0)
s = ĉ(0)

s =
N3

16π2
(6.5)

The computation of c
(1)
f is slightly more involved and here we anticipate the result of

section 6.1

c
(1)
f =

N3

2πk
(6.6)

yielding

B(2) = 0 (6.7)

in agreement with the result of [1, 51, 52].

6.1 Computation of c
(1)
f

We now give some details of the perturbative computation of c
(1)
f . We consider the fermionic

part of L(1) in (4.3)

ΛF =

(
0 i

√
π
k χ̄

1
+

−
√

π
kχ

+
1 0

)
(6.8)

and we compute its two-point correlation function on the straight line. This yields the

value of c
(1)
f since, for s1 > s2

〈ΛF (s1)ΛF (s2)〉W =
2π

k

cf
s12

2
(6.9)

Two classes of Feynman diagrams contribute to this two-point function.6,7 We consider

them separately in the next two sections. We perform the computation employing dimen-

sional regularization.

6.1.1 Arcs

ΛF (s2) ΛF (s1)LF (s4) LF (s3) LF (s4) LF (s3)ΛF (s2) ΛF (s1)

LF (s4) LF (s3)ΛF (s2) ΛF (s1) ΛF (s2) ΛF (s1)LF (s4) LF (s3)

6Since we are considering a fermion χ+
a we don’t have any coupling between the line and the fermionic

part of the connection LF which depends only on ψ+.
7The diagrams and their related integrands are computed with the Mathematica R© package WiLE [65]

with the algorithm slightly modified for the current computation.
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In the first class of diagrams we have four different contributions which can be expressed

as follows

〈ΛF (s1)ΛF (s2)〉(1)
W

∣∣∣
arcs

=−
∫ s1

s2

ds3

∫ s3

s2

ds4 〈ΛF (s1)LF (s3)LF (s4)ΛF (s2)〉

−
∫ ∞
s1

ds3

∫ s2

−∞
ds4 〈LF (s3)ΛF (s1)ΛF (s2)LF (s4)〉

−
∫ ∞
s1

ds3

∫ s3

s1

ds4 〈LF (s3)LF (s4)ΛF (s1)ΛF (s2)〉

−
∫ s2

−∞
ds3

∫ s3

−∞
ds4 〈ΛF (s1)ΛF (s2)LF (s3)LF (s4)〉 (6.10)

where the matrix LF is the fermionic part of the superconnection defined in (3.9). It is

straightforward to evaluate these diagrams by Wick contraction and using the propaga-

tors (A.26). After performing the integrals and summing the four contributions the result

reads

〈ΛF (s)ΛF (0)〉(1)
W

∣∣∣
arcs

=
N3

2π1−2εk2

Γ(1
2 − ε)Γ(3

2 − ε)
ε

(2L)2ε + 2s2ε

s2−2ε
(6.11)

This result is UV and IR divergent (the parameter L is a long distance cut-off). Whereas

the former divergence will be cancelled by the second class of diagrams, the latter should

not be there. Nevertheless we should remember that, using dimensional regularization

the result of 〈W〉 is IR and UV divergent itself and the defect two-point point function,

according to (3.10), must be normalized by this factor. Therefore, the actual contribution

of the arcs is

〈ΛF (s1)ΛF (s2)〉(1)
W

∣∣∣
arcs
− 〈ΛF (s1)ΛF (s2)〉(0) 〈W〉(1) =

N3

k2

Γ(1
2 − ε)Γ(3

2 − ε)
ε

(
πs2
)2ε−1

(6.12)

The residual UV divergence will be cancelled by the vertices.

6.1.2 Vertices

ΛF (s2) ΛF (s1)A(s) ΛF (s2) ΛF (s1)A(s) ΛF (s2) ΛF (s1)A(s)

In the second class of diagrams we have three different contributions which can be expressed

as follows

〈ΛF (s1)ΛF (s2)〉(1)
W

∣∣∣
vertices

=− i
∫ s2

−∞
ds3

∫
d3z 〈Tr[ΛF (s1)ΛF (s2)A(s)]VψψA(z)〉

− i
∫ s1

s2

ds3

∫
d3z 〈Tr[ΛF (s1)A(s)ΛF (s2)]VψψA(z)〉

− i
∫ ∞
s1

ds3

∫
d3z 〈Tr[A(s)ΛF (s1)ΛF (s2)]VψψA(z)〉 (6.13)
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where the vertex VψψA(z) reads

VψψA(z) = Tr[ψ̄IγµψIAµ − ψ̄IγµÂµψI ] (6.14)

and the matrix A is defined in (3.9). The final result reads

〈ΛF (s)ΛF (0)〉(1)
W

∣∣∣
vertices

= −N
3

k2

Γ(1
2 − ε)Γ(3

2 − 2ε)Γ(ε) cosπε

22ε

(
πs2
)2ε−1

(6.15)

6.1.3 Result

Putting together (6.12) and (6.15) we obtain

〈ΛF (s)ΛF (0)〉(1)
W =

N3

k2 s2
(6.16)

yielding

c
(1)
f =

N3

2πk
(6.17)

as expected.
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A Conventions

Our conventions for the spinor contractions are as follows

ηη̄ ≡ ηαη̄α ηα = εαβηβ εαβεβγ = δαγ ε12 = −ε12 = 1 (A.1)

We work in Euclidean space (x1, x2, x3) with γ matrices

(γµ)α
β = (σ1, σ2,−σ3) (A.2)

satisfying the Clifford algebra {γµ, γν} = 2δµν1. Notice that (γµ)αβ = εαγεβδ(γ
µ)γ

δ, i.e.

(γµ)αβ = (σ1,−σ2,−σ3) (A.3)

Since for the straight line we use the ± basis it is useful to also write down the gamma

matrices in this basis

(γµ± basis)±
±

= {σ3, σ2,−σ1} (A.4)
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The propagators for fundamental fields in 3d are

〈(CI)iĵ(x)(C̄J)k̂
l
(y)〉

(0)
= δJI δ

l
iδ
ĵ

k̂

1

4π

1

|x− y|
(A.5)

〈(ψαI )̂i
j(x)(ψ̄Jβ )k

l̂
(y)〉

(0)

= δJI δ
l̂
î
δjk
−i
4π

(x− y)µ(γµ)β
α

|x− y|3
(A.6)

〈AAµ (x)ABν (y)〉(0)
= δAB

2πi

k

1

4π
εµνρ

(x− y)ρ

|x− y|3
(A.7)

〈ÂAµ (x)ÂBν (y)〉(0)
= −δAB 2πi

k

1

4π
εµνρ

(x− y)ρ

|x− y|3
(A.8)

and in dimensional regularization

〈(CI)iĵ(x)(C̄J)k̂
l
(y)〉

(0)
= δJI δ

l
iδ
ĵ

k̂

Γ(1
2 − ε)

4π
3
2
−ε

1

|x− y|1−2ε
(A.9)

〈(ψαI )̂i
j(x)(ψ̄Jβ )k

l̂
(y)〉

(0)

= δJI δ
l̂
î
δjk
−iΓ(3

2 − ε)
2π

3
2
−ε

(x− y)µ(γµ)β
α

|x− y|3−2ε
(A.10)

〈AAµ (x)ABν (y)〉(0)
= δAB

2πi

k

Γ(3
2 − ε)

2π
3
2
−ε

εµνρ
(x− y)ρ

|x− y|3−2ε
(A.11)

〈ÂAµ (x)ÂBν (y)〉(0)
= −δAB 2πi

k

Γ(3
2 − ε)

2π
3
2
−ε

εµνρ
(x− y)ρ

|x− y|3−2ε
(A.12)

where A,B are adjoint SU(4) indices.

We summarize also our conventions on the straight line and circular 1/2 BPS Wilson

lines. The contours are

Line xµ(τ) = (s, 0, 0) (A.13)

Circle xµ(τ) = (cos τ, sin τ, 0) (A.14)

with superconnection

L =

Aµẋµ − 2πi
κ MJ

ICIC̄
J −i

√
2π
κ ηψ̄√

2π
κ ψη̄ Âµẋ

µ − 2πi
κ MJ

IC̄JCI

 (A.15)

and

Line MI
J =


−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 ηα =
1√
2

(
1 1
)

η̄α =
1√
2

(
1

1

)
(A.16)

Circle MI
J =


−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 ηα =
1√
2

(
ei
τ
2 −ie−i

τ
2

)
η̄α =

1√
2

(
e−i

τ
2

iei
τ
2

)
(A.17)
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The propagators for scalar fields inserted on the loop are

Line 〈(CI)iĵ(τ1)(C̄J)k̂
l
(τ2)〉

(0)

W = δJI δ
l
iδ
ĵ

k̂

1

4π

1

|s12|
(A.18)

Circle 〈(CI)iĵ(τ1)(C̄J)k̂
l
(τ2)〉

(0)

W = δJI δ
l
iδ
ĵ

k̂

1

4π

1

2| sin τ12
2 |

(A.19)

and, in dimensional regularization

Line 〈(CI)iĵ(τ1)(C̄J)k̂
l
(τ2)〉

(0)

W = δJI δ
l
iδ
ĵ

k̂

Γ(1
2 − ε)

4π
3
2
−ε

1

|s12|1−2ε
(A.20)

Circle 〈(CI)iĵ(τ1)(C̄J)k̂
l
(τ2)〉

(0)

W = δJI δ
l
iδ
ĵ

k̂

Γ(1
2 − ε)

4π
3
2
−ε

1

|2 sin τ12
2 |1−2ε

(A.21)

For fermions it is useful to consider the components

Line ψ+
I = ψI η̄ ψ̄I+ = ηψ̄I (A.22)

Circle ψ↑I = ψI η̄ ψ̄I↑ = ηψ̄I (A.23)

where we keep the SU(4) indices since at tree level the symmetry breaking has no effect.

Their propagators read

Line 〈(ψ+
I )̂i

j
(s1)(ψ̄J+)k

l̂
(s2)〉

(0)

W =
δJI δ

l̂
î
δjk

4πs12|s12|
(A.24)

Circle 〈(ψ↑I )̂i
j
(τ1)(ψ̄J↑ )k

l̂
(τ2)〉

(0)

W =
δJI δ

l̂
î
δjk

16π sin τ12
2 | sin

τ12
2 |

(A.25)

and, in dimensional regularization

Line 〈(ψ+
I )̂i

j
(s1)(ψ̄J+)k

l̂
(s2)〉

(0)

W = δJI δ
l̂
î
δjk

Γ(3
2 − ε)

2π
3
2
−ε

s12

|s12|3−2ε
(A.26)

Circle 〈(ψ↑I )̂i
j
(τ1)(ψ̄J↑ )k

l̂
(τ2)〉

(0)

W = δJI δ
l̂
î
δjk

Γ(3
2 − ε)
π

3
2
−ε

sin τ12
2

|2 sin τ12
2 |3−2ε

(A.27)

Finally for the gauge field, the components can be split as in (3.7) and the non-vanishing

propagators are

Line 〈AA(s1)ĀB(s2)〉(0)

W = −〈ĀA(s1)AB(s2)〉(0)

W = −δAB 2π

k

1

4π

1

s12|s12|
(A.28)

〈ÂA(s1) ˆ̄AB(s2)〉
(0)

W = −〈 ˆ̄AA(s1)ÂB(s2)〉
(0)

W = δAB
2π

k

1

4π

1

s12|s12|
(A.29)

Circle 〈AA(τ1)ĀB(τ2)〉(0)

W = −〈ĀA(τ1)AB(τ2)〉(0)

W = −δAB 2π

k

1

16π

1

sin τ12
2 | sin

τ12
2 |

(A.30)

〈ÂA(τ1) ˆ̄AB(τ2)〉
(0)

W = −〈 ˆ̄AA(τ1)ÂB(τ2)〉
(0)

W = δAB
2π

k

1

16π

1

sin τ12
2 | sin

τ12
2 |

(A.31)
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In dimensional regularization they read

Line 〈AA(s1)ĀB(s2)〉(0)

W = −δAB 2π

k

Γ(3
2 − ε)

2π
3
2
−ε

s12

|s12|3−2ε
(A.32)

〈ÂA(s1) ˆ̄AB(s2)〉
(0)

W δAB
2π

k

Γ(3
2 − ε)

2π
3
2
−ε

s12

|s12|3−2ε
(A.33)

Circle 〈AA(τ1)ĀB(τ2)〉(0)

W − δ
AB 2π

k

Γ(3
2 − ε)
π

3
2
−ε

sin τ12
2

|2 sin τ12
2 |3−2ε

(A.34)

〈ÂA(τ1) ˆ̄AB(τ2)〉
(0)

W = δAB
π

k

Γ(3
2 − ε)

2π
3
2
−ε

sin τ12
2

|2 sin τ12
2 |3−2ε

(A.35)

For the straight line, in section 4.1, we find it useful to map the problem on the cylinder

R× S2 with metric

dxµdxµ = dr2 + r2dΩ2 = e2t(dt2 + dΩ2) (A.36)

The profile of the Wilson line in these coordinates is{
t = τ

ϕ = 0
∪

{
t = τ

ϕ = π
(A.37)

where the relation between r and t is the usual exponential map

r = et (A.38)

and the logarithmic divergence for r = ε and r = L in (2.7) maps to a linear divergence for

t = ±∞ in (2.8).

B osp(6|4) algebra

We now list the commutation relation for the osp(6|4) superalgebra. Let us start from the

three-dimensional conformal algebra

[Pµ,Kν ] = 2δµνD + 2Mµν [D,P µ] = Pµ [D,Kµ] = −Kµ (B.1)

[Mµν ,Mρσ] = δσ[µMν]ρ + δρ[νMµ]σ [Pµ,Mνρ] = δµ[νP ρ] [Kµ,Mνρ] = δµ[νKρ] (B.2)

Then we have the SU(4) generators

[JI
J , JK

L] = δLI JK
J − δJKJIL (B.3)

Fermionic generators QIJα and SIJα respect the reality condition Q̄IJα = 1
2εIJKLQ

KL
α

and similarly for S. Anticommutation relations are

{QIJα , QKLβ} = 2εIJKL(γµ)α
βPµ {SIJα , SKLβ} = 2εIJKL(γµ)α

βKµ (B.4)

{QIJα , SKLβ} = εIJKL((γµν)α
βMµν + 2δβαD) + 2δβαε

KLMN (δJMJN
I − δIMJNJ) (B.5)
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Finally, mixed commutators are

[D,QIJα ] =
1

2
QIJα [D,SIJα ] = −1

2
SIJα (B.6)

[Mµν , QIJα ] = −1

2
(γµν)α

βQIJβ [Mµν , SIJα ] = −1

2
(γµν)α

βSIJβ (B.7)

[Kµ, QIJα ] = (γµ)α
βSIJβ [Pµ, SIJα ] = (γµ)α

βQIJβ (B.8)

[JI
J , QKLα ] = δKI Q

JL
α + δLI Q

KJ
α − 1

2
δJI Q

KL
α [JI

J , SKLα ] = δKI S
JL
α + δLI S

KJ
α − 1

2
δJI S

KL
α

(B.9)

C The subalgebra su(1, 1|3)

Inside the osp(6|4) it is possible to identify the su(2|3) (or, more precisely su(1, 1|3)) sub-

algebra preserved by the 1/2 BPS Wilson line. The su(1, 1) generators are those of the

one-dimensional conformal group, i.e. {D,P1,K1}. Since for building irreducible represen-

tations it will be important to choose the correct real section, compared to the previous

section we make the transformations P1 → iP1 and K1 → iK1 in order to obtain the correct

su(1, 1) commutation relations

[P1,K1] = −2D [D,P1] = P1 [D,K1] = −K1 (C.1)

The su(3) generators Ra
b are traceless, i.e. Ra

a = 0 and they are given in terms of the

original su(4) ones by

Ra
b =

J2
2 + 1

3J1
1 J2

3 J2
4

J3
2 J3

3 + 1
3J1

1 J3
4

J4
2 J4

3 −J3
3 − J2

2 − 2
3J1

1

 (C.2)

Their commutation relations are

[Ra
b, Rc

d] = δdaRc
b − δbcRad (C.3)

The last bosonic symmetry is the u(1) algebra generated by

M = 3iM23 − 2J1
1 (C.4)

and commuting with the other bosonic generators.

The fermionic generators are given by a reorganization of the preserved supercharges

{Q12
+ , Q

13
+ , Q

14
+ , Q

23
− , Q

24
− , Q

34
− }, together with the corresponding superconformal charges.

Our notation is

Qa = Q1a
+ Sa = i S1a

+ Q̄a = i
1

2
εabcQ

bc
− S̄a =

1

2
εabcS

bc
− (C.5)

The i factors are chosen to compensate the transformations on P1 and K1 so that anticom-

mutators read

{Qa, Q̄b} = 2δabP1 {Sa, S̄b} = 2δabK1 (C.6)

{Qa, S̄b} = 2δab

(
D +

1

3
M

)
− 2Rb

a {Q̄a, Sb} = 2δab

(
D − 1

3
M

)
+ 2Ra

b (C.7)
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Finally, non-vanishing mixed commutators are

[D,Qa] =
1

2
Qa [D,Q̄a] =

1

2
Q̄a [K1,Q

a] =Sa [K1, Q̄a] = S̄a

(C.8)

[D,Sa] =−1

2
Sa [D,S̄a] =−1

2
S̄a [P1,S

a] =−Qa [P1, S̄a] =−Q̄a
(C.9)

[Ra
b,Qc] = δcaQ

b− 1

3
δbaQ

c [Ra
b, Q̄c] =−δbcQ̄a+

1

3
δbaQ̄c [M,Qa] =

1

2
Qa [M,Q̄a] =−1

2
Q̄a

(C.10)

[Ra
b,Sc] = δcaS

b− 1

3
δbaS

c [Ra
b, S̄c] =−δbcS̄a+

1

3
δbaS̄c [M,Sa] =

1

2
Sa [M,S̄a] =−1

2
S̄a

(C.11)

C.1 Representations of su(1, 1|3)

We consider here long and short multiplets of the su(1, 1|3) algebra. The algebra is char-

acterized by four Dynkin labels [∆,m, j1, j2] associated to the Cartan generators of the

bosonic subalgebra su(1, 1)⊕ u(1)⊕ su(3). With respect to our previous conventions it is

convenient to rewrite the su(3) generators in a Cartan-Weyl basis. We consider the Cartan

subalgebra generated by

J1 = R1
1 −R2

2 J2 = R1
1 + 2R2

2 (C.12)

and we relabel E+
a = Ra+1

a and E−a = Ra
a+1 with the sum on the indices performed

modulo 3. This way we have a su(2) subalgebra associated to any Cartan generator

[Ja, E
±
a ] = ±2E±a [E+

a , E
−
a ] = Ja (C.13)

with the identification J3 = J1 + J2. Furthermore we have

[E±1 , E
±
2 ] = E±3 [E±1,2, E

±
3 ] = 0 [J1, E

±
2 ] = ∓E±2 [J2, E

±
1 ] = ∓E±1 (C.14)

In this basis the supercharges have definite quantum numbers and their action on a state

|∆,m, j1, j2〉 can be simply obtained by shifts in the labels. In particular the associated

charges are

Q1 [1
2 ,

1
2 , 1, 0] Q2 [1

2 ,
1
2 ,−1, 1] Q3 [1

2 ,
1
2 , 0,−1] (C.15)

Q̄1 [1
2 ,−

1
2 ,−1, 0] Q̄2 [1

2 ,−
1
2 , 1,−1] Q̄3 [1

2 ,−
1
2 , 0, 1] (C.16)

We can also list the charges of the fundamental fields of the theory

Z [1
2 ,

3
2 , 0, 0] Z̄ [1

2 ,−
3
2 , 0, 0] Ȳ 1 [1

2 ,
1
2 , 1, 0] Y3 [1

2 ,−
1
2 , 0, 1] (C.17)

ψ+ [1, 0, 0, 0] ψ̄+ [1, 0, 0, 0] χ+
3 [1,−2, 0, 1] χ̄1

+ [1, 2, 1, 0] (C.18)

ψ− [1, 3, 0, 0] ψ̄− [1,−3, 0, 0] χ−3 [1, 1, 0, 1] χ̄1
− [1,−1, 1, 0] (C.19)
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where we listed only the R-symmetry highest weights since the rules for different indices

are identical to the ones for supercharges. We now proceed with the construction of the

multiplets.

The long multiplet can be easily built by acting with the supercharges Qa and Q̄a and

the operators E−a and P1 on a highest weight state characterized by

Sa |∆,m, j1, j2〉hw = 0 S̄a |∆,m, j1, j2〉hw = 0 E+
a |∆,m, j1, j2〉

hw = 0 (C.20)

The dimension of this module is

dimA∆
m;j1,j2 = 27(j1 + 1)(j2 + 1)(j1 + j2 + 2) (C.21)

and unitarity requires

∆ ≥

{
1
3(2j1 + j2 −m) m ≤ j1−j2

2
1
3(j1 + 2j2 +m) m > j1−j2

2

(C.22)

We now consider the possible shortening conditions one can get. Let us start by the

multiplets of the kind Bm;j1,j2 obtained imposing

Qa |∆,m, j1, j2〉hw = 0 (C.23)

for the three cases

a = 1 ∆ =
1

3
(2j1 + j2 −m) B

1
6
m,j1,j2

(C.24)

a = 1, 2 ∆ =
1

3
(j2 −m) j1 = 0 B

1
3
m,0,j2

(C.25)

a = 1, 2, 3 ∆ = −1

3
m j1 = j2 = 0 B

1
2
m,0,0 (C.26)

where, as usual, the conditions on the dimensions have been imposed by looking at consis-

tency with the anticommutation relation (C.7). We labelled these three multiplets accord-

ing to the fraction of supercharges annihilating the highest weight state.

The conjugate pattern emerges for the case of Q̄a. We have

Q̄a |∆,m, j1, j2〉hw = 0 (C.27)

for the three cases

a = 3 ∆ =
1

3
(j1 + 2j2 +m) B̄

1
6
m,j1,j2

(C.28)

a = 2, 3 ∆ =
1

3
(j1 +m) j2 = 0 B̄

1
3
m,j1,0

(C.29)

a = 1, 2, 3 ∆ =
1

3
m j1 = j2 = 0 B̄

1
2
m,0,0 (C.30)

Finally we may have mixed multiplets where the highest weight is annihilated both by

Qa and Q̄a. Those include

B̂
1
6

1
6

m,j1,j2
∆ =

j1 + j2
2

m =
j1 − j2

2
(C.31)

B̂
1
3

1
6

m,0,j2
∆ =

j2
2

m =
−j2

2
j1 = 0 (C.32)

B̂
1
6

1
3

m,j1,0
∆ =

j1
2

m =
j1
2

j2 = 0 (C.33)
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We conclude by considering the recombination of short multiplets into long ones at the

unitarity bound. For m < j1−j2
2 the unitarity bound is for ∆ = 1

3(2j1 + j2 −m) and one

can verify that

A−
1
3
m+ 2

3
j1+ 1

3
j2

m,j1,j2
= B

1
6
m,j1,j2

⊕ B
1
6

m+ 1
2
,j1+1,j2

(C.34)

Equivalently, for m > j1−j2
2 one has

A
1
3
m+ 1

3
j1+ 2

3
j2

m,j1,j2
= B̄

1
6
m,j1,j2

⊕ B̄
1
6

m− 1
2
,j1,j2+1

(C.35)

For the particular case m = j1−j2
2 we have

Aj1+j2
j1−j2

2
,j1,j2

= B̂
1
6

1
6

j1−j2
2

,j1,j2
⊕B̂

1
6

1
6

j1−j2
2

+ 1
2
,j1+1,j2

⊕B̂
1
6

1
6

j1−j2
2
− 1

2
,j1+1,j2+1

⊕B̂
1
6

1
6

j1−j2
2

,j1+1,j2+1
(C.36)

The specific cases of vanishing Dynkin labels have to be considered with particular care.

Notice that if j1 = 0 and Q1 |∆,m, 0, j2〉hw = 0 then the condition E−1 |∆,m, 0, j2〉
hw =0

automatically implies that Q2 |∆,m, 0, j2〉hw = 0. Therefore the multiplet B
1
6
m,0,j2

is equiv-

alent to B
1
3
m,0,j2

. A similar argument holds for the conjugate case. Based on this arguments

we can list all possible multiplets with vanishing labels as{
B̄

1
6
m,0,j2

,B
1
3
m,0,j2

, B̂
1
3

1
6

m,0,j2

}
j1 = 0 j2 > 0 (C.37){

B
1
6
m,j1,0

, B̄
1
3
m,j1,0

, B̂
1
6

1
3

m,j1,0

}
j1 > 0 j2 = 0 (C.38){

B
1
2
m,0,0, B̄

1
2
m,0,0

}
j1 = 0 j2 = 0 (C.39)

For each of these cases the long multiplet at the unitarity bound can be expressed in terms

of the short ones. The detailed decompositions are shown in table 1.

C.2 Particular cases: the displacement multiplets

The displacement operator is characterized by quantum numbers [2,±3, 0, 0]. We then look

for all the possible short multiplets containing one state with those quantum numbers and

with an available highest weight operator. We consider just the case [2, 3, 0, 0] since the

negative one can be obtained by simply conjugating the multiplets. In principle the condi-

tion of containing one operator with the correct quantum numbers is not very constraining,

but in this case, given that the labels are quite small the number of cases is limited. We

find four of them.

B̄
1
2
3
2
,0,0

. The first multiplet is 1/2 BPS and it is given by.

[1
2 ,

3
2 , 0, 0]

[1, 2, 1, 0]

[3
2 ,

5
2 , 0, 1]

[2, 3, 0, 0]
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m < − j2
2 A

1
3

(j2−m)

m,0,j2
= B

1
3
m,0,j2

⊕ B
1
6

m+ 1
2
,1,j2

j1 = 0 m > − j2
2 A

1
3

(2j2+m)

m,0,j2
= B̄

1
6
m,0,j2

⊕ B̄
1
6

m− 1
2
,0,j2+1

m = − j2
2 A

j2
2

− j2
2
,0,j2

= B̂
1
3

1
6

− j2
2
,0,j2
⊕ B̂

1
3

1
6

− j2+1
2

,0,j2+1
⊕ B̂

1
6

1
6

1−j2
2

,1,j2
⊕ B̂

1
6

1
6

− j2
2
,1,j2+1

m < j1
2 A

1
3

(2j1−m)

m,j1,0
= B

1
6
m,j1,0

⊕ B
1
6

m+ 1
2
,j1+1,0

j2 = 0 m > j1
2 A

1
3

(j1+m)

m,j1,0
= B̄

1
3
m,j1,0

⊕ B̄
1
6

m− 1
2
,j1,1

m = j1
2 A

j1
2
j1
2
,j1,0

= B̂
1
6

1
3

j1
2
,j1,0
⊕ B̂

1
6

1
3

j1+1
2

,j1+1,0
⊕ B̂

1
6

1
6

j1−1
2

,j1,1
⊕ B̂

1
6

1
6

j1
2
,j1+1,1

j1 = j2 = 0
m < 0 A−

m
3

m,0,0 = B
1
2
m,0,0 ⊕ B

1
6

m+ 1
2
,1,0

m > 0 A
m
3
m,0,0 = B̄

1
2
m,0,0 ⊕ B̄

1
6

m− 1
2
,0,1

Table 1. Decomposition of long multiplets into short ones for the case of some vanishing Dynkin

labels.

where right arrows indicate the action of a supercharge Qa. Since the only way to create a

state of dimension 1
2 is with a bosonic field this state is associated to a fermionic component

of the displacement operator. In particular the highest weight with the correct quantum

numbers is O = Z.

B̄
1
3
2,1,0. The second multiplet we find is 1/3 BPS. The highest weight has quantum num-

bers [1, 2, 1, 0] and the descendants are

[1, 2, 1, 0]

[3
2 ,

5
2 , 2, 0]

[3
2 ,

5
2 , 0, 1]

[3
2 ,

3
2 , 0, 0]

[2, 3, 0, 0]

[2, 3, 1, 1]
[2, 2, 1, 0]

[5
2 ,

5
2 , 0, 1] [5

2 ,
7
2 , 1, 0]

[3, 3, 0, 0]

In this case we may have both bosonic and fermionic states with the correct highest weight

quantum numbers. Nevertheless it turns out that the fermionic operator with the cor-

rect quantum numbers, i.e. χ̄1
+, is a descendant of the short multiplet B̄

1
2
3
2
,0,0

. Therefore

the highest weight has to be bosonic and it is given explicitly by O=ZȲ 1.
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B̄
1
3
7
2
,1,0

. The third multiplet is also 1/3 BPS. The highest weight has quantum numbers

[3
2 ,

7
2 , 1, 0] and reads

[3
2 ,

7
2 , 1, 0]

[2, 4, 2, 0]

[2, 4, 0, 1]
[2, 3, 0, 0]

[5
2 ,

9
2 , 0, 0]

[5
2 ,

9
2 , 1, 1]

[5
2 ,

7
2 , 1, 0]

[3, 4, 0, 1] [3, 5, 1, 0]

[7
2 ,

9
2 , 0, 0]

By looking at (C.17), (C.18) and (C.19) and by keeping in mind the color structure we

realize that we can combine the fundamental fields to build a highest weight with the

correct quantum numbers in a single way: O = ZȲ 1Z. We will see that this multiplet does

not contribute to the displacement operator.

B̄
1
6
5
2
,0,1

. The last multiplet is 1/6 BPS. The highest weight has quantum numbers [ 3
2 ,

5
2 , 0, 1]

and reads

[3
2 ,

5
2 , 0, 1]

[2, 3, 0, 0]

[2, 3, 1, 1]
[2, 2, 1, 0]

[5
2 ,

3
2 , 0, 0]

[5
2 ,

5
2 , 0, 1]

[5
2 ,

5
2 , 2, 0]

[5
2 ,

7
2 , 0, 2]

[5
2 ,

7
2 , 1, 0]

[3, 2, 1, 0]
[3, 3, 0, 0]

[3, 3, 1, 1]
[3, 4, 0, 1]

[7
2 ,

7
2 , 1, 0][7

2 ,
5
2 , 0, 1]

[4, 3, 0, 0]

Highest weight operators for this multiplet are discussed in the next section.
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D Supersymmetry transformation of the fields

We now consider supersymmetry transformations of the scalar fields under the preserved

supercharges

QaZ = 2χ̄a+ Q̄aZ = 0 QaZ̄ = 0 Q̄aZ̄ = −2χ+
a (D.1)

QaYb = −2δab ψ̄+ Q̄aYb = −2εabcχ̄
c
− QaȲ b = −2εabcχ−c Q̄aȲ

b = 2δbaψ
+ (D.2)

and similarly for fermions

Q̄aψ
+ = 0 Qaψ+ = −2iD1Ȳ

a − 4πi

k
[Ȳ alB − l̂BȲ a] (D.3)

Qaψ− = −2DȲ a Q̄aψ
− = −8πi

k
εabcȲ

bZȲ c (D.4)

Q̄aχ
+
b = −2εabcD̄Ȳ

c Qaχ+
b = 2iδabD1Z̄ +

8πi

k
[Z̄Λab − Λ̂ab Z̄] (D.5)

Qaχ−b = 2δabDZ̄ Q̄aχ
−
b = −2iεabcD1Ȳ

c − 4πi

k
εacd[Ȳ

cΘd
b − Θ̂d

b Ȳ
c] (D.6)

Qaψ̄+ = 0 Q̄aψ̄+ = 2iD1Ya +
4πi

k
[Ya l̂B − lBYa] (D.7)

Q̄aψ̄− = −2D̄Ya Qaψ̄− = −8πi

k
εabcYbZ̄Yc (D.8)

Qaχ̄b+ = 2εabcDYc Q̄aχ̄
b
+ = −2iδbaD1Z −

8πi

k
[ZΛ̂ba − ΛbaZ] (D.9)

Q̄aχ̄
b
− = 2δbaD̄Z Qaχ̄b− = −2iεabcD1Yc −

4πi

k
εacd[YcΘ̂

b
d −Θb

dYc] (D.10)

where we used the definitions

D = D2 − iD3 D̄ = D2 + iD3 (D.11)

and the entries of the supermatrices(
Λba 0

0 Λ̂ba

)
=

(
YaȲ

b + 1
2δ
b
alB 0

0 Ȳ bYa + 1
2δ
b
a l̂B

)
(D.12)(

Θb
a 0

0 Θ̂b
a

)
=

(
YaȲ

b − δba(YcȲ c + ZZ̄) 0

0 Ȳ bYa − δba(Ȳ cYc + Z̄Z)

)
(D.13)(

lB 0

0 l̂B

)
=

(
(ZZ̄ − YaȲ a) 0

0 (Z̄Z − Ȳ aYa)

)
(D.14)

Notice that, due to the last identity the bosonic part of the superconnection reads

LB =
2πi

k

(
lB 0

0 l̂B

)
(D.15)
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Finally we can list the transformation properties of the gauge fields

QaA1 =
4πi

k
(ψ̄+Ȳ

a−χ̄a+Z̄−εabcYbχ−c ) Q̄aA1 =
4πi

k
(Zχ+

a −Yaψ++εabcχ̄
b
−Ȳ

c) (D.16)

QaA= 0 Q̄aA=
8π

k
(Yaψ

−−Zχ−a +εabcχ̄
b
+Ȳ

c) (D.17)

QaĀ=
8π

k
(ψ̄−Ȳ

a−χ̄a−Z̄+εabcYbχ
+
c ) Q̄aĀ= 0 (D.18)

QaÂ1 =
4πi

k
(Ȳ aψ̄+−Z̄χ̄a+−εabcχ−c Yb) Q̄aÂ1 =

4πi

k
(χ+

a Z−ψ+Ya+εabcȲ
cχ̄b−) (D.19)

QaÂ= 0 Q̄aÂ=
8π

k
(ψ−Ya−χ−a Z+εabcȲ

cχ̄b+) (D.20)

Qa
¯̂
A=

8π

k
(Ȳ aψ̄−−Z̄χ̄a−+εabcχ+

c Yb) Q̄a
¯̂
A= 0 (D.21)

To check the closure of these transformations and to use them on local operators it is

important to keep in mind the equations of motion. For the gauge field we are interested in

the components (5.16) of the field strenght. In particular we focus on the first one, which

respects the equation

F =
2πi

k

(
Z
←→
D Z̄ + Ya

←→
D Ȳ a + 2ψ̄+ψ

− + 2χ̄a+χ
−
a 0

0 −Z̄
←→
DZ − Ȳ a←→DYa − 2ψ−ψ̄+ − 2χ−a χ̄

a
+

)
(D.22)

where the operator
←→
D has the usual definition Z

←→
D Z̄ ≡ ZDZ̄ −DZZ̄. For the fermions

we need the equation

/DψJ =
2π

k

(
C̄ICIψJ − ψJCIC̄I + 2ψICJ C̄

I − 2C̄ICJψI + 2εILKJ C̄
I ψ̄LC̄K

)
(D.23)

whose projection yields (we list just the components we needed for our computations)

Dψ+ = iD1ψ
− +

2πi

k

(
l̂Bψ

− − ψ−lB + 2Ȳ aZχ−a − 2χ−a ZȲ
a − 2Ȳ aχ̄b+Ȳ

cεabc

)
(D.24)

Dχ+
a = iD1χ

−
a +

2πi

k

(
χ−b Ωb

a − Ω̂b
aχ
−
b − 2Z̄Yaψ

− + 2ψ−YaZ̄+
)

(D.25)

+
4πi

k
εacd

(
Ȳ cψ̄+Ȳ

d + Ȳ dχ̄c+Z̄ − Z̄χ̄c+Ȳ d
)

(D.26)

with

Ωb
a = Θb

a + Λba −
1

2
δbalB (D.27)

Given the supersymmetry transformations and the equations of motion we can finally

consider the four multiplets given in section C.2 and apply the appropriate supercharges to

recover the components of the superdisplacement operator. A summary is given in table 2.

From this table one immediately notices that the supermultiplet B̄
1
3
7
2
,1,0

contains an

operator which does not appear in the displacement supermatrix (5.19), (5.20). On the

other hand, the bosoninc operators in (5.19) can be found in the two multiplets B̄
1
3
2,1,0

and B̄
1
6
5
2
,0,1

. In particular, the latter admits two possible highest weight operators (actually
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Multiplet Highest weight Displacement candidate

B̄
1
2
3
2
,0,0

O = Z 1
6εabcQ

aQbQcO = −8Dψ̄+

B̄
1
3
7
2
,1,0

ZȲ aZ 1
3Q̄aZȲ

aZ = 2Zψ+Z

B̄
1
3
2,1,0 ZȲ a 1

6εabcQ
aQbZȲ c = 4(1

3DYdȲ
d − ZDZ̄ − 2

3 χ̄
a
+χ
−
a )

B̄
1
6
5
2
,0,1

Oa = 1
2εabcȲ

bZȲ c QaOa = 2Ȳ aZχ−a − 2χ−a ZȲ
a − Ȳ aχ̄b+Ȳ

cεabc

Oa = εabcχ̄
b
+Ȳ

c + Zχ−a QaOa = 2(2DYdȲ
d + 3ZDZ̄ − χ̄a+χ−a )

Table 2. The possible multiplets containing the displacement operator. We apply the appropriate

supercharges (according to section C.2) to the highest weight operator and we project the result on

the R-symmetry singlet component.

more than two, but the others are not interesting here) which contain a component of the

displacement supermatrix. Indeed, the first line of the last row of table 2 contains a set

of operators which mixes with Dψ+ (as one can see form the equation of motion (D.24))

and therefore contains the bottom left component of (5.20). The only component left is

the top right component in (5.20) which is the easiest one since it clearly appears in the

multiplet B̄
1
2
3
2
,0,0

. One may wonder why the operator ψ̄+ψ
− does not show up in table 2.

The reason for that is pretty subtle, since in the contest of operator insertions on a Wilson

line a conformal descendant is given, as discussed around (5.23), by the action of the

covariant derivative (2.3). Therefore, to actually rebuild a conformal descendant of ψ−

in the equation of motion (D.24) one would need to write a supermatrix equation with

diagonal entries given exactly by ψ̄+ψ
− and ψ−ψ̄+. This shows that the latter operator

mixes with those appearing in (D.24) in a very subtle way, proving once more the necessary

interplay between su(1, 1|3) and U(N |N) representations in this contest.
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