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In this paper we present an approach to quadratic structures 
in derived algebraic geometry. We define derived n-shifted 
quadratic complexes, over derived affine stacks and over 
general derived stacks, and give several examples of those. 
We define the associated notion of derived Clifford algebra, in 
all these contexts, and compare it with its classical version, 
when they both apply. Finally, we prove three main existence 
results for derived shifted quadratic forms over derived stacks, 
define a derived version of the Grothendieck–Witt group of a 
derived stack, and compare it to the classical one.
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0. Introduction

Prompted by the recent introduction of symplectic forms in derived algebraic geometry 
([10]), we present a global approach to the theory of quadratic forms on very general 
moduli spaces, called derived stacks. In the case where the derived stack is just the 
spectrum of a ring k where 2 is invertible, these quadratic forms are defined on complexes 
C of k-modules, and are maps, in the derived category of k, from Sym2

k C to k[n], where 
Sym2

k(−) denotes the derived functor of the second symmetric power over k. There is 
an obvious notion of non-degeneracy for such a quadratic form, saying that the induced 
adjoint map C → C∨[n] is an isomorphism in the derived category of k.

The derived features are therefore two: first of all the map is a morphism in the 
derived category of k, and secondly, and most importantly, we allow for a shift in the 
target. These features accommodate for various symmetric shifted duality situations in 
topology, the motivating one being classical Poincaré duality.

We present a globalization of the above particular case to quadratic forms on Mod-
ules over a derived stack that uses in an essential way the refined (i.e. homotopical or, 
equivalently, ∞-categorical) features of derived algebraic geometry. When the Module 
in question is the tangent complex, we obtain what we call shifted quadratic stacks. We 
remark that the main definitions of derived quadratic forms and derived quadratic stacks 
are slight modifications of the notion of derived symplectic structure from [10] (without 
the complication coming from closedness data). In particular, we are able to reproduce 
in the quadratic case, two of the main existence theorems in [10]: the existence of a 
shifted quadratic form on the stack of maps from a O-compact, O-oriented derived stack 
to a shifted quadratic stack (Theorem 4.1), and the existence of a quadratic form on the 
homotopy fiber product of two null-mappings to a shifted quadratic stack (Theorem 4.7). 
As a consequence, we get that the derived looping of a shifted quadratic stack decreases 
the shift by one (Corollary 4.6). We also observe that any shifted symplectic structure 
gives rise to a shifted quadratic Module.

The third main topic developed in the paper, after the general theory of quadratic 
forms on derived moduli spaces and the main existence theorems, is the definition and 
study of a new derived version of the Clifford algebra associated to a shifted quadratic 
Module over a derived stack (so, in particular, to any shifted quadratic stack). We prove 
various basic properties of this derived Clifford algebra and give a theorem comparing 
it to the classical Clifford algebra, when they are both defined: the classical Clifford 
algebra happens to be the truncation at H0 of the derived one (see Corollary 2.12). 
We also introduce the notion of a shifted derived version of the Grothendieck–Witt 
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group of an arbitrary derived stack X, and compare it to the classical counterpart when 
X = R Spec k and the shift is 0 (Proposition 3.13).

An appendix establishes the basics of the homotopy theory of (externally) Z/2-graded 
differential graded algebras needed in the main text to properly define the Z/2-grading 
on the derived Clifford algebra.

Some leftovers and future directions of this work are discussed below, in this intro-
duction.

Alternative approaches. An alternative approach to derived Clifford algebras with re-
spect to the one used in this paper is the following, originally due in the underived and 
unshifted case to A. Preygel ([11]). It applies only in the even-shifted case, exactly as the 
one presented in this paper. Let (E, q) be a 2n-shifted quadratic complex on X (see Def-
inition 1.1 and 3.4). Here X can be any derived Artin stack locally of finite presentation 
over the base ring k, but the reader could stick to the derived affine case of Definition 1.1
without loosing any essential feature. The derived quadratic form q induces on the linear 
derived stack

V(E[−n]) := RSpec(SymOX
(E∨[n]))

a global function fq : V(E[−n]) → A1
k. Then we may view the pair (V(E[n]), fq) as a 

Landau–Ginzburg pair (see [11]). One can then extract from the corresponding matrix 
factorization category MF((V(E[n]), fq)), a derived Clifford algebra for (E, q), via a 
(derived, shifted) variant of [11, Thm. 9.3.4]. Its Z/2-grading appears here in a natural 
way. Note that for derived quadratic stacks, i.e. when E = TX , then V(E[−n]) is exactly 
the (−n)-shifted derived tangent stack of X.

Leftovers. Many interesting topics are not present in this first paper on the derived 
theory of quadratic forms. Namely, a treatment of involutions, analogues of classical clas-
sification theorems (like Witt cancellation), more details and applications of the derived 
Grothendieck–Witt group (defined in Section 3.2), and a more thorough investigation 
of the relations to derived Azumaya algebras ([20]), especially in the Z/2-graded case 
where we may expect a map from the derived Grothendieck–Witt group to the derived 
Brauer–Wall group (classifying derived Z/2-graded Azumaya up to Z/2-graded Morita 
equivalences). We plan to come back at least to some of these leftovers in a future paper.

Generalizations. One natural, mild, extension of the theory developed in this paper can 
be obtained by working over a base ring k with involution (along the lines of Ranicki’s 
work [12]). This would allow to treat, for example, derived (shifted) hermitian forms, 
objects that arise naturally (together with closed shifted differential forms) in derived 
Kähler geometry, a topic yet to be investigated.

A wider generalization of the present theory involves a categorification process: define 
a derived quadratic form on a dg-category. In order to do this one needs a homotopy 
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invariant notion of the second symmetric power of a dg-category, i.e. a slight reformu-
lation of the notion introduced by Ganter and Kapranov in [5]. As further explained by 
M. Schlichting, the role of the shifted k[n] will be taken here by C[n]

k (see [13, §1.9]). We 
plan to come back to this categorification in a future paper. One could expect e.g. that 
the quasi-coherent dg-category of a derived quadratic stack carries a derived quadratic 
form, but it might be the case that the converse is not true. This would of course make 
the categorification more interesting.

Acknowledgments. The atmosphere, food and waves in Portugal, gave a perfect start to 
this work.

On a more intellectual level, this paper grew out of some questions I raised during 
the preparation of the paper [10], while I was visiting the IHES: I had interesting start-
up conversations on the subject with Bertrand Toën, and Maxim Kontsevich was the 
first who thought that a derived notion of the Clifford algebra could be a useful object. 
I thank both of them. One more thank to Bertrand Toën for various useful comments 
on a first draft of the paper, to Luca Migliorini for his explanations about intersec-
tion (co)homology, to Nick Rozenblyum for helpful conversations related to the derived 
Grothendieck–Witt group, and to Tony Pantev for his interest in this work and his com-
ments. I was also influenced by Andrew Ranicki’s work on algebraic surgery, and by the 
notes of Jacob Lurie’s Harvard Course on Algebraic L-theory and Surgery (Spring 2011).

Notations and conventions.

• k will denote our base commutative ring such that 2 �= 0 in k. When k will be needed 
to be a field, we will also use the alternative notation k = F.

• When we say that (V, Q) is a (classical) quadratic module over k, we actually mean 
that V is a k-module, and that Q is a symmetric bilinear form on V over k (these 
might bear the name of symmetric bilinear modules, but this name is almost never 
used in the literature). Note that classical quadratic modules, as defined e.g. in [9], 
coincide with our if 2 is invertible in k.

• By ∞-category, we mean a Segal category (so in particular, any simplicial category 
will be viewed as an ∞-category), and we use the results and notations from [22]. 
Equivalently, one might work in the framework of quasi-categories (see [7]). For any 
∞-category T , and any pair of objects (x, y) in T , we denote by MapT (x, y) the 
corresponding mapping space (well defined in Ho(SSets)).

• As a general rule, ∞ categories will be denoted in underlined fonts like C, and 
the corresponding underlying model categories (whenever they exist) with no un-
derline, like C: if C is a model category then the associated ∞-category C is the 
Dwyer–Kan simplicial localization ([3]) of C with respect to weak equivalences (or 
its homotopy coherent nerve [7, 1.1.5], if one prefers working within the context of 
quasi-categories).

• C(k) will denote the model category of unbounded cochain complexes of k-modules 
with surjections as fibrations, and quasi-isomorphisms as equivalences. It is a sym-
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metric monoidal model category with the usual tensor product ⊗k of complexes 
over k, and it satisfies the monoid axiom ([14]). The corresponding ∞-category will 
be denoted by C(k).

• C≤0(k) will denote the model category of cochain complexes of k-modules con-
centrated in non-positive degrees, with surjections in strictly negative degrees as 
fibrations, and quasi-isomorphisms as equivalences. It is a symmetric monoidal model 
category with the usual tensor product ⊗k of complexes over k, and it satisfies the 
monoid axiom ([14]). The corresponding ∞-category will be denoted by C≤0(k).

• cdga≤0
k denotes the category of differential non-positively graded algebras over k, 

with differential increasing the degree by 1. If char k = 0, then one might endow 
cdga≤0

k with the usual model structure for which fibrations are surjections in negative 
degrees, and equivalences are quasi-isomorphisms (see [21, §2.2.1]). The associated 
∞-category will be denoted by cdga≤0

k
. In general, i.e. for char k not necessarily zero, 

we will just work with cdga≤0
k

defined as the simplicial localization of cdga≤0
k along 

quasi-isomorphisms.
• dgak denotes the category of unbounded differential graded cochain algebras over k

(not necessarily commutative). We will always consider dgak endowed with the usual 
model structure for which fibrations are surjections, and equivalences are quasi-
isomorphisms (see [14]). Its associated ∞-category will be denoted by dga

k
.

• dga≤0
k denotes the category of differential non-positively graded cochain algebras 

over k. We will always consider dga≤0
k endowed with the usual model structure for 

which fibrations are surjections in strictly negative degrees, and equivalences are 
quasi-isomorphisms (see [21, §2.3]). Its associated ∞-category will be denoted by 
dga≤0

k
.

• salgk denotes the model category of simplicial commutative k-algebras where weak 
equivalences and fibrations are detected on the underlying morphisms of simplicial 
sets (see [21, §2.2]). Its associated ∞-category will be denoted by salg

k
.

• We will denote by S the ∞-category of spaces or simplicial sets, i.e. S is the Dwyer–
Kan localization of the category SSets with respect to weak equivalences.

• dStk will denote the model category of derived stacks over k ([21, §2.2]). Its associated 
∞-category will be denoted by dStk.

• A derived geometric stack over k (see [21, §2.2]) will be called lfp if it is locally of 
finite presentation over k. In particular, any lfp derived geometric stack X ∈ dStk
has a cotangent complex LX that is perfect over OX .

1. Derived quadratic complexes

If A ∈ salgk, we denote by N(A) its normalization (see [2]). Since The normalization 
functor is lax symmetric monoidal, N(A) ∈ cdga≤0

k (see [15]) and we will write

• A − dgmod for the model category of unbounded dg-modules over N(A). This is a 
symmetric monoidal model category satisfying the monoid axiom ([14]). The corre-
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sponding ∞-category will be denoted as A − dgmod. We will write A − Perf for the 
full ∞-subcategory of perfect dg-modules over N(A).

• D(A) := Ho(A − dgmod) for the unbounded derived category of N(A), ⊗L

A ≡ ⊗A its 
induced monoidal structure, and RHomA the adjoint internal Hom-functor.

• A −dga for the model category of differential graded algebras over A, i.e. the category 
of monoids in the symmetric monoidal model category A − dgmod (see [15]). The 
corresponding ∞-category will be denoted as A − dga.

• For any n ∈ Z, A[n] := N(A)[n] as an object in A − dgmod.
•

∧2 ≡
∧2

k, ⊗ ≡ ⊗k, Sym2
k ≡ Sym2

k, 
∧2

A, ⊗A, Sym2
A (for A ∈ salgk, identified with its 

normalization cdga N(A)) will always be ∞-functors.
In particular, Sym2

A : A − dgmod −→ A − dgmod is defined as follows.1 First note 
that A −dgmod is also equivalent to the Dwyer–Kan localization of cofibrant–fibrant 
objects in A −dgmod (and all objects in A −dgmod are fibrant), and P �→ P ⊗N(A)P

preserves cofibrant objects (by the monoid axiom) and weak equivalences between 
(since cofibrant objects are homotopically flat). So the assignment L⊗2

A : P �→
QP⊗N(A)QP , where Q denotes a cofibrant replacement functor in A −dgmod defines, 
after simplicial localization, an ∞-functor L⊗2

A : A −dgmod −→ A −dgmodΣ2 where 
A − dgmodΣ2 is the ∞-category obtained by Dwyer–Kan localizing the projective 
model structure of N(A)-dg modules endowed with a Σ2-action (i.e. the projective 
model structure on BΣ2-diagrams in A − dgmod). Finally, the Σ2-coinvariants func-
tor (−)Σ2 : A − dgmodΣ2 −→ A − dgmod preserves weak equivalences since 2 is 
invertible in k, and therefore the coinvariants functor from k-modules linear represen-
tations of Σ2 to k-modules is exact. Thus, we obtain, after Dwyer–Kan localization, 
an ∞-functor (−)Σ2 : A − dgmodΣ2 −→ A − dgmod. Then, Sym2

A is defined by

Sym2
A 	 (−)Σ2 ◦ L⊗2

A.

More concretely, Sym2
A(P ) 	 k ⊗k[Σ2] (QP ⊗N(A) QP ).

Note that, again because 2 is invertible in k, Σ2-coinvariants and Σ2-invariants are 
isomorphic, and we might as well have taken invariants in the above construction.
Notice that equivalently, we have that Sym2

A(P ) is defined via the following (usual!) 
pushout in A − dgmod:

QP ⊗N(A) QP

1−σ

0

QP ⊗N(A) QP Sym2
A(P )

where σ is the symmetry map pi ⊗ pj �→ (−1)ijpj ⊗ pi, for pi ∈ P i, and pj ∈ P j .

1 If n! is invertible in k, a completely analogous definition holds for the ∞-functor Symn
A.
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An analogous construction, with the properly modified Σ2-action, defines the 
∞-functor 

∧2
A : A − dgmod −→ A − dgmod.

Definition 1.1. Let C ∈ A − dgmod, and n ∈ Z.

• The space of n-shifted derived quadratic forms on C is the mapping space

QFA(C;n) := MapA−dgmod(Sym2
A(C), A[n]) 	 MapA−dgmod(Sym2

A(C), A[n]).

• The set of n-shifted derived quadratic forms on C is

QFA(C;n) := π0QFA(C;n)

of connected components of QFA(C; n), and an n-shifted quadratic form on C is by 
definition an element q ∈ QFA(C; n).

• The space QFnd
A (C; n) of n-shifted derived non-degenerate quadratic forms on C is 

defined by the following homotopy pullback diagram of simplicial sets

QFnd
A (C;n) QFA(C;n)

[ Sym2
A(C), A[n] ]nd [ Sym2

A(C), A[n] ]

where [−, −] denotes the hom-sets in the homotopy category of A − dgmod, 
and [ Sym2

A(C), A[n] ]nd is the subset of [ Sym2
A(C), A[n] ] consisting of maps 

v : Sym2
A(C) → A[n] such that the associated, adjoint map v� : C → C∨[n] is 

an isomorphism in Ho(A − dgmod) (where C∨ := RHomA(C, A) is the derived dual 
of C over A).

• The set QFnd
A (C; n) of n-shifted derived non-degenerate quadratic forms on C is the 

set

QFnd
A (C;n) := π0QFA(C;n)nd

of connected components of QF(C; n)nd
A , and an n-shifted non-degenerate quadratic 

form on C is by definition an element q ∈ QFA(C; n)nd.
• An n-shifted derived (resp. non-degenerate) quadratic complex is a pair (C, q) where 

C ∈ A − dgmod and q ∈ QFA(C; n) (resp. q ∈ QFnd
A (C; n)).

Note that, by definition, an n-shifted quadratic form q on C is a map q : Sym2
A(C) →

A[n] in the homotopy category Ho(A − dgmod).
When working over a fixed base A, we will often write QF(C; n) for QFA(C; n), 

QF(C; n)nd for QFA(C; n)nd, and so on.
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Remark 1.2. Note that Definition 1.1 makes perfect sense if the cdga N(A) is replaced by 
an arbitrary unbounded commutative differential graded algebra (over k). Note also that, 
if A = k, the constant simplicial algebra with value k, then N(A) = k, and A − dgmod =
C(k). However, the only nicely behaved situation is when C is a connective dg module 
(i.e. with vanishing cohomologies in strictly positive degrees) over a non-positively graded 
cdga.

Examples 1.3.

1. For any n ∈ Z, any C ∈ A − dgmod is an n-shifted derived quadratic complex when 
endowed with the zero derived quadratic form, and for the loop space Ω0(QF(C; n))
at 0 of QF(C; n)), we have an isomorphism in Ho(SSets)

Ω0(QF(C;n)) 	 QF(C;n− 1),

since Ω0 MapA−dgmod(E, F ) 	 MapA−dgmod(E, F [−1]), for any E, F ∈ A − dgmod.
2. Suppose that C is a connective m-connected cochain complex over k, for m > 0

(i.e. Hi(C) = 0 for i > 0 and −m ≤ i ≤ 0). Then, if n > m + 2, there are no 
non-zero derived n-shifted quadratic forms on C over k. In other words, QFk(C; n)
is connected, for any n > m + 2. This follows immediately from the fact that, under 
the connectivity hypotheses on C, Sym2

k(C) is (m + 2)-connected.
3. If (C, q, n = 0) is a derived non-degenerate quadratic complex in C≤0(k) over A = k, 

then C is discrete (i.e. cohomologically concentrated in degree 0).
4. If n, m ∈ Z, and C ∈ A −dgmod is a perfect complex, the associated (n, m)-hyperbolic 

space of C is the derived (n + m)-shifted non-degenerate quadratic complex 
hyp(C; n, m) := (C[n] ⊕ C∨[m], qhyp

n,m), where qhyp
(n,m) is given by the composite

Sym2(C[n] ⊕ C∨[m])
pr

C[n] ⊗ C∨[m] 	 (C ⊗ C∨)[m + n]
ev[n+m]

A[m + n]

where pr denotes the canonical projection and ev the canonical pairing. Note that, 
if A = k, here we may also take C = V [0], with V a projective finitely generated 
k-module.

5. Let A = k and (V, ω) be a symplectic projective and finitely generated k-module. 
Since Sym2(V [±1]) 	 ∧2V [±2], we get induced derived quadratic non-degenerate 
structures on V [1] (with shift −2), and on V [−1] (with shift 2). More generally, 
for any m ∈ Z, Sym2(V [2m + 1]) have an induced (−4m − 2)-shifted quadratic 
non-degenerate structure.

6. Let M = Mn be a compact oriented manifold of dimension n, k = F a field of charac-
teristic zero, and let C := C•(M ; F) be cofibrant cdga model, with multiplication μ, 
for its F-valued singular cochain complex (see, e.g. [17]). Consider the composite

q : C ⊗F C
μ

C
−∩[M ]

F[n] .
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Then, q is obviously symmetric, and it is also non-degenerate (in the derived sense) 
by Poincaré duality. Hence q is an n-shifted non-degenerate derived quadratic form 
on C = C•(M ; F), i.e. an element in QFnd

F
(C; n).

7. Other symmetric dualities in topology give rise to derived quadratic forms (see, 
e.g. [8, Thm. 2.5.2, Thm. 3.1.1]).

Let n ∈ Z. If ϕ : A → B′ a morphism in salgk, and (C, q) is a derived n-shifted 
quadratic complex over A, the derived base change complex ϕ∗C = C ⊗A B ∈ Ho(B −
dgmod) comes naturally endowed with a derived n-shifted quadratic form

ϕ∗q : Sym2
B(C ⊗A B) ∼ Sym2

A(C) ⊗A B
q⊗id

A[n] ⊗A B 	 B[n].

Definition 1.4. Let n ∈ Z, (C, q) be a derived n-shifted quadratic complex over A, and 
ϕ : A → B a morphism in salgk. The derived n-shifted quadratic complex (ϕ∗C, ϕ∗q)
over B is called the base-change of (C, q) along ϕ.

More generally, a morphism A → B in salgk defines base change maps in Ho(SSets)

ϕ∗ : QFA(C;n) −→ QFB(ϕ∗C;n),

and

ϕ∗ : QFnd
A (C;n) −→ QFnd

B (ϕ∗C;n).

Let (C1, q1) and (C2, q2) be two n-shifted derived quadratic complexes over A. Since

Sym2
A(C1 ⊕ C2) 	 Sym2

A(C1) ⊕ Sym2
A(C2) ⊕ (C1 ⊗A C2),

we have a canonical projection

π⊕ : Sym2
A(C1 ⊕ C2) −→ Sym2

A(C1) ⊕ Sym2
A(C2)

in Ho(A − dgmod), that can be used to give the following

Definition 1.5. Let (C1, q1) and (C2, q2) be two n-shifted derived quadratic complexes 
over A. The orthogonal sum (C1⊕C2, q1 ⊥ q2) is the derived n-shifted quadratic complex 
over A where q1 ⊥ q2 is defined by the composition

Sym2
A(C1 ⊕ C2)

π⊕
Sym2

A(C1) ⊕ Sym2
A(C2)

q1⊕q2
A[n] ⊕A[n] sum

A[n].

Definition 1.6. If C1 ∈ A − dgmod, (C2, q2) is a derived n-shifted quadratic complex
over A, and f : C1 → C2 is a map in Ho(A − dgmod), then the composite

Sym2
A C1

Sym2 f
Sym2

A C2
q2

A[n]
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defines an n-shifted quadratic form on C1, that we denote by f∗q2. f∗q2 is called the 
pull-back or restriction of q2 along f .

In the present derived setting, the concept of f being an isometry, is not a property 
of but rather a datum on f . More precisely, we give the following

Definition 1.7.

• The space of derived isometric structures on a map f : (C1, q1) → (C2, q2), between 
two n-shifted derived quadratic complexes over A, is by definition the space

Isom(f ; (C1, q1), (C2, q2)) := Pathq1,f∗q2(QFA(C1;n)).

• The space Isom(f ; (C1, 0), (C2, q2)) is called the space of derived null-structures on f .
• A derived isometric structure on a map f : (C1, q1) → (C2, q2), between two n-shifted 

derived quadratic complexes, is an element in π0(Isom(f ; (C1, q1), (C2, q2))).
• A derived null structure on a map f : (C1, 0) → (C2, q2), between two n-shifted 

derived quadratic complexes, is an element in π0(Isom(f ; (C1, 0), (C2, q2))).

Remark 1.8. Derived symplectomorphism structures. A similar idea as in the definition 
above yields a natural notion of derived symplectomorphism structure in the theory 
developed in [10]. If ω and ω′ are derived n-shifted symplectic forms on a derived stack X, 
the space of derived symplectic equivalences between ω and ω′ is the space

SymplEq(X;ω, ω′;n) := Pathω,ω′(Sympl(X;n)).

A derived symplectic equivalence between ω and ω′ is then an element γω,ω′ ∈
π0SymplEq(X; ω, ω′; n).

Let now f : X1 → X2 be a map, and ωi ∈ Sympl(Xi; n), i = 1, 2. Then, in general, 
f∗ω2 ∈ A2,cl(X1; n) ([10, §2.2]); if moreover f∗ω2 ∈ Sympl(X1; n), then the space of 
derived symplectomorphism structures on f is the space

SymplMor(f ; (X,ω1), (X2, ω2)) := SymplEq(X;ω1, f
∗ω2;n),

and a derived symplectomorphism structure on f is a derived symplectic equivalence

γω1,f∗ω2 ∈ π0SymplEq(X1;ω1, f
∗ω2;n).

We can now define a notion of lagrangian structure (i.e. non-degenerate null structure) 
on a map of A-dg-modules f : P → (C, q) where (C, q) is a quadratic A-dg-module. Let 
K be the co-cone of f , then the composite

K → P → C
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comes with a natural homotopy to the zero map 0 : K → C, and thus the composite

qK : K ⊗ P P ⊗ P
f⊗f

C ⊗ C
q

A[n]

acquires an induced homotopy hK to the zero map. If now γ is a derived null structure 
γ on f : P → (C, q), γ induces, by composition, a homotopy hγ between qK and the 
zero map K ⊗P → A[n]. By composing the homotopies (paths) hK and hγ , we obtain a 
loop θγ at 0 in the space MapA−dgmod(K ⊗ P, A[n]), i.e. an element, still denoted by θγ , 
in π0(MapA−dgmod(K ⊗ P, A[n − 1])) 	 HomD(A)(K ⊗ P, A[n − 1]).

Definition 1.9.

• A derived null structure γ on f : P → (C, q) is said to be non-degenerate or lagrangian
if the induced map θ�γ : K → P∨[n − 1] is an isomorphism in the derived category 
D(A).

• The space Lag(f : P → (C, q)) of lagrangian structures on the map f : P → (C, q) is 
the subspace of Isom(f ; (P, 0), (C, q)) union of connected components corresponding 
to lagrangian null-structures.

Remark 1.10. For A = k, n = 0, P and C both concentrated in degree 0, and f : P ↪→ C

a monomorphism, it is easy to see that the space of lagrangian structures on f is either 
empty or contractible; it is contractible iff q restricts to zero on P , and C/P 	 P∨, i.e. 
we recover the usual definition of lagrangian subspace P of a quadratic k-space (C, q).

Remark 1.11. Lagrangian correspondences. Lagrangian structures can be used in order to 
define an ∞-category A − QModLag

n
of derived n-shifted quadratic modules with mor-

phisms given by lagrangian correspondences. Roughly speaking, the objects are quadratic 
n-shifted A-modules (C, q), and the space of maps (C1, q1) → (C2, q2) is given by the 
disjoint union 

∐
f Lag(f : P → (C1⊕C2)(q1 ⊥ (−q2)) (with composition given by compo-

sition of correspondences). This A −QModLag
n

can be shown to be a symmetric monoidal 
∞-category under direct sum (see also [18, §7.4]), and leads to a derived (n-shifted) Witt 
symmetric monoidal 1-category h(A − QModLag

n
) of A, and further down, to a derived 

(n-shifted) Witt group π0(h(A −QModLag
n

)) of A, with sum given by the orthogonal sum 
(for k = A a field, n = 0, and considering only complexes concentrated in degree 0, 
we get back the classical Witt group W(k)). We will not use this sketchy construction 
further in this paper.

2. Derived Clifford algebra of a derived quadratic complex

For even shifted derived quadratic complexes, it is possible to define a derived version 
of the Clifford algebra.



172 G. Vezzosi / Advances in Mathematics 301 (2016) 161–203
2.1. Derived Clifford algebra of a derived quadratic complex

Let n ∈ Z, and (C, q) be derived 2n-shifted quadratic complex over A ∈ salgk. We 
denote by 2q̃ : C ⊗A C → A[2n] the composite of 2q with the canonical map C ⊗A C →
Sym2

A(C).
If now B ∈ A − dga, q̃ induces a map q̃B : ∗ → MapA−dgmod(C ⊗A C, B[2n]), and the 

rule

(ϕ : C → B[n]) �−→ (C ⊗A C
(ϕ,ϕ◦σ)

(B[n] ⊗A B[n]) ⊕ (B[n] ⊗A A[n])

μ⊕μ
B[2n] ⊕B[2n]

+
B[2n])

determines a map

sB : MapA−dgmod(C,B[n]) → MapA−dgmod(C ⊗A C,B[2n]).

Here,

σ : C ⊗A C → C ⊗A C : x⊗ y �→ (−1)|x||y|y ⊗ x

is the Koszul sign involution, μ denotes the multiplication map on B, and + the sum 
in B, so, essentially, the image of ϕ sends x ⊗ y to ϕ(x)ϕ(y) + (−1)|x||y|ϕ(y)ϕ(x).

By using these maps we may define the derived Clifford algebra functor associated to 
the derived 2n-shifted quadratic space (C, q), as

Cliff(C, q, 2n) : A− dga −→ SSets : B �−→ Cliff(C, q, 2n)(B)

where Cliff(C, q, 2n)(B) is defined by the following homotopy pull-back in SSets

Cliff(C, q, 2n)(B) MapA−dgmod(C,B[n])

sB

∗
q̃B

MapA−dgmod(C ⊗A C,B[2n]).

Proposition 2.1. The functor Cliff(C, q, 2n) is homotopy co-representable, i.e. there exists 
a well defined CliffA(C, q, 2n) ∈ Ho(A −dga) and a canonical isomorphism in Ho(SSets)

Cliff(C, q, 2n)(B) 	 MapA−dga(CliffA(C, q, 2n), B).

Proof. Since the notion of ideal is not well-behaved in derived geometry, we need to 
reformulate the existence in a homotopical meaningful way. This leads us to the following 
construction. Let FreeA : A − dgmod → A − dga be the left derived functor of the free 
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dga-functor (Quillen left adjoint to the forgetful functor). Then Cliff(C, q; 2n) is defined 
by the following homotopy push-out square in A − dga

FreeA(C ⊗A C[−2n]) u

tq

FreeA(C[−n])

A Cliff(C, q, 2n)

where

• tq is induced, by adjunction, by the map 2q̃[−2n] : C[−n] ⊗AC[−n]→A[2n −2n]=A,
• u is induced, by adjunction, by the map

C[−n] ⊗A C[−n]
(id,σ)

(C[−n] ⊗A C[−n]) ⊕ (C[−n] ⊗A C[−n])
+

+
C[−n] ⊗A C[−n] FreeA(C[−n]). �

Definition 2.2. The dga CliffA(C, q; 2n), defined up to isomorphism in Ho(A − dga), is 
called the derived Clifford algebra of the derived 2n-shifted quadratic space (C, q).

When the base simplicial algebra A is clear from the context, we will simply write 
Cliff(C, q, 2n) for CliffA(C, q, 2n).

Remark 2.3. To understand classically the proof of Proposition 5.1, observe that the 
classical Clifford algebra of a quadratic k-module (V, Q) is defined as the quotient

Tk(V )
I :=< x⊗ y + y ⊗ x− 2Q(x, y) >,

Tk(−) denoting the tensor k-algebra functor. Then it is easy to verify that the following 
square is a (strict) push-out in the category of k-algebras

Tk(V ⊗k V ) u

t

Tk(V )

k Tk(V )/I

where u is defined by u(x) := x ⊗ y + y ⊗ x, and t by t(x ⊗ y) := 2Q(x, y). For a more 
detailed study of the relation between the classical and the derived Clifford algebra when 
they both apply, see Section 2.2.
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Remark 2.4. Note that it follows immediately from the description of Cliff(C, q, 2n) in 
the proof of Proposition 5.1, that Cliff(C, q, 2n) is a dg algebra homotopically of finite 
type over A whenever C is a perfect A-dg module.

Proposition 2.5. Let n ∈ Z, f : C1 → C2 be a map in A − dgmod, and q2 a derived 
2n-shifted quadratic form on C2 over A. Then there is a canonical map in Ho(dga)

CliffA(C1, f
∗q2, 2n) �−→ CliffA(C2, q2, 2n)

where f∗q2 is the pull-back quadratic form of Definition 1.6.

Proof. We use the proof of Proposition 5.1. By definition of f∗q2, there is a map (in the 
homotopy category of diagrams of that shape in dga) from the diagram

FreeA(C1 ⊗A C1[−2n]) u

tf∗q2

FreeA(C1[−n])

A

to the diagram

FreeA(C2 ⊗A C2[−2n]) u

tq2

FreeA(C2[−n])

A

.

By definition of homotopy push-out, we get the induced map. �
Note that, by composition with the natural adjunction map of complexes C[−n] →

FreeA(C[−n]), the derived Clifford algebra CliffA(C, q, 2n) of the derived 2n-shifted 
quadratic complex (C, q) comes equipped with a natural map of A-dg modules

C[−n] −→ Cliff(C, q, 2n).

Using this, and the universal property of the derived Clifford algebra, we get the following

Proposition 2.6. Let n ∈ Z. If (C1, q1) and (C2, q2) are 2n-shifted derived quadratic 
complexes over A, f : C1 → C2 is a map in Ho(A − dgmod) and γ ∈ π0(Isom(f ; (C1, q1),
(C2, q2))) is a derived isometric structure on f , then there is a canonical induced map 
in Ho(A − dga)

fγ : Cliff(C1, q1, 2n) −→ Cliff(C2, q2, 2n).

If moreover f is a quasi-isomorphism, fγ is an isomorphism.
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Proof. Let us consider the following two maps

h : FreeA(C1 ⊗A C1[−2n])
uC1 FreeA(C1[−n])

Free(f [−n])
FreeA(C2[−n])

Cliff(C2, q2, 2n),

and

g1 : FreeA(C1 ⊗A C1[−2n])
q̃1

A Cliff(C2, q2, 2n).

By definition of Cliff(C1, q1, 2n) as a homotopy push-out (proof of Proposition 5.1), it 
is enough to show that our data give a path between h and g1. To start with, the homo-
topy push-out defining Cliff(C2, q2, 2n) provides us with a path between the composite 
maps

FreeA(C2 ⊗A C2[−2n])
uC2 FreeA(C1[−n]) Cliff(C2, q2, 2n),

and

FreeA(C2 ⊗A C2[−2n])
q̃2

A Cliff(C2, q2, 2n),

and, by precomposing with FreeA(f [−n]), we get a path δ between the maps

h′ : FreeA(C1 ⊗A C1[−2n])
Free(f [−n])

FreeA(C2 ⊗A C2[−2n])
uC2 FreeA(C1[−n])

Cliff(C2, q2, 2n),

and

g′2 : FreeA(C1 ⊗A C1[−2n])
Free(f [−n])

FreeA(C2 ⊗A C2[−2n])
q̃2

A

Cliff(C2, q2, 2n).

Now observe that h′ = h, while g′2 is equal to the composite

g2 : FreeA(C1 ⊗A C1[−2n])
f̃∗q2

A Cliff(C2, q2, 2n),
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by definition of f̃∗q2. Hence, δ gives us a path between h and g2. We conclude by using 
the further path between q̃1 and f̃∗q2 (hence between g2 and g1), induced by the derived 
isometric structure on f , i.e. by the path γ between q1 and f∗q2. �

In the following Proposition, recall the definition of base change for a derived quadratic 
complex along a base ring morphism (Definition 1.4).

Proposition 2.7. Let n ∈ Z, (C, q) be a 2n-shifted derived quadratic complex over A, and 
ϕ : A → B a morphism in salgk. Then there is a canonical isomorphism in Ho(B− dga)

CliffA(C, q, 2n) ⊗A B 	 CliffB(ϕ∗C,ϕ∗q, 2n).

Proof. This follows immediately from the proof of Proposition 5.1, and the observation 
that there exists a natural isomorphism FreeA(E) ⊗AB 	 FreeB(E⊗AB) in Ho(B−dga), 
for any E ∈ A − dgmod. �

As shown in Appendix 6, if n ∈ Z, and (C, q) is a 2n-shifted derived quadratic complex 
over A, then CliffA(C, q, 2n) admits a natural Z/2-weight grading, i.e. it is naturally 
an object Cliffw

A(C, q, 2n) ∈ Ho(A − dgaw) (see the Appendix for the notations). Then, 
a slight modification of classical proof of the corresponding classical statement (see e.g. [9, 
Prop. 2.2.1]), yields the following

Proposition 2.8. Let n ∈ Z, (Ci, qi) be 2n-shifted derived quadratic complexes over A, 
and (C1 ⊕C2, q1 ⊥ q2) be the corresponding orthogonal sum (Definition 1.5). Then there 
is a canonical isomorphism in Ho(A − dgaw)

Cliffw
A(C1 ⊕ C2, q1 ⊥ q2, 2n) 	 Cliffw

A(C1, q1, 2n) ⊗w
A Cliffw

A(C2, q2, 2n),

where ⊗w
A denotes the derived tensor product of Z/2-dg algebras over A (see §6).

Remark 2.9. From derived Clifford algebras to derived Azumaya algebras? Classically, Clif-
ford algebras are Azumaya algebras: this is literally true when the rank of the quadratic 
module is even, true for its even graded piece in the odd rank case, and always true 
if we replace Azumaya algebras by Z/2-graded Azumaya algebras (i.e. those classified 
by the Brauer–Wall group). Recently, Toën introduced the notion of derived Azumaya 
algebras over a (derived) stack, and proved e.g. that they are classified, up to Morita 
equivalence, by H1

ét(X, Z) ×H2
ét(X, Gm) on a quasi-separated, quasi-compact scheme X

([20, Cor. 3.8]).
As suggested by Toën it might be interesting to investigate the exact relation between 

derived Clifford algebras and derived Azumaya algebras. The first problem we meet in 
such a comparison is the presence of a non-zero shift in the derived quadratic structure. 
There is no evident place for a shift in the current definition of derived Azumaya algebras, 
and it is not clear to us how one could modify the definition of a derived Azumaya algebra 
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in order to accommodate such a shift. If we limit ourselves to the 0-shifted case, one can 
give at least one (admittedly not very relevant). Let C be a perfect complex of k-modules, 
and consider the associated 0-hyperbolic space hyp(C; n = 0, m = 0) := (C⊕C∨, qhyp

0,0 ; 0)
of Example 1.3 (3). Then there is a canonical isomorphism

Cliff(hyp(C; 0, 0)) 	 RHomk(
∧

C,
∧

C)

in Ho(dga), where RHomk denotes the derived internal Hom’s in C(k). Thus
Cliff(hyp(C; 0, 0)) is indeed a derived Azumaya algebra, but its class is obviously triv-
ial in the derived Brauer group introduced by Toën ([20, Def. 2.14]). Note this case is 
morally an even rank case. A slightly more interesting statement would be the follow-
ing (still sticking to the 0-shifted case). By systematically replacing Z/2-graded dga’s 
(see Appendix 6) in Toën’s definition of derived Azumaya algebras, we get a notion of 
Z/2-graded derived Azumaya algebras. Note that the extra Z/2-grading affects both the 
notion of opposite algebra and of tensor product. As shown in Appendix 6 below, the 
derived Clifford algebra of derived 2n-shifted quadratic complex over k is naturally an 
object in the homotopy category of Z/2-graded dga’s over k. So we may formulate the 
following question that has an affirmative answer in the underived, classical case: is the 
Z/2-graded derived Clifford algebra of a 0-shifted quadratic complex over k a Z/2-graded 
derived Azumaya algebra?

Of course, one could formulate a similar question by replacing k with a base scheme 
or an arbitrary derived Artin stack. This question is probably not too hard to settle but 
we do not have neither a proof nor a counterexample at the moment.

A related interesting question is to extend Toën cohomological identification of the 
derived Brauer group to the corresponding derived Brauer–Wall group i.e. the Morita 
equivalence classes of derived Z/2-graded Azumaya algebras.

2.2. Comparison with the classical Clifford algebra

In this section, we will work over A = k. Given a classical quadratic (projective 
and finitely generated) k-module (V, Q), a natural question is how can we get back 
the usual Clifford algebra Cliffclass(V, Q) from its derived (0-shifted) Clifford algebra 
Cliffk(V [0], Q[0], 0).

Proposition 2.10. Let (C, q) be a derived 0-shifted quadratic complex in C≤0(k). Then 
(H0(C), H0(q)) is a classical quadratic k-module, and there is a natural isomorphism of 
associative unital algebras

Cliffclass(H0(C), H0(q)) 	 H0(Cliffk(C, q, 0)).

Proof. Let Free : C(k) → dgak be the free dga-functor (left adjoint to the forgetful 
functor For : dgak → C(k)), Free≤0 : C≤0(k) → dga≤0

k the free dga-functor (left adjoint 
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to the forgetful functor For≤0 : dga≤0
k → C≤0(k)), j− : C≤0(k) → C(k) the inclusion 

functor, [−]≤0 : C(k) → C≤0(k) its right adjoint (given by the intelligent truncation in 
degrees ≤ 0), i− : dga≤0

k → dgak the inclusion functor, and (−)≤0 : dgak → dga≤0
k its 

right adjoint (given by the intelligent truncation in degrees ≤ 0). Note that the pairs 
(j−, [−]≤0) and (i−, (−)≤0) are Quillen pairs of type (left, right).

Lemma 2.11.

1. Let

A B

C D

be a homotopy push-out diagram in dga≤0
k , and

i−A i−B

i−C D′

the homotopy push-out in dgak. Then the canonical map i−D′ → D is a weak equiv-
alence.

2. If E ∈ C≤0(k), then the canonical map i−Free≤0(E) → Free(j−E) is a weak equiva-
lence.

Proof of Lemma. Statement 1 follows immediately from the fact that i− is left Quillen, 
hence preserves homotopy push-outs.

To prove 2, we start from the adjunction map j−E → ForFree(j−E) in C(k). Since 
j− is left adjoint, we get a map E → [ForFree(j−E)]≤0 in C≤0(k). Note that the canon-
ical transformation [−]≤0 ◦ For → For≤0 ◦ (−)≤0 is an isomorphism, hence we get a 
map E → For≤0((Free(j−E))≤0) in C≤0(k). Since For≤0 is right-adjoint, we get an in-
duced map Free≤0(E) → (Free(j−E))≤ in dga≤0

k , and finally the desired canonical map 
i−Free≤0(E) → Free(j−E). Since E and k are connective (i.e. concentrated in non-
positive degrees), we have Free(j−E) 	 ⊕n≥0E

⊗n
k , and ⊗k is left t-exact; therefore the 

map i−Free≤0(E) → Free(j−E) is indeed a weak equivalence. �
Let us consider now the following homotopy push-out square in dga≤0

k (defining 
Cliff≤0(C, q, 0))
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Free≤0(C ⊗k C) u≤0

t≤0

Free≤0(C)

Free≤0(0) = k Cliff≤0(C, q, 0).

By applying the left Quillen functor i−, by point 1 in Lemma, we then get a homotopy 
push-out in dgak

i−Free≤0(C ⊗k C)
i−u≤0

i−t≤0

i−Free≤0(C)

i−Free≤0(0) = k i−Cliff≤0(C, q, 0).

By point 2 in Lemma above, we also have a homotopy push-out diagram in dgak

Free(j−C ⊗k j−C) u

t

i−Free(j−C)

k i−Cliff≤0(C, q, 0),

hence, by definition of Cliff(C, q, 0), we get an equivalence i−Cliff≤0(C, q, 0) 	
Cliff(j−C, q, 0) in dgak (therefore Cliff(j−C, q, 0) is cohomologically concentrated in 
non-positive degrees). Since i− preserves weak equivalences, we also get an induced map

Cliff(j−C, q, 0) → H0(Cliff(j−C, q, 0)) = H0(Cliff≤0(C, q, 0))

that is an isomorphism on H0. Since H0 : dga≤0
k → alg is left Quillen and H0Free≤0(E) 	

Free0(H0E) (where E is any object in C≤0(k) and Free0 is the free k-algebra functor 
defined on k-modules), by definition of the classical Clifford algebra (see Remark 2.3) 
we get an isomorphism

H0(Cliff≤0(C, q, 0)) 	 Cliffclass(H0(C), H0(q)). �
Corollary 2.12. If (V, Q) is a quadratic k-module, then the canonical map of dga’s

Cliffk(V [0], Q[0], 0) −→ Cliffclass(V,Q)

induces an isomorphism on H0.

One obvious natural question is now the following: suppose that (V, Q) is a quadratic 
k-module, is the dga Cliffk(V [0], Q[0], 0) (which we know being cohomologically concen-
trated in non-positive degrees) 0-truncated (i.e. discrete)? In other words, we are asking 
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whether the derived Clifford algebra of a classical quadratic k-module contains or not 
strictly more information than its classical Clifford algebra.

The following example shows that the answer to this question is that, in general, 
the derived Clifford algebra of a classical quadratic k-module is not discrete, so it con-
tains a priori more information than its classical Clifford algebra. The further question, 
i.e. whether or not this extra information might be relevant to the classical theory of 
quadratic forms – by giving new invariants or just a reinterpretation of known ones – is 
interesting but will not be addressed in the present paper.

Example 2.13. Let V = k ⊕ k be endowed with the quadratic form Q given by the sym-
metric matrix (Qij)i,j=1,2. We will show that H−1(Cliffk(V [0], Q[0], 0)) �= 0 by simply 
using the symmetry of (Qij).

Let

A := k < xij | i, j = 1, 2 >,

B1 := k < xij , yij | i, j = 1, 2 > B := k < tl | l = 1, 2 >

where k < ... > denotes the free associative graded algebra on the specified generators, 
and deg(xij) = deg(tl) = 0, for any i, j, l = 1, 2, while deg(yij) = −1, for any i, j = 1, 2, 
and B1 is endowed with the unique differential d such that d(yij) = xij and making B1
into a differential graded algebra. The map

t′ : k < xij | i, j = 1, 2> −→ B1 : xij �−→ xij + 2Qij

is a cofibrant replacement in k − dga of the map

t : k < xij | i, j = 1, 2> −→ k : xij �−→ 2Qij

as the factorization of t as

k < xij | i, j = 1, 2> t′

B1 ∼
xij 
→0

k

shows. Then Cliffk(V [0], Q[0], 0) can be identified with the strict pushout of the following 
diagram

A
u

t′

B

B1

in k − dga (where u(xij) := xixj + xjxi). The pushout of dga’s is a rather complicated 
object to describe concretely, so we use the following trick.
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Let C be the dga over k whose underlying graded algebra is the free graded algebra 
on generators {yij}i,j=1,2 in degree −1, with the unique differential making it into a dga 
over k such that d(yij) := −2Qij . Consider the following maps in k − dga

ψ : B = k < tl | l = 1, 2> −→ C : xl �−→ 0

ϕ : B1 = k < xij , yij | i, j = 1, 2> −→ C : xij �→ −2Qij , yij �→ yij ;

it is easy to verify that the two composites

A
t′

B1
ϕ

C

A
u

B
ψ

C,

coincide. Hence we obtain a canonical map of dga’s

f : Cliffk(V [0], Q[0], 0) −→ C.

Suppose now that Q12 = Q21 = 0, and that neither 2Q11 nor 2Q22 are invertible in k. 
Then, by a long but straightforward computation, one checks that the element (yij−yji)
is a (−1)-cycle and gives a non-zero class in α ∈ H−1(C), for i �= j.2 Note that ϕ(α :=
yij − yji) = yij − yji. Hence, if

p : B1 −→ Cliffk(V [0], Q[0], 0) q : B −→ Cliffk(V [0], Q[0], 0)

are the natural maps, in order to show that H−1(Cliffk(V [0], Q[0], 0)) �= 0, it will be 
enough to show that the element p(α) is a (−1)-cycle in Cliffk(V [0], Q[0], 0). But this is 
easy to check, by just using that Qij = Qji; more precisely:

d(p(α)) = p(xij − xji) = p((xij + 2Qij) − (xji + 2Qji)) = p(t′(xij − xji)) =

= q(u(xij − xji)) = q(xixj + xjxi − (xjxi + xixj)) = 0.

So, the (−1)-cycle p(α) in Cliffk(V [0], Q[0], 0), has image a non-zero cycle via

f : Cliffk(V [0], Q[0], 0) −→ C,

hence its class is non-zero in H−1(Cliffk(V [0], Q[0], 0)). Note that this apply also to the 
case where k is a field with characteristic different from 2, and Q = 0.

2 There are probably other, non-diagonal, cases for which the statement holds: the general answer boils 
down to showing that two matrices of sizes 4 ×16 and 4 ×17 have different ranks over k. I hope this explains 
my choice of a particular solution.
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Remark 2.14. Recently, Bertrand Toën (private communication) simplified the previous 
example as follows. Start with V = k a field of characteristic zero, with the zero quadratic 
form. Then it is easy to verify that Cliffk(V [0], 0, 0) is the free graded k-algebra gen-
erated by x in degree 0 and y in degree −1, with differential defined by d(y) = x2. 
One then verifies, as in the above example, that this dga has non-vanishing H−1, while 
its truncation is the corresponding exterior algebra i.e. the k-algebra of dual numbers 
k[x]/x2.

3. Derived quadratic complexes and derived quadratic stacks

In this Section, we will follow the theory of derived stacks over k as developed in [21, 
§2.2].

3.1. Derived quadratic complexes on a derived stack

In this section we globalize the notions of Section 1 to derived stacks. For future 
reference, we give a rather complete treatment, with the possible effect of being a bit 
pedantic. We apologize to the reader if this is the case.

Definition 3.1. Let A ∈ salgk and n ∈ Z.

• Define the ∞-category QMod(A; n) via the following fiber product of ∞-categories 
(in the (∞, 1)-category of presentable (∞, 1)-categories)

QMod(A;n) A− dgmodΔ[1]

ev0×ev1

A− dgmod × Δ[0]
Sym2

A ×A[n]
A− dgmod ×A− dgmod

where Δ[i] denotes the i-simplex (or, equivalently, Δ[0] is the category with one 
object and no non-identity maps, and Δ[1] is the category {0 → 1}). The ∞-category 
QMod(A; n) is called the category of n-shifted quadratic complexes over A.
The full ∞-sub category of non-degenerate complexes is denoted by QModnd(A; n).

• Define the ∞-category QPerf(A; n) via the following fiber product of ∞-categories 
(in the (∞, 1)-category of presentable (∞, 1)-categories)

QPerf(A;n) A− PerfΔ[1]

ev0×ev1

A− Perf × Δ[0]
Sym2

A ×A[n]
A− Perf ×A− Perf
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where Δ[i] denotes the i-simplex (or, equivalently, Δ[0] is the category with one 
object and no non-identity maps, and Δ[1] is the category {0 → 1}). The ∞-category 
QPerf(A; n) is called the category of n-shifted quadratic perfect complexes over A.
The full ∞-sub category of non-degenerate (perfect) complexes is denoted by 
QPerfnd(A; n).

For any morphism ϕ : A → B in salgk, there are induced base-change ∞-functors

ϕ∗ : QMod(A;n) −→ QMod(B;n),

ϕ∗ : QPerf(A;n) −→ QPerf(B;n),

so that we get (as explained in [22, §1]) cofibered ∞-categories QMod(n) and QPerf(n)
over salgk, whose associated ∞-functors will be denoted

QMod(n) : salgk −→ ∞− Cat,

QPerf(n) : salgk −→ ∞− Cat.

Since the fiber product of (derived) stacks is a (derived) stack, we have that both 
QMod(n) and QPerf(n) are derived stacks, with respect to the derived étale topology, 
with values in ∞-categories, called the stack of derived n-shifted quadratic complexes, 
and the stack of derived n-shifted perfect quadratic complexes, respectively.

The stack of derived n-shifted non-degenerate quadratic complexes is the sub-stack 
QModnd(n) obtained by working with QModnd(A; n) instead of QMod(A; n).

The stack of derived n-shifted non-degenerate perfect quadratic complexes is the sub-
stack QPerfnd(n) obtained by working with QPerfnd(A; n) instead of QPerf(A; n).

Equivalently, the assignments LQCoh : salgk � A �→ A − dgmod(X), and LPerf : salgk �
A �→ A −Perf also define derived stacks, with respect to the derived étale topology, with 
values in ∞-categories, and we have pullback diagrams (in the ∞-categories of derived 
stacks with values in ∞-categories)

QMod(n) (LQCoh)Δ[1]

ev0×ev1

LQCoh × Δ[0]
Sym2 ×A[n]

LQCoh × LQCoh

QPerf(n) (LPerf)Δ[1]

ev0×ev1

LPerf × Δ[0]
Sym2 ×A[n]

LPerf × LPerf

and analogous ones for stacks of nondegenerate objects.
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By composing with the underlying space (or maximal ∞-subgroupoid) functor I ([22, 
§1]), we obtain usual (i.e. with values in the ∞-category S of simplicial sets) derived 
stacks

QMod(n) := I(QMod(n)) ∈ dStk,

QModnd(n) := I(QModnd(n)) ∈ dStk,

QPerf(n) := I(QPerf(n)) ∈ dStk,

QPerfnd(n) := I(QPerfnd(n)) ∈ dStk.

If X is a derived stack over k, let LQCoh(X) (resp. LPerf(X)) be the symmetric monoidal 
∞-category of perfect (respectively, of quasi-coherent) complexes on X:

LQCoh(X) := lim
RSpec(A)→X

A− dgmod

(resp.

LPerf(X) := lim
RSpec(A)→X

A− Perf )

where both limits are taken in the ∞-category of stable symmetric monoidal pre-
sentable ∞-categories (see [19]). The ∞-functors 

∧2
A, ⊗A, Sym2

A extend, by limits, to 
∞-functors 

∧2
OX

: LQCoh(X) −→ LQCoh(X), ⊗OX
: LQCoh(X) × LQCoh(X) −→ LQCoh(X), 

Sym2
OX

: LQCoh(X) −→ LQCoh(X), and the full ∞-subcategory LPerf(X) ⊂ LQCoh(X), is 
stable under these ∞-functors.

Definition 3.2. Let n ∈ Z, and X be a derived stack over k.

• The ∞-category of derived n-shifted quadratic complexes over X is given by the 
following pullback

QMod(X;n) LQCoh(X)Δ[1]

ev0×ev1

LQCoh(X) × Δ[0]
Sym2

OX
×OX [n]

LQCoh(X) × LQCoh(X).

• The ∞-category of derived n-shifted perfect quadratic complexes over X is given by 
the following pullback

QPerf(X;n) LQCoh(X)Δ[1]

ev0×ev1

LPerf(X) × Δ[0]
Sym2

OX
×OX [n]

LPerf(X) × LPerf(X).
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• The stack of derived n-shifted quadratic complexes over X is the object in dStk

QMod(X;n) := MAPdStk(X,QMod(n)).

• The stack of derived n-shifted perfect quadratic complexes over X is the object in 
dStk

QPerf(X;n) := MAPdStk(X,QPerf(n)).

• The classifying space of derived n-shifted quadratic complexes over X is the object 
in S

QMod(X;n) := MapdStk(X,QMod(n)).

• The classifying space of derived n-shifted quadratic complexes over X is the object 
in S

QPerf(X;n) := MapdStk(X,QPerf(n)).

• The classifying space of derived n-shifted non-degenerate quadratic complexes over X
is the object in S

QModnd(X;n) := MapdStk(X,QModnd(n)).

• The classifying space of derived n-shifted non-degenerate quadratic complexes over X
is the object in S

QPerfnd(X;n) := MapdStk(X,QPerfnd(n)).

Remark 3.3. Let MAPdSt∞k denote the internal Hom in the ∞-category dSt∞k of derived 
stacks (for the étale topology) with values in ∞-categories. We may view a usual derived 
stack X (for the étale topology, and taking values in S) as an object in dSt∞k , by identify-
ing S with the subcategory of ∞-groupoids inside the ∞-category of ∞-categories. Since 
limits obviously commute with limits, and MAPdSt∞k (X, −) preserves fiber products, we 
have equivalences of ∞-categories

MAPdSt∞k (X,QMod(n))(k) 	 QMod(X;n),

MAPdSt∞k (X,QPerf(n))(k) 	 QPerf(X;n).

Moreover, if I denotes the maximal ∞-subgroupoid functor, we have equivalences in S

I(QMod(X;n)) 	 QMod(X;n)(k) 	 QMod(X;n),

I(QPerf(X;n)) 	 QPerf(X;n)(k) 	 QPerf(X;n).
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Consider the canonical projection ∞-functor

p1 : QMod(X;n) LQCoh(X)Δ[1] ev0 LQCoh(X),

and, for E ∈ LQCoh(X) define ∞-category of n-shifted derived quadratic forms on E as 
the pullback

QF(E;n) QMod(X;n)

p1

Δ[0]
E

LQCoh(X).

The underlying maximal ∞-subgroupoid

QF(E;n) := I(QF(E;n))

is called the space of n-shifted derived quadratic forms on E. We have similar definitions 
for the ∞-category QFnd(E; n), and the space QFnd(E; n), in the nondegenerate case. 
Using the first point in Definition 3.2 and Remark 3.3, we can make these more explicit 
as follows:

Definition 3.4. Let X be a derived stack over k, E ∈ LQCoh(X), and n ∈ Z.

• The space of n-shifted derived quadratic forms on E is the mapping space

QF(E;n) := MapLQCoh(X)(Sym2
OX

(E),OX [n]).

• The set of n-shifted derived quadratic forms on E is

QF(E;n) := π0QF(E;n)

of connected components of QF(E; n), and an n-shifted quadratic form on E is by 
definition an element q ∈ QF(E; n).

• The space QFnd(E; n) of n-shifted derived non-degenerate quadratic forms on E is 
defined by the following homotopy pullback diagram of simplicial sets

QFnd(E;n) QF(E;n)

[ Sym2
OX

(E),OX [n] ]nd [ Sym2
OX

(E),OX [n] ]
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where [−, −] denotes the hom-sets in the homotopy category of LQCoh(X), and 
[ Sym2

OX
(E), OX [n] ]nd is the subset of [ Sym2

OX
(E), OX [n] ] consisting of maps 

v : Sym2
OX

(E) → OX [n] such that the adjoint map v� : E → E∨[n] is an iso-
morphism in Ho(LQCoh(X)).

• The set QFnd(E; n) of n-shifted derived non-degenerate quadratic forms on E is the 
set

QFnd(E;n) := π0QF(E;n)nd

of connected components of QF(E; n)nd, and an n-shifted non-degenerate quadratic 
form on E is by definition an element q ∈ QF(E; n)nd.

• An n-shifted derived (resp. non-degenerate) quadratic complex on X is a pair (E, q)
where E ∈ LQCoh(X) and q ∈ QF(E; n) (resp. q ∈ QFnd(E; n)).

Remark 3.5. Though Definition 3.4 makes sense for any E ∈ LQCoh(X), we will be mostly 
interested in the case where E ∈ LPerf(X).

Note that, by definition, a derived n-shifted quadratic form q on E is a map 
q : Sym2

OX
(E) → OX [n] in the homotopy category h(LQCoh(X)) 	 DQCoh(X) (equiva-

lence of triangulated k-linear categories, since the ∞-category LQCoh(X) is k-linear and 
stable).

Example 3.6. A symmetric obstruction theory, according to [1, Def. 1.10], is an example 
of a derived 1-shifted quadratic complex.

Definition 3.7. If E1 ∈ LQCoh(X), (E2, q2) is a derived n-shifted quadratic complex over X, 
and f : E1 → E2 is a map in LQCoh(X), then the composite

Sym2
OX

E1
Sym2 f

Sym2
OX

E2
q2 OX [n]

defines an n-shifted quadratic form on E1, that we denote by f∗q2. f∗q2 is called the 
pull-back or restriction of q2 along f .

The next result establishes a first link between derived symplectic structures and 
(non-degenerate) derived quadratic forms on derived stacks. We use the notations of [10].

Proposition 3.8. Let X be a derived lfp stack over k, char k = 0. There are canonical 
maps in Ho(SSets)

Sympl(X;n) −→ QFnd(TX [1];n− 2),

Sympl(X;n) −→ QFnd(TX [−1];n + 2).
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Proof. It’s enough to recall that ∧2
OX

TX 	 Sym2
OX

(TX [±1])[∓2]; this yields maps (ac-
tually equivalences in S)

A2,nd(X;n) −→ QFnd(TX [±1];n∓ 2),

and we just precompose each of these with the canonical underlying-2-form map 
Sympl(X; n) −→ A2,nd(X; n). �
Remark 3.9. Note that, more generally, for any m ∈ Z, the décalage isomorphisms 
∧2
OX

TX 	 Sym2
OX

(TX [2m + 1])[−4m − 2] yield equivalences in S

A2(X;n) 	 QF(TX [2m + 1];n− 4m− 2)

between n-shifted 2-forms on X ([10, Def. 1.12 and Prop. 1.14]) and (n −4m −2)-shifted 
quadratic forms on TX [2m + 1].

As done in [10, Def. 1.10] for shifted symplectic forms, we may give the following

Definition 3.10. For a derived m-shifted quadratic (not necessarily non-degenerate) form 
q on TX [±1], we define the space of keys of q, as the homotopy fiber at q of the composite 
map

A2,cl(X;m± 2) −→ A2(X;m± 2) −→ QF(TX [±1];m).

Exactly in the same way as done in Section 2.1 for the case of complexes over sim-
plicial commutative algebra (i.e. the case X = RSpec(A)), for a map of derived stacks 
ϕ : Y → X, and E ∈ LQCoh(X) we may define the base-change maps Ho(SSets)

ϕ∗ : QFX(E;n) −→ QFY (ϕ∗E;n),

and

ϕ∗ : QFnd
X (E;n) −→ QFnd

Y (ϕ∗E;n).

Similarly, we define the orthogonal sum ⊥ of derived n-shifted quadratic complexes 
over X and the notion of derived isometric structure on a map f : (E, q) → (E′, q′)
between derived quadratic complexes in LQCoh(X), by globalizing Definition 1.5 and 1.7.

3.2. Derived Grothendieck–Witt groups

In this section we define a derived version of the Grothendieck–Witt group of a derived 
stack. Its functoriality and further applications will be given elsewhere.



G. Vezzosi / Advances in Mathematics 301 (2016) 161–203 189
Recall from Definition 3.2 the classifying space QPerf(X; n) := MapdStk(X,QPerfnd(n))
(resp. QPerfnd(X; n) := MapdStk(X, QPerfnd(n))) of derived n-shifted (resp. non-
degenerate) quadratic complexes over a lfp derived stack X. The orthogonal sum ⊥ of 
derived quadratic complexes induces both on π0(QPerf(X; n)) and on π0(QPerfnd(X; n))
a commutative monoid structure, still denoted by ⊥.

Definition 3.11. Let n ∈ Z, and X be a derived Artin stack lfp over k. The extended 
derived Grothendieck–Witt group of X is the Grothendieck group of the commutative 
monoid π0(QPerf(X; n))

ĜWext(X;n) := K0(π0(QC(X;n)),⊥).

The derived Grothendieck–Witt group of X is the Grothendieck group of the commutative 
monoid π0(QPerfnd(X; n))

ĜW(X;n) := K0(π0(QPerf(X;n)nd),⊥).

Remark 3.12. Unlike the classical, unshifted case, the derived (extended) Grothendieck–
Witt will only be a ring if we consider all (or just all even) shifts at the same time, the 
tensor product of an n-shifted quadratic complex with an m-shifted quadratic complex 
being naturally an (n + m)-shifted quadratic complex.

When X = Spec k and n = 0, one easily verifies that (π0(QPerfnd(X; n)), ⊥) is iso-
morphic (as a commutative monoid) to the classical monoid of isomorphism classes of 
finitely generated projective non-degenerate quadratic k-modules under orthogonal sum 
(see, e.g. [9, §1.8]). Therefore, we get

Proposition 3.13. We have a canonical isomorphism of abelian groups

ĜW(k; 0) 	 ĜW (k),

where ĜW (k) denotes the classical Grothendieck–Witt group of k.

3.3. Derived quadratic stacks

Definition 3.14. Let X be a derived Artin stack locally finitely presented (≡ lfp) over k, 
and n ∈ Z.

• The space of n-shifted derived quadratic forms over X is the space

QF(X;n) := QF(TX ;n).



190 G. Vezzosi / Advances in Mathematics 301 (2016) 161–203
• The set of n-shifted derived quadratic forms over X is

QF(X;n) := π0QF(X;n)

of connected components of QF(X; n), and an n-shifted quadratic form over X is 
by definition an element q ∈ QF(X; n).

• The space QFnd(X; n) := QFnd(TX ; n) is the space of n-shifted derived non-
degenerate quadratic forms over X.

• The set QFnd(X; n) := π0QF(E; n)nd is the set of n-shifted derived non-degenerate 
quadratic forms over X, and an n-shifted non-degenerate quadratic form over X is 
by definition an element q ∈ QF(X; n)nd.

• An n-shifted derived (resp. non-degenerate) quadratic stack is a pair (X, q), where 
X is a derived stack locally of finite presentation over k, and q ∈ QF(X; n) (resp. 
q ∈ QFnd(X; n)).

Remark 3.15. Derived moduli stack of shifted symplectic structures. Given n ∈ Z a derived 
lfp stack X over k, char k = 0, one can consider the derived moduli stack Sympl(X; n) of 
n-shifted symplectic structures on X, as the functor sending A ∈ salgk to the space 
of n-shifted, relative symplectic structures on X × R SpecA → R SpecA. The de-
rived stack Sympl(X; n) can be shown to have a tangent complex TSympl(X;n) such that 
TSympl(X;n), ω 	 A2, cl(X)[n] (the complex of k-dg modules of n-shifted closed 2-forms 
on X), at any k-point (i.e. n-shifted symplectic structure on X) ω. I conjecture that, 
under suitable hypotheses on X, one can generalize the classical C∞ arguments of [4] in 
order to show that Sympl(X; n) is in fact a shifted quadratic derived stack.

Definition 3.16. If X1 is a derived Artin stack lfp over k, (X2, q2) an n-shifted derived 
quadratic stack over k, and f : X1 → X2 is a map in Ho(dStk), then the composite

Sym2
OX1

TX1 Sym2
OX1

f∗TX2

∼
f∗ Sym2

OX2
TX2

f∗q2
f∗OX2 [n] 	 OX1 [n]

defines an n-shifted quadratic form on X1, that we denote by fqq2. More generally, we 
still denote by fq the induced map

fq : QF(X2;n) −→ QF(X1;n)

in Ho(SSets).

Remark 3.17. Note that fqq2 has the following equivalent description. Let us denote by 
Tf : TX → f∗TY the induced tangent map. Then

fqq = (Tf)∗(f∗q)
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were f∗q denotes the base-change of q (a quadratic form on f∗TY over X), and 
(Tf)∗(ϕ∗q) the restriction of f∗q along f (as in Definition 3.7).

The derived versions of f being an isometry or a null-map, are not properties of but 
rather data on f . More precisely, we give the following

Definition 3.18. Let (X1, q1) and (X2, q2) be n-shifted derived quadratic stacks over k.

• The space of derived isometric structures on a map f : X1 → X2 is by definition the 
space

Isom(f ; (X1, q1), (X2, q2)) := Pathq1,f∗q2(QF(X1;n)).

• The space Null(f ; X1, X2, q2) := Isom(f ; (X1, 0), (X2, q2)) is called the space of de-
rived null-structures on f .

• A derived isometric structure on a map f : X1 → X2 is an element in 
π0(Isom(f ; (X1, q1), (X2, q2))).

• A derived null structure on a map f : X1 → X2 is an element in π0(Isom(f ; (X1, 0),
(X2, q2))).

Now we want to define a condition of non-degeneracy on a null-structure on a 
given map f : X1 → (X2, q2) that will prove useful later. This is a quadratic ana-
log of the notion of Lagrangian structure for derived symplectic forms ([10, §2.2]). Let 
γ ∈ Null(f ; X1, X2, q2) be a fixed null-structure on f . By definition, γ is a path between 
0 and the composite morphism

Sym2
OX1

TX1 f∗(Sym2
OX2

TX2) OX1 [n].

If Tf is the relative tangent complex of f , so that we have the transitivity exact triangle 
of perfect complexes on X1

Tf −→ TX1 −→ f∗(TX2).

The null-structure γ induces also a path γ′ between 0 and the composite morphism

ϕ : Tf ⊗ TX1 TX1 ⊗ TX1 Sym2
OX1

TX1

f∗q2 OX1 [n].

But the morphism Tf −→ f∗(TX2) comes itself with a canonical (independent of γ) path 
from itself to 0, so we get another induced path δ from ϕ to 0. By composing γ′ and δ, 
we then obtain a loop pointed at 0 in the space

MapL (X )(Tf ⊗ TX1 ,OX1 [n]).

QCoh 1



192 G. Vezzosi / Advances in Mathematics 301 (2016) 161–203
This loop defines an element in

π1(MapLQCoh(X1)(Tf ⊗ TX1 ,OX1 [n]); 0) 	 HomDQCoh(Tf ⊗ TX1 ,OX1 [n− 1]].

By adjunction, we get a morphism of perfect complexes on X1

Θγ : Tf −→ LX1 [n− 1],

depending on the null-structure γ.

Definition 3.19. Let f : X1 −→ X2 be a morphism of derived Artin stacks and q2 a 
derived n-shifted quadratic form on X2. An null-structure γ on f : X1 → (X2, q2) is 
non-degenerate if the induced morphism

Θγ : Tf −→ LX1 [n− 1]

is an isomorphism in D(X1).

4. Existence theorems

In this Section we prove two existence theorems for derived quadratic forms on de-
rived stacks, directly inspired by the analogous results for derived symplectic structures 
([10, Thms. 2.5 and 2.9]). For notation and definitions of O-compact derived stack and 
O-orientation, we refer the reader to [10, §2].

Theorem 4.1. Let X be a derived stack locally of finite presentation over k, (m, n) ∈ Z2, 
and q ∈ QF (TX [m]; n). Let Y be an O-compact derived stack equipped with an 
O-orientation η of degree d, and suppose that the derived mapping stack MAPdStk(Y, X)
is a derived Artin stack locally of finite presentation over k. Then, the m-shifted tan-
gent complex TMAPdStk (Y,X)[m] admits a canonical (n − d)-shifted derived quadratic form 
q′ ≡ q′η. If moreover q is non-degenerate, then so is q′η.

Proof. We borrow the notations from [10, §2.1], and define q′ as follows. For
x : R SpecA −→ Map(Y, X) an A-point corresponding to a morphism of derived stacks

f : YA := Y × R SpecA −→ X,

the tangent complex of MAPdStk(Y, X) at the point x is given by

TxMAPdStk(Y,X) 	 RHom(OYA
, f∗(TX)).

The quadratic form

q : Sym2
O (TX [m]) −→ OX [n]
X
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induces by pullback a map of A-dg-modules

ρA : Sym2
A(RHom(OYA

, f∗(TX))[m]) −→ RHom(OYA
,OYA

[n]).

Now we use the d-orientation η on Y ([10, Def. 2.4]): its [n]-shift induces, by definition 
a map of A-dg modules

ηA[n] : RHom(OYA
,OYA

[n]) −→ A[n− d].

By composing ηA[n] with ρA, we get

q′A : Sym2
A(TxMAPdStk(Y,X)[m]) 	 Sym2

A(RHom(OYA
, f∗(TX))[m]) −→ A[n− d].

This defines the quadratic form q′ ≡ q′η on TMAPdStk (Y,X)[m]. When q is non-degenerate, 
then q′η is also non-degenerate, since η is an orientation. �
Proposition 4.2. Let BGLn be the classifying stack of GLn,k, and RPerf the derived 
stack of perfect complexes (sending a simplicial k-algebra A to the nerve of the category 
of cofibrant perfect A-dg-modules with equivalences between them; see [10, §2.3]). Then, 
for any m ∈ Z, TBGLn

[2m + 1], and TRPerf [2m + 1] are equipped with canonical derived 
(2(2m + 2))-shifted quadratic forms.

Proof. This follows from the end of [10, §1.2] (for BGLn), and from [10, Thm. 2.12] (for 
RPerf), via our Proposition 3.8 and Remark 3.9.

Alternatively, one can easily and more directly verify that

• (A, B) �→ tr(AB) defines a non-degenerate quadratic form Sym2(Lie(GLn,k)) → k

on Lie(GLn,k), and
• if E is the universal perfect complex on RPerf , and A := REnd(E) 	 E ⊗ E∨, then 

the composite

A⊗A
μ

A 	 E ⊗ E∨ ev ORPerf

(where μ is the multiplication and ev is the canonical pairing) induces a non-
degenerate derived quadratic form Sym2

ORPerf
(A) → ORPerf on A.

Now, the Proposition follows from the decalage isomorphisms Sym2(T[2m + 1]) 	
∧2(T)[2(2m + 1)], and from the identifications (see [10])

TBGLn
	 Lie(GLn,k)[1]

TRPerf 	 A[1]. �
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Remark 4.3. Proposition 4.2 remains true by replacing GLn with any affine smooth 
reductive group scheme G over k: it is enough to use any non-degenerate G-invariant 
bilinear form on the Lie algebra Lie(G). See the end of [10, §1.2] for details.

Corollary 4.4.

1. Let (X, q) be an n-shifted quadratic derived stack, Y be an O-compact derived stack 
equipped with an O-orientation η of degree d, and suppose that the derived mapping 
stack MAPdStk(Y, X) is a derived Artin stack locally of finite presentation over k. 
Then, MAPdStk(Y, X) admits a canonical (n − d)-shifted derived quadratic form q′ ≡
q′η. If moreover q is non-degenerate, then so is q′η.

2. In the following cases, there exists a canonical derived n-shifted quadratic form on 
TZ [2m + 1] (for the De Rham and Dolbeault notations below, see e.g. [16] or [10]):
• Z := RPerfDR(Y ) := MAPdStk(YDR, RPerf) is the derived stack of perfect com-

plexes with flat connections on Y , m ∈ Z, n := 2(2m + 2 − d), where Y is 
a smooth and proper Deligne–Mumford stack with connected geometric fibers of 
relative dimension d, together with a choice of a fundamental de Rham class 
ηDR,Y ≡ [Y ]DR ∈ H2d

DR(Y, O);
• Z := RPerfDol(Y ) := MAPdStk(YDol, RPerf) is the derived stack of perfect com-

plexes with Higgs fields on Y , m ∈ Z, n := 2(2m + 2 − d), where Y is a 
smooth and proper Deligne–Mumford stack with connected geometric fibers of 
relative dimension d, together with a choice of a fundamental Dolbeault class 
ηDol,Y ≡ [Y ]Dol ∈ H2d

Dol(Y, O);
• Z := RPerf(Y ) := MAPdStk(Y, RPerf) is the derived stack of perfect complexes 

on Y , m ∈ Z, n := 2(2m + 2) − d, where Y is a smooth and proper Calabi–Yau 
Deligne–Mumford stack with connected geometric fibers of relative dimension d, 
together with a choice of a trivialization of the canonical sheaf ηY : ωY/k 	 OY ;

• Z := RPerf(M) := MAPdStk(Sing(M), RPerf) is the derived stack of perfect 
complexes on M , m ∈ Z, n := 2(2m + 2) − d, where M is a compact oriented 
topological manifold of dimension d, together with a choice of a topological funda-
mental class [M ] ∈ Hd(M, k);

• Z := RVectr,DR(Y ) := MAPdStk(YDR, BGLr) is the derived stack of rank r vec-
tor bundles with flat connections on Y , m ∈ Z, n := 2(2m + 2 − d), where Y
is a smooth and proper Deligne–Mumford stack with connected geometric fibers 
of relative dimension d, together with a choice of a fundamental de Rham class 
ηDR,Y ≡ [Y ]DR ∈ H2d

DR(Y, O);
• Z := RVectr,Dol(Y ) := MAPdStk(YDol, BGLr) is the derived stack of rank r

vector bundles with Higgs fields on Y , m ∈ Z, n := 2(2m + 2 − d), where Y
is a smooth and proper Deligne–Mumford stack with connected geometric fibers 
of relative dimension d, together with a choice of a fundamental Dolbeault class 
ηDol,Y ≡ [Y ]Dol ∈ H2d

Dol(Y, O);
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• Z := RVectr(Y ) := MAPdStk(Y, BGLr) is the derived stack of rank r vector bun-
dles on Y , m ∈ Z, n := 2(2m +2) −d, where Y is a smooth and proper Calabi–Yau 
Deligne–Mumford stack with connected geometric fibers of relative dimension d, 
together with a choice of a trivialization of the canonical sheaf ηY : ωY/k 	 OY ;

• Z := RLocr(M) := MAPdStk(Sing(M), BGLr) is the derived stack of rank r local 
systems of k-vector spaces on M , m ∈ Z, n := 2(2m + 2) − d, where M is a 
compact oriented topological manifold of dimension d, together with a choice of a 
topological fundamental class [M ] ∈ Hd(M, k);

Proof. Part (1) is just Theorem 4.1 in the case m = 0. Part (2) follows from Proposi-
tion 4.2 and Theorem 4.1, given that under the respective given hypotheses YDR and 
YDol are O-compact derived stack equipped with O-orientations [Y ]DR and [Y ]Dol of 
degree 2d, while Y is O-compact derived stack equipped, via Serre duality, with an 
O-orientation η of degree d, in the Calabi–Yau case (see [10]). �
Remark 4.5. Part (2) of Corollary 4.4 also follows directly from the finer corresponding 
results of [10, Cor. 2.13], via the use of our Proposition 3.8 and Remark 3.9. However 
the proof in our quadratic case is considerably simpler, since we are not interested in 
proving the existence of any closedness data on the associated shifted 2-form.

Corollary 4.6. If (X, q) is an n-shifted quadratic derived stack, its derived loop stack 
LX := MAPdStk(S1, X) has an induced derived (n − 1)-shifted quadratic form.

Proof. This follows from Corollary 4.4 (1), since for any compact, oriented d-dimensional 
manifold M , the constant derived stack with value its singular simplicial set Sing(M)
is canonically a O-compact derived stack equipped with an O-orientation η of degree d
induced from the fundamental class.

Another proof can be given using Theorem 4.7 below, by noticing that

LX 	 X ×X×X X

and endowing X × X with the quadratic form (q, −q). We leave the details of this 
alternative proof to the interested reader. �
Theorem 4.7. Let (X, q) be an n-shifted quadratic derived stack, and (fi : Yi → X, γi), 
i = 1, 2 two null-structures relative to (X, q). Then, the homotopy fiber product Y1×h

X Y2
admits a canonical (n −1)-shifted derived quadratic form. If moreover, the null structures 
(fi : Yi → X, γi), i = 1, 2 are non-degenerate, and (X, q) is non-degenerate, so is Y1×h

XY2

with this induced (n − 1)-shifted derived quadratic form.

Proof. The proof consists in decoupling, in the proof of [10, Thm. 2.9], the existence of 
a 2-form and its non-degeneracy from the additional closedness data. To ease notations 
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we will write, for the duration of the proof, g∗ instead of gq (Definition 3.16), for an 
arbitrary map g in dStk.

Let Z := Y1 ×h
X Y2. By definition of homotopy fiber product, the two morphisms

p1 : Z Y1
f1

X p2 : Z Y2
f2

X

come equipped with a natural path u between them. Now, u gives rise to a path between 
the induced morphisms on the spaces of derived n-shifted quadratic forms

u∗ : p∗1 � p∗2 : QF(X;n) −→ QF(Z;n).

Moreover, γi defines a path in the space QF(Z; n) between 0 and p∗i q, for i = 1, 2. By 
composing γ1, u∗(q) and γ−1

2 , we get a loop at 0 in the space QF(Z; n), thus a well 
defined element

Q = Q(q, γ1, γ2) ∈ π1(QF(Z;n); 0) 	 π0(QF(Z;n− 1)) = QF(Z;n− 1).

Let us now suppose that (X, q) is non-degenerate and so are the null-structures. We 
will prove that Q = Q(q, γ1, γ2) is also non-degenerate. Let Θγi

: Tfi −→ LYi
[n − 1], 

i = 1, 2 be the induced maps (see Definition 3.19), and pri : Z −→ Xi, i = 1, 2 the two 
projections. We have a morphism of exact triangles in LQCoh(Z)

TZ

Q�

pr∗1(TY1) ⊕ pr∗2(TY2)

pr∗1Θγ1⊕pr∗2Θγ2

p∗1(TX)

p∗
1(q�)

LZ [n− 1] pr∗1(Lf1)[n− 1] ⊕ pr∗2(Lf2)[n− 1] p∗1(LX [n]).

Now, the morphism p∗1(q�) is a quasi-isomorphism since q is non-degenerate, and the 
morphism pr∗1Θγ1 ⊕ pr∗2Θγ2 is a quasi-isomorphism because the two null-structures are 
non-degenerate. This implies that Q� is a quasi-isomorphism too, and thus that Q =
Q(q, γ1, γ2) ∈ QFnd(Z; n − 1). �
5. Derived Clifford algebra of derived quadratic complexes and stacks

This section is rather brief and sketchy, since we mainly observe that the main defi-
nitions and basic results of Section 2.1 go through over a base derived Artin stack X.

All derived stacks even when not explicitly stated will be Artin and locally of finite 
presentation over k.

Let X be a derived Artin stack locally finitely presented over k. We denote by AlgX
(respectively, Algperf

X ) the ∞-category of associative algebra objects in the symmetric 
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monoidal ∞-category (LQCoh(X), ⊗OX
) (respectively, (LPerf(X), ⊗OX

)). Its objects will 
be simply called Algebras (respectively, perfect Algebras) over X. For any ∞-category T, 
and any pair (x, y) of objects in T, we denote by MapT(x, y) the corresponding mapping 
space. Note that, up to isomorphisms in Ho(SSets), this is compatible withe notations 
used before when T is the Dwyer–Kan localization of a model category with respect to 
weak equivalences.

Exactly as in the case of X being the derived spectrum of a simplicial commutative 
k-algebra, for evenly shifted derived quadratic complexes over X, it is possible to define 
a derived Clifford Algebra. We will sketch briefly the definitions and results, leaving to 
the reader the necessary changes with respect to the derived affine case.

Let n ∈ Z, and (E, q) be derived 2n-shifted quadratic complex over X. The derived 
Clifford algebra functor associated to (E, q) is defined by

CliffX(E, q, 2n) : AlgX −→ SSets : B �−→ Cliff(E, q, 2n)(B)

where Cliff(E, q, 2n)(B) is defined by the following homotopy pull-back in SSets

Cliff(E, q, 2n)(B) MapLQCoh(X)(E,B[n])

sB

∗
q̃B

MapLQCoh(X)(E ⊗A E,B[2n])

where the maps sB and qB are defined analogously as in the case where X = RSpec(A), 
for A ∈ salgk.

Proposition 5.1. The functor Cliff(E, q, 2n) is co-representable, i.e. there exists a well 
defined CliffA(E, q, 2n) ∈ Ho(AlgX) and a canonical isomorphism in Ho(SSets)

Cliff(E, q, 2n)(B) 	 MapAlgX
(CliffA(E, q, 2n), B).

Proof. The proof is analogous to the one of Proposition 2.1. �
Definition 5.2. The Algebra CliffX(E, q; 2n), defined up to isomorphism in AlgX , is 
called the derived Clifford Algebra of the derived 2n-shifted quadratic complex (E, q). 
When E = TX , we will write

Cliff(X, q; 2n) := CliffX(TX , q; 2n).

When the base derived stack X is clear from the context, we will simply write 
Cliff(E, q, 2n) for CliffX(E, q, 2n).
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Proposition 5.3. Let X be a derived Artin stack, lfp over k, n ∈ Z, f : E1 → E2 be a 
map in LQCoh(X), and q2 a derived 2n-shifted quadratic form on E2 over X. Then there 
is a canonical map in Ho(dga)

CliffX(E1, f
∗q2, 2n) �−→ CliffX(E2, q2, 2n)

where f∗q2 is the pull-back quadratic form of Definition 3.7.

Proof. Same proof as for Proposition 2.5. �
Note that, by composition with the natural adjunction map in LQCoh(X)

E[−n] → FreeOX
(E[−n]),

the derived Clifford algebra CliffX(E, q, 2n) of the derived 2n-shifted quadratic complex 
(E, q), comes equipped with a natural map in LQCoh(X)

E[−n] −→ CliffX(E, q, 2n).

The base-change of derived quadratic complexes over stacks (along maps of derived 
stacks), and derived isometric structures on a map of derived quadratic complexes (over 
a fixed derived stack), induce the following behavior on derived Clifford Algebras.

Proposition 5.4. Let n ∈ Z.

1. If (E1, q1) and (E2, q2) are 2n-shifted derived quadratic complexes over X, f : E1 →
E2 a map in LQCoh(X) and γ ∈ π0(Isom(f ; (E1, q1), (E2, q2))) is a derived isometric 
structure on f , then there is an induced map in LQCoh(X)

fγ : CliffX(E1, q1, 2n) −→ CliffX(E2, q2, 2n).

If moreover f is a quasi-isomorphism, fγ is an isomorphism.
2. If (E, q) is a 2n-shifted derived quadratic complex over Y , and ϕ : X → Y a mor-

phism in dStk. Then there is a canonical isomorphism in LQCoh(X)

ϕ∗(CliffY (E, q, 2n)) ∼ CliffX(ϕ∗E,ϕ∗q, 2n) .

3. Let ϕ : X → Y be a map in dStk, and q a derived 2n-shifted quadratic form on Y . 
By Definition 3.16, (X, ϕqq) is a derived 2n-shifted quadratic stack, and there is a 
canonical map in AlgX

Cliff(X,ϕqq; 2n) −→ ϕ∗Cliff(Y, q; 2n).
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Proof. (1) and (2) are analogous to the proofs of Propositions 2.6 and 2.7, respectively. 
To establish the map in (3), we first observe that the map TX → ϕ∗TY gives us, by 
Proposition 5.3, an induced canonical map

Cliff(X,ϕqq; 2n) = CliffX(TX , ϕqq; 2n) −→ CliffX(ϕ∗TY , ϕ
∗q; 2n)

and we conclude by point (2) applied to E = TY . �
Remark 5.5. In the situation, and notations, of Theorem 4.1, with both n and d even, it 
can be proved that there exists a canonical map in AlgMAPdStk (Y,X)

hη : Cliff(MAPdStk(Y,X), q′η;n− d) −→ pr∗ev∗Cliff(X, q;n)

where pr : Y × MAPdStk(Y, X) → MAPdStk(Y, X) is the projection, and ev : Y ×
MAPdStk(Y, X) → X the evaluation map. It is an open question whether this map is 
an isomorphism in AlgMAPdStk (Y,X).

6. Appendix: superstuff

In this Appendix, we recall a few basic facts about Z- and Z/2-graded dg-modules and 
dg-algebras, mainly to fix our notations and establish the background for Proposition 2.8
in the main text, where we need to know that the derived Clifford algebra is naturally 
an object in the homotopy category of Z/2-graded dg-algebras. In order to distinguish 
the internal grading from the external one, we will call the former the (cohomological) 
degree, and the latter the weight.

Let A ∈ cdga≤0
k , and A − dgmodw ≡ A − dgmodZ/2−gr denote the category of 

Z/2-weighted A-dg modules, whose objects are triples C•
∗ = (C; C0, C1) where C ∈

A − dgmod, and (C0, C1) are sub A-dg modules that provide a Z/2-graded decompo-
sition in A − dgmod C = C0 ⊕C1. Elements of C0 (resp. of C1) are said to have weight 0
(respectively, 1). The morphisms in A − dgmodw (C; C0, C1) → (D; D0, D1) are mor-
phisms f : C → D in A − dgmod preserving the weights: f(Ci) ⊂ Di, i = 0, 1. There is 
a symmetric monoidal structure on A − dgmodw, defined by

(C;C0, C1) ⊗w
A (C;C0, C1)

:= (C ⊗A D, (C0 ⊗A D0) ⊕ (C1 ⊗A D1), (C0 ⊗A D1) ⊕ (C1 ⊗A D0)),

with commutativity constraint given, on (Z × Z/2)-homogeneous elements, by

σ(C•
∗ ,D

•
∗) : C•

∗ ⊗w D•
∗ −→ D•

∗ ⊗w C•
∗ : x⊗ y �−→ (−1)w(x)w(y)+deg(x) deg(y)y ⊗ x

where w(−) denotes the weight, and deg(−) the (cohomological) degree. Alternatively, 
we could have written
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σ(C•
∗ ,D

•
∗)(xi

w ⊗ yjw′) = (−1)ww′+ijyjw′ ⊗ xi
w,

with the standard obvious meaning of the symbols.
There are functors

i : A− dgmod −→ A− dgmodw : C �−→ (C;C0 = C, 0),

forget : A− dgmodw −→ A− dgmod : (C,C0, C1) �−→ C,

but observe that the first one is symmetric monoidal, while the second one is not.
The category A − dgmodw is endowed with a symmetric monoidal model structure 

where equivalences and fibrations are morphisms mapped to quasi-isomorphisms and 
fibrations via the forgetful functor to A − dgmod: the classical proof in the unweighted 
case goes through. This model structure satisfies the monoidal axiom ([14, Def. 3.3]), 
hence the category A − dgaw of monoids in (A − dgmodw, ⊗w) has an induced model 
category structure where equivalences and fibrations are detected on the underlying 
Z/2-weighted A-dg modules ([14, Thm. 4.1]). The objects of A − dgaw will be called 
Z/2-weighted A-dg algebras. Note that both A − dgmodw and A − dgaw are cofibrantly 
generated model categories. The forgetful functor

Forget : A− dgaw −→ A− dgmodw

is Quillen right adjoint to the free Z/2-weighted A-dg algebra functor

TA : A− dgmodw −→ A− dgaw

(given by the tensor algebra construction in (A − dgmodw, ⊗w)). Note that T acquires 
also an additional Z-grading but we will not use it.

Note that moreover, since A is (graded commutative), the category Ho(A − dgaw)
comes equipped with a (derived) tensor product, defined by

(B;B0, B1) ⊗w
A (D;D0, D1) := Q(B;B0, B1) ⊗w

A (D;D0, D1)

where Q(−) denotes a cofibrant replacement functor in A −dgaw, and the algebra product 
is defined by

(xi
w ⊗ yjw′) · (zhp ⊗ tkq ) := (−1)w

′p(xi
wz

h
p ) ⊗ (yjw′t

k
q ).

Completely analogous (notations and) results hold if we start with the category A −
dgmodZ−gr of Z-weighted A-dg modules, whose objects are pairs C•

∗ = (C; Cw)w∈Z where 
C ∈ A −dgmod, and (Cw)w∈Z are sub A-dg modules providing a Z-graded decomposition 
in A − dgmod C = ⊕wCw. The symmetric monoidal structure is given by

(C;Cw)w∈Z ⊗w
A (D;Dw′)w′∈Z := (C ⊗A D, ((C ⊗A D)p := ⊕w+w′=pCw ⊗A Dw′)p∈Z)



G. Vezzosi / Advances in Mathematics 301 (2016) 161–203 201
while the commutativity is given by the same formula as in the Z/2-graded case (except 
that the weights are now in Z). Thus we dispose of a (cofibrantly generated) model 
category A − dgaZ−gr of monoids in the symmetric monoidal (cofibrantly generated) 
model category (A − dgmodZ−gr, ⊗w).

Proposition 6.1. The functor FreeA : A − dgmod → A − dga (used in the main text) 
naturally factors through the weight-forgetful functor A − dgaZ−gr −→ A − dga (that 
simply forgets the weight-grading). And, if we denote by the same symbol the induced 
functor

FreeA : A− dgmod → A− dgaZ−gr,

this functor sends weak equivalences between cofibrant A-dg modules to weak equivalences.

Proof. Let C ∈ A − dgmod. By giving to FreeA(C) the Z-grading

(FreeA(C))w := Tw
A(C) = C ⊗A · · · ⊗A C (w times)

with the convention that Tw
A(C) = 0 for w < 0, it is easy to verify that

(FreeA(C), (FreeA(C))w)w∈Z)

defines an element in A −dgaZ−gr. The induced functor FreeA : A −dgmod → A −dgaZ−gr

sends weak equivalences between cofibrant objects to weak equivalences since the left 
Quillen functor FreeA : A − dgmod → A − dga does ([6, Lemma 1.1.12]). �

By definition of ⊗w both in the Z/2- and in the Z-weighted case, the functor

A− dgmodZ−gr −→ A− dgmodw

given by

(C;Cw)w∈Z �−→ (C;Ceven := ⊕wC2w, Codd := ⊕wC2w+1)

is symmetric monoidal, and preserves weak equivalences, hence it induces a weak-
equivalences preserving functor between the corresponding monoid objects

(−)w : A− dgaZ−gr −→ A− dgaw.

Thus the composite functor

FreewA : A− dgmod
FreeA

A− dgaZ−gr (−)w
A− dgaw

sends weak equivalences between cofibrant objects to weak equivalences.
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Now we come back to explain the statement of Proposition 2.8. Let (C, q) be a derived 
2n-shifted quadratic complex over A, where C is cofibrant in A −dgmod. Note that, then, 
also any shift of C, and any shift of C ⊗A C is cofibrant, too. Consider the homotopy 
push-out square in A − dga

FreeA(C ⊗A C[−2n]) u

t

FreeA(C[−n])

FreeA(0) = A Cliff(C, q; 2n)

used in the proof of Proposition 5.1 in order to define the derived Clifford algebra 
Cliff(C, q; 2n).

By upgrading FreeA to FreewA, we observe that the maps u and t are no longer maps in 
A −dgaw (they have odd degree) but they both land into the even parts of FreewA(C[−n])
and FreewA(0), respectively. This implies that Cliff(C, q; 2n) admits a Z/2-weight grading

(Cliff(C, q; 2n);Cliff(C, q; 2n)0,Cliff(C, q; 2n))

such that the induced maps

FreewA(C[−n]) −→ (Cliff(C, q; 2n);Cliff(C, q; 2n)0,Cliff(C, q; 2n)),

FreewA(A) = (A;A, 0) −→ (Cliff(C, q; 2n);Cliff(C, q; 2n)0,Cliff(C, q; 2n)),

are maps in Ho(A − dgaw). In other words the derived Clifford algebra functor

(C, q : 2n) �−→ Cliff(C, q; 2n)

extends to a functor

Cliffw
A : QMod(A; 2n) −→ LDK(A− dgaw),

where

• QMod(A; 2n) is the ∞-category of Definition 3.1, and
• LDK(A −dgaw) is the Dwyer–Kan localization of the model category A −dgaw along 

its weak equivalences.
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