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GROUPS WHOSE CHARACTER DEGREE GRAPH HAS
DIAMETER THREE

CARLO CASOLO, SILVIO DOLFI, EMANUELE PACIFICI, AND LUCIA SANUS

Dedicated to the memory of Laci Kovdcs

ABSTRACT. Let G be a finite group, and let A(G) denote the prime graph
built on the set of degrees of the irreducible complex characters of G. It is well
known that, whenever A(G) is connected, the diameter of A(G) is at most 3.
In the present paper, we provide a description of the finite solvable groups for
which the diameter of this graph attains the upper bound. This also enables

us to confirm a couple of conjectures proposed by M.L. Lewis.

1. INTRODUCTION

Let G be a finite group; we denote by Irr(G) the set of all irreducible complex
characters of G, and write

cd(G) = {x(1) | x € Irr(G) }

for the set of the degrees of such characters. The character degree graph A(G) is
thus defined as the graph with vertex set the set p(G) of all the primes that divide
some x(1) € c¢d(G), and two distinct primes p and ¢ are adjacent if and only if pg
divides some degree in ¢cd(G). The study of the graph A(G) and of the relationships
between the properties of A(G) and the structural features of the group G, has by
now a rich literature (we recommend the survey paper [8] for a general overview of
the subject), and the purpose of this paper is to contribute to one particular aspect
of this research.

A fundamental result of P.P. Palfy ([I5]) ensures that if G is a solvable group,
then given any three distinct primes in p(G), at least two of them are adjacent in
A(G). From this it immediately follows that, for a solvable group G, A(G) has
at most two connected components (both inducing a complete subgraph of A(G)),
and that, when A(G) is connected, the diameter of A(G) is at most 3 (that this
latter inequality holds in any finite group is proved in [I1]). For some time it has

been unknown whether there existed solvable groups whose character degree graph
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has diameter 3, until the question was settled by M.L. Lewis, who constructed in
[9] a solvable group G such that A(G) has 6 vertices and diameter 3.

It was Lewis construction and his related comments (made particularly explicit
in [§]) that prompted us to study in more detail solvable groups G such that the
diameter of A(G) is 3. Through our analysis in the present paper, we pin their
structure down enough to show that they all closely resemble Lewis’ examples, and
to allow to confirm a couple of conjectures appearing in [g].

In the following statement, which is the main result of this paper, F(G) denotes
the Fitting subgroup of the group G and, for ¢ > 1, v;(P) is the i-th term of the
lower central series of the p-group P.

Theorem A. Let G be a finite solvable group such that A(G) is connected and
diam(A(G)) = 3. Then the following conclusions hold.

(a) There exists a prime p such that G = PH, with P a normal non-abelian Sylow
p-subgroup of G and H a p-complement.

(b) F(G) = Px A, where A= Cg(P) < Z(G), H/A is not nilpotent and has cyclic
Sylow subgroups.

(¢) A(G/~3(P)) is disconnected.

(d) If ¢ is the nilpotency class of P, then all factors My = [P,G]/P" and M; =
Yi(P)/vit1(P), for 2 < i < ¢, are chief factors of G of the same order p",
where n is divisible by at least two distinct odd primes; moreover, for all 1 <
i <c¢, G/Cqg(M;) embeds as an irreducible subgroup in the group of semi-linear

transformations T'(p™).

In particular, we have that A(G/v3(P)) is a disconnected subgraph of A(G)
with the same set of vertices, thus confirming a suggestion of Lewis ([8]). In fact, it
will not be hard to derive a proof of a related conjecture concerning the structure
of the graph A(G), when G is solvable and diam(A(G)) = 3. Let r,s be two
vertices of A(G) with d(r,s) = 3, and denote by m; and 7y the sets consisting of
r, respectively s, and all vertices adjacent to it; then m N m = () and (by Palfy’s
three primes condition) p(G) = m U m2. Moreover, denoting by F2(G) the second
Fitting subgroup of G and supposing p € 71 (we will see that r # p # s), we will
show that m = m(F2(G)/Z(Q)), ma = 7(G/F2(G)), 2 & ma, |m2| > 2 and w1, 72
both induce complete subgraphs of A(G) (see Remark [£4]). Indeed, m; and 7o are
the set of vertices of the two connected components of A(G/v3(P)); it follows (see
Remark [£4)) that

|y | > 2l

Hence, Conjecture 4.8 of [] is established; in particular, |p(G)| > 6 (indeed, it
turns out that Lewis’ example has the smallest possible order).
Still in the spirit of another suggestion by Lewis (see the paragraph following 5.8

in [8]), an immediate consequence of Theorem A is the following result.
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Corollary B. Let G be a finite solvable group, and assume that A(G) is connected
with diameter 3. Then the Fitting height of G is precisely 3. In fact, G is a

nilpotent-by-metacyclic group.

As it is apparent from the above remarks, a central role in our treatment is
played by solvable groups with disconnected degree graph, the main features of
those we will need to have almost constantly in hand. For this, our main source
is their description in [10] (although similar results also appear in [16] and [14]),
and we in particular refer to the list of six subcases in section 2 (and 3) of that
paper. From the same arguments that prove Theorem A, we derive a result which
we believe adds to the understanding of case 2.6 in [I0].

Theorem C. Let G be a finite solvable group such that A(G) is disconnected and
F(G) is not abelian. Then there is a unique prime p such that P = Op(G) is not
contained in Z(G) and

(a) either p is an isolated vertex of A(G), or

(b) A(G/P’) is disconnected and, if ¢ is the nilpotency class of P, all factors My =
[P,G]/P" and M; = v;(P)/vit1(P), for 2 <i < ¢, are chief factors of G of the
same order p", with n > 3; moreover, for all 1 <i < ¢, G/Cqg(M;) embeds as

an irreducible subgroup in the group of semi-linear transformations T'(p™).

We conjecture that, both in the disconnected and in the diameter-three case,
the chief factors M; are pairwise non-isomorphic as G-modules over GF(p); this is
true for the first pair M; and Ms (see point (a) in the proof of Proposition 2],
but we were not able to prove it in general. Another question that we leave open
is whether, in both Theorem A and Theorem C, one has P = [P, G] x Z(G) (again,
this is true modulo v3(P)). Finally, by looking at the known examples, one might
ask if it is true that, in Theorem A, not only A(G/~v3(P)) but also A(G/~.(P)) is

disconnected.

2. NOTATION AND PRELIMINARIES

Throughout this paper, every group is tacitly assumed to be a finite group. We
write V(G) and E(G) for the sets of vertices and edges, respectively, of the prime
graph A(G) on irreducible character degrees. We denote by dg(u, v) the distance in
A(G) between the two (distinct) vertices w and v (i.e. the length of a shortest path
joining u and v; set dg(u,v) = oo if there is no such path), and by diam(A(G))
the maximum of dg(u,v) for u,v € V(G) if A(G) is connected (whereas we set
diam(A(G)) = oo if A(G) is not connected).

As customary, we denote by T'(p™) the semi-linear group on the field GF(p"),
and by T'o(p™) the subgroup of I'(p™) induced by the field multiplications. If V' is an

n-dimensional vector space over GF(p), then V can be identified with the additive
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group of a field of order p™, and in this sense we write I'(V') and T'g(V) for T'(p™)
and T'o(p") respectively.

Let a > 1 and n be positive integers. A prime ¢t is called a primitive prime
divisor for (a,n) if t divides a™ — 1 but ¢ does not divide a’ — 1 for 1 < j < n.
Recall that, by a well-known result by Zsigmondy ([I2, Theorem 6.2]), such a prime
always exists except when n =6 and a = 2, or n = 2 and a + 1 is a power of 2.

Let N be a normal subgroup of G and let A € Irr(N). We denote by Irr(G|A)
the set of irreducible characters x of G such that A is an irreducible constituent of
xn- In this setting, x and A are said to be fully ramified with respect to G/N (but
sometimes, when the context is clear enough, we also say that A is fully ramified in
G) if xn = e) with € = |G : N|. By [7, Problem 6.3], this is equivalent to the fact
that x vanishes on G\ N with A invariant in G, and also to the fact that x is the
unique irreducible constituent of A“ still with A invariant in G.

If A is an abelian group, we write A to denote the dual group of A, that is, the
set Irr(A) endowed with multiplication of characters.

Also, we freely use without references some basic facts of Character Theory such
as Clifford Correspondence, Gallagher’s Theorem, Ito-Michler’s Theorem, results
concerning character extension and coprime actions (see [1]).

We shall also take into account the following well-known result concerning char-
acter degrees.

Lemma 2.1 ([I2] Proposition 17.3]). Let G be a solvable group. Let F = F(G)
and K = Fo(G). Then there exists x € Irr(G) such that m(K/F) C 7(x(1)).

As mentioned in the Introduction, we will make an intensive use of the classi-
fication, provided in [I0], of solvable groups whose character degree graph is dis-
connected. The next statement summarizes some aspects of that classification: the
groups in (a), (b) and (c) are respectively those of types 2.1, 2.4 and 2.6 (described
further in 3.1, 3.4 and 3.6, respectively) in [10].

Theorem 2.2. Let G be a solvable group, and set F = F(G), K = Fo(G). Assume

that A(G) has two connected components. Then the following conclusions hold.

(a) Assume that G is metanilpotent. Then G = PH, where P < G is a non-abelian
Sylow p-subgroup for a suitable prime p, and H is an abelian p-complement.
Moreover, P' < Cp(H), and every non-linear irreducible character of P is
fully ramified with respect to P/Cp(H). Finally, the sets of vertices of the two
connected components of A(G) are respectively {p} and m(G/F).

(b) Assume that F is abelian, and that |V(G)| > 2. Then G = M H, where M < G
is an elementary abelian p-group for a suitable prime p, and H is a complement
for M. Also, F = M xZ(G), Z(G) = Cy(M) and G/F <T'(M). The subgroup
K acts irreducibly (by conjugation) on M, and both K/F and G/K are cyclic
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groups. Finally, the sets of vertices of the two connected components of A(G)
are respectively m(K/F) and n(G/K).

(c) Assume that F is non-abelian and that, whenever O,(G) is non-abelian, the
prime r is not an isolated vertex of A(G). Then G = PH, where P < G is a
non-abelian Sylow p-subgroup for a suitable prime p, and H is a p-complement.
Also, F = P x U where U < Z(G). The factor group G/P’ is a group as in (b),
so, in particular, K/F and G/K are cyclic groups. Finally, the sets of vertices
of the two connected components of A(G) are respectively {p} Un(K/F) and
7(G/K).

We stress that a group G as in (b) or (¢) of Theorem[Z2]is such that every Sylow
subgroup of G/F is cyclic.
We also quote the following result, which is Theorem 5.5 of [10].

Lemma 2.3. Let G be a solvable group such that A(G) is a disconnected graph.

Then there exists a unique prime p such that Op,(G) is non-central in G.
Next, another preliminary lemma.

Lemma 2.4. Let G be a group such that F(G) = M x Z, with Z < Z(G) and
M < G. Assume also that every irreducible character of F(G) extends to its inertia
subgroup. Then A(G) = A(G/Z).

Proof. Observe first that, by our assumptions, every irreducible character of Z
has an extension to G: in fact, if 6 is in Z, then 6 x 1; € Irr(F(G)) extends to
G = 1g(0 x 11). Now, let d be a number in c¢d(G), x an irreducible character of G
of degree d, and 6 an irreducible constituent of xz; denoting by ¢ an extension of
0 to G, by Gallagher’s Theorem there exists ¢ € Irr(G/Z) such that xy = £. As a
consequence, d = x(1) = ¥(1) € cd(G/Z), and the desired conclusion follows. ®

Finally, the following result by C.P. Morresi Zuccari ([13, Corollary C]) will also
be relevant for our purposes.

Theorem 2.5. Let G be a solvable group such that A(G) is connected. If F(G) is
abelian, then diam(A(G)) < 2.

3. SOME PROOFS
We start with two lemmas concerning modules over finite fields for cyclic groups.

Lemma 3.1. Let G be a cyclic group, K a finite field of order q, and M a faithful

irreducible m-dimensional K[G]-module. Also, let € be an element of order |G| in

the multiplicative group of F = GF(¢™). Then the following hold.

(a) If M is a constituent of M @ M, then there exist o1 and o2 in Gal(F | K) such
that €7 - €72 = e.

(b) If M is self-contragredient, then there exists o in Gal(F|K) such that ¢ = e .
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Proof. Observe that F is a splitting field for G over K. By [5 I1.3.10], we can
identify M with the additive group of IF, and the action of a suitable generator  of
G with the multiplication by e. We denote by My the 1-dimensional F[G]-module
arising in this way. Setting M¥ = M ®x FF, by [6, VII, 1.16 a)] we get
M= @ (M)
c€Gal(F | K)
Now, if M is a constituent of M ®x M, then MF is a direct summand (as an
F[G]-module) of
(M @g M)F ~ M* @p M* ~ @ (MF)°* ®F (Mg)72.
o1,02€Gal(F | K)
In particular, there exist o1 and o3 in Gal(F | K) such that My ~ (M) @ (Mp)°2.
Considering now the action of 2 on these two isomorphic F[G]-modules, claim (a)
follows.
As for (b), if M is K[G]-isomorphic to its contragredient module M*, then we
get
P My =M =M~ (M)
o€Gal(F | K) o€Gal(F | K)
In particular, there exists o in Gal(F|K) such that (My)? is F[G]-isomorphic to
(M*)p, which is in turn F[G]-isomorphic to (Mp)*. Claim (b) is now achieved by

comparing the action of 2 on the two relevant F[G]-modules. [ |

Lemma 3.2. Let G be a cyclic group, p a prime, and M a faithful irreducible
GF(p)[G]-module. Setting |M| = p™, assume that there exists a divisor r of m,
1 <r <m, such that % divides |G|. Then the following hold.

(a) If M is a constituent of M Agp(py M, then (p,m/r) = (2,2).

(b) If M is self-contragredient, then (|G|,m/r) = (p" +1,2).

Proof. Let us first prove Claim (a). If M is a constituent of M Agp(,) M, then it
is clearly a constituent of M ®qp(,) M as well. Therefore, by Lemma [B.I)a), there
exist a,b € {0,...,m — 1} (say a > b) such that p® +p® = 1 (mod |G|); in particular,
setting ¢ = ’;;:—__11, we have that ¢ divides p® + p® — 1.

Since we have t > p™~", we also have a > m — r; in fact, assuming the contrary,
we would get p? < p® < p™ "1 thus p® +pP —1 < 2™ "L — 1 < p7TT < ¢,
contradicting the fact that t divides p® + p® — 1. Therefore we can write a = m —n
where n lies in {1,...,7}. Now, t is a divisor of (p™ ™" +p* — 1) -p* — (p™ — 1) =
ptt" —p" + 1, whence m —r < b+n < a+n = m. Again, defining £ = m — (b+n),
we get 0 < ¢ <7 and ¢ divides (p*T™ —p" +1)-p* — (p" — 1) =p° —p"H + 1. As
a result, ¢ is a divisor of p* - (p” — 1) — 1.

On the other hand, if m/r > 3, then m —r > 2r, and son+£ < 2r < m —r.

nt_ pf < p™~" < t, and now the only possibility is

pé(pn_l)zlv

This implies p



GROUPS WHOSE CHARACTER DEGREE GRAPH HAS DIAMETER THREE 7

which yields £ = 0, p = 2, n = 1. So, p® = p® = 2™~L. Setting F = GF(2™) and
denoting by o the element of Gal(F | GF(2)) which maps every f € F to 2" ', the
conclusion so far is that (M) ®r (Mp)° is the unique constituent of M* @p M*
which is isomorphic to My. But (Mp)? @ (M) is not a constituent of M¥ Ap MF ~
(M Agr(2) M)F, against the fact that M is a constituent of M Aar2) M.

It remains to treat the case m/r = 2, whence t = p” + 1 divides p® +p® — 1 with
0 < a < 2r—1. Note that we must have a > r, so we can write a = r + n with
0 <n < r. Now, t divides p"*"+p? —1—p"- (p" +1) = —p" +p® — 1. In particular,
t < |—p"+p®—1| < p"+p®—1. This in turn implies b > r, therefore we write b = r+k
where 0 < k < r. Finally, p" +1 divides —p" +p" % —1—pF.(p"+1) = —p" —p* -1,
whence p” +1 < p" +p¥ +1 < 2p"! + 1. Tt follows that p = 2, and (a) is proved.

We move now to Claim (b). If M is self-contragredient, then Lemma [3IIb)

yields that there exists k € {0, ...,m — 1} such that p*¥ = —1 (mod |G|). Therefore,
p7n71
pr—1

we would have |G| = 2 and m = 1, contradicting the existence of a proper positive

divides p* + 1. Let us first exclude the possibility k = 0; in that case, in fact,

divisor of m. Observe also that, as by [5 11.3.10] m is the smallest positive integer
such that p™ =1 (mod |G]), for every integer z # 0 such that |G| divides p* — 1
we get m | z, so m divides 2k; on the other hand, since 0 < &k < m — 1, we have in
fact m = 2k.

2k
Our conclusion so far is that 7?0 —

:11 is a divisor of p* +1; this yields p* —1 | p" —1,
which in turn implies &k | 7. But since r properly divides 2k, the only possibility is
r =k, i.e., m/r = 2. Moreover, |G| is divisible by 1;7:__11 = p* + 1 and |G| divides
p¥ + 1, so we have in fact |G| = p* + 1, as desired. [

Remark 3.3. Let P be a p-group, and N a subgroup of P such that P’ < N <
Z(P). For A € N, set Zy/ker A = Z(P/ker ), and observe that Zy = Z(0) for
every 0 € Irr(P|A). In fact, [Z(0),P] < N Nkerf = ker A (recall that, N being
central in P, Oy is a multiple of \), hence Z(#) < Zy; but indeed equality holds, as
clearly [Zy, P] < ker A < ker 6.

Note also that, if u lies in Irr(Zy|\), then p is a character of Z(P/ ker \); there-
fore, for § € Irr(P|p), we have that 0z, is a multiple of  (and in fact p is fully
ramified in P, because N < Z(0), thus P/Z(0) is abelian and [7, Theorem 2.31]
yields 6(1)% = |P : Z(0)| = |P : Z,|). Now, taking into account that 6 € Irr(P|))
certainly does not vanish on any element of Z(6) = Z, it is easy to see that A € N
is fully ramified in P if and only if Z) = N.

The proof of next Lemma uses ideas from the proofs of [1l Satz 1] and [4, Satz 1].

Lemma 3.4. Let P be a p-group, and N an elementary abelian subgroup of P such
that ®(P) < N < Z(P). Write |P/N| = p™ and |[N| = p™. Assume m > n/2.
Then there are at least p™~"/2) characters \ € N such that X is not fully ramified
with respect to P/N.
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Proof. We can assume that n is even, as otherwise no character A € N could be
fully ramified with respect to P/N. Let € € C be a fixed primitive pth-root of unity
and K = Z/pZ. Then we can associate to every \ € N an alternating bilinear form
(, ) on P/N (as a K-space) by setting, for aN,bN € P/N, e{@N:bN)x = \([a, b]).
From the above remark, it is clear that A is fully ramified with respect to P/N if
and only if the form (, ) is non-degenerate.

Choosing a basis A1, Ag, ..., Ay of the dual group N of N, there is a bijection
between K™ and N, by associating A = A{*A3% - \fm € N to (1,22, ..., Zm) €

K™; moreover,

<’>)\:in<’>)\1"

If A; are the matrices associated to the forms ( , ), (with respect to a suitable

basis of P/N), (, ) is degenerate if and only if

d(.Il,{EQ, RPN ,Im) = dethiAi =0.
i=1

Now, d(z1, 22, ...,Tm) = f2(x1,T2,...,2,) where f is a homogeneous polynomial
of degree n/2 (see [3, (IV), page 46]. By [I7, Satz 3], f has at least p™™/2 roots
in K™ and the result follows. ]

We next proceed through a series of results concerning semi-linear actions.

Lemma 3.5. Let p be a prime, V a vector space of order p™, and H a subgroup
of T(V'). Also, setting Xo = HNTo(V), let & be a set of primes in w(H) \ m(Xo),

" —1
let D be a Hall §-subgroup of H. Then |D| divides n and, defining k =

pn/I1PI — 17
the following facts are equivalent.

(a) For everyv € V, Cyg(v) contains a suitable conjugate of D.
(b) {D":he H}| =k.
(c) k divides | Xo| and |D| is coprime to p™ — 1.

Proof. As DNTo(V) = (DNH)NI'o(V) = DNXy = 1, then |D| divides n. Moreover,
by Lemma 3(ii) in [2] we get |Cy(D)| = p™/IP!. Since X, acts fixed-point freely
on V, for v € V'\ {0} we have that Cy(v) ~ Cpx(v)Xo/Xy is cyclic, and therefore
Cp(v) contains at most one Hall §-subgroup of H; now the equivalence between
(a) and (b) follows by counting in V \ {0}. Assume now (b). Observing that
XoD is normal in H (because H/X is abelian), by the Frattini argument we have
XoNgy(D) = H, and (c) follows at once. Conversely, assume (c). If 7 is a prime
divisor of p™/IPl — 1, then p™/IPl = 1 (mod r) and so k = |D| (mod 7); since |D] is
coprime with | Xo| (hence with k), it follows that | D| is coprime with p™/IPl -1, and
therefore with |T'g(V')| = p™ —1. As a consequence, [['g(V'), D] ~ T'o(V)/Cr,v)(D)
has order k, so [I'o(V), D] is contained in Xy. Finally, [['o(V), D] = [['o(V), D, D] <
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[Xo, D], hence k = |[Xo, D]|, and therefore k = |Xo/Cx,(D)| = |H : Ng(D)| =
|{D" : h € H}|, as desired. [ |

Lemma 3.6. Let H act on a group A and let s be a prime dwisor of |H/Cg(A)].
Assume that, for every a € A\ {1}, Cg(a) contains a Sylow s-subgroup of H as a
normal subgroup. Then A is an elementary abelian p-group for some prime p, and
either p = s = 3 (and |A| = 3%), or H/Cy(A) < T(A), (H/Cu(A)) NTo(A) acts
irreducibly on A, and st |(H/Cg(A)) NTo(A)|.

Proof. Set H = H/Cg(A). By [10, Lemma 4.4], then either |A| = 9 and s = 3,
or there exists a normal abelian subgroup Xy of H such that A is an irreducible
Xo-module. By [12, Theorem 2.1], this implies that H < I'(A) and that X, <
HNTy(A). The last claim is obvious, as s | |¢H| and every Sylow s-subgroup of
H centralizes some non-trivial element of A, whereas every non-trivial element of
HNTy(A) acts fixed-point freely on A. [

The following fact is folklore, but we include a proof for convenience.

Lemma 3.7. Let H < T'(V) be a group of semilinear maps on V. Let |V| = p™,
p prime. Let Ty be a subgroup of H such that |Ty| is a primitive prime divisor of
p" —1. Then Cy(Ty) = HNTy(V) =F(H).

Proof. Let K = GF(p). By [5], I11.3.10], V is an irreducible K[Tp]-module. Hence by
Schur’s Lemma L = Endg(z,) (V') is division ring. Since L is finite, it is a field by
Wedderburn’s Theorem. So, as Cg(Tp) is a subgroup of the multiplicative group
of L, Cy(Tp) is cyclic. But Cg(Tp) acts irreducibly on V' (as it contains Tp), and
hence by [5] 11.3.10] we get that Cy(To) < HNT(V). So, as HNTy(V) is cyclic,
we conclude that Cy(Ty) = HNTy(V) < F(H). Note that ¢ > n because ¢ is
a primitive prime divisor of p” — 1, so a Sylow t-subgroup of H is contained in
Cp(Th), hence F(H) centralizes Tp. [ |

Lemma 3.8. Let H be a solvable group, p a prime, and Vi, Vo two H-modules
over GF(p). Assume that there exists a prime s € m(H/F(H)) \ {p} such that, for
i € {1,2} and for every v € V;\ {0}, Cu(v) contains a Sylow s-subgroup of H as a
normal subgroup. Then both Vi and Va are irreducible H-modules, |Vi| = |Va|, and
H/Cy (V) < T(V;) fori € {12},

Proof. For i € {1,2}, set |V;| = p™ and C; = Cg(V;); also, let S be a Sylow s-
subgroup of H. Note that s divides |H/C;|, as otherwise S would be a characteristic
subgroup of C; < H yielding S < F(H), against our assumption.

So, by Lemma[B:6] we get that H/C; < T'(V;), that V; is an irreducible H-module
and that s does not divide the order of X;/C; = (H/C;) NTo(V;). Moreover, by
Lemma B35 s divides n; and (p™ — 1)/(p™/* — 1) divides |X;/C;|. Observe that

there exists a primitive prime divisor ¢; for (p,n;): otherwise either n; = 2 or
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p" =26 and in both cases (as s # p) s divides (p™ —1)/(p™/* — 1), contradicting
the fact that st |X;/C;|. Note also that ¢; # s, as t; > n;. Let T;/C; be a subgroup
of prime order ¢; of X;/Cy; so T;/C; < H/C;.

We claim that T} is not contained in C;Cs. Otherwise, writing o H = H/C1, we
have ¢T7 < ¢Cs and, choosing a non-trivial v € V5 such that S < Cg(v), both ¢S
and g7} are normal subgroups of 6Cg (v), so [¢S, ¢T1] = 1. But this, by Lemma[3.17]
implies that s divides |¢X1], a contradiction.

As T1C5/C5 centralizes To/Cy (also if #; = t3), then again Lemma B yields
that ¢; divides | X2/C5| and hence ¢, divides p"2 — 1. We conclude that ny > n;.

Similarly, one shows that n; > ns, completing the proof. [ |

With the following lemmas, we will gather some relevant information on the

character degree graph of solvable groups.

Lemma 3.9. Let G be a solvable group, and E an abelian normal subgroup of

G. Assume that E has a complement H in G and that F(G) = E x Z with Z <

HNZ(G). Setting X =F(H), let g € 7(X/Z)\ w(E), and let s € n(H/Z) \ n(E)

be such that q and s are not adjacent in A(G). Let Q € Syl (X), S € Syl,(H) and

L= (QS)" (the normal closure of QS in H ). Then the following conclusions hold.

(a) We have [E,Q] = [E, L] and Cg(Q) = Cg(L); moreover, E = [E, L] x Cg(L).

(b) Set A = [E,Q]. Then A is an elementary abelian p-group, say of order p™,
where p is a suitable prime. Also, Z = Crz(A) and, for every non-trivial
a € A, Crz(a) contains a conjugate of S as a mormal subgroup. Moreover,
LZ)Z <T(A) and Lo/Z = (LZ/Z) NTy(A) acts irreducibly on A. We also
have that d = |SZ/Z| divides n, and (p™ — 1)/ (p™'* — 1) divides |Lo/Z|.

(c) There exists a primitive prime divisor t of p™ — 1.

(d) Lo/Z =F(LZ/Z). Moreover, LZ = LyS and p does not divide LZ/Z.

Proof. Set A =[FE,Q] and B = Cg(Q). As ¢ does not divide |E| and E is abelian,
we have E = A x B. Consider now the action of G on the dual group E =
A X B. For a € A\ {1}, ¢ divides |G : Cg(a)| = |H : Cy(a)|. Also, the lincar
character a extends to Cg(a), because A has a complement (namely BCy(«)) in
Cg(a). Thus, by Gallagher’s Theorem and Clifford Correspondence, this forces
Cu(a) ~ Cg(a)/E to contain an H-conjugate of S as a normal subgroup (and
also, S is abelian). Let a € A\ {1} be such that S < Cy() and let 8 € B;
then Cpy(a x ) = Ch(a) N Cy(B) and ¢ divides |H : Chy(a x f)]. As a x S
extends to its inertia subgroup in G, using as above Clifford Theory and that no
irreducible character of G has degree divisible by gs, we get that the unique Sylow
s-subgroup S of Cp(«) must also be contained in Cg (). We conclude that S acts
trivially on B and hence that S < Cy(B) < H. Thus L = QS < Cy(B), so that
B = Cg(L). Moreover, we get [E,L] = [A x B,L] = [A,L] < A, hence A = [E, L]

and (a) is proved.



GROUPS WHOSE CHARACTER DEGREE GRAPH HAS DIAMETER THREE 11

Next, observe that Cy(F) = Z: in fact, if © € Cy(FE), then x centralizes
EZ =F(G),so x € F(G)N H = Z. Thus, it follows that Z = Crz(A). Since all
Sylow s-subgroups of H are contained in L and Z < Z(G), we have that Crz(a)
contains an L-conjugate of S as a normal subgroup, for every a € A \ {1}. Hence,
as s is coprime to |/A1|, an application of Lemma [3.6] together with Lemma [3.5] yields
that A (thus A) is an elementary abelian p-group of order p™, where p is a suitable
prime and n a suitable integer; moreover, setting H = H/Z, we get L < I‘(A\) and
Lo = LNTy(A) acts irreducibly on A. We also have that s does not divide |Lq|,
whereas d = |S| divides n, and (p" — 1)/(p"/® — 1) divides |Lo|.

As in the proof of Lemma 3.8 there exists a primitive prime divisor ¢ of p™ — 1.
Otherwise, either n = 2 or p" = 25, In both cases, as s and p are distinct primes,
s divides (p™ —1)/(p™/® — 1), so s divides |Lo|, a contradiction. This proves (c),
and Lemma B yields Ly/Z = F(LZ/Z). In order to conclude the proof of (d), it
remains to show that LZ = LS.

Clearly t divides (p” — 1)/(p™/¢ — 1), hence it divides |Lo|. Denoting by ¢T,
the subgroup of Lo with |¢Ty| = ¢, by Lemma B it follows that C(Tp) = Lo.
Note that ¢ is larger than n and hence, as |L/Lo| divides n, we get that a Sylow
t-subgroup of L is contained in Lg. This implies that Q < Lg, since @ < H
centralizes Tp. But now both @ and S lie in LoS; moreover, as L/Lg is cyclic, LoS
is normal in H. So L = LS and hence LZ = LS. Recalling that s # p and |9 Lo
divides p™ — 1, we have also that p does not divide |LZ/Z|, and the proof of (d) is
complete.

In particular, the actions of L on A and on A are isomorphic and also (b) is

proved. [ |

Lemma 3.10. Let G be a solvable group, and assume that F(G) = M x U, where
M < G is a non-abelian p-group, U < G is abelian, and p does not diwvide |G :

F(G)|. If every irreducible character of U has an extension to its inertia subgroup

in G, then either U < Z(G) or dg(p,v) < 2 for every v € V(G).

Proof. Our first claim is that, if ¢ € V(G)\{p} is not adjacent to p, then every Sylow
t-subgroup of G centralizes U. In fact, let 6 be in Irr(M). Setting P = M x O,(U),
we have that 0 x 1o,y € Irr(P) extends to Ig(0 x lo,w)) = Ig(#) because
pt |G : P|, and therefore 6 extends to I(0). Now, denoting by K a complement
for M in G containing U, the degrees of the characters in Irr(G|0) are of the kind
|G : Ig(0)| - 0(1) - A(1), where A € Irr(Ix(6)). As a consequence, if 6 is chosen
to be non-linear, I (6) contains a Sylow ¢-subgroup T of G, and T is abelian and
normal in Ik (#). Now, U is a nilpotent normal subgroup of Ik (6), thus [U,T] =1
as wanted.

Now, let us assume Cg(U) # G and let w be a prime divisor of F(G/Cg(U));
observe that, by the previous paragraph, w is a vertex of A(G) which is adjacent
to p. Also, let s € V(G) be non-adjacent to w. In this setting, we claim that
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s is adjacent to p in A(G). In fact, we can certainly find ¢ € U such that w
divides |G : Cg(¢)|. Thus Cg(¢) contains a Sylow s-subgroup S of G; by our
assumptions, ¢ extends to Cg(¢), and so Cg(¢)/U has an abelian normal Sylow
s-subgroup. It follows that SU < Cg(¢) and Syl,(Cg(¢)) = {S“ | v € U}.
Take now any 0 € Irr(M); we get that Ig(0 x ¢) (thus Ig(0)) contains a Sylow
s-subgroup S* of G for some u € U, but then I () contains S because U < I¢(6).
We conclude that S centralizes every irreducible character of M, thus it centralizes
M by coprimality. But this forces S € Cg(U), which yields that s is adjacent to p
in view of the previous paragraph.

To sum up, under the assumption U £ Z(G), we proved the existence of w €
V(G) which is adjacent in A(G) to p and to every vertex of A(G) not adjacent to
p. Tt easily follows that every vertex of A(G) can be reached from p through a path
of length at most 2, and the proof is complete. [ ]

Lemma 3.11. Let G be a group, p a prime, and P a normal p-subgroup of G. If
G/Cg(P) is a p-group, then P is a hypercentral subgroup of G.

Proof. Since G/C¢(P) is a p-group, the number of elements in P that are fixed
under the action of G/Cg(P) is divisible by p (unless P is trivial, in which case
there is nothing to prove), and hence Z(G) N P # 1; in particular, Z(G) is non-
trivial. Consider now the factor group G = G/Z(G) and adopt the bar convention
throughout; clearly P is a normal p-subgroup of G and G/ Ca(ﬁ) is a p-group
(because it is isomorphic to a quotient of G/Cg(P)), therefore we can use induction
on the order of the group and conclude that P < Z,(G). The claim now follows,
as Zoo(G) = Zoo (G). [ |
Lemma 3.12. Let G be a solvable group, and p a prime. Setting P = O,(G) and
N = P', assume that P is non-abelian, P/N < Z(G/N), and that every irreducible
character of P has an extension to its inertia subgroup in G. Then p is a complete

vertex in A(G).

Proof. Note that, if H is a p-complement of G, then H centralizes P/N and hence
it centralizes P by coprimality; this yields that G/Cg(P) is a p-group, thus P is
hypercentral in G by Lemma B.11]

Working by contradiction, we assume that p is not a complete vertex of A(G) and
we consider a vertex s € V(G), s # p, such that ps does not divide any irreducible
character degree of G, and let 6 be in Irr(P). Since 6 extends to I = Ig(0),
the degrees of the characters in Irr(G|6) are of the kind |G : I] - 6(1) - A(1), where
A € Irr(I/P). As a consequence, if 6 is chosen to be non-linear, I /P contains SP/P
where S is a suitable Sylow s-subgroup of G (recall that |G : I| is a p-power), and
SP/P is abelian and normal in I/P; here S is in fact abelian, as S ~ SP/P. Now,
as P < Z (@), the nilpotency of SP/P yields the nilpotency of SP; moreover, SP

is normal in I, which is in turn subnormal in G because I/Cg(P) is a subgroup of
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the p-group G/Cg(P). We conclude that SP is a nilpotent subnormal subgroup
of G, whence it lies in F' = F(G). To sum up, S is a Sylow s-subgroup of G
which is abelian and normal in G (as S < F)), hence s is not a vertex of A(G), a
contradiction; in other words, every prime in V(G) \ {p} is adjacent to p in A(G),
as wanted. ]

Proposition 3.13. Let G be a solvable group such that A(G) is connected of di-
ameter 3, and let p be a prime. Setting P = O,(QG), assume that P is non-abelian,
P’ is a minimal normal subgroup of G and that A(G/P’) is a disconnected graph.
Then P is the Sylow p-subgroup of G and P/P’ is not contained in the center of
G/P'.

Proof. Write N = P’ and F = F(G). Observe first that N lies in ®(P), thus N <
® (@) and the ascending Fitting series of G/N is just the image of the ascending
Fitting series of G under the natural homomorphism onto G/N.

First, we will show that P is a Sylow p-subgroup of G. Assume, working by
contradiction, that this is not the case.

Note that, since A(G) has diameter three, the graph A(G/N) (whose vertex set
is V(G) in this situation) has no isolated vertices, and therefore G/N is of type (b)
or (c) of Theorem Hence, the Sylow subgroups of G/F' are all cyclic.

Let 6 be any character in Irr(P). Setting R = O, (F), clearly we have that
0 x 1R is an extension of # to F, such that I5(f x 1g) = Is(#). Moreover, since all
Sylow subgroups of G/F are cyclic, 6 x 1 (and therefore 0) extends to I = I¢(6).
If P/N < Z(G/N) then, by Lemma B.12] p would be a complete vertex of A(G),
against the assumption diam(A(G)) = 3. Hence, P/N £ Z(G/N). By Lemma[Z3]
this yields that F/N is abelian and hence that G/N is necessarily of type (b) of
Theorem

So F/N = M/N x Z/N, where M/N is an elementary abelian p-group having a
complement H/N in G/N and Z/N = Z(G/N) = Cy/n(M/N). Set K = F1(G)
(so K/N = F2(G/N)). Also, M/N is an irreducible K/N-module, and K/F and
G/K are cyclic groups of coprime order (in fact, 7(K/F) and n(G/K) are the
connected components of A(G/N)). Note that p & 7(K/P) (as P = O,(G)).

Let my be the set of vertices not adjacent to p in A(G); so, mg # . We remark
that 7o C w(K/P), as p € n(G/K) and 7(G/K) induces a complete subgraph of
A(G).

Write K = PX, where X < H is a p-complement of K. Note that X is abelian,
because X/(ZNX) = K/F is cyclic and ZN X is central in X. Let Y be the Hall
mo-subgroup of X. Then YN/N < H/N (as XN/N =F(H/N)). So PY 4 G and
hence A(PY') is a subgraph of A(G). We deduce that A(PY) is disconnected with
components {p} and my (observe that every r € 7 is a vertex of A(PY); in fact, a
Sylow r-subgroup R of PY is also a Sylow r-subgroup of G and, if R is abelian and
normal in PY’, then the same is true in G (as PY < G), against the fact that r is
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in V(G)), hence PY is of type (a) in Theorem 22l So, setting C' = Cp(Y), we have
that N < C and that every non-linear irreducible character of P is fully ramified in
P/C. Note also that M £ C| since otherwise (as above) Y N/N centralizes F'/N,
so Y < F and no prime divisor of |Y| would be a vertex of A(G). Let Z,/N be
the Sylow p-subgroup of Z/N. Since Y acts trivially on both N and Z,/N, then
Z, < C. Moreover, CNM = N, as (C N M)/N is a proper submodule of the
K /N-irreducible module M/N. Now, since P/N = M/N x Z,/N, it follows that
C = Z,.

We next observe that M is non-abelian. In fact, as p is an isolated vertex of
A(PY), every non-linear irreducible character of P is centralized by Y'; therefore,
an application of [I2, Theorem 19.3] yields N = [P, Y], but [P,Y] = [MC,Y] =
[M,Y] < M, whence M’ = N. In particular, A(MY) is also disconnected with
components {p} and my. Now, working with MY instead of PY (as in the previous
paragraph), we get that every non-linear irreducible character of M is fully ramified
with respect to M/Cp(Y) = M/N. By Lemma [3.4] this implies |M/N| > |N|%.

Consider now U = Cx(N). Assume first U = X. Let x € Irr(G) such that
N £ ker() and let ¢ be an irreducible constituent of xyp. Then ¢ is fully ramified
in P/C and I¢(¢) = Ig(0), where 6 is the irreducible constituent of ¥c. As X
acts trivially on both C/N = Z,/N and N, then X centralizes C' and hence 1 is
K-invariant. So, recalling that (|P|,|K/P|) =1, ¢ extends to K. Since K/P =2 X
is abelian, Gallagher’s Theorem implies that every irreducible character of K lying
over 1 has degree coprime to |K/P|. It follows that 7(x(1)) C 7(G/K) (recall that
p € 7(G/K)). We conclude that A(G) = A(G/N) is disconnected, a contradiction.

Hence, U < X. Choose ¢ € 7(X/U) and let @ € Syl (X). So, QN/N < H/N
and then, in particular, PQ < G.

We remark that p and ¢ are adjacent in A(G). If not, they are not adjacent
in the subgraph A(PQ) as well, and hence A(PQ) is of type (a) of Theorem 22]
giving N < Cp(Q), so @ < U, against the choice of g. So, since (p, q) € E(G) and
q is not a complete vertex of A(G), there exists a vertex s # p of A(G) such that
(¢,s) € E(G). Note also that s € m(H/Z): otherwise, as the p-complement of Z is
abelian, G would have an abelian normal Sylow s-subgroup and s would not be a
vertex of A(G).

Let S be a Sylow s-subgroup of H and let L = (QS). By applying Lemma 3.9
to G/N with M/N playing the role of E, we get that LZ/Z acts as a faithful,
irreducible semi-linear group on M/N = [M/N, Q] = [M/N, L] (here we are taking
into account that Cys/n(Q) is normal in G/N, hence it is trivial because M/N is
an irreducible K/N-module). So, recalling that C/N is central in G/N (thus it lies
in Cp,n(L)), we see that Cp,n(L) = C/N x Cyyn(L) = C/N. Also, for every
non-trivial element a € M/N, Cpz/7(a) contains a Sylow s-subgroup of LZ/Z as



GROUPS WHOSE CHARACTER DEGREE GRAPH HAS DIAMETER THREE 15

a normal subgroup. Finally, note that by part (d) of Lemma B3] F(LZ/Z) acts
fixed-point freely on M /N and hence, in particular, s does not divide |[F(LZ/Z)].

Next, observe that [N, Q] = N, as N is minimal normal in G and 1 < [N, Q] =
[N,PQ] < G. Hence, setting B = Cp(L), we have that BN N = Cy(L) <
Cn(Q) = 1. Since C/N = Cp/n(L) = Cp/n(LZ/Z) and, recalling B.13(d), the
action of LZ/Z on P/N is a coprime action, we get C' = N B and hence C = N x B,
because N is central in P.

Let now v € C such that N £ ker(v). So « is fully ramified in P/C; let
¢ € Irr(P) the unique constituent of . Then I (1)) = Cg(y). As v = a x 8
with @ € N\ {1} and 8 € B, then ¢ divides |G : Cg(y)|. Since ¢ extends to
Ca(7) (in fact, the Sylow p-subgroups of G/P are cyclic because p ¢ w(K/P))
and (¢, s) € E(G), as usual we get that Cg(y)/P contains a Sylow s-subgroup of
G/ P as a normal subgroup; in particular, the same is true also for Cr (7). But
Crz/z(v) = Crz/z(a), as LZ acts trivially on B. So, for every a € N \ {1},
Crz/z(a) contains a Sylow s-subgroup of LZ/Z as a normal subgroup. Hence an
application of Lemma 8 yields that [M/N| = |N| = |N|, a contradiction.

So far, we have shown that P is a Sylow p-subgroup of G. Thus, every irreducible
character of P has an extension to its inertia subgroup in G and hence Lemma [3.12]
yields that P/N is not central in G/N. This finishes the proof. [ |

Lemma 3.14. Let P be a non-abelian normal Sylow p-subgroup of a solvable group
G and let H be a p-complement of G. Assume that there is a prime divisor s of
|H/F(H)| such that s is not adjacent to p in A(G). Then for all 2 < i < ¢, where ¢
is the nilpotency class of P, the factor groups M; = ~;(P)/~vi+1(P) are chief factors
of G of the same order p™, with n > 3, and G/Cg(M;) embeds in T'(p™).

Proof. For 2 < i < ¢, take any non-trivial p in M;: by [7, Theorem 13.28], and by
the fact that M; is central in P/+;11(P), there exists ¢ in Irr(P/7v;+1(P) | 1) such
that Iy (¢) = Cpg(p). As i > 2 and p is non-trivial, clearly ¢(1) is a multiple of p.
Now, viewing ¢ as a character of P by inflation, we have that ¢ extends to its inertia
subgroup in G (by coprimality); as a consequence of our non-adjacency assumption,
Clifford Correpondence together with Gallagher’s Theorem yield that I (¢) (thus
Cpy(p)) contains a Sylow s-subgroup of H as a normal subgroup. Observe also
that Cy(M;) does not contain any Sylow s-subgroup of H: in fact, if S € Syl (H)
lies in Cp(M;) (which in turn lies in Cy(p)), then S would be a characteristic
subgroup of Cy(M;), and therefore a normal subgroup of H, against the fact that
s is a divisor of |H/F(H)|. We are then in a position to apply Lemma [B.8, which
yields that all groups ]\//.7Z are in fact irreducible H-modules of the same order; thus
all M; are irreducible H-modules as well (i.e., M; is a chief factor of G), all of them
have the same order p”, and all the groups G/Cg(M;) embed in I'(p™). Moreover,
Lemma, yields that s divides n and that s is coprime to p™ — 1. As s # p, this
implies that n > 3. [ |
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4. THE MAIN RESULTS

In what follows, we write diam(A(G)) > 3 to indicate that either A(G) is con-
nected and diam(A(G)) = 3, or that A(G) is not connected (i.e., diam(A(G)) = o).

Proposition 4.1. Let G be solvable group such that F(G) = P is a non-abelian
Sylow p-subgroup of G, and assume that P’ is a minimal normal subgroup of G.
If diam(A(G)) > 3 and p is not an isolated vertex of A(G), then Fa3(G) does not
centralize P'.

Proof. We denote by H a p-complement of G, and we set X = F(H) and N = P’.
Since F3(G) = PX, we have to prove that X does not centralize N. Working by

contradiction we assume that X centralizes IV, and go through a series of steps.

(a) Every prime in w(H/X) is adjacent to p in A(G).

Proof. Let ¢ € V(G) be such that (¢,p) ¢ E(G) and consider a non-trivial
character ¢ € N. As ¢ is X-invariant and p does not divide | X|, by [7, Theorem
13.28] there is a ¢ € Irr(P|¢) such that X < I = Ig(¢)). By coprimality, v
extends to I; hence Gallagher’s Theorem and Clifford Correspondence imply
that I N H ~ I/P contains a Sylow g-subgroup @ of G, and that @ is abelian
and normal in TN H. As X < I N H, then @ centralizes the g-complement of
X. But @ centralizes also the Sylow ¢-subgroup @ N X of X, as @ is abelian.
Thus, @ centralizes X = F(H) and hence Q < X, s0 ¢ ¢ n(H/X). [ |

Note that a group G as in our hypotheses, in the disconnected case, is as
in (¢) of Theorem [Z2} in particular, the connected components of A(G) are
{p}Un(X) and n(H/X), clearly against what obtained in the paragraph above.
This contradiction settles the disconnected case, so we may henceforth assume
that A(G) is connected of diameter 3.

(b) There exist g € n(X) and s € w(H) \ n(X) such that q is non-adjacent to both
p and s in A(G).

Proof. By Lemma 2] the subgraph of A(G) induced by 7(X) is complete and
by (a) the set of vertices of A(G) that are not adjacent to p is contained in
m(X). We may consider a path ¢ —r — $1 — s2 in A(G) connecting two vertices
with distance 3, where ¢ # p, ¢ is not adjacent to p, and one among the s; is
not p: naming it s we have the claim. ]

(c) Let Q € Syl,(X), S € Syl,(H). Set M = [P,Q], L = (QS)" and X, =
F(L). Then M' = N and M/N is an irreducible Xo-module. Moreover, setting
|[M/N| = p", we have that Xy is a cyclic group whose order is divisible by
(" = 1)/ (@15 = 1).

Proof. Note that @) stabilizes every non-linear irreducible character of P, as
Q@ < H and q is not adjacent to p. So M’ = P/ = N by [12, Theorem 19.3],
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and it also follows that M/N = [P/N,Q]. Now we are in a position to apply
Lemma [3.9] to the group G/N, with respect to the non-adjacent vertices ¢, s of
A(G/N), and all the desired conclusions follow. [ |

(d) V = M/N is a self-contragredient Xo-module.

Proof. Let 1 be a non-linear irreducible character of M, and A an irreducible
constituent of ¢n. Then A is Xp-invariant (as Xo < X), and clearly it does not
extend to M. Since M/N is irreducible as an X¢-module, then A is fully ramified
with respect to M/N (see [, Exercise 6.12]). So by Remark B3] the bilinear
form defined by €(*N*N) = \([a,b]) on M/N (where € is a given primitive p-th
root of unity) is non-degenerate, and it is also Xo-invariant, as X acts trivially
on N. Hence, it induces an isomorphism of Xjp-modules between M /N and its

contragredient module. ]

Note that ¢ € 7(Xo) C 7(X), so Lemma 2.1l implies that s does not divide |Xj|.
We conclude by applying Lemma 3.2 which gives p = 2 = s, a contradiction. [ |

The next result, which is the core of this work, shows that actually no group G
such that A(G) is connected can satisfy the assumptions of Proposition 1]

Proposition 4.2. Let G be a solvable group such that F(G) = P is a non-abelian
Sylow p-subgroup of G, and let N = P’ be a minimal normal subgroup of G. Assume
also that diam(A(G)) > 3 and p is not an isolated vertex of A(G). Then A(G) is
not connected, [P,G]/N is a chief factor of G, and |[P,G]|/N| = |N|; moreover, if
H is a p-complement of G, then H <T'([P,G]/N) and H/Cgx(N) <T(N).

Proof. Let H be a p-complement of G, and set X = F(H) (observe that Cy(P) =
1= Cpg(P/N)). By the previous proposition, there exists a prime divisor ¢ of | X|
such that @@ = O4(X) does not centralize N. As N is minimal normal in G, we
have [N, Q] = N and Cy(Q) = 1, whence Q £ Cp()) for every non-trivial A € N.
So @ does not lie in the inertia subgroup of any non-linear irreducible character of
P (as restrictions to N < Z(P) are homogeneous), and hence ¢ is adjacent to p in
A(G).

Since V(G/N) = V(G) \ {p} and ¢ is adjacent to p in A(G), there certainly
exists s € V(G/N) that is not adjacent to ¢ in A(G/N). Observe also that s does
not divide |X| = |[F(HN/N)|, as otherwise, by Lemma 21} ¢ would be adjacent
to s in A(G/N); therefore a Sylow s-subgroup S of H is not normal in H. Let
L = (QSH, V = [P/N,Q] and C/N = Cp/n(Q); then, as N < [P,Q] = R,
V = R/N, P/N = R/N x C/N. Setting |V| = p", by applying Lemma 3.9 we
obtain that C/N = Cp/N(L), R = [P, L], L <T(V) and V is an irreducible Xo-
module, where Xg = LN T(V) = F(L); moreover, |S| divides n, the order of X
is divisible by (p™ —1)/(p™/!%] — 1), and there exists a primitive prime divisor ¢y of

p™ —1. As in the previous proposition, we shall proceed through a number of steps.
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R is not abelian and, as an Xo-module, N has no irreducible constituent iso-

morphic to V.= R/N.

Proof. Suppose, by contradiction, that R is abelian, and consider the action of
L on the dual group R: by coprimality, no non-trivial element of R is centralized
by @, and therefore every irreducible character of RL whose kernel does not
contain R has a degree divisible by ¢. Since RL < G (therefore A(RL) is a
subgraph of A(G)) and every irreducible character of R extends to its inertia
subgroup in RL, we have that Cp(\) contains a unique Sylow s-subgroup of L
for every A € R\ {1g}. An application of Lemma 38 yields that R (thus R) is
an irreducible L-module, contradicting the fact that IV is a proper non-trivial
L-invariant subgroup of R. Therefore R is not abelian.

Observe next that {, ) : R/N x R/N — N, defined by (aN,bN) = [a, b], for
a,b € R, is a GF(p)-bilinear map. This induces a homomorphism (of GF(p)-
spaces) 0 : R/N ®gr(p) R/N — N, which is easily checked to be an Xo-
homomorphism. Since R is not abelian and N is minimal normal in G, we have
R’ = N, whence § is surjective. Thus, § induces a surjective Xo-homomorphism
from R/N Agrp) R/N to N, because the symmetric tensors are in kerd. If NV,
as an Xo-module, has an irreducible constituent isomorphic to R/N then, by
Lemma [32] p = 2 = s, which is not our case. ]

Cp(Q) is an abelian direct factor of G, and H acts faithfully on V.

Proof. Note that Cp(L) = Cp(Q) and, by coprimality, C = Cp(L) x N;
moreover, we have RN Cp(L) = 1 because N = [N,Q]. As P = RCp(L), we
get that Cp(L) ~ P/R is abelian.

If C is not contained in Z(P) then, as N < Z(P), we can choose y €
Cp(L) \ Z(P). The map ¢, : R/N — N, defined by ¢,(aN) = [a,y], is
then a homomorphism of X¢-modules, because X centralizes y. Since R/N is
an irreducible Xo-module, ¢, is either injective or the trivial homomorphism.
But in the latter case y would centralize both R and C, whence y € Z(P).
We conclude that ¢, is injective, which means that the Xo-module N has a
constituent isomorphic to R/N, against step (a).

Hence C < Z(P). Let M = Cp(L); so P = Rx M and HR is a complement
for M in G. We next show that M < Z(G).

Write 6G = G/N. If M is not central in G, then 9K = Cyyr(oM) < HR
(note that oL < ¢gK) and so there exists a prime divisor ¢ of |F(sHR/¢K)|.
Then, clearly, ¢ divides |¢G : I,g(\)| for some non-trivial irreducible character
A of M, whence ¢ divides x(1) for all x € Irr(¢G|\). But oMK = gM x
oK < G, so t is adjacent in A(pG) to every vertex of A(gK). As s is a
vertex of A(gK) (note that ¢S is not normal in ¢H, so it is not normal in
oL, and the same holds in ¢gK), we conclude that s is adjacent to t. This
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is true for every vertex s that is not adjacent to ¢ in A(G/N) and for g as
well; in fact, 6Q)Q < ¢K and ¢K does not have a normal Sylow g-subgroup,
as otherwise @) would centralize R = V. It thus follows that A(G/N) is
connected; in particular, A(G) is connected as well (and it has diameter 3, by
our assumptions), otherwise p would be an isolated vertex of A(G).

Now, by Theorem [23] diam(A(G/N)) < 2, because F(G/N) = P/N is
abelian. We then have that there exists s’ € V(G) such that dg(s’,p) = 3.
Note that then s’ is not adjacent to ¢ in A(G) (as p is adjacent to q); therefore,
s’ is not adjacent to ¢ in A(pG) as well, and so, as observed above, it is adjacent
to t in A(¢G) and hence in A(G). But M x K < G implies that p is adjacent
to ¢t in A(G), yielding dg(s,p) < 2. This contradiction shows that M lies in
Z(G). Hence, G = HR x M and M = Cp(Q) is a central direct factor of G.

As a consequence, we get Cy (V) = Cy(P/N) =1, so H acts faithfully on
V and the proof of (b) is complete. [ |

In the following, we set Y = Cgy(N), write oH = H/Y, and adopt the bar

convention. The next step settles, in particular, the first claim of the statement.

[P,G]/N and N are chief factors of G of the same order p", H <T'([P,G]/N)
and ¢H <T(N).

Proof. By the previous step:
[P,G] = [[P,QICr(Q),G] = [[P,Q],G] < [P,Q] = R.

Therefore, [P,G] = [P,Q] = R. It follows that if y lies either in V \ {1} or
in N\ {1}, then Cpy (1) does not contain @ and, by [7, Theorem 13.28], there
exists @ € Irr(P|u) such that Cy(p) < Ig(f). But the restriction of 6 to R
(respectively, to N) is a multiple of u, so in fact Cy(u) = I (0); now, since
extends to I¢(A) (and recalling that s is a vertex of A(G) not adjacent to q),
we get that Cg(u) contains a Sylow s-subgroup of H as a normal subgroup.
Hence, by Lemma[B.8 we conclude that V' = R/N is a chief factor of G of order
|N|, and that H < T(V) and H/Cg(N) < T(N). [

In view of the above paragraph, our aim for the rest of the proof will be to
show that A(G) cannot be connected under our hypotheses. To this end, we
assume that G is a counterexample of minimal order; thus A(G) is connected,
diam(A(G)) = 3 and, by minimality, G has no non-trivial abelian direct factors.
In particular, step (b) yields Cp(Q) =1, R=P and V = P/N.

Setting m = |H/X|, as H < T'(V) we have that m divides n; in particular,
a primitive prime divisor ¢y of p™ — 1 (which exists, as observed before), being
larger than n, does not divide m. Therefore, denoting by Ty a Sylow to-subgroup
of H, we have that Tj lies in X and it is in fact central in X. Now, Lemma[3.7]
yields Cg(Tp) < T'o(V), whence X < T'o(V) and X acts fixed-point freely on



20

C. CASOLO ET AL.

V; also, as observed in the paragraph preceding (a), s does not divide the order
of X = Cy(Tp). Now (with the notation introcuced before point (c)),

to does not divide |Y|, Y < X, and ¢X = gH NTH(N).

Proof. As observed above, |Ty| | |6H N To(N)|. This in turn implies ¢y 1 |Y;
thus (as Y and Ty are both normal in H) we get [Y,Ty] <Y NTy = 1, whence
Y < Cy(Th) = X. Thus, set U/Y = ¢H NTo(N). We clearly have that ¢ X
centralizes 9T, so Lemma [B7 yields ¢ X < ¢oH NTy(N). On the other hand
we get [U,To] <Y NTpy because, again by Lemma B, ¢7T) is contained in the
cyclic group ¢U; thus U < Cy(Ty) = X, and so ¢X = gH NT(N). [

The subgraphs of A(G) induced on w1, = {p}Un(X) and mo = w(m) are complete
graphs. Hence, in particular, 7(X)Nw(m) =0 and X has a complement D in
H.

Proof. As H <T(V) and X = F(H), then H/X is nilpotent (in fact, cyclic);
thus, Lemma 2] implies that both 7(X) and 7(H/X) = 7(m) induce complete
subgraphs of A(G).

It remains to show that (p,t) € E(G) for all t € 7(X). Let T € Syl,(X); as
[V,T] <V is X-invariant and non-trivial, we see that [V,T] = V. If (p,t) &
E(G) then, since PT 4 G, the graph A(PT) is disconnected, and PT is as
in case (a) of Theorem In particular, N < Cp(T) and every non-linear
irreducible character of P is fully ramified with respect to P/Cp(T). On the
other hand, by coprimality, Cp(T)/N = Cy(T) is trivial, and in fact every
non-linear irreducible character of P is fully ramified with respect to P/N. In
this setting, an application of Lemma[3dlyields the contradiction |P/N| > |N|%.

|

The graph A(G/N) is disconnected with connected components w(X) and m(D) =
7(m), where D is a complement for X in H. Moreover, (p™ — 1)/(p™/IPl — 1)
divides | X|.

Proof. Arguing by contradiction, assume that A(G/N) is connected. Then,
by Theorem 2.5 A(G/N) has diameter (at most) two, and therefore a pair of
vertices at distance 3 in A(G) must include the prime p. Let (p,v) be such a
pair and p —t — r — v a shortest path connecting them; then step (e) yields
r,v € (D) = m(m) and t € m(X). Take now any A € N \ {1}; then p divides
6(1) whenever 6 lies in Irr(P|\), and if r divides |gH : Cyp(A)|, then r divides
|oH : Cyr(0)], and so pr divides x(1) for every x € Irr(G|f), a contradiction.
Therefore, Lemma B35l yields that k. = (p™ —1)/(p"/Fl —1) divides |¢X|, where
R is a Sylow r-subgroup of H.

On the other hand, consider x € Irr(G) such that ¢r divides x(1). Then p
does not divide x(1), whence x € Irr(G/N). Let pu € Irr(P/N) be an irreducible
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constituent of x p; note that u # 1p,n, ast | x(1). Since 7 | x(1), then 7 divides
|H : I (p)|, and again Lemma 3.5 implies that &, does not divide | X|, against
what observed in the previous paragraph.

Thus, A(G/N) is disconnected and, by Lemma [ZT] it is clear that its con-
nected components are 7(X) and 7(D). Consider now p € Irr(P/N)\ {1p/n};
as X acts fixed-point freely on P/N, we have that Iy (u) N X = 1, hence, for
every x € Irr(G|u), the degree of x is divisible by all the primes in 7(X). As
a consequence, g () must contain a conjugate of D and the last claim follows
by Lemma [ |

(g) Let A € N\ {1}. Then there ezists 6y € Irr(P|\) such that It (60) = Cr(X).
For every 6 € Irr(P|A) \ {60}, we have Iy(0) N X =1, and Ix(0) contains a
complement D for X in H.

Proof. The first claim follows from [7, Theorem 13.28], and from the fact that
Ig(0) < Cg(A) for every 0 € Irr(P|)), as N < Z(P).

Consider now a character 6 € Irr(P|A)\{6o}. Recalling that X/Y acts fixed-
point freely on ]\A], in order to prove that Iy (#) N X = 1 it is enough to show
that Yo = Ig(0)NY = 1. If Y > 1, then Cy (Yp) cannot be the whole V; since
V is irreducible X-module and Cy (Y)) is X-invariant, Cy (Y)) is trivial and,
by [7, Exercise 13.10], 6y is the only character in Irr(P|A) which is Yp-invariant,
a clear contradiction. We conclude that Yy = 1.

Now, if I (#) does not contain any complement for X in H (i.e., any Hall
m(m)-subgroup of H), then there exists a prime r € w(m) which does not
divide |H : Ig(0)|; as a consequence, any x € Irr(G|f) would be such that
pr|X| divides x(1). This yields a contradiction, as r would be a complete
vertex of A(G), and also the last claim is proved. [ |

For the next two steps of the proof, it will be convenient to introduce some
specific notation. We define N* as the set of all A € N \ {1} that are not
fully ramified in P; since |P/N| = |N|, Lemma [34] ensures that N* is not
empty. We shall also take into account Remark [3.3]and the notation introduced
therein; in particular recall that, for A € N , the subgroup Z, is defined by
Zx/ker X = Z(P/ ker \).

(h) Let X be in N*, and set M = Zx. Then the following conclusions hold.

(i) There exists a complement D of X in H such that Cyg(A\) =Y D.

(ii) YD normalizes M and, for every a € M \ N, we have Cyp(aN) = DY
for somey €Y.

(iii) If Dy is a complement for X in H such that Cyn(D1) is non-trivial,
then D1 <YD.

(iv) If Y £ Z(H), then YD/Cyp(M/N) < T'(M/N) and M/N is an irre-
ducible Y -module.
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Proof. Since A is not fully ramified in P, then |Irr(P|A)| > 1, and by (f) we find
0 € Irr(P|A) such that Iy () contains a complement D for X in H. Now, I (0)
is contained in Cg (A) because 0 is a multiple of A, and therefore D < Cg(\).
Clearly Y lies in Cg(A) as well, and since X/Y acts fixed point freely on N
(and X # 1), we deduce that Cg(A) is in fact Y'D.

As for (ii), observe that YD = Cg () normalizes ker A, so it acts on P/ ker A
and on Z(P/ker\) = M/ker A as well; as a consequence, Cp(\) normalizes
M. Since A € Irr(N/ker \) and N/ker X is a subgroup of the abelian group
M/ ker A, we have that A extends to M, and in fact Irr(M|)) consists of ex-
tensions of A\. By [7, Theorem 13.28], among those extensions we can choose
po that is Cy(N\)-invariant, and we can write Irr(M|A\) = {uop | p € m}
Consider now p € m, and take 6 € Irr(Plugp). Since 6 lies in Irr(P|A),
step (f) together with the previous paragraph yield that Iy (6) contains D
for some = € X; but Iy(d) < Cg(N\) = YD, therefore there exists y € ¥
such that D* = DY. Moreover, recalling that 05, is a multiple of ugp, we get
DY < Iyp(0) < Iyp(uop) and, as po is DY-invariant, we easily deduce that DY
lies in Cyp(p) as well. If p # 1, taking into account that X acts fixed-point
freely on P/N, we also have Cyp(p) N X = 1. Thus Cyp(p) = DY. Now, by
coprimality, (ii) follows.

Assume now that Dy is a complement for X in H such that aN € Cy/n (Dy),
where a lies in M\ N. By (ii), aNN is also centralized by DY for a suitable y € Y;
but, as X N Cy(aN) = 1, Cy(aN) =~ Cg(aN)X/X is cyclic, and therefore
D, =DY<YD.

Finally, if Y £ Z(H), then [Y,D] # 1 and therefore D does not lie in
Cyp(M/N) (otherwise, as Y acts fixed-point freely on M /N, we would have
D =Cyp(M/N) < YD), so (iv) follows by Lemma [3.0 [

Y < Z(H).

Proof. Aiming at a contradiction, let us assume [Y, H] # 1. Thus, as Y < X
and X is abelian, [Y, D] # 1 for any complement D for X in H.

Observe first that every € P is contained in a subgroup Z, for some \ €
N*. In fact, as this clearly holds for z € N, let us focus on an element = ¢ N.
Since Cp(z) D N{(x) D N, we get |[P,z]| = |P|/|Cp(x)| < |P|/IN|=|N]|, and
it is enough to choose a non-trivial A € Irr(N/[P, z]) in order to have x € Z)
(with A € N*, as = € Zy and so Z, > N). Observe also that, if Zy, # Zy, for
A, A € ]V*, then Zy, NZy, = N, since both Z, /N and Z,/N are irreducible
Y-modules by (g).

Given A € N*, we set M = Z, and we denote by Z(M) the dual group of
N/[P, M] (as a subgroup of the dual group N of N). Note that if yu # 1y lies in
E(M), then one has M < Z,,, thus p lies in N* and so in fact, by irreducibility
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of the Y-module Z,,/N, M = Z,. In other words, we have Z(M) \ {In} =
{pwe N*:Z, =M} It is then clear that 2(M) NE(Z,) = {1n}, if Z, # M
for some v € N*.

Also, given a complement Dy for X in H, if Cp;/n(D1) > 1 then, for every
A€ E(M), by (g) D1 < Cg(A) and hence Z(M) < Cg(Dy).

So, we set Cy(E(M)) = YD, for a suitable complement D of X in H.
Now set |[M/N| = p* (note that, by Clifford’s Theorem, ¢ does not depend on
A€ N*, as M/N is an irreducible Y-module and Y < H), and let L/N be
a complement for the irreducible Y-module M/N in P/N. Observe that, for
a,be Pandy €Y, we have

1

[a¥,b] = [a¥,b)" " =[a,b" .
Therefore, for any b€ M \ N,
(1) LM =(ab]:acl yeY)=(a" ,b:acL yeY)=ILD.

As a consequence, we get |[L, M]| = |L|/|CL(b)| < |L/N| = p™~*; taking into
account that |N| = p", this yields |[N/[L, M]| > p* = |[M/N]|.

Now, by Lemma [34], there are at least p'/? characters in Nﬁf;,\M | that are
not fully ramified in M/[L, M]. We claim that all the non-trivial characters in

-

N/[L, M] that are not fully ramified in M/[L, M], are in E(M). In fact, given
ave N//[Z-L,\M] such that v is not fully ramified in M/[L, M], then (recalling
Remark [B.3)) there exists an element b € M \ N such that [M,b] < kerv. As
[L, M] < kerv, then [P,b] = [LM,b] < kerv. As in (1) (with P in place of L)
one sees that [P,b] = [P, M], and the claim is proved. In particular, we get
ED)] > p2 - 1.

Finally, set d = |Y'D : Cyp(M/N)|. Since, by point (g), Y D/Cyp(M/N)

t/d

is an irreducible subgroup of I'(M/N), we have |Cpyn(D)| = p*¢, where

d=1|D:Cp(M/N)|. Noting that, by what observed before,
Z={(Zx/N)\{1}: A€ N* and Cg, n(D) >1}

is a partition of Cp/n (D) \ {1}, we conclude that

_ICpn(D)[ -1 _prm -1

- pt/d_l - pt/d_l'

Since, as observed, Z(Z)) < Cg(D) for every Zy such that (Zy/N)\ {1} € Z,

and |Z(M)| < p'/? — 1, we deduce

2|

n/m_l
n/m b
P -1 = 105D\ (2 L 62 - )

1
Hence pt/2 — 1 < pt/? — 1, which implies d = 2 (so |D| is even). In particular
p # 2, thus p™ — 1 is an even number as well as |D|. But, by Lemma
the numbers p™ — 1 and |D| must be coprime. This contradiction completes
step (h). [ |
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(j) Final contradiction.

Proof. By step (f), the graph A(G/N) is disconnected with connected compo-
nents 7(X) and 7(D), where D is a complement for X in H.

Since step (h) yields Y < Cx (D), we have that |Y| divides p™/I”l — 1. Now,
p"/IPl — 1 is coprime to k = (p" — 1)/(p™/IPl — 1) and, as k divides | X| by (f),
we see that k divides the order of X = gH N FQ(N). Thus Lemma yields
that, for every \ € N , a conjugate of D lies in Cy(\). In particular, for every
A€ N\ {1}, we get Cy(A\) =Y x D for a suitable z € X.

Now, let x € Irr(G) be such that xn has a non-trivial irreducible constituent
A, and let 6 € Irr(P|A) be an irreducible constituent of xp. Thus, Iy (0) <
Cu(A) =Y x D* (for some z € X) is cyclic. So, as x(1) = ¥(1)|G : I¢(0)]
for a suitable ¢ € Irr(Ig(0)|0), we conclude that x(1) = 0(1)|H : Iy (0)| and
hence, taking into account that Iy () contains a conjugate of D by step (f),
the prime divisors of x(1) lie in {p} Un(X). Therefore A(G) is disconnected,

a contradiction. [ |
The proof is now complete. [ |

The following result, together with Remark [£.4] and Lemma B.14] for what con-
cerns the dimension n of the factors M;, will yield Theorem A and, as a by-product,
Theorem C. For this reason we do not include an independent proof for Theorem C,

that could be obtained with a direct and much shorter argument.

Theorem 4.3. Let G be a solvable group such that either A(G) is connected of

diameter 3, or A(G) is disconnected. In the disconnected case, assume also that

F = F(G) is non-abelian and that, whenever O,(G) is non-abelian, the prime r is

not an isolated vertex of A(G). Then the following conclusions hold.

(a) Let p be a prime. If O,(G) is non-abelian, then it is a Sylow p-subgroup of G.

(b) There exists a unique prime p such that P = O,(G) is non-abelian. Also,
denoting by U the p-complement of F, we have U < Z(G).

(¢) A(G/~3(P)) is disconnected, and G/F is a non-nilpotent group whose Sylow
subgroups are all cyclic. If c is the nilpotency class of P, all factors M; =
[P,G]/P" and M; = v;i(P)/vit1(P), for 2 <i < ¢, are chief factors of G of the
same order p™. Moreover, for all 1 <i < ¢, G/Cq(M;) embeds in T'(p™) as an

irreducible subgroup.

Proof. Let G be as in the assumptions and F = F(G). Observe that if A(G) is
connected then, by Theorem [Z5] there exists a prime p such that P = O,(G) is
non-abelian (thus F is not abelian in any case). We argue by induction, and thus
assume that G is a counterexample of minimal order.

If M is a normal subgroup of G such that M < ®(G), then the Fitting series of
G /M is the image of the Fitting series of G under the natural homomorphism onto
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G /M. Moreover, if F(G/M) = F/M is non-abelian and V(G) = V(G/M), then all
assumptions on G are inherited by G/M.

Observe first that, if A(G) is disconnected, then G is as in (c¢) of Theorem [Z2} in
particular, parts (a) and (b) are already known to be true.

Thus, as it concerns the proof of (a) and (b), we may assume that A(G) is
connected. Let p be a prime such that P = O,(G) is non-abelian. Setting N = P,
observe that N < ®(G). Then, in order to prove (a) and (b), we may assume that
N is a minimal normal subgroup of G. In fact, if M is a normal subgroup of G such
that 1 < M < N, then O,(G/M) = P/M is non—abelian and V(G) = V(G/M),
whence, as observed before, (a) and (b) hold in G/M. In particular, P is a Sylow
p-subgroup of G, and so (a) holds in G. Also, if U is the p-complement of F', then
UM /M is the p-complement of F(G/M); property (b) in G/M and normality of U
in G yield [U,G] < M NU =1, and (b) holds true in G.

Assuming thus NV to be a minimal normal subgroup of G, we start proving claims
(a) and (b) for G under the additional hypothesis that A(G/N) is disconnected.
Then, again denoting by U the p-complement of F', Proposition B.I3l yields P/N £
Z(G/N), and Lemma[23 ensures that F//N is abelian and UN/N is central in G/N.
Thus, we get [G,U] < NNU =1, and (b) is proved in G. Since Proposition B.I3|
also ensures that p {|G/P|, then (a) is achieved as well.

For the proof of (a) and (b), we may therefore assume that A(G/O,(G)) is
connected for every prime p such that O,(G) is non-abelian. Thus, let p be such a
prime and, again, write P = O,(G) and N = P’.

Suppose, by contradiction, that (a) does not hold in G, that is, p divides |G/P|.
Then V(G/N) = V(G) and, since A(G/N) is connected, diam(A(G/N))=3. In
particular, F'/N is non-abelian by Theorem 2.5 and therefore there exists a prime
g # p such that O,(G/N) is non-abelian. Now, G/N satisfies the hypotheses of
the Theorem and so, by choice of G, G/N satisfies (a), (b) and (c¢): in particular,
P/N is central in G/N and all the Sylow subgroups of G/F are cyclic. Setting
R = Oy (F), and taking any 6 in Irr(P), we have, as in the second paragraph of
the proof of Proposition B.I3] that # X 1 is an extension of 6 to F, such that
I¢(0 x 1g) = Ig(#). Since the Sylow subgroups of G/F are cyclic, § x 1r (and
therefore 6) extends to I = Ig(f). We may then apply Lemma and get the
contradiction that p is a complete vertex of A(G). Hence, G satisfies (a).

We move next to (b). First, we prove the following claim: if p and q are two
different primes such that both P = O,(G) and Q = O4(G) are non-abelian, then
the diameters of A(G/P') and A(G/Q') are both at most 2. (Note that the hy-
pothesis of this claim forces p and ¢ to be adjacent in A(G).) In fact, assume
that one of those graphs (which are connected by what proved before), A(G/P’)
say, has diameter 3. Then, arguing as in the last paragraph, we have that P/P’
is central in G/P’. Let H be a p-complement of G, then G = PH by (a) and H
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centralizes P/P’, hence H centralizes P by coprimality. Therefore, G = P x H, so
p is a complete vertex of A(G), which a contradiction. We thus conclude that the
diameters of A(G/P’) and A(G/Q’) are both at most 2, as claimed. But in this
situation, the only vertices of A(G) that may have distance 3 between each other
turn out to be p and ¢, which on the other hand are clearly adjacent.

Thus, we have proved that there exists a unique prime p such that O,(G) is
non-abelian. It remains to show that the p-complement U of F' is central in G.

We claim that every irreducible character of U extends to its inertia subgroup
in G. Since U is an abelian normal subgroup of G, this is certainly the case if U
admits a complement. Otherwise, No = U N ®(G) # 1. In this case, F(G/Ny) is
clearly non-abelian and V(G/Ny) = V(G). Thus G/Ny inherits our assumptions
and, by choice of G, the Sylow subgroups of G/F are cyclic, a fact ensuring that
also in this case every irreducible character of U extends to its inertia subgroup
in G.

We are therefore in a position to apply LemmalB.I0and get the desired conclusion
unless p has distance at most 2 from every other vertex of A(G). But this would
force (as we know that is A(G/N) connected) A(G/N) to have diameter 3, which
is against Theorem [Z5] because the Fitting subgroup of G/N is abelian. The proof
that (b) holds in G is complete.

Finally, we prove that (c) holds in G. Let U be the p-complement of F' (thus
U < Z(G) by part (b)); since F(G/U) = F/U = PU/U is non-abelian, the graph
A(G/U) has the same set of vertices as A(G), and therefore G/U inherits the
assumptions. Furthermore, the projection G — G/U induces a G-isomorphism
P — PU/U, and v(PU/U) = v;(P)U/U.

We claim that, by choice of G, U is trivial. In fact, suppose U # 1; then, by
induction on the order of the group, the conclusions concerning the factors M; and
the actions of the groups G/Cg(M;) on them are easily achieved, and we also get
that A(G/v3(P)U) is disconnected. Now, since U < Z(G) and ~3(P) < ®(G),
we have F(G/v3(P)U) = F/v3(P)U. As the Sylow p-subgroup of this nilpotent
factor group is non-abelian, we get V(G/v3(P)U) = V(G), whence G/~3(P)U is a
group as in (¢) of Theorem[2Z2] In particular, G/F is a non-nilpotent group whose
Sylow subgroups are all cyclic, and every irreducible character of F(G/y3(P)) =
F/~3(P) extends to its inertia subgroup in G/v3(P). We are then in a position
to apply Lemma 2.4] to obtain the identity A(G/v3(P)) = A(G/~3(P)U), and so
A(G/~3(P)) is disconnected, as wanted. Thus, U = 1.

We now observe that we may further reduce to the case y3(P) = 1. In fact,
suppose v3(P) # 1; then, setting G = G/v3(P) and adopting the bar convention,

we have V(G) = V(G) and the group G satisfies our hypotheses. Hence, the choice

of G yields that A(G) is disconnected, and the following conclusions follow: G/F
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is a non-nilpotent group whose Sylow subgroups are all cyclic, M; and M are G-
chief factors of the same order p™, and G/Cg(M;) embeds in I'(p™) as an irreducible
subgroup for i € {1,2}. Finally, as G/v3(P) is now as in (c) of Theorem [22] the
prime p turns out to be adjacent in A(G) to every prime divisor of |F(H)| (it
cannot therefore be adjacent to all vertices in |H/F(H)|, as otherwise it would be
a complete vertex in A(G)). An application of Lemma BI4] yields now what is left
of claim (c) for G.

Then ~5(P) = 1. Suppose, by contradiction, that there exists M < G with
1 < M < P’. Then the graph A(G/M) is disconnected: in fact, the group G/M
satisfies our hypotheses and therefore, setting G = G//M and adopting again the
bar convention, we have that A(G/~3(P)) is disconnected; but v3(P) is trivial, so
A(G/v3(P)) = A(G/M). Now the factor group G /M must be as in Theorem Z.2(c),
hence G fulfills the assumptions of Lemma [3.14] an application of which yields that
P’ = ~3(P)/~3(P) is minimal normal in G/v3(P) = G, against the assumption on
M.

In conclusion, P’ is a minimal normal subgroup of G and G satisfies the hy-
potheses of Proposition 2] so all the desired conclusions follow. Hence, the proof
that G also satisfies (c¢) is complete, but this is a contradiction by the choice of G.
This completes the proof of the theorem. [ |

Remark 4.4. Let G be a solvable group such that A(G) has diameter 3. Then,
assuming the notation and the conclusions of Theorem A, G/v3(P) is a group as in
part (c) of Theorem 222 and so A(G/~3(P)) (which has the same vertices of A(G))
is disconnected with components m; = {p}Un(F2(G)/F(G)) and 13 = 7(G/F2(Q)).
Thus, both 7, and 72 induce complete subgraphs of A(G). Note that |m3| > 2, as
otherwise A(G) would have a complete vertex. Also, A(G/P’) is a disconnected
graph with components subgraphs m; \ {p} and ms.

Now, we have that G = PH, with P a p-group, 73(P) # 1, and H/Cg(P)
embeds in T'(p™). So, setting d = |G/F2(G)|, an application of Lemma yields
that d divides n, (p" — 1)/(p™/?® — 1) divides |Fo(G)/F(G)|, (p™)? divides |P| and
d is coprime to p™ — 1. As a consequence, on one hand [I0, Theorem 5.1] yields
|71\ {p}| > 2™ — 1. On the other hand, we easily get 2 ¢ m; in particular, as
|m2| > 2, we also get that n is divisible by two odd primes, as stated in part (d) of
Theorem A.

Also, we note that dg(p,v) < 2 for every v € V(G). In fact, assume that
dg(p,v) = 3 and let p—t —r — v be a path in A(G); then we get ¢t € 71, r € my and,
given x € Irr(G) such that tr | x(1), the prime p does not divide x(1). But now x
is in fact in Irr(G/P’) and hence ¢ is adjacent to r in A(G/P’), a contradiction.
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Finally, we sketch the proof that Lewis’ example in [9] is of the smallest possible
order. In fact, as observed above, |G| is a multiple of

ms, PP—1
(") p/d—1 d.

The smallest value of such an integer is attained for p = 2 and n = d = 15, that is

245 (215 — 1) . 15, which is precisely the order of Lewis’ group.
We conclude with a proof of Corollary B.

Proof of Corollary B. In the setting of Theorem A, we have that G/F is a group
whose Sylow subgroups are all cyclic. This implies that G/F is a metacyclic group

and, since it is not nilpotent, the desired conclusion follows. ]
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