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GROUPS WHOSE CHARACTER DEGREE GRAPH HAS

DIAMETER THREE

CARLO CASOLO, SILVIO DOLFI, EMANUELE PACIFICI, AND LUCIA SANUS

Dedicated to the memory of Laci Kovács

Abstract. Let G be a finite group, and let ∆(G) denote the prime graph

built on the set of degrees of the irreducible complex characters of G. It is well

known that, whenever ∆(G) is connected, the diameter of ∆(G) is at most 3.

In the present paper, we provide a description of the finite solvable groups for

which the diameter of this graph attains the upper bound. This also enables

us to confirm a couple of conjectures proposed by M.L. Lewis.

1. Introduction

Let G be a finite group; we denote by Irr(G) the set of all irreducible complex

characters of G, and write

cd(G) = {χ(1) | χ ∈ Irr(G)}

for the set of the degrees of such characters. The character degree graph ∆(G) is

thus defined as the graph with vertex set the set ρ(G) of all the primes that divide

some χ(1) ∈ cd(G), and two distinct primes p and q are adjacent if and only if pq

divides some degree in cd(G). The study of the graph ∆(G) and of the relationships

between the properties of ∆(G) and the structural features of the group G, has by

now a rich literature (we recommend the survey paper [8] for a general overview of

the subject), and the purpose of this paper is to contribute to one particular aspect

of this research.

A fundamental result of P.P. Palfy ([15]) ensures that if G is a solvable group,

then given any three distinct primes in ρ(G), at least two of them are adjacent in

∆(G). From this it immediately follows that, for a solvable group G, ∆(G) has

at most two connected components (both inducing a complete subgraph of ∆(G)),

and that, when ∆(G) is connected, the diameter of ∆(G) is at most 3 (that this

latter inequality holds in any finite group is proved in [11]). For some time it has

been unknown whether there existed solvable groups whose character degree graph
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2 C. CASOLO ET AL.

has diameter 3, until the question was settled by M.L. Lewis, who constructed in

[9] a solvable group G such that ∆(G) has 6 vertices and diameter 3.

It was Lewis construction and his related comments (made particularly explicit

in [8]) that prompted us to study in more detail solvable groups G such that the

diameter of ∆(G) is 3. Through our analysis in the present paper, we pin their

structure down enough to show that they all closely resemble Lewis’ examples, and

to allow to confirm a couple of conjectures appearing in [8].

In the following statement, which is the main result of this paper, F(G) denotes

the Fitting subgroup of the group G and, for i ≥ 1, γi(P ) is the i-th term of the

lower central series of the p-group P .

Theorem A. Let G be a finite solvable group such that ∆(G) is connected and

diam(∆(G)) = 3. Then the following conclusions hold.

(a) There exists a prime p such that G = PH, with P a normal non-abelian Sylow

p-subgroup of G and H a p-complement.

(b) F(G) = P ×A, where A = CH(P ) ≤ Z(G), H/A is not nilpotent and has cyclic

Sylow subgroups.

(c) ∆(G/γ3(P )) is disconnected.

(d) If c is the nilpotency class of P , then all factors M1 = [P,G]/P ′ and Mi =

γi(P )/γi+1(P ), for 2 ≤ i ≤ c, are chief factors of G of the same order pn,

where n is divisible by at least two distinct odd primes; moreover, for all 1 ≤

i ≤ c, G/CG(Mi) embeds as an irreducible subgroup in the group of semi-linear

transformations Γ(pn).

In particular, we have that ∆(G/γ3(P )) is a disconnected subgraph of ∆(G)

with the same set of vertices, thus confirming a suggestion of Lewis ([8]). In fact, it

will not be hard to derive a proof of a related conjecture concerning the structure

of the graph ∆(G), when G is solvable and diam(∆(G)) = 3. Let r, s be two

vertices of ∆(G) with d(r, s) = 3, and denote by π1 and π2 the sets consisting of

r, respectively s, and all vertices adjacent to it; then π1 ∩ π2 = ∅ and (by Palfy’s

three primes condition) ρ(G) = π1 ∪ π2. Moreover, denoting by F2(G) the second

Fitting subgroup of G and supposing p ∈ π1 (we will see that r 6= p 6= s), we will

show that π1 = π(F2(G)/Z(G)), π2 = π(G/F2(G)), 2 6∈ π2, |π2| ≥ 2 and π1, π2

both induce complete subgraphs of ∆(G) (see Remark 4.4). Indeed, π1 and π2 are

the set of vertices of the two connected components of ∆(G/γ3(P )); it follows (see

Remark 4.4) that

|π1| ≥ 2|π2|.

Hence, Conjecture 4.8 of [8] is established; in particular, |ρ(G)| ≥ 6 (indeed, it

turns out that Lewis’ example has the smallest possible order).

Still in the spirit of another suggestion by Lewis (see the paragraph following 5.8

in [8]), an immediate consequence of Theorem A is the following result.
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Corollary B. Let G be a finite solvable group, and assume that ∆(G) is connected

with diameter 3. Then the Fitting height of G is precisely 3. In fact, G is a

nilpotent-by-metacyclic group.

As it is apparent from the above remarks, a central role in our treatment is

played by solvable groups with disconnected degree graph, the main features of

those we will need to have almost constantly in hand. For this, our main source

is their description in [10] (although similar results also appear in [16] and [14]),

and we in particular refer to the list of six subcases in section 2 (and 3) of that

paper. From the same arguments that prove Theorem A, we derive a result which

we believe adds to the understanding of case 2.6 in [10].

Theorem C. Let G be a finite solvable group such that ∆(G) is disconnected and

F(G) is not abelian. Then there is a unique prime p such that P = Op(G) is not

contained in Z(G) and

(a) either p is an isolated vertex of ∆(G), or

(b) ∆(G/P ′) is disconnected and, if c is the nilpotency class of P , all factors M1 =

[P,G]/P ′ and Mi = γi(P )/γi+1(P ), for 2 ≤ i ≤ c, are chief factors of G of the

same order pn, with n ≥ 3; moreover, for all 1 ≤ i ≤ c, G/CG(Mi) embeds as

an irreducible subgroup in the group of semi-linear transformations Γ(pn).

We conjecture that, both in the disconnected and in the diameter-three case,

the chief factors Mi are pairwise non-isomorphic as G-modules over GF(p); this is

true for the first pair M1 and M2 (see point (a) in the proof of Proposition 4.2),

but we were not able to prove it in general. Another question that we leave open

is whether, in both Theorem A and Theorem C, one has P = [P,G]×Z(G) (again,

this is true modulo γ3(P )). Finally, by looking at the known examples, one might

ask if it is true that, in Theorem A, not only ∆(G/γ3(P )) but also ∆(G/γc(P )) is

disconnected.

2. Notation and preliminaries

Throughout this paper, every group is tacitly assumed to be a finite group. We

write V(G) and E(G) for the sets of vertices and edges, respectively, of the prime

graph ∆(G) on irreducible character degrees. We denote by dG(u, v) the distance in

∆(G) between the two (distinct) vertices u and v (i.e. the length of a shortest path

joining u and v; set dG(u, v) = ∞ if there is no such path), and by diam(∆(G))

the maximum of dG(u, v) for u, v ∈ V(G) if ∆(G) is connected (whereas we set

diam(∆(G)) = ∞ if ∆(G) is not connected).

As customary, we denote by Γ(pn) the semi-linear group on the field GF(pn),

and by Γ0(p
n) the subgroup of Γ(pn) induced by the field multiplications. If V is an

n-dimensional vector space over GF(p), then V can be identified with the additive
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group of a field of order pn, and in this sense we write Γ(V ) and Γ0(V ) for Γ(pn)

and Γ0(p
n) respectively.

Let a > 1 and n be positive integers. A prime t is called a primitive prime

divisor for (a, n) if t divides an − 1 but t does not divide aj − 1 for 1 ≤ j < n.

Recall that, by a well-known result by Zsigmondy ([12, Theorem 6.2]), such a prime

always exists except when n = 6 and a = 2, or n = 2 and a+ 1 is a power of 2.

Let N be a normal subgroup of G and let λ ∈ Irr(N). We denote by Irr(G|λ)

the set of irreducible characters χ of G such that λ is an irreducible constituent of

χN . In this setting, χ and λ are said to be fully ramified with respect to G/N (but

sometimes, when the context is clear enough, we also say that λ is fully ramified in

G) if χN = eλ with e2 = |G : N |. By [7, Problem 6.3], this is equivalent to the fact

that χ vanishes on G \N with λ invariant in G, and also to the fact that χ is the

unique irreducible constituent of λG still with λ invariant in G.

If A is an abelian group, we write Â to denote the dual group of A, that is, the

set Irr(A) endowed with multiplication of characters.

Also, we freely use without references some basic facts of Character Theory such

as Clifford Correspondence, Gallagher’s Theorem, Ito-Michler’s Theorem, results

concerning character extension and coprime actions (see [7]).

We shall also take into account the following well-known result concerning char-

acter degrees.

Lemma 2.1 ([12, Proposition 17.3]). Let G be a solvable group. Let F = F(G)

and K = F2(G). Then there exists χ ∈ Irr(G) such that π(K/F ) ⊆ π(χ(1)).

As mentioned in the Introduction, we will make an intensive use of the classi-

fication, provided in [10], of solvable groups whose character degree graph is dis-

connected. The next statement summarizes some aspects of that classification: the

groups in (a), (b) and (c) are respectively those of types 2.1, 2.4 and 2.6 (described

further in 3.1, 3.4 and 3.6, respectively) in [10].

Theorem 2.2. Let G be a solvable group, and set F = F(G), K = F2(G). Assume

that ∆(G) has two connected components. Then the following conclusions hold.

(a) Assume that G is metanilpotent. Then G = PH, where P E G is a non-abelian

Sylow p-subgroup for a suitable prime p, and H is an abelian p-complement.

Moreover, P ′ ≤ CP (H), and every non-linear irreducible character of P is

fully ramified with respect to P/CP (H). Finally, the sets of vertices of the two

connected components of ∆(G) are respectively {p} and π(G/F ).

(b) Assume that F is abelian, and that |V(G)| > 2. Then G =MH, where M E G

is an elementary abelian p-group for a suitable prime p, and H is a complement

for M . Also, F =M×Z(G), Z(G) = CH(M) and G/F ≤ Γ(M). The subgroup

K acts irreducibly (by conjugation) on M , and both K/F and G/K are cyclic
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groups. Finally, the sets of vertices of the two connected components of ∆(G)

are respectively π(K/F ) and π(G/K).

(c) Assume that F is non-abelian and that, whenever Or(G) is non-abelian, the

prime r is not an isolated vertex of ∆(G). Then G = PH, where P E G is a

non-abelian Sylow p-subgroup for a suitable prime p, and H is a p-complement.

Also, F = P ×U where U ≤ Z(G). The factor group G/P ′ is a group as in (b),

so, in particular, K/F and G/K are cyclic groups. Finally, the sets of vertices

of the two connected components of ∆(G) are respectively {p} ∪ π(K/F ) and

π(G/K).

We stress that a group G as in (b) or (c) of Theorem 2.2 is such that every Sylow

subgroup of G/F is cyclic.

We also quote the following result, which is Theorem 5.5 of [10].

Lemma 2.3. Let G be a solvable group such that ∆(G) is a disconnected graph.

Then there exists a unique prime p such that Op(G) is non-central in G.

Next, another preliminary lemma.

Lemma 2.4. Let G be a group such that F(G) = M × Z, with Z ≤ Z(G) and

M E G. Assume also that every irreducible character of F(G) extends to its inertia

subgroup. Then ∆(G) = ∆(G/Z).

Proof. Observe first that, by our assumptions, every irreducible character of Z

has an extension to G: in fact, if θ is in Ẑ, then θ × 1M ∈ Irr(F(G)) extends to

G = IG(θ× 1M ). Now, let d be a number in cd(G), χ an irreducible character of G

of degree d, and θ an irreducible constituent of χZ ; denoting by ξ an extension of

θ to G, by Gallagher’s Theorem there exists ψ ∈ Irr(G/Z) such that χ = ξψ. As a

consequence, d = χ(1) = ψ(1) ∈ cd(G/Z), and the desired conclusion follows.

Finally, the following result by C.P. Morresi Zuccari ([13, Corollary C]) will also

be relevant for our purposes.

Theorem 2.5. Let G be a solvable group such that ∆(G) is connected. If F(G) is

abelian, then diam(∆(G)) ≤ 2.

3. Some proofs

We start with two lemmas concerning modules over finite fields for cyclic groups.

Lemma 3.1. Let G be a cyclic group, K a finite field of order q, and M a faithful

irreducible m-dimensional K[G]-module. Also, let ǫ be an element of order |G| in

the multiplicative group of F = GF(qm). Then the following hold.

(a) If M is a constituent of M ⊗KM , then there exist σ1 and σ2 in Gal(F |K) such

that ǫσ1 · ǫσ2 = ǫ.

(b) If M is self-contragredient, then there exists σ in Gal(F |K) such that ǫσ = ǫ−1.
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Proof. Observe that F is a splitting field for G over K. By [5, II.3.10], we can

identify M with the additive group of F, and the action of a suitable generator x of

G with the multiplication by ǫ. We denote by MF the 1-dimensional F[G]-module

arising in this way. Setting MF =M ⊗K F, by [6, VII, 1.16 a)] we get

MF =
⊕

σ∈Gal(F |K)

(MF)
σ.

Now, if M is a constituent of M ⊗K M , then MF is a direct summand (as an

F[G]-module) of

(M ⊗K M)F ≃MF ⊗F M
F ≃

⊕

σ1,σ2∈Gal(F |K)

(MF)
σ1 ⊗F (MF)

σ2 .

In particular, there exist σ1 and σ2 in Gal(F |K) such thatMF ≃ (MF)
σ1 ⊗F (MF)

σ2 .

Considering now the action of x on these two isomorphic F[G]-modules, claim (a)

follows.

As for (b), if M is K[G]-isomorphic to its contragredient module M∗, then we

get ⊕

σ∈Gal(F |K)

(MF)
σ ≃MF ≃ (M∗)F ≃

⊕

σ∈Gal(F |K)

((M∗)F)
σ.

In particular, there exists σ in Gal(F |K) such that (MF)
σ is F[G]-isomorphic to

(M∗)F, which is in turn F[G]-isomorphic to (MF)
∗. Claim (b) is now achieved by

comparing the action of x on the two relevant F[G]-modules.

Lemma 3.2. Let G be a cyclic group, p a prime, and M a faithful irreducible

GF(p)[G]-module. Setting |M | = pm, assume that there exists a divisor r of m,

1 ≤ r < m, such that pm−1
pr−1 divides |G|. Then the following hold.

(a) If M is a constituent of M ∧GF(p) M , then (p,m/r) = (2, 2).

(b) If M is self-contragredient, then (|G|,m/r) = (pr + 1, 2).

Proof. Let us first prove Claim (a). If M is a constituent of M ∧GF(p) M , then it

is clearly a constituent of M ⊗GF(p) M as well. Therefore, by Lemma 3.1(a), there

exist a, b ∈ {0, ...,m− 1} (say a ≥ b) such that pa+pb ≡ 1 (mod |G|); in particular,

setting t = pm−1
pr−1 , we have that t divides pa + pb − 1.

Since we have t > pm−r, we also have a ≥ m− r; in fact, assuming the contrary,

we would get pb ≤ pa ≤ pm−r−1, thus pa + pb − 1 ≤ 2pm−r−1 − 1 < pm−r < t,

contradicting the fact that t divides pa + pb − 1. Therefore we can write a = m− n

where n lies in {1, ..., r}. Now, t is a divisor of (pm−n + pb − 1) · pn − (pm − 1) =

pb+n− pn+1, whence m− r ≤ b+n ≤ a+n = m. Again, defining ℓ = m− (b+n),

we get 0 ≤ ℓ ≤ r and t divides (pb+n − pn + 1) · pℓ − (pm − 1) = pℓ − pn+ℓ + 1. As

a result, t is a divisor of pℓ · (pn − 1)− 1.

On the other hand, if m/r ≥ 3, then m − r ≥ 2r, and so n + ℓ ≤ 2r ≤ m − r.

This implies pn+ℓ − pℓ < pm−r < t, and now the only possibility is

pℓ · (pn − 1) = 1,
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which yields ℓ = 0, p = 2, n = 1. So, pa = pb = 2m−1. Setting F = GF(2m) and

denoting by σ the element of Gal(F |GF(2)) which maps every f ∈ F to f2m−1

, the

conclusion so far is that (MF)
σ ⊗F (MF)

σ is the unique constituent of MF ⊗F M
F

which is isomorphic toMF. But (MF)
σ⊗F(MF)

σ is not a constituent ofMF∧FM
F ≃

(M ∧GF(2) M)F, against the fact that M is a constituent of M ∧GF(2) M .

It remains to treat the case m/r = 2, whence t = pr +1 divides pa + pb − 1 with

0 < a ≤ 2r − 1. Note that we must have a ≥ r, so we can write a = r + n with

0 ≤ n < r. Now, t divides pn+r+pb−1−pn · (pr+1) = −pn+pb−1. In particular,

t ≤ |−pn+pb−1| < pn+pb−1. This in turn implies b ≥ r, therefore we write b = r+k

where 0 ≤ k < r. Finally, pr+1 divides −pn+pr+k−1−pk ·(pr+1) = −pn−pk−1,

whence pr + 1 ≤ pn + pk + 1 ≤ 2pr−1 + 1. It follows that p = 2, and (a) is proved.

We move now to Claim (b). If M is self-contragredient, then Lemma 3.1(b)

yields that there exists k ∈ {0, ...,m− 1} such that pk ≡ −1 (mod |G|). Therefore,
pm−1
pr−1 divides pk +1. Let us first exclude the possibility k = 0; in that case, in fact,

we would have |G| = 2 and m = 1, contradicting the existence of a proper positive

divisor of m. Observe also that, as by [5, II.3.10] m is the smallest positive integer

such that pm ≡ 1 (mod |G|), for every integer z 6= 0 such that |G| divides pz − 1

we get m | z, so m divides 2k; on the other hand, since 0 < k ≤ m− 1, we have in

fact m = 2k.

Our conclusion so far is that p2k−1
pr−1 is a divisor of pk+1; this yields pk−1 | pr−1,

which in turn implies k | r. But since r properly divides 2k, the only possibility is

r = k, i.e., m/r = 2. Moreover, |G| is divisible by pm−1
pr−1 = pk + 1 and |G| divides

pk + 1, so we have in fact |G| = pk + 1, as desired.

Remark 3.3. Let P be a p-group, and N a subgroup of P such that P ′ ≤ N ≤

Z(P ). For λ ∈ N̂ , set Zλ/ kerλ = Z(P/ kerλ), and observe that Zλ = Z(θ) for

every θ ∈ Irr(P |λ). In fact, [Z(θ), P ] ≤ N ∩ ker θ = kerλ (recall that, N being

central in P , θN is a multiple of λ), hence Z(θ) ≤ Zλ; but indeed equality holds, as

clearly [Zλ, P ] ≤ kerλ ≤ ker θ.

Note also that, if µ lies in Irr(Zλ|λ), then µ is a character of Z(P/ kerλ); there-

fore, for θ ∈ Irr(P |µ), we have that θZλ
is a multiple of µ (and in fact µ is fully

ramified in P , because N ≤ Z(θ), thus P/Z(θ) is abelian and [7, Theorem 2.31]

yields θ(1)2 = |P : Z(θ)| = |P : Zλ|). Now, taking into account that θ ∈ Irr(P |λ)

certainly does not vanish on any element of Z(θ) = Zλ, it is easy to see that λ ∈ N̂

is fully ramified in P if and only if Zλ = N .

The proof of next Lemma uses ideas from the proofs of [1, Satz 1] and [4, Satz 1].

Lemma 3.4. Let P be a p-group, and N an elementary abelian subgroup of P such

that Φ(P ) ≤ N ≤ Z(P ). Write |P/N | = pn and |N | = pm. Assume m > n/2.

Then there are at least pm−⌊n/2⌋ characters λ ∈ N̂ such that λ is not fully ramified

with respect to P/N .
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Proof. We can assume that n is even, as otherwise no character λ ∈ N̂ could be

fully ramified with respect to P/N . Let ǫ ∈ C be a fixed primitive pth-root of unity

and K = Z/pZ. Then we can associate to every λ ∈ N̂ an alternating bilinear form

〈 , 〉λ on P/N (as a K-space) by setting, for aN, bN ∈ P/N , ǫ〈aN,bN〉λ = λ([a, b]).

From the above remark, it is clear that λ is fully ramified with respect to P/N if

and only if the form 〈 , 〉λ is non-degenerate.

Choosing a basis λ1, λ2, . . . , λm of the dual group N̂ of N , there is a bijection

between Km and N̂ , by associating λ = λx1

1 λ
x2

2 · · ·λxm
m ∈ N̂ to (x1, x2, . . . , xm) ∈

Km; moreover,

〈 , 〉λ =

m∑

i=1

xi〈 , 〉λi
.

If Ai are the matrices associated to the forms 〈 , 〉λi
(with respect to a suitable

basis of P/N), 〈 , 〉λ is degenerate if and only if

d(x1, x2, . . . , xm) = det

m∑

i=1

xiAi = 0.

Now, d(x1, x2, . . . , xm) = f2(x1, x2, . . . , xm) where f is a homogeneous polynomial

of degree n/2 (see [3, (IV), page 46]. By [17, Satz 3], f has at least pm−n/2 roots

in Km and the result follows.

We next proceed through a series of results concerning semi-linear actions.

Lemma 3.5. Let p be a prime, V a vector space of order pn, and H a subgroup

of Γ(V ). Also, setting X0 = H ∩ Γ0(V ), let δ be a set of primes in π(H) \ π(X0),

let D be a Hall δ-subgroup of H. Then |D| divides n and, defining k =
pn − 1

pn/|D| − 1
,

the following facts are equivalent.

(a) For every v ∈ V , CH(v) contains a suitable conjugate of D.

(b) |{Dh : h ∈ H}| = k.

(c) k divides |X0| and |D| is coprime to pn − 1.

Proof. AsD∩Γ0(V ) = (D∩H)∩Γ0(V ) = D∩X0 = 1, then |D| divides n. Moreover,

by Lemma 3(ii) in [2] we get |CV (D)| = pn/|D|. Since X0 acts fixed-point freely

on V , for v ∈ V \ {0} we have that CH(v) ≃ CH(v)X0/X0 is cyclic, and therefore

CH(v) contains at most one Hall δ-subgroup of H ; now the equivalence between

(a) and (b) follows by counting in V \ {0}. Assume now (b). Observing that

X0D is normal in H (because H/X0 is abelian), by the Frattini argument we have

X0NH(D) = H , and (c) follows at once. Conversely, assume (c). If r is a prime

divisor of pn/|D| − 1, then pn/|D| ≡ 1 (mod r) and so k ≡ |D| (mod r); since |D| is

coprime with |X0| (hence with k), it follows that |D| is coprime with pn/|D|−1, and

therefore with |Γ0(V )| = pn−1. As a consequence, [Γ0(V ), D] ≃ Γ0(V )/CΓ0(V )(D)

has order k, so [Γ0(V ), D] is contained in X0. Finally, [Γ0(V ), D] = [Γ0(V ), D,D] ≤
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[X0, D], hence k = |[X0, D]|, and therefore k = |X0/CX0
(D)| = |H : NH(D)| =

|{Dh : h ∈ H}|, as desired.

Lemma 3.6. Let H act on a group A and let s be a prime divisor of |H/CH(A)|.

Assume that, for every a ∈ A \ {1}, CH(a) contains a Sylow s-subgroup of H as a

normal subgroup. Then A is an elementary abelian p-group for some prime p, and

either p = s = 3 (and |A| = 32), or H/CH(A) ≤ Γ(A), (H/CH(A)) ∩ Γ0(A) acts

irreducibly on A, and s ∤ |(H/CH(A)) ∩ Γ0(A)|.

Proof. Set H = H/CH(A). By [10, Lemma 4.4], then either |A| = 9 and s = 3,

or there exists a normal abelian subgroup X0 of H such that A is an irreducible

X0-module. By [12, Theorem 2.1], this implies that H ≤ Γ(A) and that X0 ≤

H ∩ Γ0(A). The last claim is obvious, as s | |øH | and every Sylow s-subgroup of

H centralizes some non-trivial element of A, whereas every non-trivial element of

H ∩ Γ0(A) acts fixed-point freely on A.

The following fact is folklore, but we include a proof for convenience.

Lemma 3.7. Let H ≤ Γ(V ) be a group of semilinear maps on V . Let |V | = pn,

p prime. Let T0 be a subgroup of H such that |T0| is a primitive prime divisor of

pn − 1. Then CH(T0) = H ∩ Γ0(V ) = F(H).

Proof. Let K = GF(p). By [5, II.3.10], V is an irreducible K[T0]-module. Hence by

Schur’s Lemma L = EndK[T0](V ) is division ring. Since L is finite, it is a field by

Wedderburn’s Theorem. So, as CH(T0) is a subgroup of the multiplicative group

of L, CH(T0) is cyclic. But CH(T0) acts irreducibly on V (as it contains T0), and

hence by [5, II.3.10] we get that CH(T0) ≤ H ∩ Γ0(V ). So, as H ∩ Γ0(V ) is cyclic,

we conclude that CH(T0) = H ∩ Γ0(V ) ≤ F(H). Note that t > n because t is

a primitive prime divisor of pn − 1, so a Sylow t-subgroup of H is contained in

CH(T0), hence F(H) centralizes T0.

Lemma 3.8. Let H be a solvable group, p a prime, and V1, V2 two H-modules

over GF(p). Assume that there exists a prime s ∈ π(H/F(H)) \ {p} such that, for

i ∈ {1, 2} and for every v ∈ Vi \ {0}, CH(v) contains a Sylow s-subgroup of H as a

normal subgroup. Then both V1 and V2 are irreducible H-modules, |V1| = |V2|, and

H/CH(Vi) ≤ Γ(Vi) for i ∈ {1, 2}.

Proof. For i ∈ {1, 2}, set |Vi| = pni and Ci = CH(Vi); also, let S be a Sylow s-

subgroup ofH . Note that s divides |H/Ci|, as otherwise S would be a characteristic

subgroup of Ci E H yielding S ≤ F(H), against our assumption.

So, by Lemma 3.6 we get that H/Ci ≤ Γ(Vi), that Vi is an irreducible H-module

and that s does not divide the order of Xi/Ci = (H/Ci) ∩ Γ0(Vi). Moreover, by

Lemma 3.5, s divides ni and (pni − 1)/(pni/s − 1) divides |Xi/Ci|. Observe that

there exists a primitive prime divisor ti for (p, ni): otherwise either ni = 2 or
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pni = 26, and in both cases (as s 6= p) s divides (pni − 1)/(pni/s − 1), contradicting

the fact that s ∤ |Xi/Ci|. Note also that ti 6= s, as ti > ni. Let Ti/Ci be a subgroup

of prime order ti of Xi/Ci; so Ti/Ci E H/Ci.

We claim that T1 is not contained in C1C2. Otherwise, writing øH = H/C1, we

have øT1 ≤ øC2 and, choosing a non-trivial v ∈ V2 such that S ≤ CH(v), both øS

and øT1 are normal subgroups of øCH(v), so [øS, øT1] = 1. But this, by Lemma 3.7,

implies that s divides |øX1|, a contradiction.

As T1C2/C2 centralizes T2/C2 (also if t1 = t2), then again Lemma 3.7 yields

that t1 divides |X2/C2| and hence t1 divides pn2 − 1. We conclude that n2 ≥ n1.

Similarly, one shows that n1 ≥ n2, completing the proof.

With the following lemmas, we will gather some relevant information on the

character degree graph of solvable groups.

Lemma 3.9. Let G be a solvable group, and E an abelian normal subgroup of

G. Assume that E has a complement H in G and that F(G) = E × Z with Z ≤

H ∩ Z(G). Setting X = F(H), let q ∈ π(X/Z) \ π(E), and let s ∈ π(H/Z) \ π(E)

be such that q and s are not adjacent in ∆(G). Let Q ∈ Sylq(X), S ∈ Syls(H) and

L = (QS)H (the normal closure of QS in H). Then the following conclusions hold.

(a) We have [E,Q] = [E,L] and CE(Q) = CE(L); moreover, E = [E,L]×CE(L).

(b) Set A = [E,Q]. Then A is an elementary abelian p-group, say of order pn,

where p is a suitable prime. Also, Z = CLZ(A) and, for every non-trivial

a ∈ A, CLZ(a) contains a conjugate of S as a normal subgroup. Moreover,

LZ/Z ≤ Γ(A) and L0/Z = (LZ/Z) ∩ Γ0(A) acts irreducibly on A. We also

have that d = |SZ/Z| divides n, and (pn − 1)/(pn/d − 1) divides |L0/Z|.

(c) There exists a primitive prime divisor t of pn − 1.

(d) L0/Z = F(LZ/Z). Moreover, LZ = L0S and p does not divide LZ/Z.

Proof. Set A = [E,Q] and B = CE(Q). As q does not divide |E| and E is abelian,

we have E = A × B. Consider now the action of G on the dual group Ê =

Â × B̂. For α ∈ Â \ {1}, q divides |G : CG(α)| = |H : CH(α)|. Also, the linear

character α extends to CG(α), because A has a complement (namely BCH(α)) in

CG(α). Thus, by Gallagher’s Theorem and Clifford Correspondence, this forces

CH(α) ≃ CG(α)/E to contain an H-conjugate of S as a normal subgroup (and

also, S is abelian). Let α ∈ Â \ {1} be such that S ≤ CH(α) and let β ∈ B̂;

then CH(α × β) = CH(α) ∩ CH(β) and q divides |H : CH(α × β)|. As α × β

extends to its inertia subgroup in G, using as above Clifford Theory and that no

irreducible character of G has degree divisible by qs, we get that the unique Sylow

s-subgroup S of CH(α) must also be contained in CH(β). We conclude that S acts

trivially on B̂ and hence that S ≤ CH(B) E H . Thus L = QSH ≤ CH(B), so that

B = CE(L). Moreover, we get [E,L] = [A ×B,L] = [A,L] ≤ A, hence A = [E,L]

and (a) is proved.
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Next, observe that CH(E) = Z: in fact, if x ∈ CH(E), then x centralizes

EZ = F(G), so x ∈ F(G) ∩H = Z. Thus, it follows that Z = CLZ(A). Since all

Sylow s-subgroups of H are contained in L and Z ≤ Z(G), we have that CLZ(α)

contains an L-conjugate of S as a normal subgroup, for every α ∈ Â \ {1}. Hence,

as s is coprime to |Â|, an application of Lemma 3.6 together with Lemma 3.5 yields

that Â (thus A) is an elementary abelian p-group of order pn, where p is a suitable

prime and n a suitable integer; moreover, setting H = H/Z, we get L ≤ Γ(Â) and

L0 = L ∩ Γ0(Â) acts irreducibly on Â. We also have that s does not divide |L0|,

whereas d = |S| divides n, and (pn − 1)/(pn/d − 1) divides |L0|.

As in the proof of Lemma 3.8, there exists a primitive prime divisor t of pn − 1.

Otherwise, either n = 2 or pn = 26. In both cases, as s and p are distinct primes,

s divides (pn − 1)/(pn/d − 1), so s divides |L0|, a contradiction. This proves (c),

and Lemma 3.7 yields L0/Z = F(LZ/Z). In order to conclude the proof of (d), it

remains to show that LZ = L0S.

Clearly t divides (pn − 1)/(pn/d − 1), hence it divides |L0|. Denoting by øT0

the subgroup of L0 with |øT0| = t, by Lemma 3.7 it follows that CL(T0) = L0.

Note that t is larger than n and hence, as |L/L0| divides n, we get that a Sylow

t-subgroup of L is contained in L0. This implies that Q ≤ L0, since Q E H

centralizes T0. But now both Q and S lie in L0S; moreover, as L/L0 is cyclic, L0S

is normal in H . So L = L0S and hence LZ = L0S. Recalling that s 6= p and |øL0|

divides pn − 1, we have also that p does not divide |LZ/Z|, and the proof of (d) is

complete.

In particular, the actions of L on A and on Â are isomorphic and also (b) is

proved.

Lemma 3.10. Let G be a solvable group, and assume that F(G) =M × U , where

M E G is a non-abelian p-group, U E G is abelian, and p does not divide |G :

F(G)|. If every irreducible character of U has an extension to its inertia subgroup

in G, then either U ≤ Z(G) or dG(p, v) ≤ 2 for every v ∈ V(G).

Proof. Our first claim is that, if t ∈ V(G)\{p} is not adjacent to p, then every Sylow

t-subgroup of G centralizes U . In fact, let θ be in Irr(M). Setting P =M ×Op(U),

we have that θ × 1Op(U) ∈ Irr(P ) extends to IG(θ × 1Op(U)) = IG(θ) because

p ∤ |G : P |, and therefore θ extends to IG(θ). Now, denoting by K a complement

for M in G containing U , the degrees of the characters in Irr(G|θ) are of the kind

|G : IG(θ)| · θ(1) · λ(1), where λ ∈ Irr(IK(θ)). As a consequence, if θ is chosen

to be non-linear, IK(θ) contains a Sylow t-subgroup T of G, and T is abelian and

normal in IK(θ). Now, U is a nilpotent normal subgroup of IK(θ), thus [U, T ] = 1

as wanted.

Now, let us assume CG(U) 6= G and let w be a prime divisor of F(G/CG(U));

observe that, by the previous paragraph, w is a vertex of ∆(G) which is adjacent

to p. Also, let s ∈ V(G) be non-adjacent to w. In this setting, we claim that
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s is adjacent to p in ∆(G). In fact, we can certainly find φ ∈ Û such that w

divides |G : CG(φ)|. Thus CG(φ) contains a Sylow s-subgroup S of G; by our

assumptions, φ extends to CG(φ), and so CG(φ)/U has an abelian normal Sylow

s-subgroup. It follows that SU E CG(φ) and Syls(CG(φ)) = {Su | u ∈ U}.

Take now any θ ∈ Irr(M); we get that IG(θ × φ) (thus IG(θ)) contains a Sylow

s-subgroup Su of G for some u ∈ U , but then IG(θ) contains S because U ≤ IG(θ).

We conclude that S centralizes every irreducible character of M , thus it centralizes

M by coprimality. But this forces S 6≤ CG(U), which yields that s is adjacent to p

in view of the previous paragraph.

To sum up, under the assumption U 6≤ Z(G), we proved the existence of w ∈

V(G) which is adjacent in ∆(G) to p and to every vertex of ∆(G) not adjacent to

p. It easily follows that every vertex of ∆(G) can be reached from p through a path

of length at most 2, and the proof is complete.

Lemma 3.11. Let G be a group, p a prime, and P a normal p-subgroup of G. If

G/CG(P ) is a p-group, then P is a hypercentral subgroup of G.

Proof. Since G/CG(P ) is a p-group, the number of elements in P that are fixed

under the action of G/CG(P ) is divisible by p (unless P is trivial, in which case

there is nothing to prove), and hence Z(G) ∩ P 6= 1; in particular, Z(G) is non-

trivial. Consider now the factor group G = G/Z(G) and adopt the bar convention

throughout; clearly P is a normal p-subgroup of G and G/CG(P ) is a p-group

(because it is isomorphic to a quotient of G/CG(P )), therefore we can use induction

on the order of the group and conclude that P ≤ Z∞(G). The claim now follows,

as Z∞(G) = Z∞(G).

Lemma 3.12. Let G be a solvable group, and p a prime. Setting P = Op(G) and

N = P ′, assume that P is non-abelian, P/N ≤ Z(G/N), and that every irreducible

character of P has an extension to its inertia subgroup in G. Then p is a complete

vertex in ∆(G).

Proof. Note that, if H is a p-complement of G, then H centralizes P/N and hence

it centralizes P by coprimality; this yields that G/CG(P ) is a p-group, thus P is

hypercentral in G by Lemma 3.11.

Working by contradiction, we assume that p is not a complete vertex of ∆(G) and

we consider a vertex s ∈ V(G), s 6= p, such that ps does not divide any irreducible

character degree of G, and let θ be in Irr(P ). Since θ extends to I = IG(θ),

the degrees of the characters in Irr(G|θ) are of the kind |G : I| · θ(1) · λ(1), where

λ ∈ Irr(I/P ). As a consequence, if θ is chosen to be non-linear, I/P contains SP/P

where S is a suitable Sylow s-subgroup of G (recall that |G : I| is a p-power), and

SP/P is abelian and normal in I/P ; here S is in fact abelian, as S ≃ SP/P . Now,

as P ≤ Z∞(G), the nilpotency of SP/P yields the nilpotency of SP ; moreover, SP

is normal in I, which is in turn subnormal in G because I/CG(P ) is a subgroup of
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the p-group G/CG(P ). We conclude that SP is a nilpotent subnormal subgroup

of G, whence it lies in F = F(G). To sum up, S is a Sylow s-subgroup of G

which is abelian and normal in G (as S ≤ F ), hence s is not a vertex of ∆(G), a

contradiction; in other words, every prime in V(G) \ {p} is adjacent to p in ∆(G),

as wanted.

Proposition 3.13. Let G be a solvable group such that ∆(G) is connected of di-

ameter 3, and let p be a prime. Setting P = Op(G), assume that P is non-abelian,

P ′ is a minimal normal subgroup of G and that ∆(G/P ′) is a disconnected graph.

Then P is the Sylow p-subgroup of G and P/P ′ is not contained in the center of

G/P ′.

Proof. Write N = P ′ and F = F(G). Observe first that N lies in Φ(P ), thus N ≤

Φ(G) and the ascending Fitting series of G/N is just the image of the ascending

Fitting series of G under the natural homomorphism onto G/N .

First, we will show that P is a Sylow p-subgroup of G. Assume, working by

contradiction, that this is not the case.

Note that, since ∆(G) has diameter three, the graph ∆(G/N) (whose vertex set

is V(G) in this situation) has no isolated vertices, and therefore G/N is of type (b)

or (c) of Theorem 2.2. Hence, the Sylow subgroups of G/F are all cyclic.

Let θ be any character in Irr(P ). Setting R = Op′(F ), clearly we have that

θ× 1R is an extension of θ to F , such that IG(θ× 1R) = IG(θ). Moreover, since all

Sylow subgroups of G/F are cyclic, θ× 1R (and therefore θ) extends to I = IG(θ).

If P/N ≤ Z(G/N) then, by Lemma 3.12, p would be a complete vertex of ∆(G),

against the assumption diam(∆(G)) = 3. Hence, P/N 6≤ Z(G/N). By Lemma 2.3,

this yields that F/N is abelian and hence that G/N is necessarily of type (b) of

Theorem 2.2.

So F/N =M/N ×Z/N , where M/N is an elementary abelian p-group having a

complement H/N in G/N and Z/N = Z(G/N) = CH/N (M/N). Set K = F2(G)

(so K/N = F2(G/N)). Also, M/N is an irreducible K/N -module, and K/F and

G/K are cyclic groups of coprime order (in fact, π(K/F ) and π(G/K) are the

connected components of ∆(G/N)). Note that p 6∈ π(K/P ) (as P = Op(G)).

Let π0 be the set of vertices not adjacent to p in ∆(G); so, π0 6= ∅. We remark

that π0 ⊆ π(K/P ), as p ∈ π(G/K) and π(G/K) induces a complete subgraph of

∆(G).

Write K = PX , where X ≤ H is a p-complement of K. Note that X is abelian,

because X/(Z ∩X) ∼= K/F is cyclic and Z ∩X is central in X . Let Y be the Hall

π0-subgroup of X . Then Y N/N E H/N (as XN/N = F(H/N)). So PY E G and

hence ∆(PY ) is a subgraph of ∆(G). We deduce that ∆(PY ) is disconnected with

components {p} and π0 (observe that every r ∈ π0 is a vertex of ∆(PY ); in fact, a

Sylow r-subgroup R of PY is also a Sylow r-subgroup of G and, if R is abelian and

normal in PY , then the same is true in G (as PY E G), against the fact that r is
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in V(G)), hence PY is of type (a) in Theorem 2.2. So, setting C = CP (Y ), we have

that N ≤ C and that every non-linear irreducible character of P is fully ramified in

P/C. Note also that M 6≤ C, since otherwise (as above) Y N/N centralizes F/N ,

so Y ≤ F and no prime divisor of |Y | would be a vertex of ∆(G). Let Zp/N be

the Sylow p-subgroup of Z/N . Since Y acts trivially on both N and Zp/N , then

Zp ≤ C. Moreover, C ∩ M = N , as (C ∩M)/N is a proper submodule of the

K/N -irreducible module M/N . Now, since P/N = M/N × Zp/N , it follows that

C = Zp.

We next observe that M is non-abelian. In fact, as p is an isolated vertex of

∆(PY ), every non-linear irreducible character of P is centralized by Y ; therefore,

an application of [12, Theorem 19.3] yields N = [P, Y ]′, but [P, Y ] = [MC,Y ] =

[M,Y ] ≤ M , whence M ′ = N . In particular, ∆(MY ) is also disconnected with

components {p} and π0. Now, working with MY instead of PY (as in the previous

paragraph), we get that every non-linear irreducible character ofM is fully ramified

with respect to M/CM (Y ) =M/N . By Lemma 3.4 this implies |M/N | ≥ |N |2.

Consider now U = CX(N). Assume first U = X . Let χ ∈ Irr(G) such that

N 6≤ ker(χ) and let ψ be an irreducible constituent of χP . Then ψ is fully ramified

in P/C and IG(ψ) = IG(θ), where θ is the irreducible constituent of ψC . As X

acts trivially on both C/N = Zp/N and N , then X centralizes C and hence ψ is

K-invariant. So, recalling that (|P |, |K/P |) = 1, ψ extends to K. Since K/P ∼= X

is abelian, Gallagher’s Theorem implies that every irreducible character of K lying

over ψ has degree coprime to |K/P |. It follows that π(χ(1)) ⊆ π(G/K) (recall that

p ∈ π(G/K)). We conclude that ∆(G) = ∆(G/N) is disconnected, a contradiction.

Hence, U < X . Choose q ∈ π(X/U) and let Q ∈ Sylq(X). So, QN/N E H/N

and then, in particular, PQ E G.

We remark that p and q are adjacent in ∆(G). If not, they are not adjacent

in the subgraph ∆(PQ) as well, and hence ∆(PQ) is of type (a) of Theorem 2.2,

giving N ≤ CP (Q), so Q ≤ U , against the choice of q. So, since (p, q) ∈ E(G) and

q is not a complete vertex of ∆(G), there exists a vertex s 6= p of ∆(G) such that

(q, s) 6∈ E(G). Note also that s ∈ π(H/Z): otherwise, as the p-complement of Z is

abelian, G would have an abelian normal Sylow s-subgroup and s would not be a

vertex of ∆(G).

Let S be a Sylow s-subgroup of H and let L = (QS)H . By applying Lemma 3.9

to G/N with M/N playing the role of E, we get that LZ/Z acts as a faithful,

irreducible semi-linear group on M/N = [M/N,Q] = [M/N,L] (here we are taking

into account that CM/N (Q) is normal in G/N , hence it is trivial because M/N is

an irreducible K/N -module). So, recalling that C/N is central in G/N (thus it lies

in CP/N (L)), we see that CP/N (L) = C/N × CM/N (L) = C/N . Also, for every

non-trivial element a ∈ M/N , CLZ/Z(a) contains a Sylow s-subgroup of LZ/Z as
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a normal subgroup. Finally, note that by part (d) of Lemma 3.9, F(LZ/Z) acts

fixed-point freely on M/N and hence, in particular, s does not divide |F(LZ/Z)|.

Next, observe that [N,Q] = N , as N is minimal normal in G and 1 < [N,Q] =

[N,PQ] E G. Hence, setting B = CP (L), we have that B ∩ N = CN (L) ≤

CN (Q) = 1. Since C/N = CP/N (L) = CP/N (LZ/Z) and, recalling 3.13(d), the

action of LZ/Z on P/N is a coprime action, we get C = NB and hence C = N×B,

because N is central in P .

Let now γ ∈ Ĉ such that N 6≤ ker(γ). So γ is fully ramified in P/C; let

ψ ∈ Irr(P ) the unique constituent of γP . Then IG(ψ) = CG(γ). As γ = α × β

with α ∈ N̂ \ {1} and β ∈ B̂, then q divides |G : CG(γ)|. Since ψ extends to

CG(γ) (in fact, the Sylow p-subgroups of G/P are cyclic because p 6∈ π(K/P ))

and (q, s) 6∈ E(G), as usual we get that CG(γ)/P contains a Sylow s-subgroup of

G/P as a normal subgroup; in particular, the same is true also for CLZ/Z(γ). But

CLZ/Z(γ) = CLZ/Z(α), as LZ acts trivially on B. So, for every α ∈ N̂ \ {1},

CLZ/Z(α) contains a Sylow s-subgroup of LZ/Z as a normal subgroup. Hence an

application of Lemma 3.8 yields that |M/N | = |N̂ | = |N |, a contradiction.

So far, we have shown that P is a Sylow p-subgroup of G. Thus, every irreducible

character of P has an extension to its inertia subgroup in G and hence Lemma 3.12

yields that P/N is not central in G/N . This finishes the proof.

Lemma 3.14. Let P be a non-abelian normal Sylow p-subgroup of a solvable group

G and let H be a p-complement of G. Assume that there is a prime divisor s of

|H/F(H)| such that s is not adjacent to p in ∆(G). Then for all 2 ≤ i ≤ c, where c

is the nilpotency class of P , the factor groups Mi = γi(P )/γi+1(P ) are chief factors

of G of the same order pn, with n ≥ 3, and G/CG(Mi) embeds in Γ(pn).

Proof. For 2 ≤ i ≤ c, take any non-trivial µ in M̂i: by [7, Theorem 13.28], and by

the fact that Mi is central in P/γi+1(P ), there exists φ in Irr(P/γi+1(P ) | µ) such

that IH(φ) = CH(µ). As i ≥ 2 and µ is non-trivial, clearly φ(1) is a multiple of p.

Now, viewing φ as a character of P by inflation, we have that φ extends to its inertia

subgroup in G (by coprimality); as a consequence of our non-adjacency assumption,

Clifford Correpondence together with Gallagher’s Theorem yield that IH(φ) (thus

CH(µ)) contains a Sylow s-subgroup of H as a normal subgroup. Observe also

that CH(Mi) does not contain any Sylow s-subgroup of H : in fact, if S ∈ Syls(H)

lies in CH(Mi) (which in turn lies in CH(µ)), then S would be a characteristic

subgroup of CH(Mi), and therefore a normal subgroup of H , against the fact that

s is a divisor of |H/F(H)|. We are then in a position to apply Lemma 3.8, which

yields that all groups M̂i are in fact irreducible H-modules of the same order; thus

allMi are irreducible H-modules as well (i.e., Mi is a chief factor of G), all of them

have the same order pn, and all the groups G/CG(Mi) embed in Γ(pn). Moreover,

Lemma 3.5 yields that s divides n and that s is coprime to pn − 1. As s 6= p, this

implies that n ≥ 3.
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4. The main results

In what follows, we write diam(∆(G)) ≥ 3 to indicate that either ∆(G) is con-

nected and diam(∆(G)) = 3, or that ∆(G) is not connected (i.e., diam(∆(G)) = ∞).

Proposition 4.1. Let G be solvable group such that F(G) = P is a non-abelian

Sylow p-subgroup of G, and assume that P ′ is a minimal normal subgroup of G.

If diam(∆(G)) ≥ 3 and p is not an isolated vertex of ∆(G), then F2(G) does not

centralize P ′.

Proof. We denote by H a p-complement of G, and we set X = F(H) and N = P ′.

Since F2(G) = PX , we have to prove that X does not centralize N . Working by

contradiction we assume that X centralizes N , and go through a series of steps.

(a) Every prime in π(H/X) is adjacent to p in ∆(G).

Proof. Let q ∈ V(G) be such that (q, p) 6∈ E(G) and consider a non-trivial

character φ ∈ N̂ . As φ is X-invariant and p does not divide |X |, by [7, Theorem

13.28] there is a ψ ∈ Irr(P |φ) such that X ≤ I = IG(ψ). By coprimality, ψ

extends to I; hence Gallagher’s Theorem and Clifford Correspondence imply

that I ∩H ≃ I/P contains a Sylow q-subgroup Q of G, and that Q is abelian

and normal in I ∩H . As X E I ∩H , then Q centralizes the q-complement of

X . But Q centralizes also the Sylow q-subgroup Q ∩X of X , as Q is abelian.

Thus, Q centralizes X = F(H) and hence Q ≤ X , so q 6∈ π(H/X).

Note that a group G as in our hypotheses, in the disconnected case, is as

in (c) of Theorem 2.2; in particular, the connected components of ∆(G) are

{p}∪π(X) and π(H/X), clearly against what obtained in the paragraph above.

This contradiction settles the disconnected case, so we may henceforth assume

that ∆(G) is connected of diameter 3.

(b) There exist q ∈ π(X) and s ∈ π(H) \ π(X) such that q is non-adjacent to both

p and s in ∆(G).

Proof. By Lemma 2.1 the subgraph of ∆(G) induced by π(X) is complete and

by (a) the set of vertices of ∆(G) that are not adjacent to p is contained in

π(X). We may consider a path q− r− s1 − s2 in ∆(G) connecting two vertices

with distance 3, where q 6= p, q is not adjacent to p, and one among the si is

not p: naming it s we have the claim.

(c) Let Q ∈ Sylq(X), S ∈ Syls(H). Set M = [P,Q], L = (QS)H and X0 =

F(L). Then M ′ = N and M/N is an irreducible X0-module. Moreover, setting

|M/N | = pn, we have that X0 is a cyclic group whose order is divisible by

(pn − 1)/(pn/|S| − 1).

Proof. Note that Q stabilizes every non-linear irreducible character of P , as

Q E H and q is not adjacent to p. So M ′ = P ′ = N by [12, Theorem 19.3],
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and it also follows that M/N = [P/N,Q]. Now we are in a position to apply

Lemma 3.9 to the group G/N , with respect to the non-adjacent vertices q, s of

∆(G/N), and all the desired conclusions follow.

(d) V =M/N is a self-contragredient X0-module.

Proof. Let ψ be a non-linear irreducible character of M , and λ an irreducible

constituent of ψN . Then λ is X0-invariant (as X0 ≤ X), and clearly it does not

extend toM . SinceM/N is irreducible as anX0-module, then λ is fully ramified

with respect to M/N (see [7, Exercise 6.12]). So by Remark 3.3 the bilinear

form defined by ǫ〈aN,bN〉 = λ([a, b]) on M/N (where ǫ is a given primitive p-th

root of unity) is non-degenerate, and it is also X0-invariant, as X0 acts trivially

on N . Hence, it induces an isomorphism of X0-modules between M/N and its

contragredient module.

Note that q ∈ π(X0) ⊆ π(X), so Lemma 2.1 implies that s does not divide |X0|.

We conclude by applying Lemma 3.2, which gives p = 2 = s, a contradiction.

The next result, which is the core of this work, shows that actually no group G

such that ∆(G) is connected can satisfy the assumptions of Proposition 4.1.

Proposition 4.2. Let G be a solvable group such that F(G) = P is a non-abelian

Sylow p-subgroup of G, and let N = P ′ be a minimal normal subgroup of G. Assume

also that diam(∆(G)) ≥ 3 and p is not an isolated vertex of ∆(G). Then ∆(G) is

not connected, [P,G]/N is a chief factor of G, and |[P,G]/N | = |N |; moreover, if

H is a p-complement of G, then H ≤ Γ([P,G]/N) and H/CH(N) ≤ Γ(N).

Proof. Let H be a p-complement of G, and set X = F(H) (observe that CH(P ) =

1 = CH(P/N)). By the previous proposition, there exists a prime divisor q of |X |

such that Q = Oq(X) does not centralize N . As N is minimal normal in G, we

have [N,Q] = N and CN (Q) = 1, whence Q 6≤ CH(λ) for every non-trivial λ ∈ N̂ .

So Q does not lie in the inertia subgroup of any non-linear irreducible character of

P (as restrictions to N ≤ Z(P ) are homogeneous), and hence q is adjacent to p in

∆(G).

Since V(G/N) = V(G) \ {p} and q is adjacent to p in ∆(G), there certainly

exists s ∈ V(G/N) that is not adjacent to q in ∆(G/N). Observe also that s does

not divide |X | = |F(HN/N)|, as otherwise, by Lemma 2.1, q would be adjacent

to s in ∆(G/N); therefore a Sylow s-subgroup S of H is not normal in H . Let

L = (QS)H , V = [P/N,Q] and C/N = CP/N (Q); then, as N ≤ [P,Q] = R,

V = R/N , P/N = R/N × C/N . Setting |V | = pn, by applying Lemma 3.9 we

obtain that C/N = CP/N (L), R = [P,L], L ≤ Γ(V ) and V is an irreducible X0-

module, where X0 = L ∩ Γ0(V ) = F(L); moreover, |S| divides n, the order of X0

is divisible by (pn − 1)/(pn/|S| − 1), and there exists a primitive prime divisor t0 of

pn−1. As in the previous proposition, we shall proceed through a number of steps.
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(a) R is not abelian and, as an X0-module, N has no irreducible constituent iso-

morphic to V = R/N .

Proof. Suppose, by contradiction, that R is abelian, and consider the action of

L on the dual group R̂: by coprimality, no non-trivial element of R̂ is centralized

by Q, and therefore every irreducible character of RL whose kernel does not

contain R has a degree divisible by q. Since RL E G (therefore ∆(RL) is a

subgraph of ∆(G)) and every irreducible character of R extends to its inertia

subgroup in RL, we have that CL(λ) contains a unique Sylow s-subgroup of L

for every λ ∈ R̂ \ {1R}. An application of Lemma 3.6 yields that R̂ (thus R) is

an irreducible L-module, contradicting the fact that N is a proper non-trivial

L-invariant subgroup of R. Therefore R is not abelian.

Observe next that 〈 , 〉 : R/N ×R/N → N , defined by 〈aN, bN〉 = [a, b], for

a, b ∈ R, is a GF(p)-bilinear map. This induces a homomorphism (of GF(p)-

spaces) δ : R/N ⊗GF(p) R/N → N , which is easily checked to be an X0-

homomorphism. Since R is not abelian and N is minimal normal in G, we have

R′ = N , whence δ is surjective. Thus, δ induces a surjectiveX0-homomorphism

from R/N ∧GF(p) R/N to N , because the symmetric tensors are in ker δ. If N ,

as an X0-module, has an irreducible constituent isomorphic to R/N then, by

Lemma 3.2, p = 2 = s, which is not our case.

(b) CP (Q) is an abelian direct factor of G, and H acts faithfully on V .

Proof. Note that CP (L) = CP (Q) and, by coprimality, C = CP (L) × N ;

moreover, we have R ∩CP (L) = 1 because N = [N,Q]. As P = RCP (L), we

get that CP (L) ≃ P/R is abelian.

If C is not contained in Z(P ) then, as N ≤ Z(P ), we can choose y ∈

CP (L) \ Z(P ). The map ϕy : R/N → N , defined by ϕy(aN) = [a, y], is

then a homomorphism of X0-modules, because X0 centralizes y. Since R/N is

an irreducible X0-module, ϕy is either injective or the trivial homomorphism.

But in the latter case y would centralize both R and C, whence y ∈ Z(P ).

We conclude that ϕy is injective, which means that the X0-module N has a

constituent isomorphic to R/N , against step (a).

Hence C ≤ Z(P ). LetM = CP (L); so P = R×M and HR is a complement

for M in G. We next show that M ≤ Z(G).

Write øG = G/N . If M is not central in G, then øK = CøHR(øM) < øHR

(note that øL ≤ øK) and so there exists a prime divisor t of |F(øHR/øK)|.

Then, clearly, t divides |øG : IøG(λ)| for some non-trivial irreducible character

λ of øM , whence t divides χ(1) for all χ ∈ Irr(øG|λ). But øMK = øM ×

øK E øG, so t is adjacent in ∆(øG) to every vertex of ∆(øK). As s is a

vertex of ∆(øK) (note that øS is not normal in øH , so it is not normal in

øL, and the same holds in øK), we conclude that s is adjacent to t. This
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is true for every vertex s that is not adjacent to q in ∆(G/N) and for q as

well; in fact, øQ ≤ øK and øK does not have a normal Sylow q-subgroup,

as otherwise øQ would centralize øR = V . It thus follows that ∆(G/N) is

connected; in particular, ∆(G) is connected as well (and it has diameter 3, by

our assumptions), otherwise p would be an isolated vertex of ∆(G).

Now, by Theorem 2.5, diam(∆(G/N)) ≤ 2, because F(G/N) = P/N is

abelian. We then have that there exists s′ ∈ V(G) such that dG(s
′, p) = 3.

Note that then s′ is not adjacent to q in ∆(G) (as p is adjacent to q); therefore,

s′ is not adjacent to q in ∆(øG) as well, and so, as observed above, it is adjacent

to t in ∆(øG) and hence in ∆(G). But M ×K E G implies that p is adjacent

to t in ∆(G), yielding dG(s, p) ≤ 2. This contradiction shows that M lies in

Z(G). Hence, G = HR×M and M = CP (Q) is a central direct factor of G.

As a consequence, we get CH(V ) = CH(P/N) = 1, so H acts faithfully on

V and the proof of (b) is complete.

In the following, we set Y = CH(N), write øH = H/Y , and adopt the bar

convention. The next step settles, in particular, the first claim of the statement.

(c) [P,G]/N and N are chief factors of G of the same order pn, H ≤ Γ([P,G]/N)

and øH ≤ Γ(N).

Proof. By the previous step:

[P,G] = [[P,Q]CP (Q), G] = [[P,Q], G] ≤ [P,Q] = R.

Therefore, [P,G] = [P,Q] = R. It follows that if µ lies either in V̂ \ {1} or

in N̂ \ {1}, then CH(µ) does not contain Q and, by [7, Theorem 13.28], there

exists θ ∈ Irr(P |µ) such that CH(µ) ≤ IH(θ). But the restriction of θ to R

(respectively, to N) is a multiple of µ, so in fact CH(µ) = IH(θ); now, since θ

extends to IG(θ) (and recalling that s is a vertex of ∆(G) not adjacent to q),

we get that CH(µ) contains a Sylow s-subgroup of H as a normal subgroup.

Hence, by Lemma 3.8 we conclude that V = R/N is a chief factor of G of order

|N |, and that H ≤ Γ(V ) and H/CH(N) ≤ Γ(N).

In view of the above paragraph, our aim for the rest of the proof will be to

show that ∆(G) cannot be connected under our hypotheses. To this end, we

assume that G is a counterexample of minimal order; thus ∆(G) is connected,

diam(∆(G)) = 3 and, by minimality, G has no non-trivial abelian direct factors.

In particular, step (b) yields CP (Q) = 1, R = P and V = P/N .

Setting m = |H/X |, as H ≤ Γ(V ) we have that m divides n; in particular,

a primitive prime divisor t0 of pn − 1 (which exists, as observed before), being

larger than n, does not dividem. Therefore, denoting by T0 a Sylow t0-subgroup

of H , we have that T0 lies in X0 and it is in fact central in X . Now, Lemma 3.7

yields CH(T0) ≤ Γ0(V ), whence X ≤ Γ0(V ) and X acts fixed-point freely on
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V ; also, as observed in the paragraph preceding (a), s does not divide the order

of X = CH(T0). Now (with the notation introcuced before point (c)),

(d) t0 does not divide |Y |, Y ≤ X, and øX = øH ∩ Γ0(N).

Proof. As observed above, |T0| | |øH ∩ Γ0(N)|. This in turn implies t0 ∤ |Y |;

thus (as Y and T0 are both normal in H) we get [Y, T0] ≤ Y ∩ T0 = 1, whence

Y ≤ CH(T0) = X . Thus, set U/Y = øH ∩ Γ0(N). We clearly have that øX

centralizes øT0, so Lemma 3.7 yields øX ≤ øH ∩ Γ0(N). On the other hand

we get [U, T0] ≤ Y ∩ T0 because, again by Lemma 3.7, øT0 is contained in the

cyclic group øU ; thus U ≤ CH(T0) = X , and so øX = øH ∩ Γ0(N).

(e) The subgraphs of ∆(G) induced on π1 = {p}∪π(X) and π2 = π(m) are complete

graphs. Hence, in particular, π(X) ∩ π(m) = ∅ and X has a complement D in

H.

Proof. As H ≤ Γ(V ) and X = F(H), then H/X is nilpotent (in fact, cyclic);

thus, Lemma 2.1 implies that both π(X) and π(H/X) = π(m) induce complete

subgraphs of ∆(G).

It remains to show that (p, t) ∈ E(G) for all t ∈ π(X). Let T ∈ Sylt(X); as

[V, T ] ≤ V is X-invariant and non-trivial, we see that [V, T ] = V . If (p, t) 6∈

E(G) then, since PT E G, the graph ∆(PT ) is disconnected, and PT is as

in case (a) of Theorem 2.2. In particular, N ≤ CP (T ) and every non-linear

irreducible character of P is fully ramified with respect to P/CP (T ). On the

other hand, by coprimality, CP (T )/N = CV (T ) is trivial, and in fact every

non-linear irreducible character of P is fully ramified with respect to P/N. In

this setting, an application of Lemma 3.4 yields the contradiction |P/N | ≥ |N |2.

(f) The graph ∆(G/N) is disconnected with connected components π(X) and π(D) =

π(m), where D is a complement for X in H. Moreover, (pn − 1)/(pn/|D| − 1)

divides |X |.

Proof. Arguing by contradiction, assume that ∆(G/N) is connected. Then,

by Theorem 2.5, ∆(G/N) has diameter (at most) two, and therefore a pair of

vertices at distance 3 in ∆(G) must include the prime p. Let (p, v) be such a

pair and p − t − r − v a shortest path connecting them; then step (e) yields

r, v ∈ π(D) = π(m) and t ∈ π(X). Take now any λ ∈ N̂ \ {1}; then p divides

θ(1) whenever θ lies in Irr(P |λ), and if r divides |øH : CøH(λ)|, then r divides

|øH : CøH(θ)|, and so pr divides χ(1) for every χ ∈ Irr(G|θ), a contradiction.

Therefore, Lemma 3.5 yields that kr = (pn−1)/(pn/|R|−1) divides |øX |, where

R is a Sylow r-subgroup of H .

On the other hand, consider χ ∈ Irr(G) such that tr divides χ(1). Then p

does not divide χ(1), whence χ ∈ Irr(G/N). Let µ ∈ Irr(P/N) be an irreducible
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constituent of χP ; note that µ 6= 1P/N , as t | χ(1). Since r | χ(1), then r divides

|H : IH(µ)|, and again Lemma 3.5 implies that kr does not divide |X |, against

what observed in the previous paragraph.

Thus, ∆(G/N) is disconnected and, by Lemma 2.1, it is clear that its con-

nected components are π(X) and π(D). Consider now µ ∈ Irr(P/N) \ {1P/N};

as X acts fixed-point freely on P/N , we have that IH(µ) ∩ X = 1, hence, for

every χ ∈ Irr(G|µ), the degree of χ is divisible by all the primes in π(X). As

a consequence, IH(µ) must contain a conjugate of D and the last claim follows

by Lemma 3.5.

(g) Let λ ∈ N̂ \ {1}. Then there exists θ0 ∈ Irr(P |λ) such that IH(θ0) = CH(λ).

For every θ ∈ Irr(P |λ) \ {θ0}, we have IH(θ) ∩ X = 1, and IH(θ) contains a

complement D for X in H.

Proof. The first claim follows from [7, Theorem 13.28], and from the fact that

IH(θ) ≤ CH(λ) for every θ ∈ Irr(P |λ), as N ≤ Z(P ).

Consider now a character θ ∈ Irr(P |λ)\{θ0}. Recalling that X/Y acts fixed-

point freely on N̂ , in order to prove that IH(θ) ∩X = 1 it is enough to show

that Y0 = IH(θ)∩Y = 1. If Y0 > 1, then CV (Y0) cannot be the whole V ; since

V is irreducible X-module and CV (Y0) is X-invariant, CV (Y0) is trivial and,

by [7, Exercise 13.10], θ0 is the only character in Irr(P |λ) which is Y0-invariant,

a clear contradiction. We conclude that Y0 = 1.

Now, if IH(θ) does not contain any complement for X in H (i.e., any Hall

π(m)-subgroup of H), then there exists a prime r ∈ π(m) which does not

divide |H : IH(θ)|; as a consequence, any χ ∈ Irr(G|θ) would be such that

pr|X | divides χ(1). This yields a contradiction, as r would be a complete

vertex of ∆(G), and also the last claim is proved.

For the next two steps of the proof, it will be convenient to introduce some

specific notation. We define N̂∗ as the set of all λ ∈ N̂ \ {1} that are not

fully ramified in P ; since |P/N | = |N |, Lemma 3.4 ensures that N̂∗ is not

empty. We shall also take into account Remark 3.3 and the notation introduced

therein; in particular recall that, for λ ∈ N̂ , the subgroup Zλ is defined by

Zλ/ kerλ = Z(P/ kerλ).

(h) Let λ be in N̂∗, and set M = Zλ. Then the following conclusions hold.

(i) There exists a complement D of X in H such that CH(λ) = Y D.

(ii) Y D normalizes M and, for every a ∈ M \ N , we have CY D(aN) = Dy

for some y ∈ Y .

(iii) If D1 is a complement for X in H such that CM/N (D1) is non-trivial,

then D1 ≤ Y D.

(iv) If Y 6≤ Z(H), then Y D/CY D(M/N) ≤ Γ(M/N) and M/N is an irre-

ducible Y -module.
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Proof. Since λ is not fully ramified in P , then |Irr(P |λ)| > 1, and by (f) we find

θ ∈ Irr(P |λ) such that IH(θ) contains a complement D for X in H . Now, IH(θ)

is contained in CH(λ) because θN is a multiple of λ, and therefore D ≤ CH(λ).

Clearly Y lies in CH(λ) as well, and since X/Y acts fixed point freely on N̂

(and λ 6= 1), we deduce that CH(λ) is in fact Y D.

As for (ii), observe that Y D = CH(λ) normalizes kerλ, so it acts on P/ kerλ

and on Z(P/ kerλ) = M/ kerλ as well; as a consequence, CH(λ) normalizes

M . Since λ ∈ Irr(N/ kerλ) and N/ kerλ is a subgroup of the abelian group

M/ kerλ, we have that λ extends to M , and in fact Irr(M |λ) consists of ex-

tensions of λ. By [7, Theorem 13.28], among those extensions we can choose

µ0 that is CH(λ)-invariant, and we can write Irr(M |λ) = {µ0ρ | ρ ∈ M̂/N}.

Consider now ρ ∈ M̂/N , and take θ ∈ Irr(P |µ0ρ). Since θ lies in Irr(P |λ),

step (f) together with the previous paragraph yield that IH(θ) contains Dx

for some x ∈ X ; but IH(θ) ≤ CH(λ) = Y D, therefore there exists y ∈ Y

such that Dx = Dy. Moreover, recalling that θM is a multiple of µ0ρ, we get

Dy ≤ IY D(θ) ≤ IY D(µ0ρ) and, as µ0 is Dy-invariant, we easily deduce that Dy

lies in CY D(ρ) as well. If ρ 6= 1, taking into account that X acts fixed-point

freely on P/N , we also have CY D(ρ) ∩X = 1. Thus CY D(ρ) = Dy. Now, by

coprimality, (ii) follows.

Assume now thatD1 is a complement forX inH such that aN ∈ CM/N (D1),

where a lies inM \N . By (ii), aN is also centralized by Dy for a suitable y ∈ Y ;

but, as X ∩ CH(aN) = 1, CH(aN) ≃ CH(aN)X/X is cyclic, and therefore

D1 = Dy ≤ Y D.

Finally, if Y 6≤ Z(H), then [Y,D] 6= 1 and therefore D does not lie in

CY D(M/N) (otherwise, as Y acts fixed-point freely on M/N , we would have

D = CY D(M/N) E Y D), so (iv) follows by Lemma 3.6.

(i) Y ≤ Z(H).

Proof. Aiming at a contradiction, let us assume [Y,H ] 6= 1. Thus, as Y ≤ X

and X is abelian, [Y,D] 6= 1 for any complement D for X in H .

Observe first that every x ∈ P is contained in a subgroup Zλ for some λ ∈

N̂∗. In fact, as this clearly holds for x ∈ N , let us focus on an element x 6∈ N .

Since CP (x) ⊇ N〈x〉 ⊃ N , we get |[P, x]| = |P |/|CP (x)| < |P |/|N | = |N |, and

it is enough to choose a non-trivial λ ∈ Irr(N/[P, x]) in order to have x ∈ Zλ

(with λ ∈ N̂∗, as x ∈ Zλ and so Zλ > N). Observe also that, if Zλ1
6= Zλ2

for

λ1, λ2 ∈ N̂∗, then Zλ1
∩Zλ2

= N , since both Zλ1
/N and Zλ2

/N are irreducible

Y -modules by (g).

Given λ ∈ N̂∗, we set M = Zλ and we denote by Ξ(M) the dual group of

N/[P,M ] (as a subgroup of the dual group N̂ of N). Note that if µ 6= 1N lies in

Ξ(M), then one has M ≤ Zµ, thus µ lies in N̂∗ and so in fact, by irreducibility



GROUPS WHOSE CHARACTER DEGREE GRAPH HAS DIAMETER THREE 23

of the Y -module Zµ/N , M = Zµ. In other words, we have Ξ(M) \ {1N} =

{µ ∈ N̂∗ : Zµ = M}. It is then clear that Ξ(M) ∩ Ξ(Zν) = {1N}, if Zν 6= M

for some ν ∈ N̂∗.

Also, given a complement D1 for X in H , if CM/N (D1) > 1 then, for every

λ ∈ Ξ(M), by (g) D1 ≤ CH(λ) and hence Ξ(M) ≤ CN̂ (D1).

So, we set CH(Ξ(M)) = Y D, for a suitable complement D of X in H .

Now set |M/N | = pt (note that, by Clifford’s Theorem, t does not depend on

λ ∈ N̂∗, as M/N is an irreducible Y -module and Y E H), and let L/N be

a complement for the irreducible Y -module M/N in P/N . Observe that, for

a, b ∈ P and y ∈ Y , we have

[ay, b] = [ay, b]y
−1

= [a, by
−1

].

Therefore, for any b ∈M \N ,

(1) [L,M ] = 〈[a, by] : a ∈ L, y ∈ Y 〉 = 〈[ay
−1

, b] : a ∈ L, y ∈ Y 〉 = [L, b].

As a consequence, we get |[L,M ]| = |L|/|CL(b)| ≤ |L/N | = pn−t; taking into

account that |N | = pn, this yields |N/[L,M ]| ≥ pt = |M/N |.

Now, by Lemma 3.4, there are at least pt/2 characters in ̂N/[L,M ] that are

not fully ramified in M/[L,M ]. We claim that all the non-trivial characters in
̂N/[L,M ] that are not fully ramified in M/[L,M ], are in Ξ(M). In fact, given

a ν ∈ ̂N/[L,M ] such that ν is not fully ramified in M/[L,M ], then (recalling

Remark 3.3) there exists an element b ∈ M \ N such that [M, b] ≤ ker ν. As

[L,M ] ≤ ker ν, then [P, b] = [LM, b] ≤ ker ν. As in (1) (with P in place of L)

one sees that [P, b] = [P,M ], and the claim is proved. In particular, we get

|Ξ(M)| ≥ pt/2 − 1.

Finally, set d = |Y D : CY D(M/N)|. Since, by point (g), Y D/CY D(M/N)

is an irreducible subgroup of Γ(M/N), we have |CM/N (D)| = pt/d, where

d = |D : CD(M/N)|. Noting that, by what observed before,

Z = {(Zλ/N) \ {1} : λ ∈ N̂∗ and CZλ/N (D) > 1}

is a partition of CP/N (D) \ {1}, we conclude that

|Z| =
|CP/N (D)| − 1

pt/d − 1
=
pn/m − 1

pt/d − 1
.

Since, as observed, Ξ(Zλ) ≤ CN̂ (D) for every Zλ such that (Zλ/N) \ {1} ∈ Z,

and |Ξ(M)| ≤ pt/2 − 1 , we deduce

pn/m − 1 = |CN̂ (D) \ {1}| ≥
pn/m − 1

pt/d − 1
· (pt/2 − 1).

Hence pt/2 − 1 ≤ pt/d − 1, which implies d = 2 (so |D| is even). In particular

p 6= 2, thus pn − 1 is an even number as well as |D|. But, by Lemma 3.5

the numbers pn − 1 and |D| must be coprime. This contradiction completes

step (h).



24 C. CASOLO ET AL.

(j) Final contradiction.

Proof. By step (f), the graph ∆(G/N) is disconnected with connected compo-

nents π(X) and π(D), where D is a complement for X in H .

Since step (h) yields Y ≤ CX(D), we have that |Y | divides pn/|D|− 1. Now,

pn/|D| − 1 is coprime to k = (pn − 1)/(pn/|D| − 1) and, as k divides |X | by (f),

we see that k divides the order of øX = øH ∩ Γ0(N̂). Thus Lemma 3.5 yields

that, for every λ ∈ N̂ , a conjugate of D lies in CH(λ). In particular, for every

λ ∈ N̂ \ {1}, we get CH(λ) = Y ×Dx for a suitable x ∈ X .

Now, let χ ∈ Irr(G) be such that χN has a non-trivial irreducible constituent

λ, and let θ ∈ Irr(P |λ) be an irreducible constituent of χP . Thus, IH(θ) ≤

CH(λ) = Y × Dx (for some x ∈ X) is cyclic. So, as χ(1) = ψ(1)|G : IG(θ)|

for a suitable ψ ∈ Irr(IG(θ)|θ), we conclude that χ(1) = θ(1)|H : IH(θ)| and

hence, taking into account that IH(θ) contains a conjugate of D by step (f),

the prime divisors of χ(1) lie in {p} ∪ π(X). Therefore ∆(G) is disconnected,

a contradiction.

The proof is now complete.

The following result, together with Remark 4.4 and Lemma 3.14 for what con-

cerns the dimension n of the factorsMi, will yield Theorem A and, as a by-product,

Theorem C. For this reason we do not include an independent proof for Theorem C,

that could be obtained with a direct and much shorter argument.

Theorem 4.3. Let G be a solvable group such that either ∆(G) is connected of

diameter 3, or ∆(G) is disconnected. In the disconnected case, assume also that

F = F(G) is non-abelian and that, whenever Or(G) is non-abelian, the prime r is

not an isolated vertex of ∆(G). Then the following conclusions hold.

(a) Let p be a prime. If Op(G) is non-abelian, then it is a Sylow p-subgroup of G.

(b) There exists a unique prime p such that P = Op(G) is non-abelian. Also,

denoting by U the p-complement of F , we have U ≤ Z(G).

(c) ∆(G/γ3(P )) is disconnected, and G/F is a non-nilpotent group whose Sylow

subgroups are all cyclic. If c is the nilpotency class of P , all factors M1 =

[P,G]/P ′ and Mi = γi(P )/γi+1(P ), for 2 ≤ i ≤ c, are chief factors of G of the

same order pn. Moreover, for all 1 ≤ i ≤ c, G/CG(Mi) embeds in Γ(pn) as an

irreducible subgroup.

Proof. Let G be as in the assumptions and F = F(G). Observe that if ∆(G) is

connected then, by Theorem 2.5, there exists a prime p such that P = Op(G) is

non-abelian (thus F is not abelian in any case). We argue by induction, and thus

assume that G is a counterexample of minimal order.

If M is a normal subgroup of G such that M ≤ Φ(G), then the Fitting series of

G/M is the image of the Fitting series of G under the natural homomorphism onto
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G/M . Moreover, if F(G/M) = F/M is non-abelian and V(G) = V(G/M), then all

assumptions on G are inherited by G/M .

Observe first that, if ∆(G) is disconnected, then G is as in (c) of Theorem 2.2; in

particular, parts (a) and (b) are already known to be true.

Thus, as it concerns the proof of (a) and (b), we may assume that ∆(G) is

connected. Let p be a prime such that P = Op(G) is non-abelian. Setting N = P ′,

observe that N ≤ Φ(G). Then, in order to prove (a) and (b), we may assume that

N is a minimal normal subgroup of G. In fact, ifM is a normal subgroup of G such

that 1 < M < N , then Op(G/M) = P/M is non–abelian and V(G) = V(G/M),

whence, as observed before, (a) and (b) hold in G/M . In particular, P is a Sylow

p-subgroup of G, and so (a) holds in G. Also, if U is the p-complement of F , then

UM/M is the p-complement of F(G/M); property (b) in G/M and normality of U

in G yield [U,G] ≤M ∩ U = 1, and (b) holds true in G.

Assuming thus N to be a minimal normal subgroup of G, we start proving claims

(a) and (b) for G under the additional hypothesis that ∆(G/N) is disconnected.

Then, again denoting by U the p-complement of F , Proposition 3.13 yields P/N 6≤

Z(G/N), and Lemma 2.3 ensures that F/N is abelian and UN/N is central in G/N .

Thus, we get [G,U ] ≤ N ∩ U = 1, and (b) is proved in G. Since Proposition 3.13

also ensures that p ∤ |G/P |, then (a) is achieved as well.

For the proof of (a) and (b), we may therefore assume that ∆(G/Op(G)
′) is

connected for every prime p such that Op(G) is non-abelian. Thus, let p be such a

prime and, again, write P = Op(G) and N = P ′.

Suppose, by contradiction, that (a) does not hold in G, that is, p divides |G/P |.

Then V(G/N) = V(G) and, since ∆(G/N) is connected, diam(∆(G/N))=3. In

particular, F/N is non-abelian by Theorem 2.5, and therefore there exists a prime

q 6= p such that Oq(G/N) is non-abelian. Now, G/N satisfies the hypotheses of

the Theorem and so, by choice of G, G/N satisfies (a), (b) and (c): in particular,

P/N is central in G/N and all the Sylow subgroups of G/F are cyclic. Setting

R = Op′(F ), and taking any θ in Irr(P ), we have, as in the second paragraph of

the proof of Proposition 3.13, that θ × 1R is an extension of θ to F , such that

IG(θ × 1R) = IG(θ). Since the Sylow subgroups of G/F are cyclic, θ × 1R (and

therefore θ) extends to I = IG(θ). We may then apply Lemma 3.12 and get the

contradiction that p is a complete vertex of ∆(G). Hence, G satisfies (a).

We move next to (b). First, we prove the following claim: if p and q are two

different primes such that both P = Op(G) and Q = Oq(G) are non-abelian, then

the diameters of ∆(G/P ′) and ∆(G/Q′) are both at most 2. (Note that the hy-

pothesis of this claim forces p and q to be adjacent in ∆(G).) In fact, assume

that one of those graphs (which are connected by what proved before), ∆(G/P ′)

say, has diameter 3. Then, arguing as in the last paragraph, we have that P/P ′

is central in G/P ′. Let H be a p-complement of G, then G = PH by (a) and H
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centralizes P/P ′, hence H centralizes P by coprimality. Therefore, G = P ×H , so

p is a complete vertex of ∆(G), which a contradiction. We thus conclude that the

diameters of ∆(G/P ′) and ∆(G/Q′) are both at most 2, as claimed. But in this

situation, the only vertices of ∆(G) that may have distance 3 between each other

turn out to be p and q, which on the other hand are clearly adjacent.

Thus, we have proved that there exists a unique prime p such that Op(G) is

non-abelian. It remains to show that the p-complement U of F is central in G.

We claim that every irreducible character of U extends to its inertia subgroup

in G. Since U is an abelian normal subgroup of G, this is certainly the case if U

admits a complement. Otherwise, N0 = U ∩ Φ(G) 6= 1. In this case, F(G/N0) is

clearly non-abelian and V(G/N0) = V(G). Thus G/N0 inherits our assumptions

and, by choice of G, the Sylow subgroups of G/F are cyclic, a fact ensuring that

also in this case every irreducible character of U extends to its inertia subgroup

in G.

We are therefore in a position to apply Lemma 3.10 and get the desired conclusion

unless p has distance at most 2 from every other vertex of ∆(G). But this would

force (as we know that is ∆(G/N) connected) ∆(G/N) to have diameter 3, which

is against Theorem 2.5, because the Fitting subgroup of G/N is abelian. The proof

that (b) holds in G is complete.

Finally, we prove that (c) holds in G. Let U be the p-complement of F (thus

U ≤ Z(G) by part (b)); since F(G/U) = F/U = PU/U is non-abelian, the graph

∆(G/U) has the same set of vertices as ∆(G), and therefore G/U inherits the

assumptions. Furthermore, the projection G → G/U induces a G-isomorphism

P → PU/U , and γi(PU/U) = γi(P )U/U .

We claim that, by choice of G, U is trivial. In fact, suppose U 6= 1; then, by

induction on the order of the group, the conclusions concerning the factors Mi and

the actions of the groups G/CG(Mi) on them are easily achieved, and we also get

that ∆(G/γ3(P )U) is disconnected. Now, since U ≤ Z(G) and γ3(P ) ≤ Φ(G),

we have F(G/γ3(P )U) = F/γ3(P )U . As the Sylow p-subgroup of this nilpotent

factor group is non-abelian, we get V(G/γ3(P )U) = V(G), whence G/γ3(P )U is a

group as in (c) of Theorem 2.2. In particular, G/F is a non-nilpotent group whose

Sylow subgroups are all cyclic, and every irreducible character of F(G/γ3(P )) =

F/γ3(P ) extends to its inertia subgroup in G/γ3(P ). We are then in a position

to apply Lemma 2.4 to obtain the identity ∆(G/γ3(P )) = ∆(G/γ3(P )U), and so

∆(G/γ3(P )) is disconnected, as wanted. Thus, U = 1.

We now observe that we may further reduce to the case γ3(P ) = 1. In fact,

suppose γ3(P ) 6= 1; then, setting G = G/γ3(P ) and adopting the bar convention,

we have V(G) = V(G) and the group G satisfies our hypotheses. Hence, the choice

of G yields that ∆(G) is disconnected, and the following conclusions follow: G/F
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is a non-nilpotent group whose Sylow subgroups are all cyclic, M1 and M2 are G-

chief factors of the same order pn, and G/CG(Mi) embeds in Γ(pn) as an irreducible

subgroup for i ∈ {1, 2}. Finally, as G/γ3(P ) is now as in (c) of Theorem 2.2, the

prime p turns out to be adjacent in ∆(G) to every prime divisor of |F(H)| (it

cannot therefore be adjacent to all vertices in |H/F(H)|, as otherwise it would be

a complete vertex in ∆(G)). An application of Lemma 3.14 yields now what is left

of claim (c) for G.

Then γ3(P ) = 1. Suppose, by contradiction, that there exists M E G with

1 < M < P ′. Then the graph ∆(G/M) is disconnected: in fact, the group G/M

satisfies our hypotheses and therefore, setting G = G/M and adopting again the

bar convention, we have that ∆(G/γ3(P )) is disconnected; but γ3(P ) is trivial, so

∆(G/γ3(P )) = ∆(G/M). Now the factor groupG/M must be as in Theorem 2.2(c),

hence G fulfills the assumptions of Lemma 3.14, an application of which yields that

P ′ = γ2(P )/γ3(P ) is minimal normal in G/γ3(P ) = G, against the assumption on

M .

In conclusion, P ′ is a minimal normal subgroup of G and G satisfies the hy-

potheses of Proposition 4.2, so all the desired conclusions follow. Hence, the proof

that G also satisfies (c) is complete, but this is a contradiction by the choice of G.

This completes the proof of the theorem.

Remark 4.4. Let G be a solvable group such that ∆(G) has diameter 3. Then,

assuming the notation and the conclusions of Theorem A, G/γ3(P ) is a group as in

part (c) of Theorem 2.2, and so ∆(G/γ3(P )) (which has the same vertices of ∆(G))

is disconnected with components π1 = {p}∪π(F2(G)/F(G)) and π2 = π(G/F2(G)).

Thus, both π1 and π2 induce complete subgraphs of ∆(G). Note that |π2| ≥ 2, as

otherwise ∆(G) would have a complete vertex. Also, ∆(G/P ′) is a disconnected

graph with components subgraphs π1 \ {p} and π2.

Now, we have that G = PH , with P a p-group, γ3(P ) 6= 1, and H/CH(P )

embeds in Γ(pn). So, setting d = |G/F2(G)|, an application of Lemma 3.5 yields

that d divides n, (pn − 1)/(pn/d − 1) divides |F2(G)/F(G)|, (pn)3 divides |P | and

d is coprime to pn − 1. As a consequence, on one hand [10, Theorem 5.1] yields

|π1 \ {p}| ≥ 2|π2| − 1. On the other hand, we easily get 2 6∈ π2; in particular, as

|π2| ≥ 2, we also get that n is divisible by two odd primes, as stated in part (d) of

Theorem A.

Also, we note that dG(p, v) ≤ 2 for every v ∈ V(G). In fact, assume that

dG(p, v) = 3 and let p− t− r−v be a path in ∆(G); then we get t ∈ π1, r ∈ π2 and,

given χ ∈ Irr(G) such that tr | χ(1), the prime p does not divide χ(1). But now χ

is in fact in Irr(G/P ′) and hence t is adjacent to r in ∆(G/P ′), a contradiction.
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Finally, we sketch the proof that Lewis’ example in [9] is of the smallest possible

order. In fact, as observed above, |G| is a multiple of

(pn)3 ·
pn − 1

pn/d − 1
· d .

The smallest value of such an integer is attained for p = 2 and n = d = 15, that is

245 · (215 − 1) · 15, which is precisely the order of Lewis’ group.

We conclude with a proof of Corollary B.

Proof of Corollary B. In the setting of Theorem A, we have that G/F is a group

whose Sylow subgroups are all cyclic. This implies that G/F is a metacyclic group

and, since it is not nilpotent, the desired conclusion follows.
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Università degli Studi di Firenze, viale Morgagni 67/a, 50134 Firenze, Italy.

E-mail address: carlo.casolo@unifi.it

Silvio Dolfi, Dipartimento di Matematica e Informatica U. Dini,
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