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ABSTRACT. This study reports the static and dynamic magnetic characterization of two 

mononuclear tetrahedral CoII complexes, [Co{iPr2P(E)NP(E)iPr2}2], E = S (CoS4), Se (CoSe4), 

which behave as single ion magnets. Low temperature (15 K) single crystal X-ray diffraction 

studies point out that the two complexes exhibit similar structural features in their first 

coordination sphere, but a disordered peripheral iPr group is observed only in CoS4. Although 

the latter complex crystallizes in an axial space group, the observed structural disorder leads to a 

larger transverse magnetic anisotropy for the majority of the molecules compared to CoSe4, as it 

is confirmed by EPR spectroscopy. Static magnetic characterization indicates that both CoS4 and 

CoSe4 show easy axis anisotropy, with comparable D values (~ −30 cm-1). Moreover, alternating 

current (ac) susceptibility measurements on these CoII complexes, magnetically diluted in their 

isostructural ZnII analogues, highlight the role of dipolar magnetic coupling in the mechanism of 

magnetization reversal. In addition, our findings suggest that, despite their similar anisotropic 

features, CoS4 and CoSe4 relax magnetically via different processes. This work provides 

experimental evidence that solid state effects may affect the magnetic behavior of single ion 

magnets.  
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INTRODUCTION 

The discovery in the 1990s that some multinuclear transition metal clusters, referred to as 

single molecule magnets (SMMs), exhibit slow relaxation of magnetization has been a hallmark 

in the field of molecular magnetism.1-2 Thanks to their magnetic ground state with a preferential 

magnetization direction (easy axis anisotropy), these materials display an activation barrier to the 

relaxation of their magnetization of pure molecular origin. This allows them to retain magnetic 

information at low temperature and to show quantum effects like quantum tunneling of the 

magnetization (QTM)3 and parity effects.4 For these reasons SMMs are widely investigated as 

potential materials either for ultra high-density information-storage,5 molecular spintronics6 or 

quantum computation devices.7 More recently, a closely related behavior was found in 

mononuclear complexes of lanthanides,8 actinides9 and transition metals.10-12 The reduced 

complexity of the latter systems, known as single ion magnets (SIMs), combined with a large 

range of zero-field splitting (ZFS) values,10-14 suggested a potentially easier chemical tuning of 

their magnetic anisotropy15-17 compared to multinuclear systems.18-21 As a result, during the last 

few years, significant research efforts have been devoted to master a synthetic control over the 

magnetic anisotropy of SIMs containing 3d-metal ions.10-12   

The first mononuclear 3d-metal-based SIM ever reported has been a trigonal pyramidal high-

spin FeII complex.22 Following that report, slow magnetic relaxation has been established for a 

large number of complexes containing 3d-metal ions such as CrII,23-24 MnIII,25-33 FeI,34-36 FeII,37-42 

FeIII,29,43 CoI,44 NiII45-46 and NiI.47-48 In addition to these, a large number of CoII-based SIMs has 

been recently identified, following the report on the archetypal tetrahedral (PPh4)2[Co(SPh)4] 

system, the first mononuclear CoII complex showing slow relaxation of the magnetization in the 

absence of an external magnetic field.49 Indeed, CoII complexes constitute to date the largest 
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family of 3d-metal-based mononuclear SIMs, exhibiting a large variety of first coordination 

sphere and of magnetic anisotropy types,29,39,50-79 as recently reviewed10,12,14 (and references 

therein). 

Up to now, however, experimental50,51 and computational investigations16 of the magnetic 

anisotropy in CoII-based SIMs has been carried out by mainly taking into account the electronic 

and structural features of solely the first coordination sphere of the investigated complexes. For 

example, for the (PPh4)2[Co(EPh)4], E = O, S, Se, series of complexes, CoII−E covalency effects 

have been discussed, suggesting the importance of soft donor ligands in the pursuit of systems 

with a large magnetic anisotropy.53 This series of complexes has recently been computationally 

investigated, in an effort to probe effects based on the nature of the E donor atoms.80  

In this work we demonstrate, through a multi-technique approach involving variable 

temperature X-ray diffraction analysis and High-Frequency and -Field EPR (HFEPR) 

spectroscopy, that subtle structural effects in peripheral groups far away from the metal center 

may play a significant role in determining the rhombic distortion of the anisotropy tensor in 

SIMs, a crucial parameter in the relaxation of the magnetization.1 Towards this aim, we report 

here the investigation of two CoL2 complexes bearing the deprotonated L− form of LH 

chalcogenated imidodiphosphinate, R2P(E)NHP(E)R2, type of ligands (R = various alkyl or aryl 

groups; E = O, S, Se, Te), which are regarded as inorganic analogues of -diketonates.81-84 More 

specifically, we investigated [Co{iPr2P(E)NP(E)iPr2}2], E = S, Se (hereafter denoted as CoS4 and 

CoSe4, respectively), which have been previously reported by Gilby and Piggott to coordinate 

CoII in a distorted tetrahedral geometry.85 Tetrahedral complexes of this type containing CoIIS4 

coordination spheres and Ph, iPr or Ph/iPr as R groups have already been investigated by some of 
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us.86 In particular, variable frequency EPR and W-band ENDOR investigations provided 

accurate spin Hamiltonian (SH) parameters for these S = 3/2 systems,87-88 subsequently 

interpreted via ab initio quantum chemical methods.89 Based on the latter work, the CoS4 and 

CoSe4 complexes are predicted to exhibit large easy axis anisotropy. The chemical versatility 

imposed by the nature of the donor E atoms (S or Se), combined with the observed different 

orientations of the peripheral iPr groups in CoS4 and CoSe4 (vide infra), allowed us to probe 

effects of the first and second coordination sphere on their magnetic anisotropy. This is the 

second report on 3d-metal-based SIMs bearing [R2P(E)NP(E)R2]− type of ligands, following that 

of the octahedral S = 2 [Mn{Ph2P(O)NP(O)Ph2}3] complex.27  

 

MATERIALS AND METHODS 

Synthesis 

The iPr2P(E)NHP(E)iPr2, E = S, Se,90 ligands and the corresponding 

[M{iPr2P(E)NP(E)iPr2}2] complexes, M = Co, E = S, Se;85 M = Zn, E = S,91-92 Se,91 were 

prepared according to published procedures. The magnetically diluted systems (hereafter 

denoted as Co/ZnS4 and Co/ZnSe4) were prepared by dissolving in CH2Cl2 the appropriate 

amounts, respectively, of CoS4 and CoSe4 with their ZnII counterparts, followed by co-

precipitation via the addition of 15-fold amount of n-hexane and subsequent rigorous stirring.  

Electronic Spectroscopy 

UV-vis reflectance spectra were acquired at room temperature using a Jasco V-670 

spectrophotometer equipped with an integrating sphere. 



 6 

X-ray crystallography 

The single crystals were mounted in air on a glass fiber. The intensities’ data for CoS4 and 

CoSe4 were collected at 110 K and 15 K using a Helijet head (Oxford Diffraction) on an Oxford 

Diffraction Excalibur diffractometer equipped with Mo Kα radiation. In all cases, the programs 

CrysAlis CCD and CrysAlis RED were used for the data collection and the data reduction. The 

structures were solved using the SIR-97 package93 and subsequently refined on the F2 values by 

the full-matrix least-squares program SHELXL-97.94 In all cases, the non-hydrogen atoms, 

except those of the iPr moiety, where disorder occurs, were anisotropically refined. The 

hydrogen atoms were found in the Fourier difference map. X-ray powder diffraction 

measurements were carried out at room temperature in air by using a Bruker New D8 Da Vinci 

diffractometer (Cu−Kα radiation, 40 kV ×40 mA), equipped with a Bruker LYNXEYE-XE 

detector, scanning range 2θ = 3−50°, 0.02° increments of 2θ, and a counting time of 0.8 s/step. 

 Electron Paramagnetic Resonance 

HFEPR measurements were performed at the National High Magnetic Field Laboratory at 

several sub-THz frequencies between 52 and 406 GHz and low temperatures on loose powders 

and pellets, using an instrument described in detail in Hassan et al.,95 with the exception of a 

Virginia Diodes sub-THz wave source, consisting of a 131 GHz frequency generator and a 

cascade of amplifiers and frequency multipliers.  

Magnetometry 

Samples used for direct current (dc) and alternating current (ac) magnetic investigations 

consisted of pellets made out of microcrystalline powders of complexes CoS4 and CoSe4, as well 

as the corresponding solid solutions Co/ZnS4 and Co/ZnSe4. Direct current magnetic 
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investigations were performed using a Quantum Design MPMS instrument equipped with a 5 T 

magnet. The temperature dependence of the magnetization (M) was followed from 1.8 to 300 K 

by applying a 1 T field (B) from 300 to 45 K and a 0.1 T field below 45 K to reduce magnetic 

saturation effects. Magnetic susceptibility per mole (χM) was then evaluated as χM = MM/B. 

Alternating current magnetic susceptibility analysis was performed with a Quantum Design 

PPMS setup working in the 10 – 10000 Hz range or with a Quantum Design MPMS instrument 

working in the 10 – 1000 Hz range with zero, 1 kOe or 2 kOe applied static field. Magnetic data 

were corrected for the sample holder contribution and for the sample diamagnetism using 

Pascal’s constants. The ac susceptibility data were analyzed within the extended Debye model,96-

97 in which a maximum in the out-of-phase component M'' of the complex susceptibility is 

observed when the relaxation time  equals (2π)−1. The frequency dependence of M'' at 

constant temperature was here fitted using equation (1): 

M'' () = (T − S)[()1-cos(/2)]/[1 + 2()1-sin(/2) + ()2-2]                               (1) 

where  = 2π, T and S are the isothermal and adiabatic susceptibilities, i.e., the 

susceptibilities observed in the two limiting cases  → 0 and  →  respectively, and  is a 

parameter which accounts for a distribution of relaxation times. 

 

RESULTS & DISCUSSION 

X-ray crystallography 

Complexes CoS4 and CoSe4 had been earlier structurally characterized by crystallographic 

studies at room temperature.85 In the work presented herein, the crystal structures of these 
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complexes were solved and refined at 15 K and 110 K to investigate differences in structural 

features that might be relevant in determining the low temperature dynamics of magnetization. 

The crystal data and the structural refinement parameters, as well as the CCDC deposition 

numbers, are listed in Table S1 [Supporting Information (SI)]. Selected bond lengths and angles 

at the two temperatures for the two complexes are listed in Table 1, along with the corresponding 

parameters reported in literature for room temperature (RT) structures.85 

Table 1. Selected bond lengths, angles and closest Co ∙∙∙ Co intermolecular distances for CoS4 

and CoSe4, at 15 K, 110 K and RT.  

 CoS4 

15 K 

CoS4 

110 K 

CoS4 

RT85 

CoSe4 

15 K 

CoSe4 

110 K 

CoSe4 

RT85 

av. Co−E (Å) 2.3129 2.3182 2.3172 2.4319 2.4358 2.4350 

av. E−P (Å) 2.0287 2.0349 2.0278 2.1823 2.1863 2.1788 

av. P−N (Å) 1.5870 1.5898 1.5831 1.5930 1.5948 1.5953 

Closest Co ∙∙∙ Co 

(Å) 

8.520 8.549 8.669 8.918 8.942 8.990 

av. P-N-P (°) 137.4 138.2 138.3 137.6 137.7 137.9 

av.  (°) 90 90 90 89.24 88.81 88.62 

av. E-Co-E (°) 110.83 

108.79 

110.93 

108.75 

110.48 

108.97 

112.03 

108.20 

111.94 

108.24 

     112.02 

108.21   

av. P-E-N (°) 139.6 141.4 140.2 131.7 131.9 132.1 

av. ω (°) 164.6 165.2 164.8 162.9 163 163.1 
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The space group in which the molecules crystallize is different in the two cases, and is the same 

observed at room temperature:85 I41/a for CoS4 and P-1 for CoSe4. More relevant, for our scope, 

is the fact that in CoS4 the Co atom sits on a S4 symmetry axis, whereas CoSe4 has no symmetry 

at all. Notwithstanding these differences, the structure of the first coordination sphere of both 

complexes at 110 K is very similar, their core being arranged in a distorted tetrahedral geometry 

as shown in Figure 1. The dihedral angle between the two E-Co-E endocyclic planes (denoted 

herein as ) is a measure of the deviations from an ideal tetrahedral first coordination sphere. In 

that respect, CoS4 exhibits the  value (90°) of the ideal tetrahedral symmetry at all temperatures 

investigated, due to the I41/a symmetry group, whereas CoSe4 shows slightly smaller values. 

However, these deviations are remarkably diminished as the temperature is lowered (Table 1). 

It should be noted that the magnitude of the E-Co-E-P torsion angle  of CoS4 and CoSe4 

(Table 1) is very close to that (180°) of the ideal D2d symmetry.  Therefore, the chelating L = 

[R2P(E)NP(E)R2]
− ligands of the two complexes seem to intrinsically lead to CoL2 complexes 

exhibiting close to D2d structures when their peripheral groups R are the same, i.e. only Ph89 or 

only iPr (this work). In addition to packing effects of these bulky ligands, the distortion from the 

ideal tetrahedral geometry of CoIIE4-containing complexes, E = S, Se, is also affected by intra- 

and inter- molecular interactions between the soft E donor atoms, as discussed for 

[Co(SPh)4]
2−.98 Therefore, the observed geometries of CoS4 and CoSe4, which cannot be 

accounted for by Jahn-Teller distortions, seem to be conferred by the CoII-coordinated L− 

chelating ligands and their soft donor atoms. 

As expected, the Co–Se bonds lengths are slightly larger than the corresponding Co–S ones. 

Moreover, the Co–S bonds of CoS4 are all crystallographically equivalent to each other, whereas 
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only minor deviations (0.01-0.2 %) from the average Co–Se bond length occur for CoSe4. At 15 

K, for both complexes, the relevant bond lengths reported in Table 1 slightly decrease. Finally, 

we note that the average E-Co-E-P torsion angle () for the E atoms belonging to the same 

ligand diminishes as the temperature is lowered, more evidently for CoS4. This is quite relevant 

since a previously performed computational investigation of similar CoII systems, has revealed 

the dependence of their magnetic anisotropy on .89 

Looking beyond the first coordination sphere, we note that some more relevant differences 

occur in the arrangement of the iPr peripheral groups. In particular for CoS4, at both 15 K and 

(even if less evidently) at 110 K, structural disorder is observed at the position of a C atom in one 

of the iPr groups of the asymmetric unit, refined with occupancy factors of 0.744/0.256 at 15 K 

and 0.857/0.143 at 100 K. This phenomenon, which was not revealed in the previously reported 

room temperature structure,85 implies that while the crystal fulfills the requirements for 

tetragonal symmetry, the disorder results in molecules exhibiting different conformations. The 

relative abundance of these conformations can be calculated assuming statistical distribution 

based on occupancy factors, so that only a fraction (31 %) of the molecules are strictly tetragonal 

(Table 2). This symmetry lowering may have important consequences in determining the 

magnetic behavior at low temperature (vide infra).99-101 
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Figure 1. Left: Overlayed molecular structures of CoS4 (magenta) and CoSe4 (blue) at 110 K, 

showing the differences in the second coordination sphere of the complexes. Right: detail of the 

CoII coordination sphere. The  dihedral angle is the one formed by the S/Se-Co-S/Se and Co-

S/Se-P planes, whereas the  one is formed by the two S/Se-Co-S/Se endocyclic planes. 

  

 

Table 2. Statistical abundance of the different conformers calculated on the basis of the Site 

Occupation Factor (SOF) obtained by X-ray structure resolution at 15 K for CoS4. A is referring 

to the major occupancy (0.744) and B to the minor one (0.256). 

Conformer 

type 

Statistical 

abundance 

Tetragonal system 

AAAA 30.6 % YES 

AAAB 42.2 % NO 

AABB 21.8 % NO 

ABBB 5 % NO 

BBBB 0.4 % YES 
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EPR spectroscopy 

  EPR spectra of a loose polycrystalline sample of CoS4 consist of a single resonance of a 

derivative shape, observed at low temperatures (4.5 – 10 K) throughout the whole investigated 

frequency range (9.5 and 52 – 406 GHz). The shape of this signal is what one expects from a 

single crystal and strongly suggests a phenomenon known as field-induced alignment or 

torquing, observed in the polycrystalline sample subjected to a high magnetic field, typically 

along the axis corresponding to the maximum anisotropy of the ZFS tensor (i.e. easy axis z). This 

phenomenon was early on observed in HFEPR spectra of polycrystalline SMMs102-105 and can be 

used to the experimenter’s advantage if no single crystals of sufficient size or quality are 

available. Figure 2a shows such a quasi-single crystal spectrum at 203.2 GHz and 4.5 K, with its 

simulation. A complete multifrequency set of HFEPR spectra taken at the same temperature is 

shown in Figure S1 (SI).  

Magnetic properties of an S = 3/2 spin system like CoS4 can in principle be described by a SH 

that includes the ZFS term and the electron Zeeman interaction: 

         (2)                                               

where  represents the electron-spin angular momentum operator, D and E are the axial and 

rhombic ZFS parameters, respectively, and g is the Zeeman anisotropic interaction tensor with 

principal values gx, gy and gz. In the following, we will refer to the two Kramers doublets as MS = 

1/2 and MS = 3/2. 
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Figure 2. (a) HFEPR spectrum of CoS4 powder at 203.2 GHz and 4.5 K (black trace) and its 

simulation (red trace) assuming a single crystal-like orientation along the easy axis of the ZFS 

tensor forced by field torquing, and using the S = 3/2 SH parameters as in Table 3 with the 

exception of g = 2.56. The asterisks identify the signals due to solid molecular dioxygen, the plus 

sign marks the signal of the probe and the hash sign denotes a g = 2 impurity; neither of those is 

simulated. (b) Frequency dependence of the EPR resonance in CoS4 at 4.5 K (black squares), and 

the corresponding linear fit (red line) using an effective Seff = 1/2 SH with gz
eff = 7.68. 

An analysis of the frequency dependence of the resonance field of the only observed line in 

CoS4 (Figure 2b) clearly evidences that it corresponds to an intra-Kramers transition within one 

of the two Kramers doublets, since the intercept of the linear regression is zero (i.e., no zero field 

interaction is affecting - in first order - the magnitude of resonance field). The observed EPR 

spectra can be then interpreted by considering only the lower energy doublet and thus assuming 
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an effective Seff = 1/2 with strongly anisotropic g values. It follows from the linear fit in Figure 

2b that the EPR signal of CoS4 is characterized by gz
eff = 7.68, while the corresponding gx

eff and 

gy
eff transitions were not detected. The dependence of the effective g values of the Seff

 = 1/2 

system on the intrinsic g values and the ZFS parameters of the S = 3/2 system, are well 

known.87,106   
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1 3
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1 3
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1 3
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z z
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 
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                                                                                              (3) 

where  = E/D and in each equation the upper sign is valid for easy plane anisotropy (D > 0, MS 

= 1/2 ground state), while the lower sign applies for easy axis anisotropy (D < 0, MS = 3/2 

ground state). Only by choosing the lower sign (and thus easy axis type anisotropy) in the above 

equations, and assuming gz > 2.5 and negligible , it is possible to obtain geff  = 7.68. The sign of 

D is thus clearly determined as negative. It is evident, however, that the observation of such an 

EPR signal requires the rhombicity factor  to be different from zero. Indeed, the rhombic E 

component of the ZFS mixes the MS = 1/2 and MS = 3/2 states in the magnetic sublevels of the 

Kramers doublets. This mixing of states results in a non-zero transition probability of the 

otherwise forbidden MS = 3 transition, and provides evidence for a breakdown of the 

tetragonal molecular symmetry, as found by the low temperature X-ray study (vide supra). 

Measurements performed on a pelletized sample (Figure S2, SI), which resulted in a change of 

its shape and decrease of intensity, confirmed that the single-crystal-like shape of the observed 



 15 

EPR line in CoS4 is due to a field-induced alignment of the polycrystalline powder with B || z. 

The corresponding perpendicular turning points (B || x and y) in a pellet, however, were not 

found. The simulated field/frequency dependence (Figure S3, SI) shows that for a large |D| and 

very small rhombicity of the ZFS tensor these points would appear at prohibitively high fields, 

even at the lowest frequencies available. Following these considerations, the spectra at different 

frequencies of the loose powders could be well reproduced by simulations assuming a single 

crystal-like orientation with magnetic field parallel to the easy axis (see Figure 2a). The best 

simulations were obtained using gz = 2.56, which is reasonable for tetrahedral CoII systems, an 

arbitrarily large magnitude of the D parameter (|D|  30 cm–1), and an equally arbitrarily small 

rhombicity factor |E/D| = 0.01, which is about the lower limit necessary for the nominally 

forbidden MS = ± 3 transition to be detectable. Regarding the absolute value of |D|, the lack of 

inter-Kramers-doublet transitions in the high-frequency measurements implies it is greater than 

20 cm–1. Along the same lines, the non-observation of the intra-doublet MS = ±1 transition at 

higher temperatures is not surprising, since at the temperatures needed to appreciably populate 

the higher energy MS = ±1/2 Kramers doublet, relaxation effects apparently weaken and/or 

broaden this resonance beyond detectability. 

Unlike its sulfur analog, CoSe4 was EPR-silent at all the microwave frequencies and 

temperatures investigated. This points out that similar indications concerning the magnitude of D 

as in CoS4 are expected to hold also for CoSe4, but in this case the ZFS tensor is even more 

axial, i.e. the |E/D| ratio is lower than that of CoS4, leading to an immeasurably small transition 

probability of the MS = 3 intra-doublet transition. The observed EPR behavior indicates that, 

despite occurring in the second coordination sphere, the deviation from strict tetragonal 

symmetry in CoS4 is enough to induce a non-zero transition probability for the ground Kramers’ 
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intra-doublet, MS = 3, transition, due to the existence of a non-zero rhombic component E of 

the ZFS tensor. 

Direct current magnetic characterization 

The temperature dependence of the MT product of polycrystalline samples of CoS4 and 

CoSe4, measured in the 2-300 K range, is shown in Figure 3. The room temperature MT values 

of both compounds (2.55 emuK/mol for CoS4 and 2.72 emuK/mol for CoSe4) are larger than the 

one predicted for Curie S = 3/2 spins with g = 2.00 (1.875 emuK/mol), indicating the presence of 

a significant spin-orbit coupling with low-lying excited states, as expected.106 Upon cooling at 

temperatures below 100 K, both compounds display a decrease in their MT values, the origin of 

which may be found in the ZFS of their S = 3/2 ground state or in antiferromagnetic 

intermolecular interactions. The contribution of the latter are considered to be negligible due to 

the large Co ∙∙∙ Co intermolecular distances observed in the crystal lattice of the two complexes 

(Table 1). The field dependence of the magnetization of CoS4 and CoSe4, reported in the inset of 

Figure 3 (see Figure S4, SI, for 2.5 and 4.5 K data), displays no saturation at 1.9 K, reaching 2.12 

and 2.16 B/mol at 5 T, respectively. 
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Figure 3. Temperature dependence of the MT product for the CoS4 (full grey circles) and 

CoSe4 (full grey lozenges). Inset: Magnetization versus magnetic field of CoS4 (full grey circles) 

and CoSe4 (full grey lozenges) taken at 1.9 K. In both panels the lines are the results of the best 

fitting procedure with the SH (eq. 2) and parameters described in the text.  

 

In order to obtain a quantitative estimation of the magnetic anisotropy parameters of CoS4 and 

CoSe4, M(B) and MT(T) were fitted with the PHI program108 according to the SH (eq. 2). The 

parameters obtained from the best-fitting procedure of the data are listed in Table 3; the 

corresponding curves are displayed as solid lines in Figures 3 and S4 (SI).  
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Table 3. SH parameters for CoS4 and CoSe4, estimated by the fit to the dc magnetic 

measurements.  

 g D (cm-1) E (cm-1) |E/D| 

CoS4 2.29 -30.5 0.07 0.0023 

CoSe4 2.38 -30.4 0.05 0.0016 

 

The results obtained by static magnetization data of both CoS4 and CoSe4 are in line with the 

HFEPR analysis: the obtained g and the negative D values describe a substantial easy-axis 

character of the magnetic anisotropy for both systems at low temperature. As a confirmation, 

fitting procedures imposing positive D values yielded significantly poorer results. Furthermore, 

the observation of an easy axis type anisotropy is in line with computational expectations, which, 

for the  torsion angles listed in Table 1, predict very large negative D values and a small 

rhombicity.89 The minor differences in the E parameter and |E/D| ratio of CoS4 and CoSe4, even 

if in line with the HFEPR results, cannot be regarded as physically relevant, due to the lower 

sensitivity of magnetometry in the determination of transverse anisotropy terms compared to 

spectroscopic techniques, thus essentially describing the two systems as magnetically axial. 

The obtained SH parameters fall within the range of previously characterized mononuclear 

tetrahedral CoII complexes containing chalcogenides as donor atoms, either fully53,80 or in part.50 

However, unlike previous studies reporting a correlation between the absolute value of the D 

parameter and the softness of the chalcogenido donor atoms,50,53 this does not seem to be the 

case in our systems, for which the estimated D value is essentially the same for CoS4 and CoSe4. 

This could not be a priori proposed on the basis of an exclusive consideration of the electronic 
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effects of the Co−S/Se bonding on the magnetic anisotropy of CoII. Indeed, a ligand imposing a 

weaker ligand field on CoII would be expected to induce an increase of the absolute value of the 

D parameter in tetrahedral CoII complexes.53,80 This effect can be qualitatively understood by 

looking at Scheme 1, where the combined effect of ligand field strength, distortion from the Td to 

D2d geometry and spin-orbit coupling on the anisotropy of tetrahedral CoII complexes is 

pictorially represented. 

 

Scheme 1. Energy pattern (not in scale) of d-orbitals for CoII complexes in Td and D2d symmetry, 

showing the energy differences affecting the D value in perturbation theory, according to the 

reported equation. In this equation,  is the spin-orbit coupling constant. 
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In this case, perturbation theory predicts that the D values are influenced by the lowest electronic 

excitation energies, as described in Scheme 1. While in Td symmetry no second-order magnetic 

anisotropy is expected as a consequence of cubic symmetry, distortion of the first coordination 

sphere yielding a D2d geometry affords distinct excitation energies from the dx2-y2 orbital 

(transforming as b1 in D2d symmetry) to the dxy (b2) and to dxz or dyz orbitals (e). Consequently, 

the larger contribution of the spin-orbit coupling to the magnetic anisotropy arises mainly from 

the single electron excitation , leading to a more negative D value, as the energy 

difference of these two orbitals (E2, Scheme 1) is diminished.
89,109 Further lowering of the 

symmetry, removing the degeneracy of dxz and dyz, would provide a degree of rhombicity to the 

anisotropy.  

In the present case, UV-vis reflectance spectra of CoS4 and CoSe4 reveal small differences in 

their d-d transitions (Figure S5, SI), which, by analogy to the spectra of 

[Co{R2P(S)NP(S)R2}2]
86,110 or  [Co(XPh)4]

2−, X = O, S, Se,53,80,111 indicate that the ligand field 

in CoSe4 is indeed weaker than that of CoS4. However, no trend in the magnitude of the D 

parameter of the two complexes, as estimated by magnetometry, is evident. Extensive ab initio 

calculations have recently revealed that a large number of parameters affect the sign and 

magnitude of the ZFS in the [Co(XPh)4]
2− complexes.80 Similar studies on CoS4 and CoSe4 

would be needed to disentangle symmetry and metal-ligand bonding contributions to their 

magnetic anisotropy, but they are beyond the scope of the present work. A recent computational 

investigation of the [Co{R2P(S)NP(S)R2}2] complexes, R = Ph or Ph/iPr, has revealed a 

dependence of their magnetic anisotropy on the S-Co-S-P torsion angle ,89 in line with our 

experimental observations for CoS4 and CoSe4. 
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Alternating current magnetic characterization 

The dynamics of the magnetization of CoS4 and CoSe4 were investigated by frequency- and 

temperature-dependent ac susceptibility measurements. With no static magnetic field applied, 

CoS4 does not show temperature-dependent maxima in the out-of-phase magnetic susceptibility 

M
 (Figure S6, SI), which are related to the relaxation time of the magnetization  through the 

relation  = (2)−1. Upon application of a static magnetic field of 0.1 T, however, the spin 

dynamics are slowed down and the experimental detection of the relaxation times for different 

temperatures becomes possible (Figure S7, SI). The fitting of the M() plots with the extended 

Debye model (see the Materials and Methods section) yields the temperature dependence of the 

relaxation times displayed in the left panel of Figure 4. A closely related behavior was found 

using static fields of 0.2 and 0.3 T (Figure S8, SI).  

In order to check whether the observed dynamics have a single-molecular origin, as well as to 

address the role of intermolecular dipolar magnetic interactions in the zero field relaxation, a 

solid solution of CoS4 in its diamagnetic ZnII analogue (Co/ZnS4) was prepared. X-ray powder 

diffraction analysis confirms the retention of the crystallographic space group and of the unit cell 

upon dilution (Figure S9, SI), and magnetometry indicates a 4 % molar ratio of the CoII species, 

close to the stoichiometry used in the synthesis. Unlike the case of CoS4, the ac susceptibility 

characterization of Co/ZnS4 at zero static applied field reveals the presence of temperature-

dependent maxima (Figures S10 and S11, SI, for 0 T and 0.1 T data, respectively). The 

corresponding relaxation times are reported in the left panel of Figure 4.  
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Figure 4. Arrhenius plot of the temperature dependence of the relaxation time of the 

magnetization for CoS4, Co/ZnS4 (left), CoSe4 and Co/ZnSe4 (right), obtained from best fitting 

procedure of the isothermal M''(), as described in the Materials and Methods section. The lines 

represent the best-fits obtained as discussed in the text with parameters reported in Table 4. 

 

The observed relaxation behavior indicates that intermolecular magnetic dipolar interactions 

provide an efficient relaxation pathway in the pure phase (undiluted sample) of CoS4. 

Suppressing these interactions upon dilution or application of a static magnetic field leads to the 

onset of an Arrhenius-like relaxation regime. The increase of the relaxation rate found for 

Co/ZnS4 in a 0.1 T static field suggests the presence of a phonon-bottleneck effect.112 Moreover, 

the deviation from linearity observed in the low temperature region for CoS4 at applied fields of 

0.1, 0.2 and 0.3 T, points out that a contribution from the phonon-mediated direct process cannot 

be completely ruled out, even if the overlapping of the curves indicates that this process is not 

the main one at this field region, since the corresponding rate should feature a B4 dependence.107  
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The temperature dependence of  was fitted by considering a multi-process model: 

        (4) 

In Equation (4,) several relaxation mechanisms are taken into account.107 The first term 

describes an Orbach process, where the magnetization of the system decays through the 

thermally activated population of the |±1/2> Kramers doublet (in a classical picture, this term 

describe a phonon-induced overcome of the anisotropy barrier). In this case, 0 is a pre-

exponential factor and  is the height of the energy barrier. The second term relates to a Raman 

mechanism, where the |±3/2> states are coupled through a virtual one via a two-phonon process, 

and the third term relates to the direct coupling between the |±3/2> states. The last term stems 

from the quantum tunneling of the magnetization between the two sides of the magnetic 

anisotropy barrier, and has been used only for zero static field data. To reduce 

overparametrization, the data fitting procedure was addressed by including contributions of each 

process step by step, looking for the best fit obtained using the minimum number of processes. In 

particular, zero-field data were fitted constraining the direct term to zero, whereas for 

measurements in applied field, QTM was set to zero. For CoS4, the best fitting parameters are 

reported in Table 4. It is worth noting that the  value is essentially in agreement with the 

expectations from static magnetic characterization (which provides an expected barrier of about 

60 cm-1). The assumption that magnetic relaxation in this system actually occurs via the Orbach 

process, is reinforced by the impossibility of getting a reasonable fit by assuming the two-

phonon process to be a Raman one. 

Contrarily to CoS4, CoSe4 turned out to be one of the very few examples of CoII complexes 

showing slow relaxation at zero field49,52,53,56,60,75 (see Figure S12, SI). The relaxation times 
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obtained through the fitting of M() are plotted in the right panel of Figure 4. In the higher 

range of investigated temperatures, CoSe4 apparently follows an Arrhenius-like relaxation 

regime that gradually becomes temperature independent upon cooling. This behavior is in line 

with the dominance of QTM processes at the lowest temperatures. Application of a 0.1 T static 

magnetic field (Figure S13, SI), and dilution of CoSe4 in its diamagnetic ZnII analogue (Figures 

S14-S16, SI), yield overlapping curves, which were tentatively fitted using Eq. (4) (best fit 

parameters reported in Table S2, SI). However, the best fit  parameter (about 30 cm−1) is much 

lower than expected on the basis of static magnetic characterization (about 60 cm−1). This 

discrepancy cannot be traced back to QTM,78 as often suggested in the literature, since Eq. (4) 

takes this process into account explicitly. This finding, combined with the non-strict linearity of 

the Arrhenius plot, suggests that the relaxation may actually occur via a combination of different 

processes. On the basis of the linearity of the log-log plot of 1/ vs T (Figure S17, SI), and to 

keep the numbers of fitted parameters to a minimum, the observed temperature dependence of 

the relaxation rate (Figure 4, right) was thus fitted according to a Raman mechanism, including 

both a Raman and a QTM process (considered only for zero-field dynamics).113 This provided a 

much better fit than the Orbach one, the corresponding parameters being reported in Table 4. A 

somehow large exponent (9<n<11) is observed compared to that expected for a real Raman 

process, which should provide n = 9.107 Such a difference can, however, be accounted for 

considering the Raman parameters as phenomenological, since they may well include the effects 

of otherwise discarded interactions, in particular, the hyperfine coupling to 59Co (I = 7/2) and 

residual dipolar intermolecular ones.72  
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Table 4. Magnetic relaxation parameters of the investigated systems, according to the different 

models described in the text. 

 CoS4 Co/ZnS4 CoSe4 Co/ZnSe4 

 Orbach mechanism Raman mechanism 

 0.1 T 0.2 T 0.3 T 0 T 0.1 T 0 T 0.1 T 0 T 0.1 T 

0 (s) 

3.8(1)     

10-10 

1.2(2)   

10-10 

1.4(2)   

10-10 

3(1)     

10-10 

8(2)    

10-10 

- - - - 

 (cm-1) 49(1) 54.2(9) 53.4(3) 47.6(2) 44(1) - - - - 

 (Hz K-1) 5(2) 15(3) 20(2) - 63(5) - - - - 

C (Hz K-n) - - - - - 

2.9(7)  

10-3 

4.4(2) 

10-4 

1(1)     

10-4 

5.3(8)  

10-4 

n - - - - - 9.3(1) 10.11(3) 10.9(5) 10.13(9) 

QTM  

(kHz) 

- - - 0.8(1) - 13.7(2) - -a - 

aoutside the experimentally accessible frequency range. 
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As a whole, the ac characterization clearly indicates that the behavior of undiluted CoS4 and 

CoSe4 is largely influenced by intermolecular dipolar magnetic coupling, which offers a 

powerful pathway for magnetic relaxation, as often reported in the literature of SIMs.53,114-116 In 

the case of CoS4, such a relaxation pathway hinders the detection of slow relaxing 

magnetization, confirming that special care should be taken in analyzing potential SIMs in the 

undiluted phase. The larger contribution of QTM for CoS4 than for CoSe4, both in pure and 

undiluted phase, is further in qualitative agreement with the observation of an EPR signal for the 

former and not for the latter.  

CONCLUSIONS 

The analysis of static and dynamic magnetic properties of two CoIIE4-containing, E = S, Se, 

complexes, combined with X-ray crystallography and EPR studies, unveiled the relevance of 

solid state effects in shaping the magnetic behavior of these systems. In particular, the crystal 

structure of CoS4 and CoSe4, determined at low temperature, showed that, although the former 

complex has a more symmetrical first coordination sphere, it remarkably exhibits structural 

disorder in one of its peripheral iPr groups. Such disorder accounts for the presence of a signal in 

the HFEPR spectra of CoS4, which is attributed to the nominally forbidden MS = 3 intra-

doublet transition (i.e. D < 0 for this system). The observation of this signal is compatible with a 

non-zero value of the rhombic parameter E, which would be unexpected in the absence of 

disorder, owing to the tetragonal space group of the CoS4 crystals. On the other hand, CoSe4 was 

found to be EPR silent, regardless of its less symmetrical first coordination sphere. 

Contrarily to the tetrahedral CoII SIMs [Co(XPh)4]
2− X = S, Se, dc magnetometry shows 

that the magnitude of D of CoS4 and CoSe4 is practically identical. Although this finding 

suggests that the corresponding ligand field strength does not affect the magnitude of D, we 
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cannot, at this stage, completely rule out a subtle balancing effect of the different ligand field 

strength and the slightly different structural features of the two complexes.   

Analysis of the dynamics of the magnetization showed that CoSe4 is one of the few 

examples of CoII complexes behaving as a SIM in the absence of a static magnetic field. 

Magnetic dilution of CoS4 or CoSe4 in the isostructural matrix of their ZnII analogues pinpoints 

the crucial role of intermolecular magnetic dipolar coupling in affecting this behavior. Finally, a 

comparative analysis of the static and dynamic magnetic characterization points out that, 

although the two complexes have a similar axial anisotropy, the corresponding spin dynamics 

apparently follow different mechanisms. The behavior of CoS4 is best reproduced assuming an 

Orbach process over a thermal relaxation barrier, the magnitude of which is in good agreement 

with that estimated by magnetometry, whereas the behavior of CoSe4 is best explained by 

assuming a dominant Raman contribution.  

The present study is thus a caveat for the conventional design of SIMs, in which the 

geometry of the first coordination sphere and the nature of the donor atoms are often considered 

as lone actors in shaping the relaxation behavior of the systems. In addition, our findings 

highlight the necessity of multi-technique approaches for the complete characterization of 

molecular magnetic materials, including their structural characterization at temperatures 

comparable to those at which their magnetic properties are investigated.  

Further development of this research activity should also encompass the synthesis and 

characterization of the as yet elusive [Co{iPr2P(Te)NP(Te)iPr2}2] complex, the feasibility of 

which is encouraged by previous studies of the corresponding NiII117 and ZnII118 analogues. This 
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endeavor would also provide a testing experimental ground for the properties of [Co(TePh)4]
2−, 

which up to now have been investigated only in silico.80  
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