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Abstract

The existence of a nontrivial bounded solution to the Dirichlet problem, for a class of nonlinear

elliptic equations involving a fully anisotropic partial di�erential operator, is established. The

relevant operator depends on the gradient of the unknown through the di�erential of a general

convex function. This function need not be radial, nor have a polynomial type growth. Besides

providing genuinely new conclusions, our result recovers and embraces, in a uni�ed framework,

several contributions in the existing literature, and augments them in various special instances.

1 Introduction

We are concerned with Dirichlet problems for elliptic equations of the form

(1.1)

{
−div(Φξ(∇u)) = f(u) in Ω

u = 0 on ∂Ω ,

where Ω is an open set in Rn, n ≥ 2, with �nite Lebesgue measure |Ω|, the function f : R → R is
continuous and vanishes at 0, and Φ : Rn → [0,∞) is an even, strictly convex function, vanishing
at 0. The notation Φξ stands for the gradient of Φ. Let us emphasize that Φ(ξ) neither necessarily
depends on ξ through its length |ξ|, nor necessarily has a power type behavior.
The equation in (1.1) is the Euler equation of the functional

(1.2) JΦ(u) =

∫
Ω

(Φ(∇u)− F (u)) dx,

This research was partly supported by the Research Project of Italian Ministry of University and Research (MIUR)
"Elliptic and parabolic partial di�erential equations: geometric aspects, related inequalities, and applications" 2012,
and by the GNAMPA Research Project of INdAM (National Institute of High Mathematics) "Variational methods for
quasi-linear di�erential problems in non-standard settings".
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where F : R→ R is given by

(1.3) F (t) =

∫ t

0
f(s) ds for t ∈ R.

Clearly, the function u = 0 is a trivial solution to (1.1). The aim of the present paper is to show
that, under suitable assumptions on Φ and f , problem (1.1) also admits a nontrivial solution, which
is a critical point of the functional (1.2).

Reference contributions on critical point methods for nonlinear elliptic boundary value problems
with lack of coercivity include the paper [AR] and the monographs [MW, Ra, St, Wi]. The vast
literature on these topics consists of a huge amount of papers. We do not attempt an even partial
list of them.

The existence of nontrivial solutions to elliptic equations associated with non-coercive functionals
is well known to depend on a balance between the nonlinearity in the trial functions, and the
nonlinearity in their gradient. In particular, the behavior near in�nity of the functions governing
these nonlinearities is dictated by a Sobolev type inequality. Clarifying this issue with regard to
problem (1.1) is one of the main focuses of our research.

Prototypal results in this line of investigations deal with semilinear equations of the form

(1.4) −∆u = f(u),

or with the more general p-Laplacian type equations

(1.5) −div(|∇u|p−2∇u) = f(u).

Equation (1.5) is the Euler equation of (1.2) with Φ(ξ) = 1
p |ξ|

p; equation (1.4) corresponds to the
special case when p = 2. Besides other assumptions, the existence of nontrivial solutions to Dirichlet
problems associated with (1.5) is guaranteed if either p > n, or 1 < p < n and

(1.6) lim
|t|→∞

tf(t)

|t|q
= 0 for some q < p∗,

where p∗ = np
n−p , the Sobolev conjugate of p. The threshold p∗ for q in (1.6) is known to be sharp,

as a consequence of the Pohozhaev identity. In the borderline case when p = n, growths of tf(t)

slower than et
n′

are allowed, where n′ = n
n−1 . The function e

tn
′
appears in an embedding theorem

by [Po, Tr, Yu], which replaces the standard Sobolev embedding in this critical situation.
Equations associated with non-coercive functionals with non-necessarily polynomial growth in

the gradient have been investigated e.g. in [CGMS] in an Orlicz-Sobolev space setting (see also
[FOR] for related problems). The relevant equations read

(1.7) −div

(
A′(|∇u|)
|∇u|

∇u
)

= f(u),

where A : [0,∞) → [0,∞) is a continuously di�erentiable, strictly convex function vanishing at 0,
and A′ denotes its derivative. These equations are still isotropic, in the sense that the coe�cient of
the di�erential operator, and the associated functional, just depend on the length of the gradient.
Indeed, Φ(ξ) = A(|ξ|) in this case. The result of [CGMS] requires that

(1.8) lim
|t|→∞

tf(t)

B(λ|t|)
= 0 for every λ > 0,
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where B is a Young function introduced in a (non-sharp, in general) embedding theorem for Orlicz-
Sobolev spaces of [DT].

Genuinely anisotropic equations of the form

(1.9) −
n∑
i=1

(|uxi |pi−2uxi)xi = f(u),

where pi > 1 for i = 1, . . . , n, and the subscript xi denotes partial derivative with respect to xi, are
the subject of [FGK]. They are the Euler equations of functionals whose integrand is endowed with
a peculiar structure, and agrees with the sum of multiples of the powers pi of the partial derivatives
of trial functions. Precisely, Φ(ξ) =

∑n
i=1

1
pi
|ξi|pi . A basic role in discussing anisotropic equations of

the form (1.9) is played by the harmonic average p of the exponents pi, de�ned by

(1.10)
1

p
=

1

n

n∑
i=1

1

pi
.

In [FGK], it is assumed that either p > n, or 1 < p < n and

(1.11) lim
|t|→∞

tf(t)

|t|q
= 0 for some q < p∗,

where p∗ stands for the Sobolev conjugate of p.
The novelty of our contribution is twofold. On one hand, it deals with general problems as in (1.1)

involving a function Φ without any additional special structure. In particular, Dirichlet problems
associated with equations of the form (1.4), (1.7) and (1.9) are encompassed as special instances.
On the other hand, even in these special instances, our result enhances the available results in the
literature under some respect.

The underlying functional framework of the present paper is quite unconventional, due to the
general structure of the equations in question. This calls for the development of some new aspects
of the theory of anisotropic Orlicz-Sobolev spaces, which provide a natural function space setting
for the problems under consideration. A key role is played by a notion of subcritical growth for f
near in�nity, which depends on a sharp embedding theorem for anisotropic Orlicz-Sobolev spaces.
Such an embedding involves a Young function Φn, which enters as an optimal Sobolev conjugate of
Φ. A precise statement of our main result can be found in the next section. Here, we limit ourselves
to mentioning that our requirement on f near in�nity amounts to

(1.12) lim
|t|→∞

tf(t)

Φn(λ|t|)
= 0 for every λ > 0 ,

unless (a suitable average of) Φ grows so fast for every admissible function u to be automatically
bounded, in which case no assumption on f near in�nity is needed. Let us emphasize that, not only
conditions (1.6), (1.8) and (1.11) are included in (1.12), but they are also weakened by (1.12) in
certain situations. For instance, even when Φ depends on ξ just through its length |ξ|, the function
Φn may actually grow faster than the function B appearing in (1.8).

2 Main result

A formulation of our existence theorem requires a few notations. Given any function Φ ∈ C1(Rn)
as above, de�ne the quantities

iΦ = lim inf
|ξ|→∞

ξ · Φξ(ξ)

Φ(ξ)
, sΦ = lim sup

|ξ|→∞

ξ · Φξ(ξ)

Φ(ξ)
,
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where the dot “ · ” denotes scalar product in Rn. Note that, owing to our assumptions on Φ, one
has that 1 ≤ iΦ ≤ sΦ ≤ ∞.
By Φ∗ : [0,∞)→ [0,∞) we denote the (convex) function obeying

(2.1) |{ξ ∈ Rn : Φ(ξ) ≤ t}| = |{ξ ∈ Rn : Φ∗(|ξ|) ≤ t}| for t ≥ 0.

Observe that the function ξ 7→ Φ∗(|ξ|) agrees with the spherically increasing symmetral of Φ, and
can be regarded as a kind of " average in measure " of Φ.
Next, we call Φn : [0,∞)→ [0,∞] the optimal Sobolev conjugate of Φ, de�ned as

(2.2) Φn(t) = Φ∗(H
−1(t)) for t ≥ 0,

where H : [0,∞)→ [0,∞) is given by

H(t) =

(∫ t

0

(
τ

Φ∗(τ)

) 1
n−1

dτ

)n−1
n

for t ≥ 0,

provided that the integral is convergent. Here, H−1 denotes the generalized left-continuous inverse
of H. The function Φn was introduced in [Ci3], where a sharp embedding theorem for anisotropic
Orlicz-Sobolev spaces is presented (see also [Ci1, Ci2] for the isotropic case).

We are now ready to state and brie�y comment on the assumptions of our main result, contained
in Theorem 2.1 below. To begin with, we require that

(2.3) 1 < iΦ and sΦ <∞ .

Condition (2.3) ensures, in particular, the re�exivity of the anisotropic Orlicz-Sobolev space asso-
ciated with the function Φ � see Proposition 3.1, Section 3.
In the present setting, an Ambrosetti-Rabinowitz type condition takes the form

(2.4) lim inf
t→±∞

F (t) > 0 ,

and

(2.5) lim inf
t→±∞

t f(t)

F (t)
> sΦ.

A decay assumption for f at 0 depends on Φ only through Φ∗, and reads

(2.6) lim
t→0

tf(t)

Φ∗(λ|t|)
= 0 for every λ > 0 .

Finally, the subcritical growth condition on f at in�nity to which we alluded above comes into play.
The growth condition in question is only needed when

(2.7)
∫ ∞( τ

Φ∗(τ)

) 1
n−1

dτ =∞ ,

and amounts to requiring that

(2.8)
∫

0

(
τ

Φ∗(τ)

) 1
n−1

dτ <∞ ,



5

and

(2.9) lim
t→±∞

tf(t)

Φn(λ|t|)
= 0 for every λ > 0 .

If, on the contrary,

(2.10)
∫ ∞( τ

Φ∗(τ)

) 1
n−1

dτ <∞ ,

a condition which ensures that any function from the Orlicz-Sobolev space associated with Φ is
bounded, then no further condition on f near in�nity has to be imposed.

Theorem 2.1 Let Ω be an open set in Rn, with n ≥ 2, such that |Ω| <∞. Assume that Φ ∈ C1(Rn)
is an even, strictly convex function, vanishing at 0. Let f be a continuous function. Assume that

conditions (2.3)�(2.6) are ful�lled, and that either (2.7) holds and (2.8)�(2.9) are in force, or (2.10)
holds. Then the Dirichlet problem (1.1) admits a non trivial, bounded, weak solution u.

Theorem 2.1 is specialized to a few special instances, including (1.4), (1.7) and (1.9), in Section
5. Section 3 is devoted to some preliminary results on anisotropic Orlicz-Sobolev spaces built upon
n-dimensional Young functions. The proof of Theorem 2.1 is then accomplished in Section 4.

3 Anisotropic Orlicz-Sobolev spaces and the Nemytskii operator

A function A : [0,∞)→ [0,∞] is called a Young function if it is convex, vanishes at 0, and is neither
identically equal to 0, nor to in�nity. De�nitions and properties concerning Young functions, as well
as n-dimensional Young functions, to be used in what follows, are collected in the Appendix.
Let G be a measurable set in RN , with N ≥ 1. The Orlicz space LA(G) is the set of all measurable
functions u : G→ R such that the Luxemburg norm

‖u‖LA(G) = inf

{
λ > 0 :

∫
G
A
(

1
λ |u|

)
dx ≤ 1

}
is �nite. The functional ‖ · ‖LA(G) is a norm on LA(G), which makes the latter a Banach space. If
|G| <∞ and A ∈ ∆2 near in�nity, then

∫
GA(|u|)dx <∞ for every u ∈ LA(G).

The Hölder type inequality

(3.1)
∫
G
|uv| dx ≤ 2‖u‖LA(G)‖v‖LÃ(G)

holds for every u ∈ LA(G) and v ∈ LÃ(G). Here, Ã denotes the Young conjugate of A.

Assume that |G| < ∞. Let A and B be Young functions such that A dominates B near in�n-
ity. Then

LA(G)→ LB(G),

where the arrow “→ ” stands for continuous embedding. In particular,

LA(G)→ L1(G)

for any Young function A.
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Orlicz spaces of Rn-valued measurable functions are built upon n-dimensional Young functions.
Let n ≥ 1. A function Φ : Rn → [0,∞] is called an n-dimensional Young function if it is convex,
Φ(0) = 0, Φ(ξ) = Φ(−ξ) for ξ ∈ Rn, and for every t > 0, the set {ξ ∈ Rn : Φ(ξ) < t} is bounded
and contains an open neighborhood of 0.
The Orlicz space LΦ(G,Rn) is the set of all measurable functions U : G→ Rn such that the norm

‖U‖LΦ(G,Rn) = inf

{
λ > 0 :

∫
G

Φ
(

1
λU
)
dx ≤ 1

}
is �nite. The space LΦ(G,Rn), equipped with this norm, is a Banach space.
The Hölder type inequality

(3.2)
∫
G
|U · V | dx ≤ 2‖U‖LΦ(G,Rn)‖V ‖LΦ̃(G,Rn)

holds for every U ∈ LΦ(G,Rn) and V ∈ LΦ̃(G,Rn), where Φ̃ denotes the Young conjugate of Φ.
Assume that |G| <∞. If Φ ∈ ∆2 near in�nity, then

∫
G Φ(U)dx <∞ for every U ∈ LΦ(G,Rn). By

[Sch, Corollary 7.2],

(3.3) LΦ(G,Rn) is re�exive if and only if Φ ∈ ∆2 ∩∇2 near in�nity.

If Φ and Ψ are n-dimensional Young functions such that Φ dominates Ψ near in�nity, then

LΦ(G,Rn)→ LΨ(G,Rn).

In particular,

(3.4) LΦ(G,Rn)→ L1(G,Rn)

for any n-dimensional Young function Φ.

Now, let Ω be an open set in Rn, n ≥ 2, such that |Ω| < ∞. Given an n-dimensional Young
function Φ, the anisotropic Orlicz-Sobolev space W 1,Φ

0 (Ω) is de�ned as

W 1,Φ
0 (Ω) = {u : Ω→ R :the continuation of u by 0 outside Ω

is weakly di�erentiable in Rn, and ∇u ∈ LΦ(Ω,Rn)}.

The isotropic Orlicz-Sobolev space W 1,A
0 (Ω) associated with a Young function A is de�ned analo-

gously, on requiring that |∇u| ∈ LA(Ω).
One has that W 1,Φ

0 (Ω), equipped with the norm

‖u‖
W 1,Φ

0 (Ω)
= ‖∇u‖LΦ(Ω,Rn),

is a Banach space. A proof of this fact relies upon standard properties of weak derivatives, and of
n-dimensional Young functions.

Proposition 3.1 Let Φ be an n-dimensional Young function such that Φ ∈ ∆2 ∩∇2 near in�nity.

Then the Orlicz-Sobolev space W 1,Φ
0 (Ω) is re�exive.

Proof. This is a consequence of property (3.3), and of the fact that W 1,Φ
0 (Ω) is isometrically

isomorphic to a closed subspace of the Orlicz spaces LΦ(Ω,Rn) via the map

W 1,Φ
0 (Ω) 3 u 7→ (ux1 , . . . , uxn) ∈ LΦ(Ω,Rn).
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An anisotropic Poincaré type inequality for functions in W 1,Φ
0 (Ω) is stated in the next proposi-

tion.

Proposition 3.2 Let Φ be an n-dimensional Young function, and let Φ∗ be the Young function

given by (2.1). Then ∫
Ω

Φ∗(|u|)dx ≤
∫

Ω
Φ(ω

− 1
n

n |Ω|
1
n∇u)dx,(3.5)

and

‖u‖LΦ∗ (Ω) ≤ ω
− 1
n

n |Ω|
1
n ‖∇u‖LΦ(Ω,Rn)(3.6)

for every u ∈W 1,Φ
0 (Ω). Here, ωn = π

n
2

Γ(1+n
2

) , the Lebesgue measure of the unit ball in Rn.

Proof. Let us call ΩF the open ball, centered at 0, with the same measure as Ω. Given any function
u ∈ W 1,Φ

0 (Ω), denote by uF : ΩF → [0,∞) the spherical symmetral of u, namely the radially
decreasing function equimeasurable with u. An anisotropic version of the Polyá-Szegö principle tells
us that uF ∈W 1,Φ∗

0 (ΩF), and

(3.7)
∫

Ω
Φ(∇u)dx ≥

∫
ΩF

Φ∗(|∇uF|)dx.

Inequality (3.7) is stated in [Kl]; a full proof can be found in [Ci4, Theorem 3.5]. On the other hand,
an isotropic Poincaré type inequality ensures that

(3.8)
∫

ΩF
Φ∗(|∇uF|)dx ≥

∫
ΩF

Φ∗
(
ω

1
n
n |Ω|−

1
nuF

)
dx ,

see [Ta, Lemma 3]. Finally, since u and uF are equimeasurable,

(3.9)
∫

ΩF
Φ∗
(
ω

1
n
n |Ω|−

1
nuF

)
dx =

∫
Ω

Φ∗
(
ω

1
n
n |Ω|−

1
n |u|

)
dx.

Inequality (3.5) is a consequence of (3.7)�(3.9). Inequality (3.6) follows on applying (3.5) with u
replaced with u

‖∇u‖
LΦ(Ω,Rn)

, via the very de�nition of Luxemburg norm.

A Sobolev-Poincaré inequality, with optimal Orlicz target norm, reads as follows. Assume that
Φ is an n-dimensional Young function ful�lling (2.8), and let Φn be the Sobolev conjugate of Φ
de�ned as in (2.2). By [Ci3, Theorem 1 and Remark 1], there exists a constant C = C(n) such that

(3.10)
∫

Ω
Φn

(
|u|

C(
∫

Ω Φ(∇u)dy)
1
n

)
dx ≤

∫
Ω

Φ(∇u)dx,

and

(3.11) ‖u‖LΦn (Ω) ≤ C‖u‖W 1,Φ
0 (Ω)

for every u ∈ W 1,Φ
0 (Ω). Moreover, LΦn(Ω) it the optimal, i.e. smallest possible, Orlicz space which

renders (3.11) true for all n-dimensional Young functions Φ with prescribed Φ∗.
In particular, if (2.10) holds, then Φn(t) =∞ for large t, and (3.11) yields

(3.12) ‖u‖L∞(Ω) ≤ C‖u‖W 1,Φ
0 (Ω)

for every u ∈W 1,Φ
0 (Ω).
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Remark 3.3 Since we are assuming that |Ω| <∞, inequalities (3.11) and (3.12) continue to hold
even if (2.8) fails, provided that Φn is de�ned with Φ∗ replaced by another Young function equivalent
near in�nity, which renders (2.8) true. We shall adopt the convention that Φn is de�ned according
to this procedure in what follows, whenever needed.

Let us notice that, under assumption (2.7),

(3.13)
∫

Ω
Φn(c|u|)dx <∞

for every u ∈W 1,Φ
0 (Ω) and every c ≥ 0. This fact can be shown to follow from (3.10).

The embedding
W 1,Φ

0 (Ω)→ L1(Ω)

is compact for any n-dimensional Young function Φ. Indeed, by (3.4), W 1,Φ
0 (Ω) → W 1,1

0 (Ω), and
the embedding W 1,1

0 (Ω)→ L1(Ω) is compact.
We denote by (W 1,Φ

0 (Ω))∗ the topological dual of W 1,Φ
0 (Ω), and by 〈·, ·〉 the duality brackets for the

pair
(
(W 1,Φ

0 (Ω))∗,W 1,Φ
0 (Ω)

)
.

In Proposition 3.6 below we analyze properties of the Nemytskii operator, associated with a
continuous function f : R → R, in the anisotropic Orlicz-Sobolev space W 1,Φ

0 (Ω). In preparation
for this, we need a few technical results contained in the following Lemmas 3.4 and 3.5.
Let F be de�ned as in (1.3). We introduce the auxiliary functions f : R→ [0,∞), de�ned as

(3.14) f(t) = max
s∈[−|t|,|t|]

|f(s)| for t ∈ R,

and F : [0,∞)→ [0,∞), de�ned as

(3.15) F (t) =

∫ t

0
f(τ) dτ for t ∈ [0,∞).

Note that f is even and non-decreasing in [0,∞), and hence F is a Young function.

Lemma 3.4 Let f : R→ R be a continuous function. Then

(3.16) |f(t)| ≤ F (2|t|)
|t|

for t 6= 0 ,

and

(3.17) |f(t)| ≤ 2F̃
−1 (

F (2|t|)
)

for t ∈ R .

Proof. We have that

F (2|t|) =

∫ 2|t|

0
f(τ)dτ ≥

∫ 2|t|

|t|
f(τ)dτ ≥ f(|t|)|t| ≥ |f(t)||t| for t ∈ R ,

namely (3.16). Inequality (3.17) follows from (3.16), via (6.2).
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Lemma 3.5 Assume that |G| <∞. Let B and E be Young functions such that E increases essen-

tially more slowly than B near in�nity. Let f : R→ R be a continuous function such that

(3.18) |f(t)| ≤ c(1 + Ẽ−1(E(c|t|))) for t ∈ R ,

and some constant c > 0.
(i) Let u ∈ LE(G) and let {uk} be a bounded sequence in LB(G) such that uk → u in LE(G). Then

(3.19) lim
k→∞

∫
G
f(uk)(uk − u)dx = 0 .

(ii) Assume that u ∈ LB(G) and {uk} ⊂ LB(G). If uk → u in LB(G), then

lim
k→∞

‖f(uk)− f(u)‖
LB̃(G)

= 0 .

Proof. (i) By (3.18) and (3.2),∣∣∣∣∫
G
f(uk)(uk − u)dx

∣∣∣∣ ≤ c(‖uk − u‖L1(G) +

∫
G
Ẽ−1(E(c|uk|))(uk − u)dx

)
(3.20)

≤ c
(
‖uk − u‖L1(G) + 2‖Ẽ−1(E(c|uk|))‖LẼ(G)

‖uk − u‖LE(G)

)
.

Since the sequence {uk} is bounded in LB(G), and E increases essentially more slowly than B near
in�nity, there exists a constant c′ > 0 such that∫

G
Ẽ(Ẽ−1(E(c|uk|)))dx =

∫
G
E(c|uk|)dx ≤ c′,

for k ∈ N. Hence, by property (6.1), applied with A = Ẽ,

1 ≥ 1

max{1, c′}

∫
G
Ẽ(Ẽ−1(E(c|uk|)))dx ≥

∫
G
Ẽ

(
Ẽ−1(E(c|uk|))

max{1, c′}

)
dx ,

namely,

(3.21) ‖Ẽ−1(E(c|uk|))‖LẼ(G)
≤ max{1, c′} .

Since uk → u in LE(G), and hence also in L1(G), equation (3.19) follows from (3.20) and (3.21).
(ii) By the de�nition of Luxemburg norm it su�ces to show that

(3.22) lim
k→∞

∫
G
B̃

(
|f(uk)− f(u)|

λ

)
dx = 0 for every λ > 0.

Since uk → u in LB(G), there exists a subsequence, still denoted by {uk}, and a function v ∈ LB(G)
such that uk → u a.e. in G, and |uk(x)| ≤ v(x) for a.e. x ∈ G, for every k ∈ N. A proof of this fact
follows along the same lines as in the classical special case when LB(G) is a Lebesgue space. The
Fatou type property of the norm ‖ · ‖LB(G), which tells us that ‖wk‖LB(G) ↗ ‖w‖LB(G) if {wk} is
any sequence such that 0 ≤ wk ↗ w, plays a role here.
Hence,

lim
k→∞

f(uk(x)) = f(u(x)) for a.e. x ∈ G.
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Equation (3.22) will thus follow if we prove that, for every λ > 0, there exists a function vλ ∈ L1(G)
such that

(3.23) B̃

(
|f(uk(x))− f(u(x))|

λ

)
≤ vλ(x) for a.e. x ∈ G,

for k ∈ N. By the convexity of B̃, and (3.18)

B̃

(
|f(uk(x))− f(u(x))|

λ

)
≤ B̃

(
2|f(uk(x))|

λ

)
+ B̃

(
2|f(u(x))|

λ

)
(3.24)

≤ B̃
(

2c

λ
+

2c

λ
Ẽ−1(E(c|uk(x)|))

)
+ B̃

(
2c

λ
+

2c

λ
Ẽ−1(E(c|u(x)|))

)
≤ B̃

(
4c

λ

)
+

1

2

[
B̃

(
4c

λ
Ẽ−1(E(c|uk(x)|))

)
+ B̃

(
4c

λ
Ẽ−1(E(c|u(x)|))

)]
for a.e. x ∈ G, and for k ∈ N. Thanks to (6.6), there exists t0 ≥ 0 such that

Ẽ−1(E(ct)) ≤ λ

4c
B̃−1(E(ct)) if t > t0 .

Hence

B̃

(
4c

λ
Ẽ−1(E(c|uk(x)|))

)
≤ B̃

(
4c

λ
Ẽ−1(E(ct0))

)
+ B̃

(
4c

λ

λ

4c
B̃−1(E(c|uk(x)|))

)
= B̃

(
4c

λ
Ẽ−1(E(ct0))

)
+ E(c|uk(x)|) for a.e. x ∈ G .

An analogous estimate holds with uk replaced by u. Altogether, from (3.24) we infer that

B̃

(
|f(uk(x))− f(u(x))|

λ

)
≤ B̃

(
4c

λ

)
+ B̃

(
4c

λ
Ẽ−1(E(ct0))

)
(3.25)

+
1

2
[E(cv(x)) + E(c|u(x)|)] for a.e. x ∈ G .

for k ∈ N . Since u, v ∈ LB(G), and E increases essentially more slowly than B near in�nity, the
right-hand side of (3.25) is an integrable function in G. Inequality (3.23) follows. The proof is
complete.

Proposition 3.6 Let Φ be an n−dimensional Young function,and let Φn be its Sobolev conjugate

de�ned by (2.2) (according to the convention of Remark 3.3). Let f : R → R be a continuous

function.

(i) Assume that Φ ful�ls (2.7), and

(3.26) lim sup
t→±∞

|tf(t)|
Φn(λ|t|)

<∞ for some λ > 0 .

Then the operator Nf : W 1,Φ
0 (Ω)→ (W 1,Φ

0 (Ω))∗, given by

〈Nf (u), v〉 =

∫
Ω
f(u)v dx

for u, v ∈W 1,Φ
0 (Ω), is well de�ned.

Moreover, if (3.26) is strengthened by assuming (2.9), then the operator Nf is continuous.

(ii) Assume that Φ ful�ls (2.10). Then the operator Nf is well de�ned and continuous.
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Proof. (i) Assumption (3.26) implies that (and is in fact equivalent to)

(3.27) |f(t)| ≤ c
(

1 +
Φn(c|t|)
|t|

)
for t 6= 0,

for some constant c > 0 . We begin by proving that f(u) ∈ LΦ̃n(Ω) for every u ∈ W 1,Φ
0 (Ω). Here,

Φ̃n stands for the Young conjugate of Φn. By (3.27), the convexity of Φ̃n, and (6.2),

Φ̃n

(
|f(u)|

2c2

)
≤ Φ̃n

(
1

2c

(
1 +

Φn(c|u|)
|u|

))
≤ 1

2
Φ̃n

(
1

c

)
+

1

2
Φ̃n

(
Φn(c|u|)
c|u|

)
(3.28)

≤ 1

2
Φ̃n

(
1

c

)
+

1

2
Φ̃n

(
Φ̃−1
n (Φn(c|u|))

)
=

1

2
Φ̃n

(
1

c

)
+

1

2
Φn(c|u|) a.e. in Ω .

From (3.28) and (3.13), we deduce that∫
Ω

Φ̃n

(
f(u)

2c2

)
dx <∞ ,

whence f(u) ∈ LΦ̃n(Ω). Therefore, owing to (3.1) and (3.11), there exists a constant C such that∫
Ω
|f(u)v|dx ≤ 2‖f(u)‖

LΦ̃n (Ω)
‖v‖LΦn (Ω) ≤ 2C‖f(u)‖

LΦ̃n (Ω)
‖v‖

W 1,Φ
0 (Ω)

for every u, v ∈W 1,Φ
0 (Ω) . This shows that Nf : W 1,Φ

0 (Ω)→ (W 1,Φ
0 (Ω))∗ is well de�ned.

Assume now that (2.9) is ful�lled. In order to prove the continuity of Nf , consider any function
u ∈ W 1,Φ

0 (Ω) and any sequence {uk} ⊂ W 1,Φ
0 (Ω) such that uk → u in W 1,Φ

0 (Ω). By (3.1) and the
Sobolev inequality (3.11), there exists a constant C such that∣∣∣∣∫

Ω
(f(uk)− f(u))vdx

∣∣∣∣ ≤ 2‖f(uk)− f(u)‖
LΦ̃n (Ω)

‖v‖LΦn (Ω)

≤ C‖f(uk)− f(u)‖
LΦ̃n (Ω)

‖v‖
W 1,Φ

0 (Ω)

for every v ∈W 1,Φ
0 (Ω), and every k ∈ N. Hence,

‖Nf (uk)−Nf (u)‖
(W 1,Φ

0 (Ω))∗
= sup
‖v‖

W
1,Φ
0 (Ω)

≤1
|〈Nf (uk), v〉 − 〈Nf (u), v〉|(3.29)

≤ C‖f(uk)− f(u)‖
LΦ̃n (Ω)

.

On the other hand, the Sobolev inequality (3.11) again implies that uk → u in LΦn(Ω). Assumption
(2.9), via inequality (3.17), allows us to apply Lemma 3.5, Part (ii), with c = 2, E = F , B = Φn,
and deduce that

(3.30) lim
k→∞

‖f(uk)− f(u)‖
LΦ̃n (Ω)

= 0.

The conclusion follows from (3.29) and (3.30).
(ii) The Sobolev inequality (3.12) holds. Thus, given any u, v ∈ W 1,Φ

0 (Ω), we have that u, v ∈
L∞(Ω), and, in particular, f(u) ∈ L1(Ω). Consequently, by (3.12) again, there exists a constant C
such that ∫

Ω
|f(u)v|dx ≤ ‖f(u)‖L1(Ω)‖v‖L∞(Ω) ≤ C‖f(u)‖L1(Ω)‖v‖W 1,Φ

0 (Ω)
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for every u, v ∈W 1,Φ
0 (Ω) . Hence, Nf : W 1,Φ

0 (Ω)→ (W 1,Φ
0 (Ω))∗ is well de�ned.

As for the continuity of Nf , if u ∈W 1,Φ
0 (Ω) and {uk} ⊂W 1,Φ

0 (Ω) are such that uk → u in W 1,Φ
0 (Ω),

then, by (3.12), uk → u in L∞(Ω), and hence f(uk)→ f(u) in L1(Ω). Therefore

‖Nf (uk)−Nf (u)‖
(W 1,Φ

0 (Ω))∗
= sup
‖v‖

W
1,Φ
0 (Ω)

≤1
|〈Nf (uk), v〉 − 〈Nf (u), v〉| ≤ C‖f(uk)− f(u)‖L1(Ω) ,

whence the conclusion follows.

4 Proof of Theorem 2.1

Assume throughout that Ω is an open set in Rn, with n ≥ 2, such that |Ω| < ∞. Let Φ be an
n-dimensional Young function, and let f be any continuous function such that f(u)ϕ ∈ L1(Ω) for
every u, ϕ ∈W 1,Φ

0 (Ω). A function u ∈W 1,Φ
0 (Ω) will be called a weak solution to problem (1.1) if

(4.1)
∫

Ω
Φξ(∇u) · ∇ϕdx =

∫
Ω
f(u)ϕdx

for every test function ϕ ∈W 1,Φ
0 (Ω).

The energy functional associated with problem (1.1) is the functional JΦ : W 1,Φ
0 (Ω)→ R de�ned

by (1.2). Any critical point of JΦ satis�es (4.1), and is hence a solution to (1.1). In order to establish
Theorem 2.1 it will thus su�ce to show that JΦ has a nontrivial critical point. To this purpose, we
shall make use of a version of the Mountain Pass Theorem, stated below, for functionals de�ned on
a Banach space X, and satisfying the Palais-Smale condition. Recall that a functional I : X → R
is said to satisfy the Palais-Smale condition if

any sequence {uk} ⊂ X such that {I(uk)} is bounded,(4.2)

and limk→∞ ‖I ′(uk)‖X∗ = 0, has a convergent subsequence in X.

A sequence {uk} as in (4.2) will be called a Palais-Smale sequence for the functional I.

Mountain Pass Theorem [AR] Let X be a real Banach space. Assume that the functional I :
X → R is of class C1, satis�es the Palais-Smale condition (4.2), and ful�lls the following properties:

(4.3) I(0) = 0 ,

(4.4) there exist ρ, σ > 0 such that inf‖u‖X=ρ I(u) ≥ σ,

(4.5) there exists u ∈ X such that ‖u‖X > ρ and I(u) ≤ 0.

Then I has a critical point u, such that I(u) = c ≥ σ, where

c = inf
γ∈G

max
s∈[0,1]

I(γ(s)) ,

and

G = {γ ∈ C0([0, 1], X) : γ(0) = 0, γ(1) = u} .

The continuous di�erentiability of the functional JΦ is the object of the following result.
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Proposition 4.1 Let Φ ∈ C1(Rn) be a strictly convex n-dimensional Young function satisfying

(2.3). Let Φn be its Sobolev conjugate de�ned by (2.2) (according to the convention of Remark 3.3).

Let f : R → R be a continuous function. Assume that either (2.7) and (2.9) hold, or (2.10) holds.
Then the functional JΦ, de�ned by (1.2), is of class C1.

Proposition 4.1 is a consequence of the next two propositions.

Proposition 4.2 Assume that Φ ∈ C1(Rn) is a strictly convex n-dimensional Young function

satisfying (2.3). Then the functional IΦ : W 1,Φ
0 (Ω)→ R, de�ned as

IΦ(u) =

∫
Ω

Φ(∇u)dx

for u ∈W 1,Φ
0 (Ω), is of class C1.

Proof. It su�ces to show that IΦ is Gâteaux di�erentiable, and that its Gâteaux derivative (IΦ)′G
is continuous. Let u, ϕ ∈W 1,Φ

0 (Ω), and let µ ∈ (0, 1). Since Φ ∈ C1(Rn),

(4.6) lim
µ→0+

Φξ(∇(u(x) + µ∇ϕ(x)) · ∇ϕ(x) = Φξ(∇u(x)) · ∇ϕ(x) for a.e. x ∈ Ω .

Moreover, for a.e. x ∈ Ω there exists ρµ,x ∈ (0, 1) such that

Φ(∇u(x) + µ∇ϕ(x))− Φ(∇u(x))

µ
= Φξ(∇u(x) + µρµ,x∇ϕ(x)) · ∇ϕ(x).(4.7)

On the other hand, by (6.14), (6.23), the convexity of Φ and the fact that µρµ,x ∈ (0, 1) we deduce
that

|Φξ(∇u(x) + µρµ,x∇ϕ(x)) · ∇ϕ(x)| ≤ Φ̃(Φξ(∇u(x) + µρµ,x∇ϕ(x))) + Φ(∇ϕ(x))

(4.8)

≤ Φ(2∇u(x) + 2µρµ,x∇ϕ(x)) + Φ(∇ϕ(x))

≤ 1

2
Φ(4∇u(x)) +

1

2
Φ(4∇ϕ(x)) + Φ(∇ϕ(x)) for a.e. x ∈ Ω.

Since Φ ∈ ∆2 near in�nity, by (4.8) the right-hand side of (4.7) belongs to L1(Ω). From (4.6) and
(4.7), via the dominated convergence theorem, we obtain that

〈(IΦ)′G(u), ϕ〉 = lim
µ→0+

∫
Ω

Φ(∇u+ µ∇ϕ)− Φ(∇u)

µ
dx =

∫
Ω

Φξ(∇u) · ∇ϕdx

for u, ϕ ∈W 1,Φ
0 (Ω).

We next show that the operator (IΦ)′G : W 1,Φ
0 (Ω) → (W 1,Φ

0 (Ω))∗ is continuous. Let {uk} be any
sequence in W 1,Φ

0 (Ω), converging to some function u ∈ W 1,Φ
0 (Ω). Then, ‖∇uk − ∇u‖LΦ(Ω) → 0 as

k →∞, and hence

(4.9) lim
k→∞

∫
Ω

Φ(λ(∇uk −∇u))dx = 0 for every λ > 0 .

Moreover, on passing, if necessary, to a subsequence, still denoted by {uk}, we have that ∇uk → ∇u
a.e. in Ω. Hence,

(4.10) Φ(∇uk)→ Φ(∇u) and Φξ(∇uk)→ Φξ(∇u) a.e. in Ω.
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We have that

0 ≤ Φ(2∇uk(x)) ≤ 1

2
Φ(4(∇uk(x)−∇u(x))) +

1

2
Φ(4∇u(x)) for a.e. x in Ω,(4.11)

for k ∈ N. Equation (4.9) ensures that there exists w ∈ L1(Ω) such that Φ(4(∇uk −∇u)) ≤ w a.e.
in Ω, for k ∈ N. Thus, inequality (4.11) implies that

(4.12) Φ(2∇uk(x)) ≤ w(x) + Φ(4∇u(x))

2
for a.e. x in Ω,

the right-hand side of (4.12) being a function in L1(Ω). By (2.3), and Proposition 6.5, Part (ii),
one has that Φ ∈ ∇2 near in�nity. This property is easily seen to imply that lim|ξ|→∞

Φ(ξ)
|ξ| = ∞.

Proposition 6.6 then yields Φ̃ ∈ ∆2 near in�nity. Consequently, there exist constants C > 2 and
M ≥ 0 such that

(4.13) Φ̃(2η) ≤ C̃Φ(η) if |η| > M .

Finally, on making use of the fact that Φ̃ is an even convex function, and of (4.13), (6.23) and
(4.12), one obtains that

Φ̃
(
Φξ(∇uk(x))− Φξ(∇u(x))

)
≤

Φ̃(2Φξ(∇uk(x)))

2
+

Φ̃(−2Φξ(∇u(x)))

2
(4.14)

≤ max
|η|≤M

Φ̃(2η) +
C

2

[
Φ̃(Φξ(∇uk(x))) + Φ̃(Φξ(∇u(x)))

]
≤ max
|η|≤M

Φ̃(2η) +
C

2
[Φ(2∇uk(x)) + Φ(2∇u(x))]

≤ max
|η|≤M

Φ̃(2η) +
C

2

[
w(x) + Φ(4∇u(x))

2
+ Φ(2∇u(x))

]
for a.e. x ∈ Ω .

Owing to (4.10) and (4.14), via the dominated convergence theorem one deduces that

lim
k→∞

∫
Ω

Φ̃
(
Φξ(∇uk)− Φξ(∇u)

)
dx = 0 .

Since Φ̃ ∈ ∆2 near in�nity, this also implies that

(4.15) lim
k→∞

‖Φξ(∇uk)− Φξ(∇u)‖
LΦ̃(Ω,Rn)

= 0 .

Clearly, the above argument applies to any subsequence of {uk}. This ensures that equation (4.15)
holds, in fact, for the whole sequence {uk}.
Now, let ϕ ∈W 1,Φ

0 (Ω). Thanks to (3.2),∣∣〈(IΦ)′G(uk)− (IΦ)′G(u), ϕ〉
∣∣ =

∣∣∣∣∫
Ω

(Φξ(∇uk)− Φξ(∇u)) · ∇vdx
∣∣∣∣

≤ 2‖Φξ(∇uk)− Φξ(∇u)‖
LΦ̃(Ω,Rn)

‖∇ϕ‖LΦ(Ω,Rn) .

Thereby, from (4.15) we infer that

lim
k→∞

‖(IΦ)′G(uk)− (IΦ)′G(u)‖
(W 1,Φ

0 (Ω))∗
≤ 2 lim

k→∞
‖Φξ(∇uk)− Φξ(∇u)‖

LΦ̃(Ω,Rn)
= 0

The continuity of (IΦ)′G is thus established.
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Proposition 4.3 Let Φ be a n−dimensional Young function, and let Φn be its Sobolev conjugate de-

�ned by (2.2) (according to the convention of Remark 3.3). Let f : R→ R be a continuous function.

Assume that either (2.7) and (2.9) hold, or (2.10) holds. Then the functional Lf : W 1,Φ
0 (Ω) → R,

de�ned by

Lf (u) =

∫
Ω
F (u)dx

for u ∈W 1,Φ
0 (Ω), is of class C1.

The following Lemma is needed in the proof of Proposition 4.3. Its proof makes use of calculus
arguments, and will be omitted for brevity.

Lemma 4.4 Let B be a Young function, and let f : R→ R be a continuous function. Let f , F and

F be the functions associated with f as in (1.3), (3.14) and (3.15), respectively.
(i) If

(4.16) lim
t→0

tf(t)

B(λ|t|)
= 0 for every λ > 0 ,

then,

(4.17) lim
t→0

tf(t)

B(λ|t|)
= 0, and lim

t→0

F (t)

B(λ|t|)
= lim

t→0

F (|t|)
B(λ|t|)

= 0 for every λ > 0 .

(ii) If

(4.18) lim
t→∞

B(t)

t
=∞ ,

and

(4.19) lim
t→±∞

tf(t)

B(λ|t|)
= 0 for every λ > 0 ,

then,

(4.20) lim
t→±∞

tf(t)

B(λ|t|)
= lim

t→±∞

F (t)

B(λ|t|)
= lim

t→±∞

F (|t|)
B(λ|t|)

= 0 for every λ > 0 .

In particular, the function F increases essentially more slowly than B near in�nity.

Proof of Proposition 4.3. We shall show that Lf is Gâteaux di�erentiable in W 1,Φ
0 (Ω), and

that its Gâteaux derivative (Lf )′G is continuous. To this purpose, �x any u, ϕ ∈ W 1,Φ
0 (Ω) and let

µ ∈ (0, 1). By the continuity of f ,

(4.21) lim
µ→0

F (u(x) + µϕ(x))− F (u(x))

µ
= f(u(x))ϕ(x) for a.e. x ∈ Ω.

Moreover, for a.e. x ∈ Ω, there exists θµ,x ∈ (0, 1) such that

F (u(x) + µϕ(x))− F (u(x))

µ
= f(u(x) + µθµ,xϕ(x))ϕ(x) .(4.22)
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By (3.16), and the fact that the function (0,∞) 7→ F (2s)
s is non-decreasing, we obtain that

|f(u(x) + µθµ,xϕ(x))ϕ(x)| ≤ F (2(|u(x) + µθµ,xϕ(x)|))
|u(x) + µθµ,xϕ(x)|

|ϕ(x)|(4.23)

≤ F (2(|u(x)|+ |ϕ(x)|))
|u(x)|+ |ϕ(x)|

|ϕ(x)| ≤ F (2(|u(x)|+ |ϕ(x)|)) for a.e. x ∈ Ω .

Assume �rst that conditions (2.7) and (2.9) are in force. One can verify that the function Φn(t)

dominates t
n
n−1 near in�nity, whatever Φ is, and hence limt→∞

Φn(t)
t = ∞. Thus, by Lemma 4.4

applied with B = Φn, the Young function F increases essentially more slowly that Φn near in�nity.
Owing to (3.13), the right-hand side of (4.23) belongs to L1(Ω). If, instead, condition (2.10) holds,
then the same assertion is true, owing to embedding (3.12). In any case, from (4.21)�(4.23) we
obtain, via the dominated convergence theorem, that

〈(Lf )′G(u), ϕ)〉 =

∫
Ω
f(u)ϕdx

for every u, ϕ ∈W 1,Φ
0 (Ω) .

The continuity of (Lf )′G is a straightforward consequence of Proposition 3.6.

Our next task consists in showing that the functional JΦ satis�es the Palais-Smale condition.
This is accomplished in the next proposition.

Proposition 4.5 Let Φ ∈ C1(Rn) be an n-dimensional Young function satisfying (2.3). Let Φn be

its Sobolev conjugate de�ned by (2.2) (according to the convention of Remark 3.3). Let f : R → R
be a continuous function satisfying (2.5). Assume that either (2.7) and (2.9) hold, or (2.10) holds.
Then the functional JΦ satis�es the Palais-Smale condition (4.2).

The proof of Proposition 4.5 makes use of the next lemma. In what follows, the arrow “ ⇀ ”
denotes weak convergence.

Lemma 4.6 Assume that Φ ∈ C1(Rn) is an even, strictly convex, nonnegative function, vanishing

at 0, and satisfying (2.3). Then the operator T : W 1,Φ
0 (Ω)→ (W 1,Φ

0 (Ω))∗, de�ned as

〈Tu, v〉 =

∫
Ω

Φξ(∇u) · ∇v dx

for u, v ∈ W 1,Φ
0 (Ω), is well de�ned. Moreover, if u ∈ W 1,Φ

0 (Ω), and {uk} ⊂ W 1,Φ
0 (Ω) is a sequence

such that

uk ⇀ u in W 1,Φ
0 (Ω),

and

(4.24) lim sup
k→∞

〈T (uk), uk − u〉 ≤ 0,

then uk → u in W 1,Φ
0 (Ω).

Proof. Let us begin by showing that T is well de�ned. Owing to (6.23) and (3.2), if u ∈W 1,Φ
0 (Ω),

then Φξ(∇u) ∈ LΦ̃(Ω,Rn). Moreover, if also v ∈W 1,Φ
0 (Ω), then, by (3.2),∫

Ω
|Φξ(∇u) · ∇v|dx ≤ 2‖Φξ(∇u)‖

LΦ̃(Ω,Rn)
‖∇v‖LΦ(Ω,Rn) .
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This guarantees that T is well de�ned, and that

‖T (u)‖
(W 1,Φ

0 (Ω))∗
≤ 2‖Φξ(∇u)‖

LΦ̃(Ω,Rn)
.

Now, let {uk} be a sequence as in the statement. Observe that

(4.25) lim
k→∞

∫
Ω

Φξ(∇u) · (∇uk −∇u) dx = 0 .

By (4.24) and (4.25), for every σ > 0, there exists kσ ∈ N such that

(4.26)
∫

Ω
(Φξ(∇uk)− Φξ(∇u)) · (∇uk −∇u)dx < σ

if k > kσ. Given t, τ > 0, set

l = inf{(Φξ(ξ)− Φξ(η)) · (ξ − η) : |ξ| ≤ τ, |η| ≤ τ, |ξ − η| > t}.

Inasmuch as Φ ∈ C1(Rn) and is strictly convex,

l > 0 for t, τ > 0.

Set
Ωk = {x ∈ Ω : |∇uk(x)| ≤ τ, |∇u(x)| ≤ τ, |∇uk(x)−∇u(x)| > t}.

Owing to (4.26),

l|Ωk| =
∫

Ωk

l dx ≤
∫

Ω
(Φξ(∇uk)− Φξ(∇u)) · (∇uk −∇u)dx < σ

if k > kσ. Thus,

|Ωk| <
σ

l
if k > kσ .

By the strict convexity of Φ, and property (6.7), there exists a constant c > 0 such that

Φ(ξ) ≥ c|ξ| if |ξ| ≥ 1 .

Since uk ⇀ u, there exists M > 0 such that ‖uk‖W 1,Φ
0 (Ω)

≤M for k ∈ N, and ‖u‖
W 1,Φ

0 (Ω)
≤M . Fix

τ > M . Then,

cτ

M
|{x ∈ Ω : |∇uk(x)| ≥ τ}| ≤ c

∫
{|∇uk|≥τ}

|∇uk|
M

dx ≤
∫
{|∇uk|≥τ}

Φ

(
∇uk
M

)
dx ≤ 1

for k ∈ N. Analogously,
cτ

M
|{x ∈ Ω : |∇u(x)| ≥ τ}| ≤ 1 .

Hence,

|{x ∈ Ω : |∇uk(x)| ≥ τ}| ≤ M

cτ
and |{x ∈ Ω : |∇u(x)| ≥ τ} ≤ M

cτ
for τ > M .

Fix ε > 0, and choose σ = lε
3 and τ > max{M, 3M

cε }. Then,

|{x ∈ Ω : |∇uk(x)−∇u(x)| > t}| ≤ |Gk|+ |{x ∈ Ω : |∇uk(x)| ≥ τ}|
+ |{x ∈ Ω : |∇u(x)| ≥ τ}| < ε if k > kσ.
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Thus,∇uk → ∇u in measure and, up to a subsequence still denoted by {uk}, a.e. in Ω. Consequently,
Φ(∇uk)→ Φ(∇u) a.e. in Ω, and by Fatou's theorem,

(4.27) lim inf
k→∞

∫
Ω

Φ(∇uk)dx ≥
∫

Ω
Φ(∇u)dx .

On the other hand, the convexity of Φ implies that

Φ(η) ≥ Φ(ξ) + Φξ(ξ)(η − ξ) for ξ, η ∈ Rn .

Hence, ∫
Ω

Φξ(∇uk) · (∇uk −∇u)dx ≥
∫

Ω
Φ(∇uk)dx−

∫
Ω

Φ(∇u)dx

for k ∈ N, and, by (4.24),

(4.28) lim sup
k→∞

∫
Ω

Φ(∇uk)dx ≤
∫

Ω
Φ(∇u)dx .

Coupling (4.27) with (4.28) tells us that

(4.29) lim
k→∞

∫
Ω

Φ(∇uk)dx =

∫
Ω

Φ(∇u)dx .

Since Φ is ∆2 near in�nity, the convergence of ∇uk to ∇u a.e. and equation (4.29) imply that
‖∇uk −∇u‖LΦ(Ω) → 0 as k → ∞. This follows along the same lines as in the case when standard
isotropic Orlicz norms are involved � see e.g. [RR1, Chapter 3, Theorem 12]. Inasmuch as the whole
argument clearly applies to any subsequence of {uk}, the conclusion follows.

Proof of Proposition 4.5. Let {uk} ⊂ W 1,Φ
0 (Ω) be a Palais-Smale sequence for JΦ. Since the

sequence {JΦ(uk)} is bounded, there exists a subsequence, still denoted by {uk}, and a number
c ∈ R such that limk→∞ JΦ(uk) = c. Thus, for every ε > 0, there exists kε ∈ N such that

(4.30) c− ε < JΦ(uk) < c+ ε if k > kε.

On the other hand, since limk→∞ ‖J ′Φ(uk)‖(W 1,Φ
0 (Ω))∗

= 0, there exists a sequence {εk} such that

εk → 0+, and

(4.31) −εk‖ϕ‖W 1,Φ
0 (Ω)

≤
∫

Ω
Φξ(∇uk) · ∇ϕdx−

∫
Ω
f(uk)ϕdx ≤ εk‖ϕ‖W 1,Φ

0 (Ω)

for every ϕ ∈W 1,Φ
0 (Ω).

Given any σ > 0, there exists M ≥ 0 such that

(sΦ + σ)Φ(ξ)− Φξ(ξ) · ξ ≥ 0 if |ξ| ≥M .

On setting α = sΦ + 2σ, the last inequality can be rewritten as

(4.32) σΦ(ξ) ≤ αΦ(ξ)− Φξ(ξ) · ξ if |ξ| ≥M .

By (2.5), if σ is su�ciently small, then

(4.33) αF (t)− f(t)t < 0 if |t| ≥M ,
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provided that M is su�ciently large.
Now, choose ϕ = uk in and (4.31), multiply through (4.30) by α, and add the resulting equations
to obtain that ∫

Ω
(αΦ(∇uk)− Φξ(∇uk) · ∇uk) dx−

∫
Ω

(αF (uk)− f(uk)uk)dx(4.34)

≤ α(c+ ε) + εk‖uk‖W 1,Φ
0 (Ω)

for k > kε. From (4.32), (4.34), (4.33) we deduce that

σ

∫
Ω

Φ(∇uk)dx ≤
∫
{|∇uk|≥M}

(αΦ(∇uk)− Φξ(∇uk) · ∇uk) dx+ σ

∫
{|∇uk|<M}

Φ(∇uk)dx(4.35)

=

∫
Ω

(αΦ(∇uk)− Φξ(∇uk) · ∇uk) dx

+

∫
{|∇uk|<M}

(
σΦ(∇uk)− αΦ(∇uk) + Φξ(∇uk) · ∇uk

)
dx

≤ α(c+ ε) + εk‖uk‖W 1,Φ
0 (Ω)

+

∫
|uk|≤M

(αF (uk)− f(uk)uk)dx+ C

≤ C ′ + εk‖uk‖W 1,Φ
0 (Ω)

for k > kε, for some constants C = C(M,Φ, α) and C ′ = C ′(M,Φ, α).
We claim that {uk} is bounded in W 1,Φ

0 (Ω). To verify this claim, suppose, by contradiction, that
{uk} is unbounded. In particular, on passing, if necessary, to a subsequence, we may assume that

‖uk‖W 1,Φ
0 (Ω)

− ε > 1 for k ∈ N .

By the very de�nition of Luxemburg norm, and property (6.7)

1 <

∫
Ω

Φ

(
∇uk

‖uk‖W 1,Φ
0 (Ω)

− ε

)
dx ≤

∫
Ω

Φ(∇uk)
‖uk‖W 1,Φ

0 (Ω)
− ε

dx

for k ∈ N. Hence,

(4.36) ‖uk‖W 1,Φ
0 (Ω)

− ε <
∫

Ω
Φ(∇uk)dx

for k ∈ N. Coupling (4.35) with (4.36) yields

(4.37) 1− ε

‖uk‖W 1,Φ
0 (Ω)

≤ C ′

σ‖uk‖W 1,Φ
0 (Ω)

+
εk
σ

for k > kε. Passing to the limit as k → ∞ in (4.37) leads to a contradiction. Our claim is thus
proved. Assumption (2.3) and Lemma 6.5 ensure, owing to Proposition 3.1, that the space W 1,Φ

0 (Ω)
is re�exive. Thus, there exists a subsequence of {uk}, still denoted by {uk}, that weakly converges
to some function u ∈ W 1,Φ

0 (Ω). Now, if (2.7) and (2.9) hold, then by (3.17) and (4.20), we may
apply Lemma 3.5 with E = F and B = Φn. Therefore, on choosing ϕ = u − uk in (4.31), and
exploiting (3.19), we deduce that

(4.38) lim sup
k→∞

∫
Ω

Φξ(∇uk) · (∇u−∇uk) dx = 0 .

Equation (4.38) continues to hold even if, instead, (2.10) is in force, since (3.19) trivially holds
thanks to embedding (3.12). Equation (4.38), via Lemma 4.6, implies that uk → u in W 1,Φ

0 (Ω).
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Lemma 4.7 Let Φ be an n-dimensional Young function and let f : R→ R be a continuous function.

Assume that condition (2.6) is ful�lled, and that either (2.7) holds and (2.8)�(2.9) are in force, or

(2.10) holds. Then,

(4.39) lim
‖u‖

W
1,Φ
0 (Ω)

→0

∫
Ω F (u)dx∫

Ω Φ(∇u)dx
= 0 .

Proof. By Lemma 4.4, for every ε > 0 there exists tε ≥ 0 such that

(4.40) |F (t)| < εΦ∗

(
ω

1
n
n |Ω|−

1
n |t|
)

if |t| ≤ tε .

From (4.40) and (3.5) we deduce that

(4.41)
|
∫
|u|≤tε F (u)dx|∫
Ω Φ(∇u)dx

<

ε
∫
|u|≤tε Φ∗

(
ω

1
n
n |Ω|−

1
n |u|

)
dx∫

Ω Φ(∇u)dx
<
ε
∫

Ω Φ(∇u)dx∫
Ω Φ(∇u)dx

= ε .

Suppose �rst that (2.7), (2.8) and (2.9) hold. Then we can apply Lemma 4.4 with B = Φn. In
particular, F increases essentially more slowly than Φn. Thus, one can show that there exists λ > 0
such that

(4.42) F (|t|) ≤ εΦn(λ|t|) if |t| ≥ tε .

Moreover, we can choose λ such that Cλ > 1, where C denotes the constant appearing in (3.10).
Fix δ < (Cλ)−n. Since, in particular, δ < 1, if ‖u‖

W 1,Φ
0 (Ω)

< δ then
∫

Ω Φ(∇u)dx < δ as well. Thus,

λ <
1

Cδ
1
n

<
1

C(
∫

Ω Φ(∇u)dx)
1
n

.

Hence, by (4.42) and (3.10),

(4.43)
|
∫
|u|>tε F (u)dx|∫
Ω Φ(∇u)dx

<
ε
∫
|u|>tε Φn(λ|u|)dx∫

Ω Φ(∇u)dx
<

ε
∫

Ω Φn

(
|u|

C(
∫
Ω Φ(∇u)dy)

1
n

)
dx∫

Ω Φ(∇u)dx
≤ ε .

Coupling (4.41) with (4.43) tells us that
|
∫
Ω F (u)dx|∫

Ω Φ(∇u)dx
< 2ε, if ‖u‖

W 1,Φ
0 (Ω)

< δ. Thus, equation (4.39)

follows.
Assume next that (2.10) holds. In this case, by (3.12), there exists δ > 0 such that ‖u‖L∞(Ω) < tε if

‖u‖
W 1,Φ

0 (Ω)
< δ. Equation (4.41) then yields

|
∫
Ω F (u)dx|∫

Ω Φ(∇u)dx
< ε, and equation (4.39) follows also in this

case.

Our last preparatory result in view of the proof of Theorem 2.1 is contained in the following
lemma.

Lemma 4.8 Let Φ ∈ C1(Rn) be an n-dimensional Young function, such that sΦ <∞. Let f : R→
R be a continuous function ful�lling (2.4) and (2.5). If u ∈ C1

0 (Ω) and u does not vanish identically,

then

(4.44) lim
t→∞

∫
Ω

(
Φ(t∇u)− F (tu)

)
dx = −∞.
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Proof. Owing to (6.21), for every ε, there exists M ≥ 0 such that

(4.45) Φ(tξ) ≤ Φ(ξ)tsΦ+ε if t ≥ 1 and |ξ| ≥M .

By (2.5), if ε and α > 0 are chosen in such a way that lim inft→±∞
t f(t)
F (t) > α > sΦ + ε, then

tf(t)

F (t)
≥ α if |t| is su�ciently large .

Owing to assumption (2.4) and to the last inequality, there exist a, b > 0 such that

(4.46) F (t) ≥ a|t|α − b for t ∈ R .

Now, let u be as in the statement and let t ≥ 1. Owing to (4.45) and (4.46),

JΦ(tu) ≤
∫
{|∇u|≤M}

Φ(t∇u) dx+

∫
{|∇u|>M}

Φ(t∇u) dx−
∫

Ω
a|tu|α dx+ b|Ω|

≤
∫
{|∇u|≤M}

Φ

(
tM
∇u
|∇u|

)
dx+ tsΦ+ε

∫
{|∇u|>M}

Φ(∇u) dx− atα‖u‖Lα(Ω) + b|Ω|

≤ tsΦ+ε

[∫
{|∇u|≤M}

Φ

(
M
∇u
|∇u|

)
dx+

∫
{|∇u|>M}

Φ(∇u) dx

]
− atα‖u‖Lα(Ω) + b|Ω|,

where ∇u|∇u| is taken to be 0 if ∇u = 0. Equation (4.44) follows, inasmuch as sΦ + ε < α.

We are now in a position to accomplish the proof of Theorem 2.1.

Proof of Theorem 2.1. Corollary 4.1 and Proposition 4.5 ensure that the functional JΦ, de�ned
by (1.2), is of class C1 and satis�es the Palais-Smale condition (4.2). Lemmas 4.7 and 4.8 tell us
that conditions (4.4) and (4.5), respectively, are ful�lled. Thus, JΦ satis�es the assumptions of the
Mountain Pass Theorem stated above, and hence JΦ has a nontrivial critical point u ∈ W 1,Φ

0 (Ω),
which is a solution to (1.1).
The boundedness of u follows from an application of [Al, Theorem 4.1].

5 Special instances

In this section, we specialize Theorem 2.1 to some classes of functions Φ, which govern the di�erential
operator in the equation in (1.1), with a distinctive structure, including those corresponding to
equations (1.4), (1.7) and (1.9). In particular, the novelties of our conclusions in comparison with
the existing literature are pointed out.

5.1 Isotropic growth

Consider �rst the isotropic case when Φ is radial, namely

(5.1) Φ(ξ) = A(|ξ|) for ξ ∈ Rn,

where A is as in (1.7). Problem (1.1) then reads

(5.2)

{
−div

(
A′(|∇u|)
|∇u| ∇u

)
= f(u) in Ω

u = 0 on ∂Ω .
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Owing to (5.1), we have that Φ∗(t) = A(t), and Φn(t) = An(t), where

An(t) = A(H−1
A (t)) for t ≥ 0,

and

HA(t) =

(∫ t

0

(
τ

A(τ)

) 1
n−1

dτ

)n−1
n

for t ≥ 0.

Moreover, iΦ = iA, and sΦ = sA, where we have set

iA = lim inf
t→∞

tA′(t)

A(t)
, sA = lim sup

t→∞

tA′(t)

A(t)
.

By Theorem 2.1, problem (5.2) has a nontrivial solution, provided that

1 < iA, sA <∞ ,

lim inf
t→±∞

tf(t)

F (t)
> sA ,

lim
t→0

tf(t)

A(λ|t|)
= 0 for every λ > 0 ,

and either ∫ ∞( τ

A(τ)

) 1
n−1

dτ <∞ ,

or ∫ ∞( τ

A(τ)

) 1
n−1

dτ =∞,
∫

0

(
τ

A(τ)

) 1
n−1

dτ <∞,

and

lim
t→±∞

tf(t)

An(λ|t|)
= 0 for every λ > 0.

This result strengthens [CGMS, Theorem 1.1], where an analogous conclusion is derived with the
function An replaced with another function, which, in general, can grow more slowly near in�nity
(see, for instance, the next example). Furthermore, in [CGMS] the assumption sA <∞ is replaced

with the more stringent assumption that supt≥0
tA′(t)
A(t) <∞.

5.2 Isotropic power type growth

Let us further specialize problem (5.2) to functions A having an explicit asymptotic behavior near
in�nity. Assume �rst that

A(t) = 1
p t
p for t ≥ 0,

for some p ∈ (1, n). With this choice of A, problem (5.2) agrees with the classical Dirichlet problem
for the p-Laplace equation {

−div(|∇u|p−2∇u) = f(u) in Ω

u = 0 on ∂Ω .

We then obtain that a nontrivial solution exists, provided that f ful�lls the following conditions:

lim inf
t→±∞

tf(t)

F (t)
> p ,
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lim
t→0

f(t)

|t|p−1
= 0 ,

(5.3) lim
t→±∞

f(t)

|t|p∗−1
= 0 ,

where p∗ = np
n−p , the Sobolev exponent associated with p. Note that this conclusion somewhat

augments standard results for the p-Laplace equation, which require that limt→±∞
f(t)
|t|q−1 = 0 for

some q < p∗.
If p > n, the same result holds, without assumption (5.3).
In the borderline case when A(t) = tn for every t ≥ 0, Theorem 2.1 does not apply, since both∫∞

( τ
A(τ))

1
n−1 dτ = ∞ and

∫
0 ( τ

A(τ))
1

n−1 dτ = ∞. However, if A(t) = tn for large t, but the latter
integral converges, then Theorem 2.1 entails that a nontrivial solution to problem (5.2) exists,
provided that

lim inf
t→±∞

tf(t)

F (t)
> n ,

lim
t→0

tf(t)

A(λ|t|)
= 0 for every λ > 0 ,

and

lim
t→±∞

tf(t)

eλ|t|n
′ = 0 for every λ > 0.

In [CGMS], the stronger assumption limt→±∞
tf(t)

eλ|t|
= 0 for every λ > 0 was instead required, as

well as a more stringent condition at 0 than
∫

0 ( τ
A(τ))

1
n−1 dτ <∞.

5.3 Anisotropic growth in spilt form

Here, we deal with anisotropic functions Φ with a split structure, namely functions given by

Φ(ξ) =
n∑
i=1

Ai(|ξi|) for ξ ∈ Rn ,

where Ai : [0,∞) → [0,∞), i = 1, ..., n, are strictly convex, continuously di�erentiable functions
vanishing at 0. In this case, problem (1.1) takes the form

(5.4)

{
−
∑n

i=1

(
A′i(uxi)

)
xi

= f(u) in Ω

u = 0 on ∂Ω .

The function Φ∗ is equivalent to the convex function Â : [0,∞)→ [0,∞), whose inverse is given by

Â−1(r) =
( n∏
i=1

A−1
i (r)

) 1
n

for r ≥ 0,

in the sense that there exist positive constants c1 and c2 such that

(5.5) Â(c1t) ≤ Φ∗(t) ≤ Â(c2t) for t ≥ 0,

see [Ci3, Equation (1.9)]. Hence, the Sobolev conjugate Φn is in turn equivalent to the function Ân,
given by

Ân(t) = Â(H−1

Â
(t)) for t ≥ 0,
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where now

H
Â

(t) =

(∫ t

0

(
τ

Â(τ)

) 1
n−1

dτ

)n−1
n

for t ≥ 0.

Furthermore, one can show that

(5.6) iΦ = min
1≤i≤n

iAi , sΦ = max
1≤i≤n

sAi .

Hence, an application of Theorem 2.1 tells us that problem (5.4) has a nontrivial solution,
provided that

1 < min
1≤i≤n

iAi , max
1≤i≤n

sAi <∞,

lim inf
t→±∞

tf(t)

F (t)
> max

1≤i≤n
sAi ,

lim
t→0

tf(t)

Â(λ|t|)
= 0 for every λ > 0,

and either ∫ ∞( τ

Â(τ)

) 1
n−1

dτ <∞ ,

or ∫ ∞( τ

Â(τ)

) 1
n−1

dτ =∞,
∫

0

(
τ

Â(τ)

) 1
n−1

dτ <∞

and

lim
t→∞

tf(t)

Ân(λt)
= 0 for every λ > 0.

5.4 Anisotropic power type growth

Consider the standard instance of (5.4), when

Ai(t) = 1
p1
tpi for t ≥ 0,

for some powers pi > 1, i = 1, . . . , n. Namely,

Φ(ξ) =

n∑
i=1

1
pi
|ξi|pi for ξ ∈ Rn.

Thus, problem (1.1) agrees with

(5.7)

{
−
∑n

i=1(|uxi |pi−2uxi)xi = f(u) in Ω

u = 0 on ∂Ω .

Note that here
iAi = sAi = pi for i = 1, . . . , n.

Owing to (5.5)
Φ∗(t) ≈ tp for t ≥ 0,
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where the relation “ ≈ ” means that the two sides are bounded by each other up to multiplicative
constants independent of t, and p is the harmonic average of the powers pi, de�ned via (1.10). In
particular, when p < n, one has that

Φn(t) ≈ tp∗ for t ≥ 0,

where p∗ = np
n−p , the Sobolev conjugate of p.

By the result of Subsection 5.3, we can thus conclude that problem (5.7) has a nontrivial solution,
provided that

lim inf
t→±∞

tf(t)

F (t)
> max

1≤i≤n
pi ,

lim
t→0

f(t)

|t|p−1
= 0,

and either p > n, or p < n and

(5.8) lim
t→±∞

f(t)

|t|p∗−1
= 0.

This recovers [FGK, Theorem 4], and extends it, in that, unlike [FGK], here we are not assuming
that f is just a power. Let us point out that in [FGK] the sharpness of assumption (5.8) is also
shown. This is accomplished by proving, via suitable anisotropic Pohozaev type identities, the non-
existence of nontrivial solutions to (5.7), in suitable classes of domains, in case of nonlinearities f
of the form f(t) = tq−1 with q > p∗.

5.5 Anisotropic power-logarithmic type growth

We deal here with a somewhat more general case than that of Subsection 5.4, corresponding to (5.4)
with the choice:

(5.9) Ai(t) = 1
pi
tpi logαi(c+ t) for t ≥ 0,

where pi > 1, αi ∈ R, i = 1, . . . , n, and c is a positive constant, su�ciently large (depending on the
powers pi and αi) for all functions Ai to be convex. Thus,

Φ(ξ) =

n∑
i=1

1
pi
|ξi|pi logαi(c+ |ξi|) for ξ ∈ Rn.

Note that
iAi = sAi = pi for i = 1, . . . , n

if the functions Ai are given by (5.9). Let p be de�ned as in (1.10), and let α be de�ned as

α =
p

n

n∑
i=1

αi
pi
.

One can verity, via (5.5), that

Φ∗(t) ≈

{
tp near 0,

tp logα(c+ t) near in�nity,
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up to multiplicative constants independent of t. Moreover, if p < n, then conditions (2.7) and (2.8)
are ful�lled, and

Φn(t) ≈ tp∗ log
αn
n−p (c+ t) near in�nity,

where p∗ denotes the Sobolev conjugate of p.
The result of Subsection 5.3 ensures that problem (5.4) has a nontrivial solution, provided that

lim inf
t→±∞

tf(t)

F (t)
> max

1≤i≤n
pi ,

lim
t→0

f(t)

|t|p−1
= 0,

and either p > n, or p < n and

lim
t→±∞

f(t)

|t|p∗−1 log
αn
n−p (|t|)

= 0.

6 Appendix: Young functions and n-dimensional Young functions

Standard Young functions have been extensively treated in the literature. Notations and properties
involving Young functions, which are exploited in this paper, are recalled in the �rst part of this
appendix. For a comprehensive treatment of this matter we refer the reader to the monographs
[KR, RR1, RR2].

The Young conjugate of a Young function A is the Young function Ã de�ned as

Ã(s) = sup{st−A(t) : t ≥ 0} for s ≥ 0.

One has that ˜̃A = A for any Young function A.
On denoting by A−1 the (generalized) left-continuous inverse of A, one has that

(6.1) t ≤ Ã−1(t)A−1(t) ≤ 2t for t ≥ 0 .

Hence,

(6.2)
A(t)

t
≤ Ã−1(A(t)) ≤ 2

A(t)

t
for t > 0 .

If A is a Young function, then

λA(t) ≤ A(λt) for λ ≥ 1 and t ≥ 0.

A Young function A is said to satisfy the ∆2-condition near in�nity if there exist constants C ≥ 2
and M ≥ 0 such that

(6.3) A(2t) ≤ CA(t) if t ≥M .

A Young function A is said to dominate another Young function B near in�nity, if there exist
constants c > 0 and M ≥ 0 such that

(6.4) B(t) ≤ A(ct) if t ≥M .
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If (6.4) holds with M = 0, then we say that A dominates B globally. Two Young functions A and
B are called equivalent near in�nity [globally] if they dominate each other near in�nity [globally].
The function B is said to increase essentially more slowly than A near in�nity, if

(6.5) lim
t→∞

B(λt)

A(t)
= 0 for everyλ > 0 .

Condition (6.5) is equivalent to

(6.6) lim
s→∞

A−1(s)

B−1(s)
= 0 .

The theory of n-dimensional Young functions seems to be much less developed than that of
standard Young functions. Contributions to this topic can be found in [Ro, Sch, Sk, Sk, Tr]. The
remaining part of this appendix is devoted to de�nitions and proofs of some results on this subject,
which are not straightforward consequences of parallel results for usual Young functions.

For technical reasons, we distinguish between Young functions and 1-dimensional Young func-
tions. However, extending a Young function to an even function to the whole of R results in a
1-dimensional Young function; conversely, the restriction of a 1-dimensional Young function to
[0,∞) is a Young function. Thus, any de�nition or result concerning Young functions translates
into a corresponding de�nition or result for 1-dimensional Young functions, and viceversa.
Given a Young function A, the function Rn 3 ξ 7→ A(|ξ|) is an (isotropic) n-dimensional Young
function. Moreover, given an n-dimensional Young function Φ, and a point ξ ∈ Rn, the function
[0,∞) 3 t 7→ Φ(tξ) is a Young function.

If Φ is an n-dimensional Young function, then

(6.7) λΦ(ξ) ≤ Φ(λξ) for λ ≥ 1 and ξ ∈ Rn.

An n−dimensional Young function Φ is said to satisfy the ∆2-condition near in�nity if there exist
constants C ≥ 2 and M ≥ 0 such that

(6.8) Φ(2ξ) ≤ CΦ(ξ) if |ξ| ≥M .

The function Φ is said to satisfy the ∇2-condition near in�nity if there exist constants C > 2 and
M ≥ 0 such that

(6.9) Φ(2ξ) ≥ CΦ(ξ) if |ξ| ≥M .

The global ∆2-condition and the global ∇2-condition are de�ned accordingly, with M = 0.
Our applications mainly require properties of functions satisfying these conditions near in�nity, and
we thus focus this case in what follows. The relevant properties have, however, global counterparts,
which are usually simpler to prove.

Proposition 6.1 Let Φ be an n-dimensional Young function.

(i) Φ ∈ ∆2 near in�nity if and only if there exist constants M ≥ 0 and k > 1 such that

(6.10) Φ(kξ) ≤ 2Φ(ξ) if |ξ| ≥M .

(ii) Φ ∈ ∇2 near in�nity if and only if there exist constants M ≥ 0 and k > 1 such that

(6.11) Φ(kξ) ≥ 2kΦ(ξ) if |ξ| ≥M .
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Proof. (i) Assume that (6.8) holds. Set δ = 1
C−1 ≤ 1, and k = 1 + δ. By the convexity of Φ and

(6.8), we have that

Φ(kξ) = Φ((k − 2δ + 2δ)ξ) = Φ((1− δ)ξ + δ(2ξ))

≤ (1− δ)Φ(ξ) + δΦ(2ξ) ≤ (1− δ)Φ(ξ) + δCΦ(ξ) = 2Φ(ξ) if |ξ| ≥M,

namely (6.10).
Conversely, assume that (6.10) is in force. Fix m ∈ N such that km ≥ 2, and choose C = 2m.
Iterating (6.10) tells us that

Φ(2ξ) ≤ Φ(kmξ) ≤ 2mΦ(ξ) = CΦ(ξ) if |ξ| ≥M .

Hence, (6.8) follows.
(ii) Assume that (6.9) holds. Fix m ≥ 1 such that

(
C
2

)m
> 2, namely Cm > 2m+1, and choose

k = 2m. Thus, by iteration of (6.9), we deduce that

Φ(ξ) ≤ 1

Cm
Φ(2mξ) <

1

2m+1
Φ(2mξ) =

1

2k
Φ(kξ) if |ξ| ≥M .

namely (6.11).
Finally, suppose that (6.11) holds. Thus,

(6.12) Φ

(
2ξ

k

)
≤ 1

2k
Φ(2ξ) if |ξ| ≥ Mk

2
.

Set C = 4k
2k−1 > 2, and M1 = Mk

2 . Owing to the convexity of Φ, to inequality (6.12), and to (6.7),

Φ(ξ) ≤ 1

4k
Φ(2ξ) +

1

2
· k − 1

k
Φ(2ξ) =

1

C
Φ(2ξ) if |ξ| ≥M1 .

This establishes property (6.9).

An n-dimensional Young function Ψ is said to dominate another n-dimensional Young function
Φ near in�nity if there exist constants c > 0 and M ≥ 0 such that

(6.13) Φ(ξ) ≤ Ψ(cξ) if |ξ| ≥M .

If (6.13) holds withM = 0, then we say that Ψ dominates Φ globally. Two n-dimensional Young
functions Ψ and Φ are called equivalent near in�nity [globally] if they dominate each other near
in�nity [globally].

The Young conjugate of Φ is the n-dimensional Young function Φ̃ given by

(6.14) Φ̃(η) = sup{η · ξ − Φ(ξ) : ξ ∈ Rn} for η ∈ Rn.

One has that

(6.15) ˜̃
Φ = Φ .

Proposition 6.2 Let Φ be a n-dimensional Young function. Then Φ is �nite-valued if and only if

(6.16) lim
|η|→∞

Φ̃(η)

|η|
=∞ .
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Proof. Let Φ be �nite-valued. Assume, by contradiction, that (6.16) fails. Then, there exist a
constant c > 0 and a sequence {ηk} ⊂ Rn such that limk→∞ |ηk| =∞, and Φ̃(ηk) ≤ c|ηk| for k ∈ N.
Since ηk

|ηk| = 1, there exists subsequence (still denoted by {ηk}), and θ ∈ Rn, with |θ| = 1, such that

limk→∞
ηk
|ηk| = θ. In particular, this limit implies that limk→∞

θ·ηk
|ηk| = |θ|2 = 1. Now, �x any t > c.

Therefore,

Φ(tθ) =
˜̃
Φ(tθ) = sup

η∈Rn
[tθ · η − Φ̃(η)] ≥ sup

k∈N
[tθ · ηk − Φ̃(ηk)] ≥ sup

k∈N

[(
t
θ · ηk
|ηk|

− c
)
|ηk|
]

=∞ .

This contradicts the fact that Φ is �nite-valued.
Conversely, assume that (6.16) holds. Then,

(6.17) Φ(ξ) =
˜̃
Φ(ξ) = sup

η∈Rn
[ξ · η − Φ̃(η)] ≤ sup

η∈Rn

[
|η||ξ| − Φ̃(η)

]
= sup

η∈Rn

[
|η|

(
|ξ| − Φ̃(η)

|η|

)]
.

Fix any ξ ∈ Rn. By (6.16), there exists K > 0 such that Φ̃(η)
|η| ≥ 2|ξ| if |η| > K, whence

(6.18) |η|

(
|ξ| − Φ̃(η)

|η|

)
≤ 0 if |η| > K .

From (6.17) and (6.18) we deduce that

Φ(ξ) ≤ sup
|η|≤K

[
|η|

(
|ξ| − Φ̃(η)

|η|

)]
≤ K|ξ| <∞ ,

and hence Φ is �nite-valued.

The following corollary is a straightforward consequence of Proposition 6.2 and of equation
(6.15).

Corollary 6.3 Let Φ be a n-dimensional Young function. Then

Φ is �nite-valued and lim|ξ|→∞
Φ(ξ)
|ξ| =∞

if and only if

Φ̃ is �nite-valued and lim|η|→∞
Φ̃(η)
|η| =∞ .

Proposition 6.4 Let Φ and Ψ be n-dimensional Young functions. Assume that Ψ is �nite-valued

and there exists M0 ≥ 0 such that

(6.19) Φ(ξ) ≥ Ψ(ξ) if |ξ| ≥M0 .

Then there exists M1 ≥ 0 such that

(6.20) Φ̃(η) ≤ Ψ̃(η) if |η| ≥M1 .

Conversely, assume that lim|ξ|→∞
Φ(ξ)
|ξ| = ∞ and (6.20) holds for some M1 ≥ 0. Then (6.19) holds

for some M0 ≥ 0.
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Proof. Assume that Ψ is �nite-valued, and (6.19) is in force. By Proposition 6.2, there existsM1 ≥ 0
such that Ψ̃(η) > M0|η| if |η| ≥M1. Thus, for any such η,

Φ̃(η) = sup
ξ∈Rn

[ξ · η − Φ(ξ)] = max

{
sup
|ξ|≤M0

[ξ · η − Φ(ξ)], sup
|ξ|>M0

[ξ · η − Φ(ξ)]

}

≤ max

{
M0|η|, sup

|ξ|>M0

[ξ · η −Ψ(ξ)]

}
≤ max

{
M0|η|, Ψ̃(η)

}
= Ψ̃(η) .

Inequality (6.20) is thus established.
Conversely, assume that lim|ξ|→∞

Φ(ξ)
|ξ| =∞, and (6.20) holds. Then there exists M0 ≥ 0 such that

Φ(ξ) > M1|ξ| whenever |ξ| ≥M0. By (6.15),

Ψ(ξ) =
˜̃
Ψ(ξ) = max

{
sup
|η|≤M1

[ξ · η − Ψ̃(η)], sup
|η|>M1

[ξ · η − Ψ̃(η)]

}

≤ max

{
M1|ξ|, sup

|η|>M1

[ξ · η − Φ̃(η)]

}
≤ max {M1|ξ|, Φ(ξ)} = Φ(ξ) if |ξ| ≥M0 ,

namely (6.19).

Proposition 6.5 Let Φ ∈ C1(Rn) be an n-dimensional Young function.

(i) Φ ∈ ∆2 near in�nity if and only if sΦ <∞.

(ii) Φ ∈ ∇2 near in�nity if and only if iΦ > 1.

Proof. Given any ξ ∈ Rn, de�ne the continuously di�erentiable Young function A by

A(t) = Φ(tξ) for t ≥ 0.

Note that A′(t) = Φξ(tξ) · ξ for all t ≥ 0.

(i) Assume that sΦ <∞. Then, for every ε > 0 there existsM ≥ 0 such that Φξ(ξ)·ξ
Φ(ξ) < sΦ+ε if |ξ| ≥

M . Given any ξ ∈ Rn such that |ξ| ≥M , we have that A′(t)
A(t) ≤

sΦ+ε
t if t 6= 0, whence

(6.21) A(t) ≤ tsΦ+εA(1) if t ≥ 1.

The choice t = 2 in the last inequality yields

Φ(2ξ) ≤ 2sΦ+εΦ(ξ) if |ξ| ≥M .

This tells us that Φ ∈ ∆2 near in�nity.
Conversely, assume that Φ ∈ ∆2 near in�nity. Since A′(t) is nonnegative and non-decreasing,

Φ(2ξ) = A(2) =

∫ 2

0
A′(t)dt ≥

∫ 2

1
A′(t)dt ≥ A′(1) = Φξ(ξ) · ξ for ξ ∈ Rn.

Thus, inasmuch as Φ ∈ ∆2 near in�nity, there exist C ≥ 2 and M ≥ 0 such that

CΦ(ξ) ≥ Φ(2ξ) ≥ Φξ(ξ) · ξ if |ξ| ≥M .

This shows that sΦ ≤ C.
(ii) Assume that iΦ > 1. Then, for every ε ∈ (0, iΦ − 1) there exists M > 0 such that Φξ(ξ)·ξ

Φ(ξ) >
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iΦ − ε > 1 if |ξ| ≥M . Hence, given any ξ ∈ Rn such that |ξ| ≥M , A
′(t)
A(t) ≥

iΦ−ε
t if t ≥ 1. Therefore,

A(t) ≥ tiΦ−εA(1) if t ≥ 1. Since iΦ − ε > 1, we may choose t = 2
1

iΦ−ε−1 in the last inequality. So
doing, we obtain that

Φ
(

2
1

iΦ−ε−1 ξ
)
≥ 2

iΦ−ε
iΦ−ε−1 Φ(ξ) if |ξ| ≥M .

Thus Φ ∈ ∇2 near in�nity, since equation (6.11) holds with k = 2
1

iΦ−ε−1 .
Conversely, assume that Φ ∈ ∇2 near in�nity. By (6.9), there exist C > 2 and M ≥ 0 such that

C

∫ 1

0
A′(t)dt = CΦ(ξ) ≤ Φ(2ξ) =

∫ 2

0
A′(t)dt if |ξ| ≥M .

Consequently,

C

∫ 2

0
A′(t)dt ≤

∫ 2

0
A′(t)dt+ C

∫ 2

1
A′(t)dt if |ξ| ≥M ,

and hence

(C − 1)Φ(2ξ) ≤ C
∫ 2

1
A′(t)dt ≤ CA′(2) = CΦξ(2ξ) · ξ if |ξ| ≥M .

Altogether,

1 <
2(C − 1)

C
≤

Φξ(2ξ) · 2ξ
Φ(2ξ)

if |ξ| ≥M ,

whence iΦ > 1.

Proposition 6.6 Let Φ be a �nite-valued n-dimensional Young function such that lim|ξ|→∞
Φ(ξ)
|ξ| =

∞.

(i) Φ ∈ ∆2 near in�nity if and only if Φ̃ ∈ ∇2 near in�nity.
(ii) Φ ∈ ∇2 near in�nity if and only if Φ̃ ∈ ∆2 near in�nity.

Proof. By Corollary 6.3 and equation (6.15), it su�ces to prove part (ii). Assume that Φ ∈ ∇2 near
in�nity. Let k and M be as in (6.11). De�ne the n-dimensional Young function Φ1 as Φ1(ξ) = Φ(kξ)

2k
for ξ ∈ Rn. Then

(6.22) Φ1(ξ) ≥ Φ(ξ) if |ξ| ≥M ,

and

Φ̃1(η) =
Φ̃(2η)

2k
for η ∈ Rn .

Owing to (6.22) and Proposition 6.4, there exists M1 > 0 such that Φ̃1(η) ≤ Φ̃(η) if |η| ≥M1. This
implies that Φ̃ ∈ ∆2 near in�nity.
Conversely, assume that Φ̃ ∈ ∆2 near in�nity, and let C > 2 and M ≥ 0 as in (6.8). De�ne the n-

dimensional Young function Ψ by Ψ(η) = Φ̃(2η)
C for η ∈ Rn. By Corollary (6.3), lim|ξ|→∞

Ψ(ξ)
|ξ| =∞.

We can thus argue as above, and �nd M1 > 0 such that

1

C
Φ(
Cξ

2
) = Ψ̃(ξ) ≥ ˜̃Φ(ξ) = Φ(ξ) if |ξ| ≥M1.

Hence, Φ ∈ ∇2 near in�nity.
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Proposition 6.7 Let Φ ∈ C1(Rn) be an n-dimensional Young function. If lim|ξ|→∞
Φ(ξ)
|ξ| =∞, then

(6.23) Φ̃(Φξ(ξ)) ≤ Φ(2ξ) for ξ ∈ Rn .

Proof. If ξ = 0, then equation (6.23) holds trivially. Assume now that ξ 6= 0. Set

(6.24) η = Φξ(ξ).

The function g : Rn → R, de�ned as

g(ζ) = η · ζ − Φ(ζ) for ζ ∈ Rn,

is concave. Moreover, owing to our assumptions, lim|ζ|→∞ g(ζ) = −∞. Thus, it attains its maximum
at every point ζ where its gradient vanishes, namely such that η = Φξ(ζ). In particular, by (6.24),
g attains its maximum at ξ. Therefore,

Φ̃(Φξ(ξ)) = Φ̃(η) = max g = g(ξ) = Φξ(ξ) · ξ − Φ(ξ) ≤ Φξ(ξ) · ξ ≤ Φ(2ξ).

Hence, inequality (6.23) follows.
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