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Flow of a Bingham Fluid in a non Symmetric Inclined Channel

Lorenzo Fusia,∗, Angiolo Farinaa

aUniversità degli Studi di Firenze

Dipartimento di Matematica e Informatica “Ulisse Dini”

Viale Morgagni 67/a, 50134 Firenze, Italy

Abstract

The flow of a Bingham fluid in a tilted channel of non uniform width is considered. The upper wall of the channel is assumed to

be flat but not parallel to the bottom one and the flow is driven by the gravity. A lubrication approximation is considered and an

analytical solution is determined. We find conditions ensuring the appearance of the plug at a certain distance from the channel

inlet. We also give an explicit formula for the pressure drop along the channel. Some numerical simulations are worked out for

different values of the Bingham number and for different slopes of the upper wall.
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1. Introduction

Viscoplastic fluids are characterized by the absence of deforma-

tions when the applied load is below a fixed threshold. Bingham

fluids are a special class of Viscoplatic fluids named so after

Bingham [3], [4], who described several types of paint using

this definition. Viscoplastic fluids constitute a very important

class of non-Newtonian fluids.

The modelling of Bingham materials is of crucial importance

in industrial applications, since a large variety of materials (e.g.

foams, pastes, slurries, oils, ceramics, etc.) exhibit the fun-

damental character of viscoplasticity, that is the capability of

flowing only if the stress is above some critical value.

Though the constitutive models (especially within the frame-

work of implicit constitutive theory [21], [23], [24]) appear to

be quite simple, the flow of these materials is difficult to pre-

dict, especially because of the presence of unknown interfaces

separating the yielded and the unyielded regions which are dif-

ficult to track, [2]. This is particularly evident when the flow

occurs in complex geometries and even when major simplifi-

cations, such as lubrication approximation, can be applied. In

some cases the Bingham model may lead to a paradox, known

as the “lubrication paradox”, which contradicts the assumption

of a truly unyielded phase, [17], [6], [20], [25] and [12].

During the last decades many different studies have been car-

ried out to explain the paradox. Walton and Bittleston [26], who

studied the axial flow in an eccentric annular duct, for instance,

proved that a true plug exists in the middle of the channel on

both the wide and narrow part of the annulus, with a pseudo-

plug placed between the two rigid zones. Balmforth and Craster

[1] and subsequently Frigaard and Ryan [6] developed asymp-

totic procedures that allow to overcome the lubrication paradox

and build a consistent solution for thin layer flows. As shown in
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[20], the paradox can indeed be resolved by considering higher

order terms of the lubrication expansion which shows that actu-

ally the plugs are slightly above the yield stress (pseudo plugs

in which true rigid plugs are embedded). Recently Muravleva

[18] has studied the planar squeeze flow of a Bingham fluid,

exploiting the asymptotic technique introduced in [1] determin-

ing intact true plug regions and overcoming thus the lubrication

paradox.

An interesting approach for circumventing the paradox con-

sists in the use of regularization procedures that regularize the

effective viscosity, as the bi-viscous model adopted in [27],

[14]. Another way to smooth the singularities arising from the

classical viscoplastic models is to take into account possible de-

formations of the plug, a procedure first suggested by Oldroyd

[19]. Regarding the latter approach, the authors have carried

out in the last ten years a series of papers in which they have

relaxed the hypothesis of a perfectly rigid unyielded region as-

suming that the plug may undergo elastic deformations [7], [8]

[9], [10], [11], [12].

Recently, in [15], [16], Fusi et al. have proposed a new

methodology to investigate the motion of unyielded part of a

viscoplastic fluid. With this procedure the authors were able

to overcome the paradox at the leading order of the lubrication

scaling.

In this new approach the unyielded part is modelled as an

evolving non material volume, whose motion is determined

only by the stress applied by the fluid that surrounds the un-

yielded plug. Momentum balance is then written using an inte-

gral formulation where only the external stresses acting on the

boundary are required.

The main advantage of this procedure is that no assumption

must be made on the order of magnitude of the stress when

applying the lubrication scaling. This is clearly useful, since,

within the unyielded domain, the Cauchy stress is “indetermi-

nate” and we cannot identify (neither a priori nor a posteriori)
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which term can be disregarded when the scaling is applied. This

approach has proved successful, allowing to determine a veloc-

ity field of the unyielded phase that does not depends on the

spatial coordinates (no lubrication paradox).

In this paper we use the procedure introduced in [15], [16],

to investigate the downhill motion of a Bingham fluid in a non

symmetric inclined channel: the upper wall of the channel is

assumed to be flat but not parallel to the bottom wall (see Fig.

1). We study the dynamics of the flow supposing that gravity is

the only driving force and we model the unyielded plug using an

integral approach we developed in [15], [16]. We developed the

model supposing that the local volumetric discharge is constant

throughout the channel.

We prove that we can explicitly track the yield surfaces that

separate the yielded from the unyielded domain and we find

constraints that ensure that the flow never comes to a stop. In

particular we find that the plug is placed between the walls

and expands as the channel narrows. We determine conditions

which guarantees the existence of the plug throughout the chan-

nel. We also give an explicit formula for the calculation of the

pressure drop. Finally in the Appendix, we provide a detailed

mathematical analysis to prove the existence and uniqueness of

the yield surfaces.

2. Mathematical modelling

In a Bingham fluid the Cauchy stress is given by1 T∗ = −P∗I +

S∗, with the deviatoric part given by

D∗ − S∗
[

IID∗

2η∗IID∗ + τ∗o

]

= 0, (1)

where D∗ is the symmetric part of the rate-of-strain tensor, η∗ is

a viscosity, τ∗o the critical threshold for the stress invariant

IIS∗ =

√

(2−1S∗ · S∗)

and

IID∗ =

√

(2−1D∗ · D∗).

Equation (1) holds when IIS∗ ≥ τ
∗
o, while IID∗ ≡ 0 when IIS∗ ≤

τ∗o. The shear stress-shear rate relation can be visualized writing

IIS∗ as a function of IID∗

IIS∗ = 2η∗IID∗ + τ
∗
o, (2)

We confine ourselves to a bi-dimensional setting like the one

depicted in Fig. 1. In practice we consider the flow occurring

in a channel of non uniform width over an inclined plane whose

tilt angle is α. The velocity field is assumed to be of the form

u∗(x∗, y∗, t∗) = u∗(x∗, y∗, t∗)e1 + v∗(x∗, y∗, t∗)e2 .

Referring again to Fig. 1, the flow domain is 0 < x∗ ≤ L∗,

0 ≤ y∗ ≤ h∗(x∗), where

h∗(x∗) = H∗ − Ã x∗,

1Throughout the paper the starred quantities are dimensional.

Figure 1: Flow down an inclined plane.

with Ã > 0 and H∗ − Ã L∗ > 0. The fluid domain is then

divided in a plug region [σ∗
1
, σ∗

2
] where IIS∗ ≤ τ

∗
o and two fluid

regions [0, σ∗
1
], [σ∗

2
, h∗] where IIS∗ ≥ τ

∗
o. Of course σ∗

1
and σ∗

2

are free boundaries that have to be determined. We assume that

the characteristic longitudinal length is L∗, and we denote by

H∗ the transversal characteristic length, i.e. H∗ = h∗(0). The

governing equations in the fluid region [0, σ∗
1
] ∪ [σ∗

2
, h∗] are

ρ∗
(

u∗t + u∗xu
∗
+ u∗yv∗

)

= ρ∗g∗ sinα − P∗x + (S ∗
11

)x + (S ∗
12

)y,

ρ∗
(

v∗t + v∗xu∗ + v∗yv∗
)

= −ρ∗g∗ cosα − P∗y + (S ∗
12

)x + (S ∗
22

)y,

where ρ∗ is the material density, g∗ is gravity (see again Fig. 1).

Mass balance is expressed by

u∗x + v∗y = 0,

In the rigid domain [σ∗
1
, σ∗

2
] the velocity field is the one of a

rigid motion





u∗ = −ω∗(t∗)y∗ + k∗
1
(t∗),

v∗ = ω∗(t∗)x∗ + k∗
2
(t∗),

(3)

where ω∗(t∗) (angular velocity) and k∗
j
(t∗) are unknown. Fol-

lowing the approach introduced in [15] we write the linear mo-

mentum conservation in the rigid part in the integral form
∫

Ω
∗
t

ρ∗
du∗

dt∗
dx∗ =

∫

∂Ω∗t

(T∗n)dσ∗ +

∫

Ω
∗
t

ρ∗f∗dx∗, (4)

where d/dt∗ is the material derivative and where

Ω
∗
t =

{

(x∗, y∗) : y∗ ∈ (σ∗1, σ
∗
2), x∗ ∈ (0, L∗)

}

,

and

f∗ = g∗ (sinα e1 − cosα e2) ,

represent the unyielded domain and the body force (gravity)

respectively. We assume no-slip boundary conditions u∗ = 0 on

y∗ = 0 and y∗ = h∗. We also assume that the volumetric flow

rate on each cross section is constant so that

U∗H∗ =

h∗∫

0

u∗(x∗, y∗, t∗)dy∗. (5)

2



3. Nondimensionalization

We assume that the ratio ε = H∗/L∗ is sufficiently small so that

lubrication approximation applies. Following [13] we rescale

the main variables of the problem in the following way

x∗ = L∗x, y∗ = εL∗y, u∗ = U∗u, v∗ = εU∗v,

h∗ = H∗h, σ∗1 = H∗σ1, σ
∗
2 = H∗σ2,

k∗1 = U∗k1, k∗2 = εU
∗k2, ω

∗
=

(

U∗H∗
−1
)

ω

where U∗ is the characteristic longitudinal velocity given by

(see [5])

U∗ =
H∗

2

ρ∗g∗ sinα

η∗
. (6)

Moreover

D∗ =

(

U∗

H∗

)

D, IID∗ =

(

U∗

H∗

)

IID, P∗ =

(

η∗U∗L∗

H∗
2

)

P,

S∗ =

(

η∗U∗

H∗

)

S , IIS∗ =

(

η∗U∗

H∗

)

IIS,

Remark 1. Recalling (6), we notice that the characteristic

pressure can also be expressed as

η∗U∗L∗

H∗
2
= ρ∗g∗L∗ sinα.

We introduce the nondimensional numbers2

Re =
ρ∗U∗H∗

η∗
, Bi =

(

τ∗oH∗

η∗U∗

)

, θ =
ε

tanα
, A =

Ã

ε
.

We assume Ã = O (ε) and require A < 1, so that the bottom and

upper plates are always detached. Hence

A ∈ [0, 1). (7)

We can reformulate the problem in the non dimensional form






εRe

(

ut + u1xu1 + uyv
)

= 1 − Px + ε(S 11)x + (S 12)y,

ε3
Re (vt + vxu + vyv) = −θ − Py + ε

2(S 12)x + ε(S 22)y,

ux + vy = 0,
(8)

where

S =

(

2 +
Bi

IID

)

D. (9)

The non dimensional equation of the upper plate becomes

h (x) = 1 − Ax. In the unyielded domain






u = −ω(t)y + k1(t),

ε2v = ω(t)x + ε2k2(t).

(10)

2
Re and Bi are the Reynolds and Bingham number respectively.

Remark 2. In (10) we have rescaled the angular velocity ω∗

with U∗H−1. This choice comes from the following observation.

Angular velocity ω∗ is found writing the non zero components

of the spin tensor

ω∗ =
1

2

(

∂u∗

∂y∗
−
∂v∗

∂x∗

)

,

so that

ω∗ =
U∗

2H∗

(

∂u

∂y
− ε2 ∂v

∂x

)

.

Assuming that all the derivatives are O(1), we find that the char-

acteristic angular velocity is U∗H∗
−1

. The scaling of (3) with the

characteristic angular velocity U∗H∗
−1

provides (10).

Actually the angular velocity ω∗ vanishes, as we shall see

from formula (29). Indeed, as rule of thumb, we know thatω∗ =

U∗κ∗, where κ
∗ is the curvature radius of the channel. Since

the channel is essentially flat, κ∗ → 0, and ω∗ → 0.

Following [15] we see that the first component of equation (4)

can be rewritten as

Reε





1∫

0

dx

σ2∫

σ1

du

dt
dy




=

σ2(0)∫

σ1(0)

(P − εS 11)|0 dy+

−

σ2(1)∫

σ1(1)

(P − εS 11)|1 dy +

1∫

0

[−Pσ1x + εS 11σ1x − S 12)]σ1
dx+

−

1∫

0

[−Pσ2x + εS 11σ2x − S 12)]σ2
dx +

1∫

0

[σ2 − σ1] dx = 0.

(11)

while the second component becomes

Re : ε3





1∫

0

dx

σ2∫

σ1

dv

dt
dy




= −

σ2(0)∫

σ1(0)

(ε2S 12)
∣
∣
∣
0

dy+

+

σ2(1)∫

σ1(1)

(ε2S 12)
∣
∣
∣
1

dy +

1∫

0

[

ε2S 12σ1x + P − εS 12)
]

σ1

dx+

−

1∫

0

[

ε2S 12σ2x + P − εS 12)
]

σ2

dx + −θ

1∫

0

[σ2 − σ1] dx = 0.

(12)

Condition (5) becomes

h∫

0

u(x, y, t)dy = 1. (13)

3



4. The zero order approximation

Focussing on the zero-order approximation (that is neglecting

all the terms containing ε) we find that in the viscous domain






0 = 1 − Px + (S 12)y,

0 = −θ − Py,

ux + vy = 0,

(14)

while in the rigid part






u = k1(t),

v = ω2(t)x + k2(t),

(15)

where ω2(t) is the second order term in the expansion of the

angular velocity

ω = ωo
︸︷︷︸

=0

+ ω1
︸︷︷︸

=0

ε + ω2ε
2
+ ......

From (14)2 we find that

P = −θy + Po(x, t) + x, (16)

where Po is unknown.

Remark 3. When writing (16) we are tacitly assuming that

Po(x, t) is the same for both the domains [0, σ1], [σ2, h]. This

fact comes from the observation that the mechanical pressure

is linear in y even in the unyielded domain. Indeed, let us go

back to (8). Such equation holds also in the unyielded domain,

where we know that

IIS =

√

S 2
12
+

1

2

(

S 2
11
+ S 2

22

)

,

and hence the components of S, are indeterminate but bounded.

Hence, applying the lubrication scaling to the system (8) we

find that equation (8)2 reduces to (14)2 also in the unyielded

domain. As a consequence we write

p
∣
∣
∣
∣
[0,σ1]

= −θy + Po1 + x,

p
∣
∣
∣
∣
[σ1,σ2]

= −θy + PoY + x,

p
∣
∣
∣
∣
[σ2 ,h]

= −θy + Po2 + x.

If we now impose the continuity of pressure across the yield

surfaces σ1, σ2 we find

Po1 = PoY = Po2,

which yields Po = Po1 = Po2.

The first component of the integral formulation of the plug mo-

mentum balance at the leading order reduces to

σ2(0)∫

σ1(0)

P|0 dy −

σ2(1)∫

σ1(1)

P|1 dy +

1∫

0

[

(−Pσ1x)|σ1
+ (Pσ2x)|σ2

]

dx+

+

1∫

0

[

− S 12|σ1
+ S 12|σ2

]

dx +

1∫

0

(σ2 − σ1)dx = 0. (17)

while the second

1∫

0

P|σ1
dx −

1∫

0

P|σ2
dx − θ

1∫

0

(σ2 − σ1)dx = 0. (18)

Because of (16) equation (18) is identically satisfied. From

(14)1 we find

Pox = (S 12)y,

while, from (9), it is easy to check that at the leading order

S 12 = uy + Bi

(

sign uy

)

,

and

uy + Bi

(

sign uy

)

= Poxy + c. (19)

Because of the no-slip condition it is clear that we are looking

for solutions such that

uy > 0 in (0, σ1), uy < 0 in (σ2, h),

and S 12|σ1
= Bi = −S 12|σ2

. Integrating by parts equation (17)

we find, after some algebra

−

1∫

0

Pox(σ2 − σ1)dx = 2Bi. (20)

that is the equation of motion in the unyielded plug. On inte-

grating (19) with classical no-slip conditions we get






u = Pox





(y − σ1)2 − σ2
1

2



 , y ∈ [0, σ1]

u = k1(t), y ∈ [σ1, σ2]

u = Pox

[

(y − σ2)2 − (h − σ2)2

2

]

, y ∈ [σ2, h]

(21)

The requirement u|σ1
= u|σ2

implies

σ2
1 = (h − σ2)2

=⇒ σ2 = h − σ1. (22)

so that σ2 is determined once σ1 is determined3. Relation (22)

shows that the unyielded plug is symmetric w.r.t. the centerline

of the channel y = h/2. For simplicity of notation we set σ =

σ1. We have

k1 = −
Poxσ

2

2
. (23)

Differentiating (23) w.r.t. x we find

Poxxσ = −2Poxσx. (24)

3The solution σ1 = −(h − σ2) has no physical meaning and it is therefore

neglected
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From the continuity equation (14)3 and from the no-slip condi-

tions we have

v
∣
∣
∣
∣
σ
= −

σ∫

0

uxdy v
∣
∣
∣
∣
h−σ
=

h∫

h−σ

uxdy.

Differentiating (21) w.r.t. x and plugging into the above we find

v
∣
∣
∣
∣
σ
=
σ2

6
[3Poxσx + 2Poxxσ] (25)

v
∣
∣
∣
∣
h−σ
= −
σ2

6
[3Poxσx + 2Poxxσ + 3hxPox]

Imposing v|σ = v|h−σ we find

σ2

6
[6Poxσx + 4Poxxσ + 3hxPox] = 0. (26)

Plugging (24) into (26) we find

σ2Pox

6
[3hx − 2σx] = 0,

yielding

3hx = 2σx = −3A, (27)

since Pox = 0 or σ = 0 cannot be considered as solutions be-

cause would imply no flow.

Remark 4. Plugging (24) into (25), (26) and exploiting (27)

we get

v

∣
∣
∣
∣
σ
= −
σ2

6
Poxσx,

v

∣
∣
∣
∣
h−σ
= −
σ2

6
Pox[3hx − σx].

Exploiting (23) and (27) we find

v

∣
∣
∣
∣
σ
= v

∣
∣
∣
∣
h−σ
=

k1hx

2
,

so that, recalling (15)2,

k1hx

2
= ω2 x + k2. (28)

As a consequence we conclude that the only admissible profiles

of h are parabolic, linear and constant. Since we are dealing

with a linear h(x) we do not have to solve the problem at the or-

der two to find ω2 (which is unknown), since (28) automatically

implies ω2 = 0. In the case of a parabolic h the problem at the

order two should be solved to find the angular velocity ω2. For

simplicity we have focused on the linear case only.

Recalling that v|σ = ω2 x + k2, we can insert (24) into (25) and

use (27) to find

−
Poxσ

2σx

6
= −

k1A

2
= ω2 x + k2. (29)

which necessarily implies ω2 ≡ 0 and

2k2 = −k1A.

Applying (13) we get

1 =

σ∫

0

udy +

h−σ∫

σ

k1dy +

h∫

h−σ

udy,

and, after some algebra, we find

k1 =
3

3h − 2σ
. (30)

In conclusion we have found

σ = −

(

3A

2

)

x + K, (31)

where K is unknown at this stage. We observe that the lower

yield surface y = σ is decreasing with x, whereas the upper

yield surface h−σ is increasing with x. In section 7, exploiting

(20), we shall write an equation that allows to determine K in

terms of A.

5. Constraints on K

To ensure the presence of the plug throughout the channel we

must require

0 < σ(0) 6 h(0) − σ(0) ⇐⇒ 0 < σ(0) 6
1

2
,

0 < σ(1) < h(1) − σ(1) ⇐⇒ 0 < σ(1) <
1 − A

2
,

The first condition ensures that the plug is present at the inlet

of the channel. The second condition guarantees that the plug

does not touch the channel walls at the outlet. Recalling (31)

the above conditions become





0 < K <
1

2
,

3A

2
< K <

1

2
+ A.

(32)

The second of (32) makes sense only if

3A

2
<

1

2
+ A ⇐⇒ A < 1,

which is automatically satisfied because of (7). When (32)1 is

not satisfied, that is when

K >
1

2
(33)

in an initial portion of the channel there is no plug. Indeed,

when (33) holds σ1 > σ2 and the only portion in which uy = 0

(and hence S 12 = Bi) is the center line y = h/2. In this case the

onset of the plug occurs at some point s ∈ (0, 1) and the region

where the plug is present is [s, 1]. In the region [0, s] the plug

reduces to a set of zero measure constituted by the centerline

y = h/2 only. The point s can be found imposing h − σ = σ.

The latter yields 1 − As = −3As + 2K, i.e.

s =
2K − 1

2A
. (34)

5



where s ∈ (0, 1) when (33) and (32)2 hold. Therefore our solu-

tion will be acceptable only if K satisfies

3A

2
< K <

1

2
+ A. (35)

If K < 1/2 the plug exists in the whole channel. If K > 1/2 the

plug starts at some point s given by (34).

6. The overall pressure drop

From (23) and (30) we find

Pox = −
6

(3h − 2σ)

1

σ2
.

Recalling (31) and recalling that h = 1 − Ax we find

Pox =
24

(2K − 3)(2K − 3Ax)2
. (36)

From inequality (35) we notice that






2K − 3Ax ≥ 2K − 3A > 0,

2K − 3 < 0,

(37)

since A < 1 and x ∈ [0, 1]. Integrating (36) we determine the

overall pressure drop

∆P = P
∣
∣
∣
∣
1
− P

∣
∣
∣
∣
0
=

24

2K − 3

1∫

0

dx

(2K − 3Ax)2
,

so that

∆P =
12

(2K − 3)(2K − 3A)K
< 0, (38)

where ∆P < 0 because of (37).

7. Tracking the yield surfaces

To track the position of the yield surfaces we go back to equa-

tion (20), that can be rewritten as

−

1∫

0

Pox(h − 2σ)dx = 2Bi.

Recalling (23) and (30), we get

2Bi =

1∫

0

2k1

σ2
(h − 2σ)dy =

1∫

0

6(h − 2σ)

σ2(3h − 2σ)
dx.

Plugging (31) into the above we find

1∫

0

1 − 2K + 2Ax

(2K − 3Ax)2
dx =

Bi(3 − 2K)

12
. (39)

0.8 0.85 0.9 0.95
−6

−4

−2

0

2

4

6

8

K

f(
K

;A
)

 

 

Plot of f(K;A) for Bi ∈  [0,100]

Increasing Bi

Figure 2: Plot of the function f (K; A) for Bi ranging between 0 and 100.

which is the equation that must be solved to determine K. Since

we are interested only in values of K that satisfies (35), we no-

tice that, when (35) is met,






1 − 2K + 2Ax > 0, ∀ x ∈ [0, 1],

2K − 3Ax > 0, ∀ x ∈ [0, 1].

Therefore, integration of (39) yields

f (K; A) = 0, (40)

where

f (K; A) =
2

9
ln

[

1 −
3A

2K

]

+

A(3 − 2K)

6K(2K − 3A)
−

ABi(3 − 2K)

12
. (41)

The above is the implicit relation between A and K. Once K is

found we get σ and h − σ, that is the yield surfaces separating

the plug and the viscous phase.

To investigate the existence of a K satisfying f = 0 for a give

A, we plot the function f with K in the range defined in (35) for

different values of Bi for a fixed value of A. The plot in Fig. 2

shows the behavior of f as a function of K, for A = 0.5 and Bi

ranging between 0 and 100. As one can notice for each value of

Bi the function f has only one intersection with the K axis in the

range specified, meaning that there exists a unique K satisfying

(35). This can also be proved rigorously for any A ∈ [0, 1) and

for each Bi > 0. We refer to the appendix for the proof of such

a statement.

8. Numerical examples

In this Section we consider some examples to illustrate the de-

pendence of the yield surfacesσ, h−σ and of the velocity (u, v)

on the parameters A, Bi. Figs 3-6 show the position of the un-

yielded plug for

A = 0.1, 0.3, 0.5, 0.7, Bi = 0.1, 5, 50.
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Figure 3: Plot of the unyielded plug for example 1 .
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Figure 4: Plot of the unyielded plug for example 2 .

As one can easily realize, the larger is Bi, the larger is the region

occupied by the unyielded part. On the other hand, when Bi is

fixed, we observe that the unyielded part gets larger as the slope

of the upper wall decreases. We also note that the onset of he

unyielded part (which we recall is visible only for K > 1/2) is

placed on the centerline y = h/2 as observed in Section 5.

In Fig. 7, 8 we have plotted the velocity components (u, v)

for Bi = 5 and A = 0.3. The plots display the components as

function of y evaluated at x = 0.4, x = 0.6, x = 0.8. As one can

see, the transversal component v is negative.

9. Conclusions

We have studied the motion of a Bingham fluid in an inclined

channel with flat, but not parallel, walls. The governing equa-

tion for the unyielded part has been obtained using a global

integral approach introduced in [15], [16]. The advantage of

this approach lies in the fact that no assumption has to be made
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Figure 5: Plot of the unyielded plug for example 3 .
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Figure 6: Plot of the unyielded plug for example 4 .
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Figure 7: Plot of the longitudinal velocity u, A = 0.3, Bi = 5.
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Figure 8: Plot of the transversal velocity v, A = 0.3, Bi = 5.

on the order of magnitude of the stress components in the un-

yielded region.

We have studied the dynamics supposing that gravity is the

only force driving the motion. Under the assumption of lubri-

cation approximation, we have solved the problem, tracking the

yield surface and determining constraints that prevent the flow

from ceasing and that guarantee the existence of the plug. We

have also determined an explicit formula for the pressure drop

along the channel.

AppendixA. Mathematical analysis of equation (40)

We prove that, for any A ∈ [0, 1) and for any Bi > 0, there

exists one and only one K fulfilling (40), with f given by (41).

Indeed

lim
K→(3A/2)+

f (K; A) = ∞ f (A, A +
1

2
) = g(A),

where

g(A) =

4(2A + 1) ln

(

1 − A

1 + 2A

)

+ 6BiA3 − 3BiA2
+ (12 − 3Bi)A

18(2A + 1)

If we prove that g(A) < 0 for all A ∈ (0, 1) and for all positive

Bi, then, because of the continuity of f (K; A), there exists “at

least” one K such that f (K; A) = 0. We hence investigate the

behavior of g(A), whose plot for Bi ranging between 0 and 100

is shown in Fig. A.9. The function is negative, as expected, but

we want to prove this result rigorously for any A ∈ [0, 1) and

for any Bi > 0. We begin by noting that

g(0) = 0 lim
A→1−

g(A) = −∞.

We differentiate g(A) w.r.t. A getting

g
′

(A) =
Bi(1 − A)(2A − 1)(2A + 1)2 − 12A

6(1 − A)(2A − 1)2
(A.1)
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Figure A.9: Function g(A).
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Figure A.10: Function m(A).

and we look for values A such that g
′

(A) = 0. These values are

found solving

1

Bi
=

(1 − A)(2A − 1)(2A + 1)2

12A
=: m(A).

The plot of the function m(A) is shown in Fig. A.10 As one

can notice m(A) has a maximum in Ao ≈ 0.75 with m(Ao) =

8.69 · 10−2. As a consequence, when

(Case I) 0 6 Bi
−1 < m(Ao)

there exist 1/2 6 A1 < Ao < A2 6 1, such that

g
′

(A1) = g
′

(A2) = 0

When

(Case II) Bi
−1
= m(Ao)

the only point where g
′

(A) is null is Ao

g
′

(Ao) = 0
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Finally, when

(Case III) Bi
−1 > m(Ao),

g
′

(A) is always negative. In cases II, III it is trivial to check that

g(A) < 0 for every A ∈ [0, 1). In case I, the function g(A) have a

minimum in A1 and a maximum in A2. In particular g(A1) < 0,

since g
′

(0) = −Bi/6 < 0. Suppose now that the maximum

g(A2) > 0. If this is the case, there exists some Â ∈ (A1, A2)

such that

g(Â) = 0, g
′

(Â) > 0. (A.2)

Recalling the structure of g(A), we see that g(Â) = 0 implies

Bi =

−12Â − 4(2Â + 1) ln

(

1 − Â

2Â + 1

)

6Â3 − 3Â2 − 3Â
(A.3)

If we now insert (A.3) into (A.1) we find

g
′

(Â) =

2

[

(2Â − 1)(2Â + 1)2 ln

(

1 − Â

2Â + 1

)

+ 3Â(Â − 1)(4Â + 1)

]

9Â(1 − Â)(2Â + 1)2

Recalling that 1/2 < Â < 1, it is easy to verify that the above

expression implies g
′

(Â) < 0, which is in clear contradiction

with (A.2)2. We have therefore proved that the function g(A) <

0 for all A ∈ (0, 1) and for all Bi > 0.

So far we have proven that there exists at least one solution

K such that f (K; A) = 0, with K satisfying (35) and for each

A ∈ [0, 1). Now we prove that such a solution is unique. To this

aim we consider the derivative of f w.r.t. K

∂ f

∂K
=

A
[

Bi(4K4 − 12AK3
+ 9A2) + 12K(K − A − 1) + 9A

]

6K2(2K − 3A)2
.

Suppose that K̂ is one solution whose existence has been

proved, so that f (K̂; A) = 0. Recalling the definition of f we

find, after some algebra,

Bi = −

2

[

4K̂
(

2K̂ − 3A
)

ln

(

1 −
3A

2K̂

)

+ 3A(3 − 2A)

]

3AK̂(2K̂ − 3)(2K̂ − 3A)

On substituting into ∂ f /∂K we find

∂ f

∂K

∣
∣
∣
∣
∣
K̂

=
f1 + f2

f3
,

where

f1 = 8K̂2(2K̂ − 3A) ln

(

1 −
3A

2K̂

)

,

f2 = 3A(3 − 2K̂)(16K̂2 − 18AK̂ − 12K̂ + 9A),

f3 = 18K̂2(3 − 2K̂)(2K̂) − 3A)2.

Recalling that
3A

2
< K̂ < A +

1

2
<

3

2

it is trivial to see that f1 < 0, f3 > 0. For what concerns f2 we

need to determine the sign of the parabola

ℓ(K) = 16K2 − 18AK − 12K + 9A.

Simple calculation shows that the roots K1, K2 of ℓ(K) are real

for every value of A. In particular, it is easy to verify that

K1 <
3A

2
< A +

1

2
< K2,

so that

ℓ
∣
∣
∣
∣
[ 3A

2
,A+ 1

2 ]
< 0 =⇒ f2 < 0.

In conclusion we have proven that

∂ f

∂K

∣
∣
∣
∣
∣
K̂

< 0. (A.4)

Inequality (A.4) must hold for every solution K̂ and this clearly

implies that the solution K̂ has to be unique.
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