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Optimal Behavior of the Support of the
Solutions to a Class of Degenerate Parabolic

Systems

Anatoli Tedeev∗, Vincenzo Vespri†

Abstract
In this paper we deal with a class of quasilinear parabolic systems.

We study a Cauchy problem in RN with an initial datum in L1. Sharp
L∞ estimates are proved. In the degenerate case, assuming that the
initial datum has compact support, we prove the optimal speed of
propagation of the support.

AMS Subject Classification (2010): Primary 35K59; Secondary 35K92,
35K45, 35B65.

Key Words: Degenerate and singular parabolic systems, L∞ estimates,
finite speed of the propagation of the support.

1 Introduction

In this paper we consider the following Cauchy problem

(1.1)
∂uj
∂t

=
N∑
i=1

∂

∂xi

(
|U|m−1 |∇U|p−2 ∂

∂xi
uj

)
, j = 1, .., l, in ST = RN × (0, T ),

uj(x, 0) = u0j(x), j = 1, .., l,
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where here and hereafter bold letters are standing for vectors of length l:

U = (u1, .., ul), l ≥ 1, |∇U| :=

(
l∑

i=1

|∇ui|2
)1/2

.

Such kind of systems are named doubly nonlinear. The doubly nonlinear
equations were introduced by Lions ([18]) and Kalashnikov ([14]) several
decades ago. These equations, from one side, are used to model several
physical phenomena, on the other side, they are a natural bridge between
two of the main important quasilinear equations, i.e. porous medium and p-
Laplacean (for references on these protype equations, see for instance ([22])).
For these reasons many Authors studied these equations. Among them,
we quote Tsustumi ([21]), Ivanov ([12]), ([13]), Porzio and Vespri ([19]),
Ishige ([11]) and Fornaro and Sosio ([10]). In these papers the existence,
the Hölder regularity and intrinsic Harnack properties of these solutions are
proved. For further results concerning the qualitative properties of solutions
of degenerate parabolic equation we refer the reader to the survey ([14]) and
to the exaustive monographs ([7]) and ([22]).
Only recently it was discovered the importance of doubly nonlinear systems
in modelling some physical phenomena (see, for instance, ([24]), ([25]), ([26]),
([27]) and ([28])). In ([5]), ([6]) and ([15]) the Authors use doubly nonlinear
systems to describe the evolution of a fluid in non-Newtonian filtration of the
water flow through the porous media, to describe non-equilibrium thermody-
namics and to model semiconductors. In ([27]) (see also ([25]) and ([26])) it
was shown that the system of porous medium equations (i.e. p = 2 in (1.1))
comes from Bean’s critical-state model in the superconductivity theory.

For systems (1.1) with m = 1 and with more general structure let us quote
([8]) for the C1,α regularity of the solutions.
To our knowledge, regularity estimates for the solutions of the Cauchy prob-
lem (1.1) (and even for systems with more general structure) are proved only
in ([16]). In this paper the Authors prove sharp L1 − Lα estimates for the
solutions of (1.1) provided ui(x, t) ≥ 0, i = 1, ., l. Since there is no the max-
imum principle for (1.1) it is not clear when the nonnegativity assumption
in latter case can be realized.
In this paper we drop this not easily verifiable assumption and we start to
study in a sistematic way the regularity properties of the weak solutions of
(1.1). More precisely, we focus our attention on the behaviour of the support
of the solution in the degenerate case i.e. when
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(1.2)

{
p > 1

p+m > 3

We prove that the finite propagation of the support occurs exactly as in the
case of the corresponding degenerate equations. More precisely, by adapting
techniques introduced by Andreucci and Tedeev (see ([2]), ([3]) and ([4])),
we are able to give an optimal estimate of the speed of the propagation of
the support thanks to sharp L∞ estimates.
We stress that we are able to prove sharp L∞ estimates under more general
conditions on m and p, i.e when

(1.3)

{
p > 1

N(p+m− 3) + p > 0

We recall that when m+ p < 3 we are in the singular case (see, for instance,
([23]) for such a classification in the case of equations). When m + p < 3
and N(p + m − 3) + p > 0 we are in the supercritical case, while the case
m+p > 2 and N(p+m−3)+p ≤ 0 is called subcritical case (see, for instance,
([23]) and ([9]) for such a classification in the case of equations). The case
m+ p = 3 was first considered by Trudinger ([20]) and for this reason, such
equations are often called Trudinger’s equations.

Theorem 1.1 Let U be a weak solution of (1.1) in S∞. Assume that (1.3)
holds and U0 ∈ L1(RN). Then for any t > 0

(1.4) ‖U(t)‖∞ ≤ C(N, l,m)t−
N
λ ‖U0‖

p
λ
1

where λ = N(p+m− 3) + p is the Barenblatt exponent.

Note that this result is sharp. Some explicit counterexamples are known in
literature (see, for instance, ([7]) and ([22])) where it is shown that estimate
(1.4) fails whenever λ ≤ 0.
As already written, the main result regards optimal estimates about the
speed of propagation of the support of the solution:
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Theorem 1.2 Let U be a weak solution of (1.1) in S∞ and supp U0 ⊂
BR0(0) = {|x| < R0} . Assume that (1.2) holds and U0 ∈ L1(RN). Then for
any t > 0

(1.5)

{
Z(t) = inf

{
r > 0 : |U(t)| = 0, x ∈ RN\Br(0)

}
≤ 4R0 + C(N, l,m)t

1
λ‖U0‖

p+m−3
λ

1 .

Note that this result is sharp. in fact the support of the Barenblatt solutions
exibits exactly this behaviour (see, for instance, ([7]) and ([22]).

Furher generalizations.
The results of the paper can be extended to a parabolic systems with mea-
surable coefficients of the form:

(1.6)
∂uj
∂t

=
N∑

k,µ=1

∂

∂xk

(
akµ(x, t) |U|m−1 |∇U|p−2 ∂

∂xµ
uj

)
, j = 1, .., l

where akµ(x, t) are measurable functions satisfying the conditions

(1.7) Λ−1ξ2 ≤ akµ(x, t)ξkξµ ≤ Λξ2, Λ ≥ 1

2 Preliminary lemmata

The proof of Theorem 1.1 is based on some preliminary lemmata:

Lemma 2.1 Let U ∈ W 1,2(RN) than for any ε ≥ 0

(2.1)
l∑

j=1

N∑
k=1

ujxk
∂

∂xk

(
uj(

ε2 + |u|2
)1/2

)
≥ 0

Proof.
Let us develop the calculations:

∂

∂xk

(
uj(

ε2 + |u|2
)1/2

)
=
ujxk

(
ε2 + |u|2

)
−
∑l

s=1 ususxkuj(
ε2 + |u|2

)3/2
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Therefore we have that

l∑
j=1

N∑
k=1

ujxk
∂

∂xk

(
uj(

ε2 + |u|2
)1/2

)
=

∑l
j=1

∑N
k=1 u

2
jxk

(
ε2 + |u|2

)
− 1

4

∑N
k=1(

∑l
j=1(u2

j)xk)
2(

ε2 + |u|2
)3/2

Now
N∑
k=1

l∑
j=1

u2
jxk

(
ε2 + |u|2

)
>

N∑
k=1

l∑
j=1

u2
jxk
|u|2

and estimate (2.1) comes from the fact that by Cauchy-Schwartz

l∑
j=1

u2
jxk
|u|2 ≥ (

l∑
j=1

ujxkuj)
2 2

The next Lemma says that the L1 norm of the solution is bounded

Lemma 2.2 Let U(x, t) be a solution of equation (1.1), then for a.e. t > 0

(2.2)

∫
RN

|U(x, t)| dx ≤
∫
RN

|U0(x)| dx

Proof. Consider the family of solutions

(2.3)


∂u

(n)
i

∂t
= div

(∣∣U(n)
∣∣m−1 ∣∣∇U(n)

∣∣p−2∇u(n)
i

)
in Bn(0)× (0,∞),

u
(n)
i = 0 on ∂Bn(0)× (0,∞),

u
(n)
i (x, 0) = u

(n)
0i (x),

i = 1, .., l with U
(n)
0 = (u

(n)
01 (x), .., u

(n)
0l (x)) smooth enough and such that∥∥∥U(n)

0 −U0

∥∥∥
L1(RN )

→ 0 as n→∞. Then, by reasoning as in ([1]), it is pos-

sible to prove that, thanks to the monotonicity of the operator, the solution
of (1.1), is the weak limit of U(n). So it is enough to prove that for any n ≥ 1
and ε = n−σ with σ ≥ N

(2.4)

∫
Bn(0)

(
ε2 +

∣∣U(n)(x, t)
∣∣2)1/2

dx ≤
∫

Bn(0)

(
ε2 +

∣∣∣U(n)
0 (x)

∣∣∣2)1/2

dx
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for any t > 0. Multiply both sides of (2.3) by

u
(n)
i(

ε2 + |U(n)|2
)1/2

,

integrate by parts over Bn(0) and add up with respect the index i, to get

(2.5)
d

dt

∫
Bn(0)

(
ε2 +

∣∣U(n)
∣∣2)1/2

dx

= −
∫
Bn(0)

l∑
j=1

N∑
k=1

(∣∣U(n)
∣∣m−1 ∣∣∇U(n)

∣∣p−2∇u(n)
jxk

)
∇(u

(n)
jxk

(
ε2 +

∣∣U(n)
∣∣2)−1/2

)dx.

and therefore by (2.1) we get

d

dt

∫
Bn(0)

(
ε2 +

∣∣U(n)
∣∣2)1/2

dx ≤ 0 2

Remark.
Let us sketch the proof of Lemma 2.2 in the general case.
We claim that

akµ(x, t)
∂

∂xµ
uj

∂

∂xk

(
uj(

ε2 + |U|2
)1/2

)
≥ 0

Indeed the left hand side of this inequality is equal to

akµ(x, t) ∂
∂xµ

uj

(
∂
∂xk

uj(
(
ε2 + |U|2

)
− ujuα ∂uα∂xk

)
(
ε2 + |U|2

)3/2
.

Next using the Cauchy inequality for the positive defined quadratic forms:

akµζkηµ ≤ (akµζkζµ)1/2 (akµηkηµ)1/2

and choosing

ζk =
uj
|U|

ujxk , ηµ =
uα
|U|

uαxµ
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we get the result 2

Define C(h1, h2) = h1/(h1 − h2).

Lemma 2.3 . Assume that assumptions of Theorem 1.1 hold. Define Dj =
RN × (tj, t), j = 1, 2, 0 < t2 < t1 < t. Then for all h1 > h2 > 0 we have for
any s > 0 so large such that s− 2 +m− p > 0

(2.6)
sup
t1<τ<t

∫
RN

(
|U|2 − h1

)(s+1)/2

+
dx+

∫∫
D1

(
|U|2 − h1

) s+m−2−p
2

+

∣∣∣∇ (|U|2 − h1

)
+

∣∣∣p dxdτ
≤ γC(h1, h2)p+m−1(t1 − t2)−1

∫∫
D2

(
|U|2 − h2

)(s+1)/2

+
dxdτ.

Proof. For the sake of simplicity, assume that U is the strong solution of
(1.1) so it is possible to work pointwise. Assume for the moment s ≥ 1.

Multiply both sides of (1.1) by ui
(
|U|2 − h2

) s−1
2

+
ζp(τ), i = 1, .., l , where

ζ(τ) is a smooth cutoff function of (0, t), such that ζ = 1 for t1 ≤ τ ≤ t,
ζ = 0 out of 0 < τ ≤ t2, |ζτ | ≤ c(t1 − t2)−1 integrate by parts and sum with
the respect the index i to get

(2.7)



1

s+ 1

∫
RN

ζp
(
|U|2 − h2

) s+1
2

+
dx

+
l∑

i=1

∫∫
D2

ζp
(
|U|m−1 |∇U|p−2∇ui

)
∇
(
ui
(
|U|2 − h2

) s−1
2

+

)
dxdτ

= − p

s+ 1

∫∫
D2

ζp−1ζτ
(
|U|2 − h2

) s+1
2

+
dxdτ.

We have
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

l∑
i=1

(
|U|m−1 |∇U|p−2∇ui

)
∇
(
ui
(
|U|2 − h2

) s−1
2

+

)
= |U|m−1 |∇U|p

(
|U|2 − h2

) s−1
2

+

+
s− 1

4
|U|m−1 |∇U|p−2 (∇ |U|2)2 (|U|2 − h2

) s−1
2
−1

+

≥ |U|m−1 |∇U|p
(
|U|2 − h2

) s−1
2

+
.

Note that when |U|2 > h1 we have
(2.8)

|U|2 = |U|2−h2+h2
h1 − h2

h1 − h2

≤ (|U|2−h2)+h2
|U|2 − h2

h1 − h2

= C(h1, h2)
(
|U|2 − h2

)
.

Moreover

(2.9)
∣∣∇(|U|2 − h1)

∣∣p = |∇(|U|)|p 2p |U|p .

Noting that

|U|m−1 |∇U|p
(
|U|2 − h2

) s−1
2

+
≥ |U|m−1 |∇ |U||p

(
|U|2 − h2

) s−1
2

+

by (2.9), we have

|U|m−1 |∇U|p
(
|U|2 − h2

) s−1
2

+
≥ 2−p

(
|U|2 − h2

) s−1
2

+
|U|m−1−p ∣∣∇(|U|2 − h1)

∣∣p
Therefore, if m− 1− p < 0 by (2.8)

(2.10)

 |U|
m−1 |∇U|p

(
|U|2 − h2

) s−1
2

+

≥ 2−pC(h1, h2)−
m−1−p

2

(
|U|2 − h1

) s−2+m−p
2

+

∣∣∇(|U|2 − h1)
∣∣p

If m − 1 − p ≥ 0 we have that |U|m−1−p ≥ |(U− h1)+|m−1−p and again we
can prove (2.10).
Combining (2.7), (2.10) and by the definition of the cut-off ζ, we get (2.6).
If −1 < s < 1, for each n∈N consider the test function

ψn = ui[
(
|U|2 − h2

) s−1
2

+
∧ n]ζp(τ).
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Letting n→∞ one can get (2.6) �

Remark.
Note that the proof of Lemma 2.3 works also in the more general case of
equation (1.6) 2

In the sequel we need an interpolation inequality and the celebrated Gagliardo-
Nirenberg inequality (for both these results, see, for instance, Chapter 0 of
[9]).

Lemma 2.4 Let {Yn}∞n=1 be a sequence of equi-bounded positive numbers
satisfying the recursive inequalities

Yn ≤ CbnY 1−α
n+1

where C, b > 1 and α ∈ (0, 1) are given constants. Then

Y0 ≤ (2Cb
1−α
α )

1
α .

Lemma 2.5 (see also [17])
Let {Yn}∞n=1 be a sequence of equi-bounded positive numbers satisfying the
recursive inequalities

Yn ≤ CbnY 1+α
n+1

where C, b > 1 and α > 0) are given constants. Then, if

Y0 ≤ C−
1
α b−

1
α2

then Yn → 0 when n→ +∞.

Lemma 2.6 Let u ∈ W 1,p(RN) with p > 1. Let 0 < µ < q < pN
N−p if p < N

and 0 < µ < q otherwise

(2.11) ‖u‖q ≤ C‖Du‖αp‖u‖1−α
µ

where C is a constant depending only by N, p, q, µ and

α =
( 1

µ
− 1

q

)( 1

N
− 1

p
+

1

µ

)−1
.

Note that in general the Gagliardo-Nirenberg is stated with the assumption
that 1 < µ < q. But the proof works also in the weaker assumption 0 < µ <
q, even if, in general, the space Lµ(RN) and Lq(RN) are no longer Banach
spaces.
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3 Proof of Theorem 1.1

The idea is to prove that there exists a p > 1 such that
(
|U|2 − a

) 1
2

+
∈ Lp(RN)

where a is a suitable positive constant. Then, by applying a De Giorgi
iterative scheme, starting from this estimate we are able to prove that |U| is
bounded.

Consider two positive times 0 < τ2 < τ1 and two positive constants 0 <
a2 < a1. Let ϑn = τ2 + (τ1 − τ2)2−n, kn = a2 + (a1 − a2)2−n, n ≥ 0. Apply
Lemma 2.3 with t1 = ϑn, t2 = ϑn+1; h1 = kn, h2 = kn+1. Choose s > 0 such
that s+m− p− 2 > 0.
Note that

∣∣∣∣∇ (|U|2 − k2n+1

) s+m+p−2
2p

+

∣∣∣∣p
= (

s+m+ p− 2

p
)p
(
|U|2 − k2n+1

) s+m−2−p
2

+

∣∣∣∇ (|U|2 − k2n+1

)
+

∣∣∣p.
Then we have

(3.1)
sup

ϑ2n<τ<t

∫
RN

(
|U|2 − k2n+1

) s+1
2

+
dx+

∫∫
S2n+1

∣∣∣∣∇ (|U|2 − k2n+1

) s+m+p−2
2p

+

∣∣∣∣p dxdτ
≤ c2n(τ1 − τ2)−1

∫∫
S2n+2

(
|U|2 − k2n+2

) s+1
2

+
dxdτ

where Sn = RN × (ϑn, t). Let zn be a smooth cut-off function such that
0 ≤ zn ≤ 1, zn = 1 in S2n, zn = 0 outside of S2n+1, 0 ≤ znτ ≤ 22n+1(τ1−τ2)−1.
We have

∫∫
S2n+1

∣∣∣∣∇ (|U|2 − k2n

) s+m+p−2
2p

+
zn

∣∣∣∣p dxdτ ≤ ∫∫
S2n+1

∣∣∣∣∇ (|U|2 − k2n+1

) s+m+p−2
2p

+

∣∣∣∣p dxdτ.
Thus defining

vn =
(
|U|2 − k2n

) s+m+p−2
2p

+
zn

10



we get from (3.1) with q =
p(s+ 1)

s+m+ p− 2

(3.2) sup
ϑ2n<τ<t

∫
RN

vqndx+

∫∫
S2n+1

|∇vn|p dxdτ ≤ c22n(τ1 − τ2)−1

∫∫
S2n+2

vqn+1dxdτ.

Note that if m+ p > 3 we have q < p and therefore we are in the degenerate
case. Moreover if the Barenblatt exponent λ = N(m+ p− 3) + p is positive,
we can use the Gagliardo-Nirenberg inequality (see Lemma 2.6).
Therefore

(3.3)

∫
RN

vqn+1dx ≤ c

 ∫
RN

|∇vn+1|p dx

αq/p ∫
RN

vµn+1dx

(1−α)q/µ

.

Where µ =
p

s+m− 2 + p
.

Define

(3.4) A :=
αq

p
, B :=

(1− α)q

µ

Note that A < 1 if λ = N(m+ p− 3) + p > 0.
Integrating in time and applying Young’s inequalities to (3.3), we obtain

∫∫
S2n+2

vqn+1dxdτ

≤

 ∫∫
S2n+2

|∇vn+1|p dxdτ

A
 t∫
ϑ2n+2

 ∫
RN

vµn+1dx

 B
1−A

dτ


1−A

Therefore we get

11



(3.5)

∫∫
S2n+2

vqn+1dxdτ

≤ c(t− ϑ2n+2)1−A

 ∫∫
S2n+2

|∇vn+1|p dxdτ

A

sup
ϑ2n+2<τ<t

 ∫
RN

vµn+1(τ)dx

B

Note that by Lemma 2.2

sup
ϑ2n+2<τ<t

∫
RN

vµn+1(τ)dx ≤
∫
RN

|U0| dx

so the quantity on the right in (3.5) is finite.
Combining (3.2) and (3.5), we get

(3.6)


Jn := sup

ϑ2n<τ<t

∫
RN

vqndx+

∫∫
S2n+1

|∇vn|p dxdτ

≤ bn1 (τ1 − τ2)−1(t− ϑ2n+2)1−A

 sup
ϑ2n+2<τ<t

∫
RN

vµn+1(τ)dx

B

JAn+1

where b1 a constant greater than 1.
Thus by the iterative Lemma 2.4 we get

(3.7)



sup
τ1<τ<t

∫
RN

(
|U|2 − a2

) s+1
2

+
dx

≤ c(τ1 − τ2)−
1

1−A (t− τ2)

 sup
τ2<τ<t

∫
RN

(
|U|2 − a1

) 1
2

+
dx

 B
1−A

and this implies the higher integrability of
(
|U|2 − a2

) 1
2

+
.

To prove the boundness of |U| we have to apply a DeGiorgi iterative scheme.
Let tj = t/2(1− 2−j), kj = k(1− 2−j−1), and kj = (kj + kj+1)/2.

12



Then in (3.7) plug τ1 = tj+1, τ2 = tj, a2 = kj, a1 = kj , to get

(3.8)



sup
tj+1<τ<t

∫
RN

(
|U|2 − kj

) s+1
2

+
dx

≤ cbj2t
− A

1−A

 sup
tj<τ<t

∫
RN

(
|U|2 − kj

)1/2

+
dx

1+B+A−1
1−A

.

Note that, as s > 0 and λ = N(m+ p− 3) + p > 0, we have B + A > 1.
Denote

Mj+1 = sup
tj+1<τ<t

∫
RN

(
|U|2 − kj+1

)1/2

+
dx.

Since ∫
RN

(
|U|2 − kj

) s+1
2

+
dx ≥ (kj+1 − kj)s

∫
RN

(
|U|2 − kj+1

)1/2

+
dx

from (3.8) one gets

Mj+1 ≤ cbj3t
− A

1−Ak−sM
1+A+B−1

1−A
j .

Noting that
Ns

λ
=

A

1− A
and

ps

λ
=
A+B − 1

1− A
, we have that

Mj+1 ≤ cbj3t
−Ns

λ k−sM
1+ ps

λ
j .

It follows from Lemma 2.5 that Mj → 0 as j →∞ if

(3.9) k = Ct−
N
λ M̃

p
λ

0

where M̃0(t) = sup
t/4<τ<t

∫
RN

|U(t, x)| dx.

Therefore, by Lemma 2.2, (3.9) holds true if

k = Ct−
N
λ (

∫
RN

|U0(x)| dx)
p
λ

13



and this implies (1.4) �
Remark.
Note that the proof of Theorem 1.1 works exactly in the more general case
of equation (1.6) 2

4 Proof of Theorem 1.2.

At the beginning the proof is similar to the one of Lemma 2.3.

Consider the sequence rn = 2r(1−2−n−1), n = 0, 1, .., r > 2R0, rn =
(rn + rn+1)

2
,

Ωn = RN\Brn(0), Ωn = RN\Brn(0). Let ηn(x) be a sequence of cutoff func-
tions satisfying:
ηn(x) = 0 for x ∈ Brn(0), ηn(x) = 1 for x ∈ Ωn, |∇ηn| ≤ c2nr−1.
Let θ a positive constant that will be fixed later. Then multiplying both
sides of (1.1) by ηpn |U|

θ−1 uj, i = 1, .., l and assume θ ≥ 1. By integrating
over St, we obtain

(4.1)
1

θ + 1

∫
RN

ηpn |U|
θ+1 dx+

∫∫
St

ηpn |U|
m−1 |∇U|p−2∇uj∇

(
|U|θ−1 uj

)
dxdτ

= −p
∫∫
St

ηp−1
n |U|m−1 |∇U|p−2∇uj∇ηn |U|θ−1 ujdxdτ.

Noting that

{
|∇U|p−2∇uj∇

(
|U|θ−1 uj

)
= |U|θ−1 |∇U|p−2 (|∇U|2 + (θ − 1) |∇ |U||2)

≥ θ |U|θ−1 |∇U|p .

and that, by the Cauchy inequality,{
ηp−1
n |U|m−1 |∇U|p−2∇uj∇ηn |U|θ−1 uj

≤ θ
2p
ηpn |U|

m+θ−2 |∇U|p + γ |∇ηn|p |U|p+m+θ−2

estimate (4.1) yields
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(4.2)



sup
0<τ<t

∫
Ωn

|U|θ+1 dx+

t∫
0

∫
Ωn

ηpn |U|
m+θ−2 |∇U|p dxdτ

≤ c
2pn

rp

t∫
0

∫
Ωn\Ωn

|U|p+m+θ−2 dxdτ .

If 0 < θ < 1 for each m ∈ N consider ηpn(|U|θ−1 ∧m)uj, repeat the previous
argument and pass to the limit when m→∞ to get again (4.2).

Let ζn(x) be such that ζn = 0 for x ∈ Ωn and ζn = 1 for x ∈ Ωn+1. Let

vn = |U|(p+m+θ−2)/p ζsn. Then, from (4.2), we get

(4.3)


sup

0<τ<t

∫
RN

vqndx+

t∫
0

∫
RN

|∇vn|p dxdτ

≤ c
22n

rp

t∫
0

∫
RN

vpndxdτ

with q =
p(1 + θ)

p+m+ θ − 2
. Note that if m+ p > 3 then q < p.

Using the Nirenberg-Gagliardo inequality

∫
RN

vpn−1dx ≤ c

∫
RN

|∇vn−1|p dx

α∫
RN

vqn−1dx

p(1−α)/q

where

(4.4) α =
N(p+m− 3)

N(p+m− 3) + p(1 + θ)

is given by Lemma 2.6.
By integrating the prevous inequality in time, we obtain

15



(4.5)



t∫
0

∫
RN

vpn−1dxdτ ≤ ct1−α

 t∫
0

∫
RN

|∇vn−1|p dxdτ

α

×

 sup
0<τ<t

∫
RN

vqn−1(τ, x)dx

p(1−α)/q

Therefore, combining (4.3) and (4.5), we get
In = sup

0<τ<t

∫
RN

vqndx+

t∫
0

∫
RN

|∇vn−1|p dxdτ

≤ γ
bn

rp
t1−αI

1+(1−α)( p
q
−1)

n−1

Then, by iterative Lemma 2.5, we conclude that In → 0 as n→∞ provided

(4.6)
t1−α

rp
I

(1−α)( p
q
−1)

0 ≤ ε

where ε = ε(m,N, θ) is small enough. Notice that by (4.3) we have

I0 ≤
c

rp

t∫
0

∫
RN

|U|p+m+θ−2 dxdτ ≤ c

rp

t∫
0

(‖ |U(τ)|‖p+m+θ−3
∞

∫
RN

|U(τ, x)| dx)dτ

By (2.2)

(4.7) I0 ≤
c

rp
‖ |U0|‖1

t∫
0

‖ |U(τ)|‖p+m+θ−3
∞ dτ.

Choose θ so small that

0 < 1− N(p+m+ θ − 3)

λ
.

By (1.4) and (4.7)
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(4.8)

I0 ≤
γ

rp
‖ |U0|‖

1+
p(p+m+θ−3)

λ
1

t∫
0

τ−
N(p+m+θ−3)

λ dτ =
γt1−

N(p+m+θ−3)
λ

rp
‖ |U0|‖

1+
p(p+m+θ−3)

λ
1 .

Plugging now (4.8) in (4.6) and recalling (4.4), we deduce that |U| = 0 out

of |x| ≤ 4R0 + c ‖ |U0|‖
p+m−3

λ

1 t
1
λ . �

Remark.
Note that the proof of Theorem 1.2 works exactly in the more general case
of equation (1.6) . 2
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