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Abstract The design of structural components in low-cycle fatigue field often requires the knowledge of the cyclic properties of the 
material, which are commonly described by the classical relation of Ramberg-Osgood. In order to obtain the cyclic curve using 
experimental data from incremental step tests, four methodologies are described and critically discussed. Three methods differ in the 
procedure of evaluation of the elastic modulus, while in the last one the experimental data are interpolated with a single non-linear 
regression. The various techniques were applied to data obtained from tests carried out on stainless steel specimens, and the resulting 
differences were analysed and quantified. An average behaviour was evaluated considering the total set of data obtained from 
experimental tests. The choice of the most suitable method is related to both the strain range of interest and the goal for which the results 
are used. 
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1. Introduction 

During service, structural components can be subject 

to stress that exceeds the elastic limit, especially when 

local stress concentration is involved. For these 

applications, fatigue design requires a special attention 

to the evaluation of stress and strain fields in the critical 

areas. The stress-strain responses of many materials 

change significantly when elasto-plastic cyclic loading 

conditions are applied, and therefore, it is necessary to 

refer to stable conditions described by cyclic 

stress-strain curve. From the analytical point of view, 

the cyclic curve can be expressed in the classic form of 

a Ramberg-Osgood relation: 

1
'

'
    
 

n
a a

a E K

              (1) 

where, σa and εa are the stress and the strain amplitude, 

respectively, E is the elastic modulus, K' is the cyclic 

strength coefficient and n' is the cyclic strain 

hardening exponent [1]. Admitting the Masing 

hypothesis, this relationship is used to describe the 
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hysteresis loops of metals and alloys and, in 

conjunction with Neuber’s rule, to evaluate the local 

notch tip stresses and strains values [2]. A practical 

drawback of Eq. (1) is that the relation is not 

analytically invertible and it is necessary to obtain a 

solution of this problem using numerical procedures or 

approximate expressions [3]. 

Therefore, the cyclic curve is characterized by the 

values of the three material coefficients: K', n' and E. 

In literature, various approaches are presented in order 

to estimate the materials cyclic properties from 

experimental monotonous data, using analytical 

formulations [4-6] or neural network interpolation 

methodologies [7, 8]. Unfortunately, these 

formulations have a statistical nature and should be 

applied only to material classes (usually steel) used for 

their validation. From a theoretical point of view, it is 

possible to estimate K' and n' from compatibility 

equation [9] using oligocyclic fatigue data, but this 

approach leads to a roughly evaluation of true values, 

with a significant discordance respect to experimental 

results. Numerous correlations between these 

parameters and in particular between the exponents 

were proposed in other studies [10, 11]. 
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In order to perform a correct evaluation of the 

constants in Eq. (1), a set of dedicated experimental 

tests should be carried out. The three commonly used 

methods are: companion (single step), multiple step 

and incremental step test [12, 13]. A discussion about 

the difference between the results obtained from these 

testing procedures is reported in [14, 15]. 

In the present work, four methodologies are 

described and critically discussed in order to obtain the 

cyclic curve from the results of incremental step tests. 

The various techniques were applied to data obtained 

from tests carried out on stainless steel specimens, and 

the resulting differences were analysed and quantified. 

The paper is organized as follows: Section 2 explains 

the experimental apparatus and the procedure; Section 

3 introduces the data analysis methodologies; Section 4 

presents experimental results and the relative 

discussion; finally Section 5 gives conclusions. 

2. Methods and Procedures 

Incremental step tests were carried out on 

X22CrMoV12-1 steel at room temperature. Repeated 

loading blocks were imposed on the specimen until the 

stabilization of the hysteresis loops. 

Samples were machined according to the ASTM 

E606-04 specification and tested in strain control at 

room temperature on a digital closed-loop 

servo-hydraulic test machine; the strain was measured 

by an extensometer with the gage length of 12 mm. In 

each block of cycles, the strain amplitude firstly 

increases until a predetermined maximum strain value 

and after decrease until zero. The lines connecting the 

tips of the strain cycles form a rhombus (Fig. 1). 

The applied set of cycles was performed at a 

constant strain rate of 0.002 s-1; each block consists of 

fifty symmetrical cycles and starts at zero strain; the 

maximum strain value of first cycle in the block is 

equal to 0.001. Starting from these assumptions, the 

block is fully defined by imposing the designated 

maximum strain amplitude. Tests were stopped after 

stabilization, usually after the application of 5 or 6 

blocks. 

Actuator displacement, time, load and total strain 

signals were acquired (2,000 points per channel) during 

the tests. Fig. 2 portrays an example of hysteresis loops 

consequent to the application of a block of cycles. To 

evaluate the dispersion of the results, five samples were 

tested in identical conditions, with a maximum strain 

value of 0.01. 

3. Data Analysis 

Various methodologies were applied to experimental 

data in order to obtain the cyclic stress-strain curve of 

the material. While the monotonous stress-strain curve 

could be obtained directly from recorded data, the 

cyclic stress-strain curve needs a suitable post process. 

The first step consists in the determination of the 

stress and strain amplitude values for each hysteresis 
 

 
Fig. 1  Imposed strain in function of time. 
 

 
Fig. 2  Hysteresis loops in a block of cycles and their 
peaks. 
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loop in the block. These values, plotted in a 

stress-strain diagram, represent the data which must be 

interpolated to obtain the analytic expression of the 

cyclic curve (referred to the chosen block of cycles), 

as shown in Fig. 2. 

The determination of the three parameters E, K’, n’ 

could be performed with two different approaches. 

The first approach needs firstly the determination of 

Young’s modulus to decompose the total strain in the 

elastic and plastic components; the remaining two 

parameters could be assessed with a linear regression 

of σa versus plastic strain amplitude in the 

bi-logarithmic scale. It is clear that to obtain a reliable 

prediction of the material behaviour an accurate 

estimation of Young’s modulus is required. The 

alternative approach requires a complex numerical 

procedure: the three values which involve the best fit 

of the experimental data are evaluated at the same 

time by means of a non-linear regression analysis. In 

this case, the Young’s modulus is the “cyclic” value 

of the parameter. 

3.1 Method 1 

In order to estimate the Young’s modulus three 

different procedures have been applied, namely 1a, 1b 

and 1c. 

3.1.1 Procedure 1a 

Only the tips of the stable elastic hysteresis loops are 

considered and the elastic modulus is estimated as the 

angular coefficient of the best fitting straight line using 

least squares regression analysis. The data in the elastic 

field are identified by an iterative procedure: 

 The best fit line for a increasingly number of data 

starting from zero is estimated; 

 The value of the Euclidean norm of the regression 

residuals is calculated; 

 The largest set of data for which the Euclidean 

norm is lower than a threshold value, assumed equal to 

10 MPa, is determined. 

3.1.2 Procedure 1b 

The values of the unloading modulus (both in 

tension and in compression) for each hysteresis loop 

are estimated and an arithmetic mean is carried out. 

The range of values on which the linear regression is 

performed is based on two parameters, expressed as 

percentage of the stress and strain peak values [16]; in 

detail, the range considered starts from a point for 

which the strain varies 2% compared to the peak value 

and it has an amplitude set to 60% of peak stress. 

3.1.3 Procedure 1c 

This methodology requires all the experimental 

points recorded in the terminal part of the block (in 

particular in the last 6 cycles), surely in the elastic 

region. The value of Young’s modulus is obtained as 

the angular coefficient of the straight line that better 

interpolate these data set. 

3.1.4 Evaluation of the Points in the Plastic Region 

Once estimated the elastic modulus value, it is 

necessary to determine the points belonging to the 

plastic strain field in order to perform a linear 

regression in bi-logarithmic scale and to obtain the n’ 

and K’ values. 

From a theoretical point of view would be enough to 

identify the first point (with the lowest stress value) for 

which the plastic strain is greater than zero. 

Unfortunately, in the elastic field the acquired 

experimental values deviate a bit from the straight line 

that describe their trend, since an interpolation error 

occurs. To obtain the first point inside the plastic range, 

five consecutive recorded points must be overcome, on 

average, a positive threshold value of plastic strain, 

assumed equal to 0.01. 

3.2 Method 2 

In this method, the three characteristic material 

parameters of the analytic expression of the cyclic 

curve are evaluated at the same time using a least 

squares root method. The Ramberg Osgood 

relationship is the nonlinear model to be used. 

Therefore, the dependent variable εa is function of both 

the independent variable σa and the three parameters E, 

n’, K’: εa = f (σa, E, n', K'). 
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With reference to a generic experimental point with 

coordinates (σai, εai), the relationship Si = [εai – f(σai, E, 

n’, K’)]2 defines the square of the deviation between the 

measured strain at i-th point and the value assumed by 

the function f when σa = σai. The cyclic parameters 

values will be those which minimize the sum of Si, 

evaluated on the whole set of points. 

Whereas the linear regression model performs a 

closed-form solution, this method requires an iterative 

procedure to converge to a solution. For this purpose, 

was developed a Matlab© code which is able to 

estimate the material coefficients E, n’, K’, starting 

from the values obtained by the procedure 1c. In order 

to ensure the reliability of the solution, it was verified 

that the result obtained was not a function of starting 

values. Indeed starting values affect only the number of 

iterations to obtain the convergence. 

4. Application to X22CrMoV12-1 Stainless 
Steel 

The methodologies were applied to data obtained 

from tests carried out on X22CrMoV12-1 stainless 

steel. The alloy showed cyclic softening. 

4.1 Young’s Modulus 

The Young’s modulus values, calculated with the 

various procedures, are shown in Table 1. 

The scatter of data (related to the average value) 

obtained on five samples, regardless of the applied 

procedure, shows a mean values less than 2.5%, with 

the highest value related to method 2. 

The analysis of the results obtained on each sample, 

as the method changes, shows values of dispersion 

slightly higher; approach 1a gives on average lowest 

values, instead the highest values are given by 

approach 2.  

However, it should be noted that the value of E 

obtained with procedure 2 is not the true value of 

material Young’s modulus; in this case, E is only one 

of three variables suitable to describe the material 

behaviour. The Ramberg-Osgood relation satisfactorily 
 

Table 1  Values of modulus of elasticity evaluated with 
various methods. 

Specimen
Modulus of elasticity (GPa) 

Method 1a Method 1b Method 1c Method 2 

1 197.8 210.1 207.9 210.8 

2 202.6 214.7 212.9 214.4 

3 200.8 209.2 209.1 214.3 

4 208.8 206.8 208.7 210.2 

5 199.7 214.5 213.8 228.8 
 

describes the plastic part of the curve εa-σa, but it does 

not consider an initial linear behaviour, because the 

plastic component of the strain is always present for 

any value of σa.  

The value of the elastic modulus obtained with the 

method 1a may be significantly different from the one 

evaluated in a tensile test [16]. Moreover, an additional 

difficulty is due by the fact that the points used for the 

regression analysis may be insufficient to an accurate 

estimation, since they depend on the number of cycles 

inside the imposed load block. 

The evaluation performed with procedure 1b could 

be present a variability factor due to the possible 

difference in the traction-compression material 

behaviour. If the values achieved in the two different 

phases are different, the cyclic curve evaluation should 

be carried out separately for traction and compression 

stresses. In the case studied the difference is of the 

order of 3%, with highest value in traction. 

4.2 Cyclic Strain Hardening Exponent and Strength 

Coefficient 

The values of the parameters obtained for the plastic 

component of strain amplitude are shown in Table 2. 

It is observed a greater dispersion than the one 

obtained for the Young’s modulus, especially as 

regards the value of K'. 

Again, the scatter among the results obtained 

applying the four methodologies to a single sample are 

higher than that obtained using the same methodology 

on the various samples. 

On the other hand, these considerations valid from a 

mathematical point of view, are not directly linked to 
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Table 2  Values of n' and K' evaluated with various methods. 

Sample 

Method 1a  Method 1b Method 1c  Method 2 

K' n'  K' n' K' n'  K' n' 

MPa   MPa  MPa   MPa  

1 1239 0.1100  1594 0.1506 1498 0.1407  1613 0.1371 

2 1152 0.1028  1444 0.1392 1411 0.1353  1432 0.1379 

3 1274 0.1197  1410 0.1376 1408 0.1373  1518 0.1505 

4 1358 0.1323  1351 0.1301 1354 0.1318  1407 0.1382 

5 1157 0.1034  1398 0.1361 1370 0.1328  1673 0.1680 
 

the reliability of the material behaviour evaluation, 

since it is important to evaluate the dispersion in the 

cyclic curve, given by the set of the three parameters, 

and not the scatter of the single coefficients. 

4.3 Dispersion of Results 

Different values for E, n’ and K’ could lead to cyclic 

curves that from an engineering point of view are 

sufficiently approximate; in order to estimate the data 

dispersion, it is useful to calculate the differences in a 

well-defined strain range. It is necessary to set a 

maximum threshold value, because increasing the 

strain amplitude the cyclic curves tend to diverge 

progressively from each other. The threshold value was 

chosen equal to 0.02, because for highest values the life 

of a component would be only few cycles and so not 

interesting for engineering applications. 

To perform the comparison, it is necessary to define 

a suitable parameter proportional to the deviation 

between the various curves, so as to be able to carry out 

a quantitative evaluation of the dispersion. 

An obvious choice would be to determine the stress 

value obtained in the various cases for the same strain; 

extending this parameter to a range, the area under the 

curves evaluated in the strain range considered was 

used. As a first step the cyclic curves, obtained by 

applying the same methodology to the five tested 

samples are compared. Fig. 3 shows for example the 

curves obtained with the procedure 2; similar 

representations are obtained also with the other 

methodologies. The highest differences, as expected, 

occur essentially in the plastic field. In order to 

quantify these differences, the values of the area under 

the curves in the range 0 < εa < 0.02 are reported in Fig. 

4. Table 3 shows the maximum, minimum and mean 

values of the difference between these areas, estimated 

on each sample. These data are related to the dispersion 

of results attributable to the material. 

4.4 Methodologies Comparison 

Fig. 5 (related to sample 1) shows a comparison 
 

 
Fig. 3  Cyclic curves obtained by applying the method 2 to 
various specimens. 
 

 
Fig. 4  Area under cyclic curves evaluated with the four 
methods. 
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Table 3  Differences between the areas under the curves 
obtained using the same method on all specimens (MPa). 

0 < εa < 0.02 Method 1a Method 1b Method 1c Method 2

Maximum 0.412 0.801 0.642 0.741 

Mean 0.211 0.325 0.267 0.316 

Minimum 0.023 0.037 0.056 0.090 
 

 
Fig. 5  Cyclic curves evaluated with different methods on 
sample 1. 
 

among the cyclic stress-strain curves calculated 

applying the different techniques on a single specimen. 

The situation is similar for all samples. As it can be 

observed, the differences increase with εa. Moreover, 

method 2 always gives curves with the highest values, 

while the lowest values are obtained with method 1a. 

If the Euclidian norm of the residual vectors between 

the experimental data and the correspondent calculated 

values is considered, it is clear that, for the way used to 

obtain it, the best approximation is associated to 

method 2. 

A way to enhance the differences is to evaluate the 

value of σa corresponding to εa = 0.02 (Fig. 6). The 

obtained values are significantly different, especially 

using the procedure 1a. This is probably due to lower 

number of experimental values used in calculating the 

Young’s modulus (about 20 against 100 or more 

associated to procedures 1b and 1c), with an higher 

sensitivity of the result to the specific values acquired. 

The differences among the curves calculated using the 

four methodologies are comparable to those described 

in Section 4.3 and attributable to the material behaviour. 

Table 4 presents the average and the extreme values of 

the differences among the areas under the curves. 

4.5 Mean Curves 

To estimate a mean behaviour, it is possible to use 

the cyclic curve obtained by averaging arithmetically 

the parameters calculated in the five tests. If the 

number of the recorded data for each test is the same, 

an alternative way to obtain a description of the mean 

material response is to gather all the experimental data 

acquired in only one set and to carry out the following 

elaborations on this set. This last procedure is 

preferable, since in this way the best interpretation of 

the whole set of acquired values is obtained. 

Table 5 shows the values of the coefficients E, n’, K’ 

evaluated both by arithmetic average and by the 

elaboration of the complete data set. Fig. 7 shows the 

ratio between the mean material parameters evaluated 

with the two procedures; in this case the observed 
 

 
Fig. 6  Values of stress amplitude for εa equal to 0.02. 
 

Table 4  Differences between the areas under the curves 
obtained with the set of methods on a single specimen 
(MPa). 

0 < εa < 0.02 

Sample 1 2 3 4 5 

Maximum 0.684 0.589 0.364 0.091 0.771 

Mean 0.372 0.300 0.183 0.049 0.395 

Minimum 0.021 0.019 0.003 0.006 0.050 
 



Comparison of Procedures to Evaluate the Cyclic Stress-Strain Curve from Incremental Step Test 

  

368

Table 5  Average values of the coefficients of the cyclic 
curve. 

  
Average of 
coefficients 

All data 
elaboration 

Method 1a 

E (GPa) 202.0 207.0 

K' (MPa) 1,236.2 1,248.9 

n' 0.1136 0.118 

Method 1b 

E (GPa) 211.1 213.0 

K' (MPa) 1,439.9 1,436.3 

n' 0.1389 0.1398 

Method 1c 

E (GPa) 210.5 213.8 

K' (MPa) 1,408.5 1,464 

n' 0.1356 0.1429 

Method 2 

E (GPa) 215.7 209.7 

K' (MPa) 1,529.2 1,377.2 

n' 0.1463 0.1323 
 

 
Fig. 7  Ratio between the mean material parameters 
evaluated with the two procedures. 
 

differences are minimal. The corresponding cyclic 

curves, calculated with the four procedures, do not 

deviate from the behaviour described above, even if 

they show some small variations in their relative 

position. This conclusion is also confirmed by the 

results of the analysis of the areas under the curves, as 

shown in Fig. 8 and Table 6. 

5. Conclusions 

Four different methodologies were reviewed and 

used to evaluate the parameters useful to analytically 

modelling the cyclic stress—strain curve. The various 

techniques were applied to data obtained from tests 

carried   out   on   X22CrMoV12-1   stainless   steel 

specimens, and the resulting differences were analyzed 

and quantified. Young’s modulus evaluation has a 

 
Fig. 8  Average values of the area under the cyclic curve. 
 

Table 6  Differences between the areas under the mean 
curves evaluated with the set of methods (MPa). 

 
Average of 
coefficients 

All data 
elaboration 

Maximum 0.489 0.442 

Mean 0.256 0.236 

Minimum 0.067 0.047 
 

great influence on the obtained results: a correctly 

assessment of this parameter is necessary to reliable 

represent the behaviour of the material. To reach this 

goal, the best method is the 1c. The method 1a is 

influenced by the number of cycles in elastic field 

present in a block and it could provide not enough 

accurate results if this number is low. Method 1b 

frequently shows different results as the portion of the 

hysteresis loop considered changes. 

The four methodologies allow building cyclic curves 

which mainly differ in the plastic field. Applying these 

procedures to a single specimen the results are more 

dispersed than those obtained using a single method on 

a set of nominally identical samples. However, the 

differences are of the same order of magnitude, as 

quantified by the values of area under the curves. An 

average behaviour was evaluated considering the total 

set of data obtained from experimental tests. In order to 

assess the results, it is important to consider the strain 

range of interest; it is clear that increasing the value of 

strain amplitude results in a greater scatter of the curves, 

because they were built from experimental data in 

which the maximum strain is equal to 1%. In this field 
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of strain, no significant differences among results were 

observed. 

The choice of the most suitable method is related to 

both the strain range of interest and the purpose for 

which the results will be used. The method 2 provides 

surely the best correspondence to the experimental data, 

but its use is only appropriate to describe the cyclic 

curve, because the values of the three parameters 

obtained should not be used separately. If, on the other 

hand, it is useful to have a single value of the modulus 

of elasticity to use also for other purpose, the use of 

methodology 1c is more appropriate. 
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