
20 December 2021

Integral representation for functionals defined on $SBD^p$ in dimension two / Conti, Sergio; Focardi, Matteo; Iurlano,
Flaviana. - In: ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS. - ISSN 0003-9527. - STAMPA. - 223(2017),
pp. 1337-1374. [10.1007/s00205-016-1059-y]

Original Citation:

Integral representation for functionals defined on $SBD^p$ in dimension two

Published version:
10.1007/s00205-016-1059-y

Terms of use:

Publisher copyright claim:

(Article begins on next page)

La pubblicazione è resa disponibile sotto le norme e i termini della licenza di deposito, secondo quanto stabilito dalla
Policy per l'accesso aperto dell'Università degli Studi di Firenze (https://www.sba.unifi.it/upload/policy-oa-2016-1.pdf)

Availability:
This version is available at: 2158/1056169 since: 2021-03-19T14:51:59Z

Questa è la Versione finale referata (Post print/Accepted manuscript) della seguente pubblicazione:

FLORE
Repository istituzionale dell'Università degli Studi di

Firenze

Open Access

DOI:
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defined on SBDp in dimension two
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53115 Bonn, Germany
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We prove an integral representation result for functionals
with growth conditions which give coercivity on the space
SBDp(Ω), for Ω ⊂ R2 a bounded open Lipschitz set, p ∈
(1,∞). The space SBDp of functions whose distributional
strain is the sum of an Lp part and a bounded measure sup-
ported on a set of finite H1-dimensional measure appears nat-
urally in the study of fracture and damage models. Our result
is based on the construction of a local approximation by W 1,p

functions. We also obtain a generalization of Korn’s inequal-
ity in the SBDp setting.

1 Introduction

The direct methods of Γ-convergence are of paramount importance in study-
ing variational limits and relaxation problems since their introduction in the
seminal paper by Dal Maso and Modica [30]. They focus on the study of ab-
stract limiting functionals F (u,A), obtained for instance using Γ-convergence
arguments; one key ingredient is the proof of an integral representation for
F (u,A). Here u : Ω→ RN is an element of a suitable function space X (Ω),
and A runs in the class A(Ω) of open subsets of a given open set Ω ⊂ Rn. The
notion of variational functional is at the heart of the matter: F , regarded as
depending on the couple (u,A) ∈X (Ω)×A(Ω), has to satisfy suitable lower
semicontinuity, locality and measure theoretic properties (for more details
see properties (i)-(iii) in Theorem 1.1). The specific growth conditions of the
functional determine the natural functional space in which the function u
lies. Under these assumptions F (u,A) can be written as an integral over the
domain of integration A with respect to a suitable measure. The integrands
may depend on x, u(x) and ∇u(x), and possibly on other local quantities
of u, such as higher order or distributional derivatives. Furthermore, as first
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shown in some cases in [31] and then generalized in [12], the corresponding
energy densities can be characterized in terms of cell formulas, i.e. asymptotic
Dirichlet problems on small cubes or balls involving F itself, with boundary
data depending on the local properties of u.

Integral representation results have been obtained in several contexts with
increasing generality: starting with the pioneering contribution by De Giorgi
for limits of area-type integrals [32], it has been extended to functionals
defined first on Sobolev spaces in [44, 17, 14, 16, 15] and on the space of
functions with Bounded Variation in [27, 10], and then to energies defined on
partitions in [2] and on the subspace SBV in [13] (we refer to [15, 28, 12, 11]
for a more exhaustive list of references). The global method for relaxation
introduced and developed in [12, 11] provides a general approach that unifies
and extends the quoted results.

In this paper we address the integral representation of functionals defined
on the subspace SBDp(Ω) of the space BD(Ω) in the two dimensional setting.
The space of functions of bounded deformation BD(Ω) is characterized by
the fact that the symmetric part of the distributional gradient Eu := (Du+
DuT )/2 of u ∈ L1(Ω,Rn) is a bounded Radon measure, namely

BD(Ω) := {u ∈ L1(Ω;Rn) : Eu ∈M(Ω;Rn×n
sym )},

where Ω ⊆ Rn is an open set, see [45, 46, 4]. BD and its subspaces SBD and
SBDp constitute the natural setting for the study of plasticity, damage and
fracture models in a geometrically linear framework [45, 46, 48, 6, 38, 24]. In
particular, SBDp, p ∈ [1,∞), is the set of BD functions such that the strain
Eu can be written as the sum of an absolutely continuous measure with
respect to Ln Ω, with density e(u) in Lp(Ω,Rn×n), and a singular measure
concentrated on the set Ju of jump points of u, that is (n−1)-rectifiable and
with finite Hn−1-measure, see [9, 18, 19, 21]. We recall that each function
u ∈ BD(Ω) has an approximate gradient ∇u(x) for Ln-a.e. x ∈ Ω, and that
the density e(u) is exactly its symmetrized part (see [4, Theorem 7.4]).

For functionals with linear growth defined on SBD an integral represen-
tation result was obtained by Ebobisse and Toader [34]. These functionals,
however, lack coercivity on the relevant space. Integral representation for
functionals defined on BD was studied in [8], lower semicontinuity and re-
laxation in [43]. The situation of functionals defined on SBDp and with
corresponding growth properties is open. We give here a solution in two
dimensions.

Theorem 1.1. Let Ω ⊂ R2 be a bounded open Lipschitz set, p ∈ (1,∞),
F : SBDp(Ω)× B(Ω)→ [0,∞) be such that

(i) F (u, ·) is a Borel measure for any u ∈ SBDp(Ω);
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(ii) F (·, A) is lower semicontinuous with respect to the strong L1(Ω,R2)-
convergence for any open set A ⊂ Ω;

(iii) F (·, A) is local for any open set A ⊂ Ω, in the sense that if u, v ∈
SBDp(Ω) obey u = v L2-a.e. in A, then F (u,A) = F (v, A);

(iv) There are α, β > 0 such that for any u ∈ SBDp(Ω), any B ∈ B(Ω),

α(

ˆ
B

|e(u)|pdx+

ˆ
Ju∩B

(1 + |[u]|)dH1) ≤ F (u,B)

≤β(

ˆ
B

(|e(u)|p + 1)dx+

ˆ
Ju∩B

(1 + |[u]|)dH1). (1.1)

Then there are two Borel functions f : Ω × R2 × R2×2 → [0,∞) and g :
Ω× R2 × R2 × S1 → [0,∞) such that

F (u,B) =

ˆ
B

f(x, u(x),∇u(x))dx+

ˆ
B∩Ju

g(x, u−(x), u+(x), νu(x))dH1 .

(1.2)

Above and throughout the paper we will refer to the book [5] and to
the papers [4, 9] for the notation and results about BV and BD spaces,
respectively. In particular, B(Ω) is the family of Borel subsets of Ω.

The proof of Theorem 1.1, which is given in Section 4, follows the general
strategy introduced in [12, 11]. Their approach was based on a Poincaré-type
inequality in SBV by De Giorgi, Carriero and Leaci, which is not known in
SBDp (see [5]). Our main new ingredient is the construction of an approx-
imation by W 1,p functions, discussed in Section 3, which permits to bypass
the De Giorgi-Carriero-Leaci inequality. The approximation is done so that
the function is only modified outside a countable set of balls with small area
and perimeter. In each ball, we give a construction of a W 1,p extension
for the SBDp function by constructing a finite-element approximation on a
countable mesh, which is chosen depending on the function u, see Section 2.

Our W 1,p approximation result also leads naturally to the proof of the
following variant of Korn’s inequality for SBDp functions.

Theorem 1.2. Let Ω ⊂ R2 be a connected, bounded, open Lipschitz set and
let p ∈ (1,∞). Then there exists a constant c, depending on p and Ω, with the
following property: for every u ∈ SBDp(Ω) there exist a set ω ⊂ Ω of finite
perimeter, with H1(∂ω) ≤ cH1(Ju), and an affine function a(x) = Ax + b,
with A ∈ R2×2 skew-symmetric and b ∈ R2, such that

‖u− a‖Lp(Ω\ω,R2) ≤ c‖e(u)‖Lp(Ω,R2×2),

‖∇u− A‖Lp(Ω\ω,R2×2) ≤ c‖e(u)‖Lp(Ω,R2×2).
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This improves a result of [36] to the sharp exponent. Variants of the
first inequality were first obtained in [20, 35]. Another consequence of the
approximation discussed in Section 3 is the possibility to prove existence of
minimizers for Griffith’s fracture functional in two dimensions, which will be
discussed elsewhere [23].

2 Approximation of SBDp functions with small

jump set

In this Section we prove the following approximation result.

Theorem 2.1. Let n = 2, p ∈ [1,∞). There exist η > 0 and c̃ > 0 such that
if J ∈ B(B2r), for some r > 0, satisfies

H1(J) < 2rη, (2.1)

then there exists R ∈ (r, 2r) for which the following holds: for every u ∈
SBDp(B2r) with H1(Ju ∩ B2r \ J) = 0 there exist φ(u) ∈ SBDp(B2r) ∩
W 1,p(BR,R2) such that

(i) H1(Ju ∩ ∂BR) = 0;

(ii)

ˆ
BR

|e(φ(u))|qdx ≤ c̃

ˆ
BR

|e(u)|qdx, for every q ∈ [1, p];

(iii) ‖u− φ(u)‖L1(BR,R2) ≤ c̃R|Eu|(BR);

(iv) u = φ(u) on B2r \BR, H1(Jφ(u) ∩ ∂BR) = 0;

(v) if u ∈ L∞(B2r,R2), then ‖φ(u)‖L∞(B2r,R2) ≤ ‖u‖L∞(B2r,R2).

Proof. We follow an idea of [26, 25], which we first summarize. The basic
strategy is to construct a triangular grid, see Figure 1, which refines towards
the boundary of BR, and to define φ(u) as the piecewise linear interpolation
of the values of u at the grid nodes. If the grid nodes are chosen appropriately,
in the sense of having values of u close to the local average, φ(u) turns out
to be close to u. Further, the choice of the grid nodes can be done in such a
way that all grid segments do not intersect the jump set of u, and that the
average of |e(u)| along the segment is not significantly larger than its average
in a neighborhood of the segment. In turn, this implies that e(φ(u)), which
is constant in each triangle, can be estimated by the average of |e(u)| in a
neighborhood of the triangle itself, leading – after summing over all triangles
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– to the desired W 1,p estimate for φ(u). The critical point is the construction
of the grid, which is obtained by iteratively choosing the vertices, after having
globally selected the radius R in such a way that the density of the jump set
around ∂BR is controlled on any scale.

For some η > 0 chosen below, given r > 0 and a Borel set J ∈ B(B2r)
with H1(J) < 2rη, we first claim, following [26, Lemma 4.3], that there exists
R ∈ (r, 2r) such that for δk := R 2−k we have

H1(J ∩ ∂BR) = 0, (2.2)

H1(J ∩ (BR \BR−δk)) < 10ηδk, for every k ∈ N. (2.3)

To prove this, we first observe that (2.2) holds for all but countably many R,
therefore it suffices to show that the set of R ∈ (r, 2r) for which (2.3) holds
has positive measure. We consider the family of intervals

{[R− δk, R] : H1(J ∩ (BR \BR−δk)) ≥ 10ηδk}

and we define I as the union of all intervals of the family, with R ∈ (r, 2r),
k ∈ N. By Vitali’s covering theorem, there exists a countable set (Ri, ki)i∈N
such that the corresponding intervals [Ri − δki , Ri] are pairwise disjoint and
five times their total measure is greater than or equal to the measure of I,
5
∑

i∈N δki ≥ L1(I). Therefore by (2.1) we obtain

2rη > H1(J ∩B2r) ≥
∑
i∈N

H1(J ∩ (BRi \BRi−δki )) ≥
∑
i∈N

10ηδki≥ 2ηL1(I).

Since the first inequality is strict, we conclude that L1(I) < r and therefore
there is R ∈ (r, 2r) \ I such that (2.2) holds. Since R 6∈ I, by the definition
of I we obtain H1(J ∩ (BR \BR−δk)) < 10ηδk} for all k ∈ N. Therefore (2.3)
holds as well. The value of R is fixed for the rest of the proof.

Let u ∈ SBDp(B2r) be such that H1(B2r ∩ Ju \ J) = 0. From (2.2) we
deduce that (i) holds. We define Rk := R−δk and xk,j := Rk(cos 2πj

2k
, sin 2πj

2k
),

j = 1, . . . , 2k. We say that xk,j and xk′,j′ are neighbors if either k = k′ and
j = j′ ± 1, working modulo 2k, or (up to a permutation) k = k′ + 1 and
j ∈ {2j′ − 1, 2j′, 2j′ + 1}, again modulo 2k. Connecting all neighbors we
obtain a decomposition of BR into countably many triangles, whose angles
are uniformly bounded away from 0 and π, see Figure 1.

We will construct φ(u) as a linear interpolation on a triangulation whose
vertices are slight modifications of xk,j. Following the idea of [25, Proposition
2.2], we next show how to construct the modified triangulation. We start
off considering two neighboring points x and y in {xk,j}k,j, connected by the
segment Sx,y ⊂ BRk+1

\BRk−1
for some k, and notice that c1δk ≤ |x−y| ≤ c2δk
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Rk−1

Rk

Rk+1

Figure 1: Sketch of the construction of the grid in the proof of Theorem 2.1.

for some c1 ∈ (0, 1), c2 > 1 independent from k. Let α := c1/(8c2) and
consider the convex envelope

Ox,y := conv (B(x, αδk) ∪B(y, αδk)). (2.4)

Let ax,y denote the infinitesimal rigid movement appearing in the Poincaré’s
inequality for u on the set

Qx,y := {ξ ∈ BR : dist(ξ, Sx,y) < |x− y|/(8c2)},

so that ‖u − ax,y‖L1(Qx,y ;R2) ≤ c|Eu|(Qx,y); since the sets Qx,y all have the
same shape the constant is universal.

We will now choose points (x, y) ∈ B(x, αδk)×B(y, αδk) such that u does
not jump on the segment Sx,y joining them, and such that the longitudinal
component has a controlled derivative. To make this precise, we define by
uνz(t) := u(z + tν) · ν the slice of u along the line of direction

ν :=
x− y
|x− y|

, (2.5)

and passing through

z := (Id− ν ⊗ ν)x ∈ Rν⊥ ∩ (x+ Rν) (2.6)

where Rν⊥ is the linear space orthogonal to ν, see Figure 2. We denote by
sx,y ⊂ R the segment defined by z + sx,yν = Sx,y. Given ϑ ∈ (0, 1), we will
prove that for η sufficiently small and c̃ sufficiently large, depending only on

ϑ, there exists a subset F ⊂ B(x, αδk)×B(y, αδk) with (L2×L2)(F )
L2(Bαδk )2

< ϑ, such

that for every (x, y) /∈ F the one-dimensional section uνz has the following
properties:
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y

y

x

x

z

Sx,y

Rν⊥

ν

Figure 2: Slice along the line of direction ν = (x−y)/|x−y| passing through
z in the proof of Theorem 2.1.

(P1) uνz ∈ SBV (sx,y);

(P2) H0(Juνz ) = 0, so that uνz ∈ W 1,1(sx,y);

(P3)

ˆ
sx,y

|(uνz)′|dt ≤
c̃

δk

ˆ
Ox,y

|e(u)|dx′;

(P4) |u(ξ)− ax,y(ξ)| ≤
c̃

δk
|Eu|(Qx,y), for ξ = x, y;

(P5) x and y are Lebesgue points of u.

The proof of (P1)–(P4) is based on the properties of slicing of SBD
functions; (P5) obviously holds for almost all choices. We recall that by [4,
Theorem 4.5] for any fixed ν ∈ S1 the following holds: there is an H1-null set
Nν ⊂ Rν⊥ such that for all z ∈ Rν⊥ \Nν the section uνz is in SBV (s), where
s ⊂ R is the set of t ∈ R such that z+ tν ∈ Ox,y, the jump set of uνz coincides
almost everywhere with the section of the jump set of u (intersected with
the set of points where [u] · ν 6= 0), and its distributional derivative obeys
∇uνz(t) = ν · e(u)(z + tν)ν for almost every t ∈ s.

We now show that for almost every pair (x, y) ∈ B∗ := B(x, αδk)×B(y, αδk)
property (P1) holds. To see this, consider the change of variables given by
x = z+tν, y = z+t′ν, corresponding to the map ψ(z, ν, t, t′) := (z+tν, z+t′ν).
This is a locally Lipschitz map from R2 × R2 × R × R to R4. Let M :=
{(z, ν, t, t′) ∈ R6 : ν ∈ S1, z ∈ Nν} denote the exceptional set. By Fubini’s
theorem and H1(Nν) = 0 for all ν one obtains H4(M) = 0, and since ψ is
locally Lipschitz the set F1 := ψ(M) is also a H4-null set. Therefore for
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almost every choice of (x, y) ∈ B∗ the above slicing properties, including in
particular uνz ∈ SBV (s), hold and (P1) is proven.

In order to obtain property (P2) we first define the measure µν,z :=
H0 (Juνz ∩ sx,y) and we observe that, by the change of variables y = x+ tν,

ˆ
B(x,αδk)×B(y,αδk)

µν,z(sx,y)dx dy

=

ˆ
B(x,αδk)

ˆ
S1

ˆ ∞
0

χB(y,αδk)(x+ tν)µν,z(sx,x+tν)t dt dH1(ν) dx .

We observe that, since α ≤ 1 and |x− y| ≤ c2δk, the characteristic function
vanishes for t ≥ 3c2δk. For any fixed x ∈ B(x, αδk) and ν ∈ S1, we define z
as in (2.6) and (Ox,y)

ν
z ⊂ R as the set of t such that z+ tν ∈ Ox,y, so that, by

convexity of the latter set, sx,x+tν ⊂ (Ox,y)
ν
z for all t for which χB(y,αδk)(x +

tν) 6= 0. Therefore the integral in t can be estimated by cδ2
kµ((Ox,y)

ν
z), and

ˆ
B(x,αδk)×B(y,αδk)

µν,z(sx,y)dx dy ≤ cδ2
k

ˆ
S1

ˆ
B(x,αδk)

µ((Ox,y)
ν
z) dx dH1(ν) .

(2.7)

By Fubini’s theorem the last term in the previous inequality is less than or
equal to

cδ3
k

ˆ
S1

dH1(ν)

ˆ
Rν⊥

µν,z((Ox,y)
ν
z)dH1(z) ≤ cδ3

kµ(Ox,y), (2.8)

where µ := H1 (Ju ∩Ox,y). Now (2.3) implies

ˆ
B(x,αδk)×B(y,αδk)

H0(Juνz ∩ sx,y)dx dy ≤ cδ4
kη, (2.9)

and hence the set F2 of points (x, y) for which H0(Juνz ∩ sx,y) > 1/2 satisfies
(L2×L2)(F1)
L2(Bαδk )2

< ϑ/16, for η small enough. This proves property (P2). Note that

this is the only step which requires the hypothesis on the dimension n = 2.
In order to prove (P3), for (x, y) ∈ B(x, αδk)×B(y, αδk) \ (F1 ∪ F2) we

repeat the argument in (2.7) and (2.8) above redefining

µν,z := |D(uνz)|.

By the previous steps the function uνz belongs to W 1,1(s), and by the proper-
ties of slicing its weak derivative obeys ∇uνz(t) = ν · e(u)(z + tν)ν for almost
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every t ∈ s. Repeating the same procedure as above we find that for (x, y)
out of a small (in the previous sense) set F3 one has

|D(uνz)|(sx,y) ≤
c̃

δk

ˆ
Ox,y

|e(u)|dx′, (2.10)

for c̃ large enough.
Analogously property (P4) can be derived. From the argument above it

is straightforward that for many points x ∈ B(x, αδk), still in the sense of a
large ϑ-fraction of B(x, αδk), there are many points y ∈ B(y, αδk) for which
(x, y) /∈ F .

Let us construct now the modified grid with an iterative process (see
also [25, Proposition 3.4]). We will use the notation Bi to indicate the balls
B(xk,j, αδk), lexicographically ordered.

We start by fixing a point x0 ∈ B0 for which there are many good choices
in each neighboring ball. This means that for any neighbor y of x0, the
set of y ∈ B(y, αδ0) such that (x0, y) does not have properties (P1)–(P4)
has measure smaller than ϑL2(Bαδ0). We next select x1 ∈ B1 among the
points which are good choices for x0 and which have many good choices in
each neighboring subsequent ball Bi, i ≥ 2. Iterating the process, the point
xm ∈ Bm will be taken among the good choices for the neighboring previously
fixed xi, i < m, and with the property that have many good choices in the
neighboring subsequent Bi, i > m. Since each ball can have at most seven
neighbors, at each step we select xm avoiding just a small subset of Bm.

We call S the set of points obtained by this process and we construct
a new triangulation, with x, y neighbors if and only if x̄, ȳ are neighbors.
Notice that again

c1δk ≤ |x− y| ≤ c2δk, (2.11)

for every couple of neighboring points x, y, with the same k as for the corre-
sponding reference points x and y, and suitable c1, c2 > 0 independent from
k. We finally define φ(u) as the linear interpolation between the values of
u(x), x ∈ S on each triangle of the triangulation.

Fixed a triangle T and any couple of its vertices x, y, we compute a
component of the constant matrix e(φ(u)) on T by

e(φ(u))ν · ν =
(φ(u)(x)− φ(u)(y)) · ν

|x− y|
= −
ˆ
sx,y

(uνz)
′dt, (2.12)

where ν and z are defined in (2.5) and (2.6). We used the fact that u and
φ(u) agree on x and y and that u is W 1,1(sx,y) by the choice of x and y. By
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(2.12), (2.11), and property (P3) above it follows

|e(φ(u))ν · ν| ≤ c̃

δ2
k

ˆ
Ox,y

|e(u)|dx′,

where Ox,y is defined in (2.4). We recall that here and henceforth c̃ can
possibly change. Letting ν vary among the directions of the sides of T , we
obtain a control on the whole |e(φ(u))| thanks to (2.11)

|e(φ(u))| ≤ c̃

δ2
k

ˆ
CT

|e(u)|dx′, (2.13)

where CT denotes the convex envelope

CT := conv (∪B(x, αδk))

and the union is taken over the three vertices x in the old triangulation
corresponding to the three vertices of T . We remark that B(x, αδk) ⊂ BRk+1

\
BRk−1

for all x ∈ ∂BRk , therefore there is a universal c̃ > 0 such that any
x ∈ BR is contained in at most c̃ of the CT .

We are ready to prove property (ii). By Jensen’s inequality and (2.13)
we have for 1 ≤ q ≤ p (changing again the value of c̃)

ˆ
T

|e(φ(u))|qdx′ = L2(T )|e(φ(u))|q ≤ c̃L2(CT )
(
−
ˆ
CT

|e(u)|dx′
)q

≤ c̃

ˆ
CT

|e(u)|qdx′, (2.14)

and finally summing up on all triangles T we get the conclusion.
In order to prove properties (iii) and (iv) we estimate

ˆ
T

|u− φ(u)|dx′ ≤
ˆ
T

|u− ax,y|dx′ +
ˆ
T

|ax,y − φ(u)|dx′, (2.15)

where T is again a triangle of the modified triangulation with vertices x, y, z,
while x, y, z denote the three corresponding vertices of the old triangulation,
ax,y is the infinitesimal rigid motion appearing in the Poincaré’s inequality
for u on Qx,y (see item (P4) above).

Let us study first the second term in (2.15). Since ax,y − φ(u) is affine, it
achieves its maximum on a vertex ξ of T , therefore

ˆ
T

|ax,y − φ(u)|dx′ ≤ cδ2
k|ax,y(ξ)− φ(u)(ξ)| = cδ2

k|ax,y(ξ)− u(ξ)|.
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Notice that if ξ = z then by taking into account that ax,z, ax,y are affine and
item (P4) above we find

δ2
k|ax,y(ξ)− u(ξ)| ≤ δ2

k|ax,y(ξ)− ax,ξ(ξ)|+ δ2
k|ax,ξ(ξ)− u(ξ)|

≤
ˆ
B(x,αδk)

|ax,y − ax,ξ|dx′ + cδk|Eu|(Qx,ξ)

≤ c

ˆ
Qx,y

|u− ax,y(ξ)|dx′ + c

ˆ
Qx,ξ

|u− ax,ξ(ξ)|dx′ + cδk|Eu|(Qx,ξ)

≤ cδk|Eu|(Qx,y) + cδk|Eu|(Qx,ξ) ≤ cδk|Eu|(QT ), (2.16)

where QT := Qx,y ∪Qy,z ∪Qz,x. Instead, if ξ ∈ {x, y} we may directly apply
item (P4).

For what the first term in (2.15) is concerned we first use Poincaré’s
inequality on T , obtaining for a rigid motion aT that ‖u − aT‖L1(T ;R2) ≤
cδk|Eu|(T ). Since the angles of T are uniformly controlled the constant is
universal. We then estimate as follows:ˆ

T

|u− ax,y|dx′ ≤
ˆ
T

|u− aT |dx′ +
ˆ
T

|ax,y − aT |dx′ ≤ cδk|Eu|(T ). (2.17)

By (2.15)-(2.17), we concludeˆ
T

|u− φ(u)|dx′ ≤ cδk|Eu|(T ), (2.18)

Finally summing up over T we obtain property (iii).
We prove now property (iv), property (v) holding true by (P5) and con-

vexity of the Euclidean norm. We define φ(u) := u outside BR and know that
φ(u) ∈ W 1,p(BR,R2)∩SBD(B2r). It remains to prove that the traces on ∂BR

coincide, or, equivalently, that H1(Jφ(u)∩∂BR) = 0. Let ψk ∈ C∞(BR, [0, 1])
be such that ψk = 0 on BRk , ψk = 1 in a neighborhood of ∂BR, and
|∇ψk| ≤ c/δk. We define vk := (u− φ(u))ψk ∈ SBD(BR) and we prove that
vk → 0 strongly in BD, this implying in turn vk|∂BR → 0 in L1(∂BR,R2) in
the sense of traces and therefore property (iv). Clearlyˆ

BR

|vk|dx ≤
ˆ
BR\BRk

|u− φ(u)|dx→ 0

by the dominated convergence theorem. Finally, using (2.18) and the fact
that the triangles have finite overlap,

|Evk|(BR) ≤ |E(u− φ(u))|(BR \BRk) +
c

δk

ˆ
BR\BRk

|u− φ(u)|dx

≤ c̃|E(u− φ(u))|(BR \BRk).
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Since BR is open, by monotonicity the last term tends to 0 and this concludes
the proof of property (iv).

The thesis follows choosing η and c̃ such that (2.9), (2.10), and (2.14)
hold.

3 Regularity of SBDp functions with small

jump set

We first discuss how SBDp functions can be approximated by W 1,p functions
locally away from the jump set (Section 3.1), and then how they can be
approximated by piecewise W 1,p functions around the jump set (Section 3.3).
Our approximation result also leads to the Korn inequality stated in Theorem
1.2. The key ingredient for all these results is the construction of Theorem
2.1. Throughout the section η ∈ (0, 1) will be the constant from Theorem 2.1
and n = 2.

3.1 Approximation of SBDp functions with W 1,p func-
tions

We will show that the construction of Theorem 2.1, using a suitable covering
argument, permits to approximate SBDp functions by W 1,p functions which
coincide away from a small neighborhood of the jump set. The neighborhood
is the union of countably many balls, such that each of them contains an
amount of jump set proportional to the radius. Before discussing the covering
argument in Proposition 3.2, we show that (away from the boundary) almost
any point of the jump set is the center of a ball with the appropriate density.

Lemma 3.1. Let s ∈ (0, 1). Let J ∈ B(B2ρ), for some ρ > 0, be such that
H1(J) < η(1 − s)ρ. Then for H1-a.e. x ∈ J ∩ B2sρ there exists a radius
rx ∈ (0, (1− s)ρ) such that

H1
(
J ∩ ∂Brx(x)

)
= 0, (3.1)

η rx ≤ H1
(
J ∩Brx(x)

)
≤ H1

(
J ∩B2rx(x)

)
< 2 η rx. (3.2)

Proof. We fix x ∈ J∩B2sρ, choose λx ∈ (ρ, 2ρ) such that H1
(
J∩∂Bλx/2k(x)

)
=

0 for all k ∈ N, and define

rx := max{λx/2k : k ∈ N, H1
(
J ∩Bλx/2k(x)

)
≥ η λx2

−k}.
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The set is nonempty for H1-almost every x because η < 1. The estimates
(3.2) hold by definition. To conclude that rx < (1−s)ρ it is enough to notice
that the opposite inequality would give the ensuing contradiction

H1(J) ≥ H1
(
J ∩Brx(x)

)
≥ η rx ≥ (1− s)η ρ > H1(J).

We are now ready to prove the main result of the section via a covering
argument, Lemma 3.1, and Theorem 2.1.

Proposition 3.2. Let p ∈ (1,∞), n = 2. There exists a universal constant
c > 0 such that if u ∈ SBDp(B2ρ), ρ > 0, satisfies

H1(Ju ∩B2ρ) < η (1− s)ρ

for η ∈ (0, 1) as in Theorem 2.1 and some s ∈ (0, 1), then there is a countable
family F = {B} of closed balls of radius rB < 2(1−s)ρ, such that their union
is compactly contained in B2ρ, and a field w ∈ SBDp(B2ρ) such that

(i) ρ−1
∑
F L2

(
B
)

+
∑
F H1

(
∂B
)
≤ c/ηH1(Ju ∩B2ρ);

(ii) H1
(
Ju ∩ ∪F∂B

)
= H1

(
(Ju ∩B2sρ) \ ∪FB

)
= 0;

(iii) w = u L2-a.e. on B2ρ \ ∪FB;

(iv) w ∈ W 1,p(B2sρ,R2) and H1(Jw \ Ju) = 0;

(v) ˆ
∪FB
|e(w)|pdx ≤ c

ˆ
∪FB
|e(u)|pdx; (3.3)

(vi) ‖u− w‖L1(B,R2) ≤ c rB |Eu|(B), for every B ∈ F ;

(vii) if, additionally, u ∈ L∞(B2ρ,R2) then w ∈ L∞(B2ρ,R2) with

‖w‖L∞(B2ρ,R2) ≤ ‖u‖L∞(B2ρ,R2).

Before giving the proof we show an immediate consequence of this result.

Corollary 3.3. Under the same assumptions and notation of Proposition
3.2, there is an affine map a : R2 → R2 such thatˆ

B2sρ\ω
|∇u−∇a|pdx ≤ c(p)

ˆ
B2ρ

|e(u)|pdx; (3.4)

and ˆ
B2sρ\ω

|u− a|pdx ≤ c(p)ρp
ˆ
B2ρ

|e(u)|pdx , (3.5)

where ω := ∪FB.
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Proof. By Korn’s inequality applied to w on the ball B2sρ there is a skew-
symmetric matrix A such that

ˆ
B2sρ

|∇w − A|pdx ≤ c(p)

ˆ
B2sρ

|e(w)|pdx,

and by Poincaré’s inequality applied to x 7→ w(x)−Ax on the same domain
there is d ∈ R2 such that

ˆ
B2sρ

|w(x)− Ax− d|pdx ≤ c(p)ρp
ˆ
B2sρ

|∇w − A|pdx.

To conclude the proof we define a(x) := Ax + d and for the left-hand side
observe that w = u, ∇w = ∇u on B2sρ \ ∪FB (more precisely ∇u = ∇w
Ln a.e. on {u = w} by [5, Proposition 3.73]), and instead use (v) from
Proposition 3.2 to estimate the right-hand side.

Proof of Proposition 3.2. By Lemma 3.1 we find a family F ′ of open balls
covering H1-a.e. Ju ∩B2sρ that satisfies (3.1) and (3.2). Since the inequality
H1
(
J ∩ ∂Brx(x)

)
= 0 is strict, we can further assume that they are all

contained in B2ρ′ for some ρ′ < ρ. Setting J = Ju, to every B ∈ F ′ we
associate a new ball B∗ ⊂ B with the properties (i)-(v) of Theorem 2.1. Let
F∗ be the family of the new balls B∗, this is still a cover of J . Further, the
balls B∗ can be taken to be closed. By the Besicovitch covering theorem
[5, Theorem 2.17] there are ξ countable subfamilies F ′j = {Bi

j}i∈N of disjoint

balls. Therefore, setting F := ∪ξj=1F ′j we have H1
(
(Ju ∩ B2sρ) \ ∪FB

)
= 0.

In addition, by (3.1) the first condition in item (ii) is satisfied as well, so that
(ii) is established. Furthermore,

∑
B∈F

H1(∂B) =2π
∑
B∈F

rB
(3.2)

≤ 2π

η

∑
B∈F

H1
(
Ju ∩B

)
≤ξ 2π

η
H1
(
Ju ∩ ∪B∈FB

)
≤ ξ

2π

η
H1(Ju ∩B2ρ).

The volume estimate follows since rB ≤ ρ implies
∑
r2
B ≤ ρ

∑
rB. We

remark that a quadratic volume estimate also follows by
∑
r2
B ≤ (

∑
rB)2.

Let φ(u) be the function given by Theorem 2.1 on the balls of the first
family F ′1 and define for every h ∈ N a function

wh1 :=

{
φ(u) Bi

1, i ≤ h

u otherwise
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such that wh1 ∈ SBDp(B2ρ), w
h
1 ∈ W 1,p(∪i≤hBi

1;R2) with wh1 = u L2-a.e. on
B2ρ \ ∪i≤hBi

1 and H1(Jwh1 \ Ju) = 0. In addition by item (ii) in Theorem 2.1

ˆ
B2ρ

|e(wh1 )|p dx =

ˆ
∪i≤hBi1

|e(φ(u))|p dx+

ˆ
B2ρ\∪i≤hBi1

|e(u)|p dx

≤ c̃

ˆ
∪i≤hBi1

|e(u)|p dx+

ˆ
B2ρ\∪i≤hBi1

|e(u)|p dx ≤ (1 + c̃)

ˆ
B2ρ

|e(u)|p dx, (3.6)

and

|Ewh1 |(B2ρ) ≤ |Eu|
(
B2ρ \ ∪i≤hBi

1

)
+ c̃

ˆ
∪i≤hBi1

|e(u)| dx.

Moreover, recalling that the Bi
1’s are disjoint and that wh−1

1 = u on Bh
1 , item

(iii) in Theorem 2.1 gives

‖wh1 − wh−1
1 ‖L1(B2ρ;R2) = ‖wh1 − u‖L1(Bh1 ;R2) ≤ c ρ |Eu|(Bh

1 ),

in turn implying that for all h ≥ k ≥ 1

‖wh1 − wk1‖L1(B2ρ;R2) ≤
h∑

i=k+1

‖wi1 − wi−1
1 ‖L1(Bh1 ;R2) ≤ c ρ |Eu|

(
∪k+1≤i≤h B

i
1

)
.

Thus, wh1 → w1 in L1(B2ρ;R2) with

w1 :=

{
φ(u) ∪F ′1B
u otherwise.

The BD compactness theorem then yields that w1 ∈ BD(B2ρ). In turn, by
(3.6) and since H1(Jwh1 \ Ju) = 0, the SBD compactness theorem implies
that actually w1 ∈ SBDp(B2ρ) (see also [29, Theorem 11.3]). Furthermore,
since

H1
(
Jwh1 ∩ ∪F ′1B

)
= H1(Ju ∩ ∪i≥h+1B

i
1

)
,

we may conclude that

H1
(
Jw1 ∩ ∪F ′1B

)
≤ lim inf

h
H1
(
Jwh1 ∩ ∪F ′1B

)
= 0,

and therefore w1 ∈ W 1,p(∪F ′1B,R
2). Finally, by construction w1 = u L2-a.e.

on B2ρ \ ∪F ′1B and H1(Jw1 \ Ju) = 0.
By iterating the latter construction, for all 1 < k ≤ ξ and for every h ∈ N

we find

whk :=

{
φ(wk−1) Bi

k, i ≤ h

wk−1 otherwise
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such that whk ∈ SBDp(B2ρ), w
h
k ∈ W 1,p(∪i≤hBi

k;R2), whk = wk−1 L2-a.e. on
B2ρ \ ∪i≤hBi

k , H1(Jwhk \ Jwk−1
) = 0. In addition, arguing as above, whk → wk

in L1(B2ρ,R2) with

wk :=

{
φ(wk−1) ∪F ′kB
wk−1 otherwise,

wk ∈ SBDp(B2ρ), wk ∈ W 1,p(∪j≤k ∪F ′j B;R2), wk = wk−1 L2-a.e. on B2ρ \
∪F ′kB and H1(Jwk \ Jwk−1

) = 0.
Set w := wξ, then w ∈ SBDp(B2ρ), w ∈ W 1,p(∪FB;R2), w = u L2-a.e. on

B2ρ \∪FB, H1(Jw \Ju) = 0. Iterating estimate (3.6), inequality (3.3) follows
at once with c := max{1 + c̃, 2π} ξ, with c̃ the constant in Theorem 2.1.

Finally, it is clear that also items (vi) and (vii) are satisfied in view of
properties (iii) and (v) in Theorem 2.1.

3.2 Korn’s inequality in SBDp

Proof of Theorem 1.2. By standard scaling and covering arguments it suffices
to prove the assertion for a special Lipschitz domain. Precisely, let ϕ : R→ R
Lipschitz with minϕ[(−1, 1)] = 2, and set U := {x : x1 ∈ (−2, 2), x2 ∈
(−2, ϕ(x1))}, and U int := {x : x1 ∈ (−1, 1), x2 ∈ (−1, ϕ(x1))}. It suffices
to show that for any u ∈ SBDp(U) there are ω with H1(∂ω) + L2(ω) ≤
cH1(Ju) and an affine function a : R2 → R2 such that ‖u − a‖Lp(U int\ω,R2) +
‖∇u−∇a‖Lp(U int\ω,R2) ≤ cL,p‖e(u)‖Lp(U,R2×2), with c depending on p and the
Lipschitz constant L of ϕ. Obviously we can assume H1(Ju) to be small.

Consider first two squares qj := yj + (−rj/2, rj/2)2 and Qj := yj +
(−rj, rj)2 contained in U , and let η be the constant from Proposition 3.2.
If u ∈ SBDp(Qj) obeys H1(Ju ∩ Qj) ≤ ηrj/8, then by Proposition 3.2
and Corollary 3.3 with ρ := rj/2 and s := 1/

√
2 there are a measurable set

ωj ⊂ Qj and an affine function aj : R2 → R2 such thatH1(∂ωj)+r
−1
j L2(ωj) ≤

cH1(Ju∩Qj) and r−1
j ‖uj−aj‖Lp(qj\ωj ,R2)+‖∇uj−∇aj‖Lp(qj\ωj ,R2×2) ≤ cp‖e(u)‖Lp(Qj ,R2×2),

with a constant which depends only on the exponent p. If instead H1(Ju ∩
Qj) > ηrj/8 we define ωj = qj, aj = 0, and trivially obtain the same esti-
mates.

To pass to the estimate on U int one uses a Whitney cover with pairs of
open cubes qj ⊂ Qj ⊂ U such that the exterior ones have finite overlap and
the interior ones cover U int, as done for example in proving the nonlinear
Korn’s inequality in [37, Theorem 3.1]. We can additionally require that
Q0 = (−2, 2)2, q0 = (−1, 1)2, and that if qi ∩ qj 6= ∅ then cL2(qi ∩ qj) ≥
L2(qi) + L2(qj). Following [36], if H1(Ju ∩ Qj) ≥ ηrj/8 we define Pj :=
(yj + (−rj, rj)× (−rj,∞)) ∩ U , otherwise Pj = ∅ and ωj, aj are obtained as
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above. Notice that H1(∂Pj) ≤ cLrj by the properties of Lipschitz functions
and of the Whitney covering.

By a triangular inequality for any pair of overlapping squares qi and qj
such that Pi = Pj = ∅ we obtain that c−1ri ≤ rj ≤ cri and

r−1
j ‖aj−ai‖Lp(qj∩qi\(ωj∪ωi),R2)+‖∇aj−∇ai‖Lp(qj∩qi\(ωj∪ωi),R2×2) ≤ cp‖e(u)‖Lp(Qj∪Qi,R2×2).

By the properties of the covering, for any i and j such that qi ∩ qj 6= ∅ one
has L2(qj ∩ qi) ≥ cr2

i . If η is sufficiently small, the bounds on ωi and ωj give
L2(qj ∩ qi \ (ωj ∪ ωi)) ≥ cr2

i and, since ai − aj is affine,

r−1
j ‖aj − ai‖Lp(qj∩qi,R2) + ‖∇aj −∇ai‖Lp(qj∩qi,R2×2) ≤ cp‖e(u)‖Lp(Qj∪Qi,R2×2).

Fix now a partition of unity θj ∈ C2
c (qj) with |Dθj| ≤ c/rj, and define

a∗ ∈ C∞(U,R2) by a∗ :=
∑

j θjaj. Since
∑

iDθi = 0, for x ∈ qj we obtain
Da∗(x) =

∑
i:qi∩qj 6=∅(θiDai(x) + (ai − aj)⊗Dθi(x)), and correspondingly

rj|D2a∗|(x) ≤ c
∑

i:qi∩qj 6=∅

(r−1
j |ai − aj|(x) + |Dai −Daj|(x)).

At the same time, by the properties of the covering rj can be estimated with
the distance from the boundary, which in turn, since U is a Lipschitz set,
behaves as ϕ(x1)− x2. Taking the Lp norm we concludeˆ

U int\∪jPj
(ϕ(x1)− x2)p|D2a∗|p(x)dx ≤ cL,p‖e(u)‖pLp(U,R2) .

At this point we apply a weighted Poincaré inequality, as was done in [37,
Theorem 3.1]. The inequality we use states that for any bounded, connected
open Lipschitz set Ω, any p ∈ [1,∞) and any f ∈ W 1,p

loc (Ω) there is f∗ ∈ R
such that ˆ

Ω

|f − f∗|p(x)dx ≤ c

ˆ
Ω

distp(x, ∂Ω)|Df |p(x)dx

where the constant may depend on p and Ω, see [41, Theorem 1.5] or [39,
Theorem 8.8] for a proof. In one dimension, this corresponds to the fact that
for any function f ∈ C0([s, t)) ∩W 1,p

loc ((s, t)) one has
ˆ t

s

|f(x)− f(s)|p(x)dx ≤ c

ˆ t

s

|x− t|p|f ′|p(x)dx.

Since the cube Q0 = (−2, 2)2 was not removed one has a∗ = a0 in q0 =
(−1, 1)2 and application of the one-dimensional weighted Poincaré inequality
to Da∗(x1, ·) on the segment (−2, ϕ(x1)) leads to the assertion, with ω :=
∪j(Pj∪ωj) and a := a0. Equivalently, in the last step one may use a Poincaré
or Korn inequality on John domains, as done in [36, Theorem 4.2].
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We remark that the nonoptimality of the exponent in [36, Theorem 4.2]
is only consequence of the nonoptimal local estimate employed there (see [36,
Theorem 3.1]).

3.3 Reflection

In this subsection we establish a technical result instrumental for the iden-
tification of the surface energy density in Section 4.3. To this aim, given
u ∈ SBDp(Ω) and a point x0 ∈ Ju we set

ux0(x) :=

{
u+(x0) if 〈x− x0, νx0〉 > 0,

u−(x0) if 〈x− x0, νx0〉 < 0.
(3.7)

Lemma 3.4. Let p ∈ (1,∞), u ∈ SBDp(Ω), Ω ⊂ R2 open. For H1-a.e.
x0 ∈ Ju and any ρ > 0 sufficiently small there is vρ ∈ SBDp(B2ρ(x0)) ∩
SBV p(Bρ(x0),R2) such that:

(i) lim
ρ→0

1

ρ
H1(Bρ(x0) ∩ Jvρ \ Ju) = 0;

(ii) lim
ρ→0

1

ρ

ˆ
Bρ(x0)

|∇vρ|pdx = 0;

(iii) lim
ρ→0

1

ρ2
L2({x ∈ Bρ(x0) : u 6= vρ}) = 0;

(iv) lim
ρ→0

1

ρ2

ˆ
Bρ(x0)

|vρ − u|dx = 0;

(v) lim
ρ→0

1

ρp+1

ˆ
Bρ(x0)

|vρ − ux0|pdx = 0;

(vi) lim
ρ→0

1

ρ

ˆ
Bρ(x0)∩Jvρ

|[vρ]− [u]|dH1 = 0.

Proof. Since Ju is (H1, 1) rectifiable, there exists a sequence (Γi)
∞
i=1 of C1

curves such that H1(Ju \ ∪∞i=1Γi) = 0. For H1-a.e. x0 ∈ Ju we have

lim
ρ→0

1

2ρ

ˆ
Ju∩Bρ(x0)

(|[u]|+ 1)dH1 = |[u](x0)|+ 1,

lim
ρ→0

1

2ρ

ˆ
Ju∩Γ∩Bρ(x0)

(|[u]|+ 1)dH1 = |[u](x0)|+ 1,
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for one of the aforementioned curves Γ. Therefore

lim
ρ→0

1

2ρ

ˆ
(Ju4Γ)∩Bρ(x0)

(|[u]|+ 1)dH1 = 0 (3.8)

and for ρ small Γ separates B6ρ(x0) into two connected components. It is not
restrictive to assume that Γ ∩ B6ρ(x0) is the graph of a function h ∈ C1(R).
Moreover the following properties hold for H1-a.e. x0 ∈ Ju

lim
ρ→0

1

ρ

ˆ
Bρ(x0)

|e(u)|pdx = 0, (3.9)

lim
ρ→0

1

2ρ
|Eu|(Bρ(x0)) = |[u]� νu|(x0), (3.10)

lim
ρ→0

1

ρ2

ˆ
Bρ(x0)∩{±(x2−h(x1))>0}

|u− u±(x0)|dx = 0. (3.11)

Indeed, the first one follows from |e(u)|p ∈ L1(Ω) and L2 Ω ⊥ H1 Ju, the
second one from [4, Eq. (4.2)], and the third one from [7, Prop. 4.1, Eq.
(4.2)].

For simplicity we next assume that the point x0 = 0 satisfies all the
previous properties (3.8)-(3.11), with h(0) = h′(0) = 0. We also set τρ :=
‖h‖L∞(B6ρ) and note that τρ/ρ → 0 as ρ → 0. We now define the reflections
of u with respect to the lines {x2 = ±τρ}, in the sense of [42, Lemma 1].
More precisely, define ũ+

ρ on the set B2ρ ∩ {x2 < τρ} by{
(ũ+

ρ )1(x1, x2) := −2u1(x1, 3τρ − 2x2) + 3u1(x1, 2τρ − x2)

(ũ+
ρ )2(x1, x2) := 4u2(x1, 3τρ − 2x2)− 3u2(x1, 2τρ − x2)

and by u otherwise in B2ρ. Note that ũ+
ρ ∈ SBDp(B2ρ) and that

lim
ρ→0

1

2ρ
H1(Jũ+ρ ∩B2ρ) = 0, (3.12)

‖e(ũ+
ρ )‖Lp(B2ρ,R2×2) ≤ c‖e(u)‖Lp(B6ρ,R2×2), (3.13)

for a universal constant c. Using a similar reflection we define ũ−ρ in B2ρ ∩
{(x1, x2) : x2 > −τρ} and we set ũ−ρ := u otherwise in B2ρ.

By (3.8) and (3.12) for ρ small we have that ũ±ρ satisfy the hypotheses of
Proposition 3.2 on B2ρ with s = 1/2. Thus, there exist w±ρ ∈ SBDp(B2ρ) ∩
W 1,p(Bρ,R2), for which properties (i)-(vii) hold true. Finally let us define
vρ ∈ SBDp(B2ρ) by

vρ :=

{
w+
ρ in B2ρ ∩ {x2 > h(x1)},

w−ρ in B2ρ ∩ {x2 < h(x1)}.
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Since w±ρ ∈ W 1,p(Bρ,R2) we obtain vρ ∈ SBV p(Bρ,R2) with

Dvρ Bρ =∇w+
ρ L2 Bρ ∩ {x2 > h(x1)}+ (w+

ρ − w−ρ )⊗ νΓH1 Γ ∩Bρ

+∇w−ρ L2 Bρ ∩ {x2 < h(x1)}.

We next check that vρ satisfies the properties in the statement in the ball
Bρ. Property (i) comes straightforwardly from (3.8) and from the fact that
Jvρ ⊂ Γ. Moreover (3.13), (3.3), and (3.9) yield

lim
ρ→0

1

ρ

ˆ
Bρ

|e(w±ρ )|pdx = 0. (3.14)

As for property (iii), we observe that

lim
ρ→0

1

ρ2
L2({x ∈ Bρ : u(x) 6= vρ(x)}) ≤ lim

ρ→0
(c
τρ
ρ

+
c

ρ
H1((Ju \ Γ) ∩B6ρ)) = 0,

where we have used Proposition 3.2 (i) and (3.8).
Let us now prove property (iv). By the definition of vρ and ũ±ρ and by

triangular inequality we obtain

1

ρ2

ˆ
Bρ

|vρ − u|dx ≤

1

ρ2

ˆ
Bρ∩{h(x1)<x2}

|w+
ρ − ũ+

ρ |dx+
1

ρ2

ˆ
Bρ∩{h(x1)<x2<τρ}

|ũ+
ρ − u|dx+

1

ρ2

ˆ
Bρ∩{x2<h(x1)}

|w−ρ − ũ−ρ |dx+
1

ρ2

ˆ
Bρ∩{−τρ<x2<h(x1)}

|ũ−ρ − u|dx. (3.15)

By the definition of w+
ρ and Proposition 3.2 (vi) we can estimate

1

ρ2

ˆ
Bρ

|w+
ρ − ũ+

ρ |dx ≤
c

ρ
|Eũ+

ρ |(B2ρ) ≤
c

ρ
|Eu|(B6ρ \ Γ).

By (3.8) and (3.9) we conclude that the first term of (3.15) tends to 0.
Clearly, the same argument can be applied to the third term there. So, it
remains to treat the second term in (3.15), being the fourth one similar. By
triangular inequality and a change of variable we infer

1

ρ2

ˆ
Bρ∩{h(x1)<x2<τρ}

|ũ+
ρ − u|dx ≤

1

ρ2

ˆ
Bρ

|ũ+
ρ − u+(x0)|dx+

1

ρ2

ˆ
Bρ∩{h(x1)<x2}

|u+(x0)− u|dx ≤

c

ρ2

ˆ
B6ρ∩{h(x1)<x2}

|u+(x0)− u|dx,
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and the last term tends to 0 by (3.11), hence property (iv) follows.
Let us prove now property (v). By Korn’s inequality and Poincaré’s

inequality in W 1,p, there exists an affine function aρ(x) := dρ+βρx such that

1

ρp+1

ˆ
Bρ

|w+
ρ − aρ|pdx ≤

c

ρ

ˆ
Bρ

|e(w+
ρ )|pdx. (3.16)

We first claim that
lim
ρ→0

dρ = u+(x0). (3.17)

Let ω+
ρ := Bρ ∩ {u = w+

ρ } ∩ {x2 > h(x1)}. Since |ω+
ρ |/ρ2 → π/2, and aρ is

affine, by [22, Lemma 4.3] we obtain, for ρ small,

‖aρ − u+(x0)‖L∞(B+
ρ ,R2) ≤

c

ρ2

ˆ
ω+
ρ

|w+
ρ − aρ|dx+

c

ρ2

ˆ
ω+
ρ

|u− u+(x0)|dx.

The right hand side above is infinitesimal by (3.16), (3.14) and (3.11), thus
we conclude

lim sup
ρ→0

|dρ − u+(x0)| ≤ lim
ρ→0
‖aρ − u+(x0)‖L∞(B+

ρ ,R2) = 0,

which proves (3.17).
Next we prove that

lim
ρ→0

ρ|βρ|p = 0, (3.18)

lim
ρ→0

ρ
1−p
p |dρ − u+(x0)| = 0. (3.19)

To establish (3.18), we fix δ > 0 small and we consider ρ̂ such that(1

ρ

ˆ
Bρ

|e(w+
ρ )|pdx

) 1
p
< δ, for ρ ≤ ρ̂, (3.20)

note that this is possible by (3.14). For ρ < ρ̂ we define ρk := (2kρ) ∧ ρ̂ and
we adopt the notation k in place of ρk for the subscriptions. As above, using
[22, Lemma 4.3] and the triangular inequality we infer

‖ak − ak+1‖L∞(B+
ρk
,R2) ≤

c

ρk2

ˆ
{u=w+

k }
|w+

k − ak|dx+
c

ρ2
k+1

ˆ
{u=w+

k+1}
|w+

k+1 − ak+1|dx ≤ cδρ
p−1
p

k ,
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where the last estimate follows by Hölder’s inequality, (3.16), and (3.20).
Therefore

|dk − dk+1| ≤ ‖ak − ak+1‖L∞(B+
ρk
,R2) ≤ cδρ

p−1
p

k , (3.21)

and hence once more by [22, Lemma 4.3] and by the triangular inequality we
conclude

|βk − βk+1| ≤ cδρ
− 1
p

k .

Collecting these estimates as k varies we obtain

ρ|βρ|p ≤ ρ
(
|β̂|+

k̂−1∑
k=0

|βk − βk+1|
)p
≤ cδp + cρ|β̂|p,

where k̂ is the first index such that ρk̂ = ρ̂ and β̂ := βk̂ = βρ̂. This proves
(3.18) as ρ→ 0 and δ → 0.

We next prove (3.19). Similarly to the previous estimate, summing (3.21)
gives

|dρ − dρ̂| ≤ cδ ρ̂(p−1)/p

for all 0 < ρ < ρ̂ ≤ ρδ, with δ arbitrary and ρδ depending only on δ. Taking
ρ→ 0 and using (3.17) yields

ρ̂(1−p)/p|u+(x0)− dρ̂| ≤ cδ

which, since δ was arbitrary, proves (3.19) and therefore (v).
At this point we turn to property (ii). Korn’s inequality implies that

‖∇w+
ρ ‖Lp(Bρ,R2×2) ≤ ‖∇w+

ρ − βρ‖Lp(Bρ,R2×2) + c ρ
2/p|βρ|

≤ c ‖e(w+
ρ )‖Lp(Bρ,R2×2) + c ρ

2/p|βρ|,

where c > 0 is a universal constant. This, together with (3.14) and (3.18)
and the corresponding estimates for w−ρ , implies property (ii).

We finally show property (vi). Note that by the trace theorem we have

1

ρ

ˆ
Γ∩Bρ

|v±ρ − u±|dH1 ≤

c

ρ2

ˆ
Bρ

|vρ − u|dx+
c

ρ
|E(vρ − u)|(Bρ \ Γ) ≤

c

ρ2

ˆ
Bρ

|vρ − u|dx+
c

ρ

ˆ
Bρ

|e(vρ)|dx+
c

ρ

ˆ
Bρ

|e(u)|dx+
c

ρ

ˆ
Ju\Γ
|[u]|dH1

and all terms in the last expression approach 0 respectively by (iv), (3.9),
(3.14) and (3.8).
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4 Integral representation

4.1 Preliminaries

In this Section we prove Theorem 1.1, along the lines of [11, Section 2.2].
Before starting we specify that property (ii) means that if uj, u ∈ SBDp(Ω)

obey uj → u in L1(Ω,R2), then F (u,A) ≤ lim infj→∞ F (uj, A) for any open
set A. By property (iii), if u, v ∈ SBDp(Ω) obey u = v L2-a.e. in A, then
F (u,A) = F (v, A). The functions f and g are defined in (4.1) and (4.2) be-
low. We recall that any u ∈ SBDp(Ω) (actually, also any function in BD(Ω))
for L2-a.e. x ∈ Ω has an approximate gradient ∇u(x) ∈ R2×2, defined by the
fact that

lim
ρ→0

1

ρ2
L2
({
y ∈ Bρ(x) :

|u(y)− u(x)−∇u(x)(y − x)|
|y − x|

> ε
})

= 0

for every ε > 0 (see [4, Theorem 7.4]). It is easy to see that this definition
implies e(u) = (∇u+∇u)T/2.

The family of balls contained in Ω is denoted by

A∗(Ω) := {Bε(x) : x ∈ Ω, ε > 0, Bε(x) ⊂ Ω} .

Let B ∈ A∗(Ω). We can identify any u ∈ SBDp(B) with its zero extension
uχB ∈ SBDp(Ω), and correspondingly write F (u,B) for F (uχB, B). By
locality, for any other extension the value of the functional is the same.

For B ∈ A∗(Ω) we define

m(u,B) := inf{F (w,B) : w ∈ SBDp(B), w = u around ∂B}

where the condition w = u around ∂B means that a ball B′ ⊂⊂ B exists, so
that w = u on B \B′. For δ > 0, A ∈ A(Ω), we set

mδ(u,A) := inf{
∞∑
i=1

m(u,Bi) : Bi ∈ A∗, Bi ∩Bj = ∅, Bi ⊂ A,

diam (Bi) < δ, µ(A \
∞⋃
i=1

Bi) = 0} ,

where µ := L2 Ω + (1 + |[u]|)H1 (Ju ∩ Ω).
Since δ 7→ mδ(u,A) is decreasing, we can define

m∗(u,A) := lim
δ→0

mδ(u,A).
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Moreover, we set

f(x0, u0, ξ) := lim sup
ε→0

m(u0 + ξ(· − x0), Bε(x0))

L2(Bε)
(4.1)

g(x0, a, b, ν) := lim sup
ε→0

m(ux0,a,b,ν , Bε(x0))

2ε
, (4.2)

where ux0,a,b,ν is defined as

ux0,a,b,ν(x) :=

{
a if 〈x− x0, ν〉 > 0,

b if 〈x− x0, ν〉 < 0.

In the next Lemmas we will see that F is equivalent to m, in the sense
that the two quantities have the same Radon-Nykodym derivative with re-
spect to µ, see Lemma 4.3 below. This will then be used in the next Section
to determine the structure of F , separately for the diffuse part, which is abso-
lutely continuos with respect to L2, and the jump part, which is orthogonal
to it. We start by showing that F = m∗ on open sets (Lemma 4.1) and
determining continuity of m in the radius of the ball (Lemma 4.2).

Lemma 4.1. For all u ∈ SBDp(Ω) and A ∈ A(Ω), F (u,A) = m∗(u,A).

Proof. By definition, m(u,B) ≤ F (u,B) for any ball B. Since F (u, ·) is a
measure, we obtain mδ(u,A) ≤ F (u,A) for any δ > 0. Therefore m∗(u,A) ≤
F (u,A).

To prove the converse inequality, let δ > 0, pick countably many balls Bδ
i

as in the definition of mδ(u,A), such that

∞∑
i=1

m(u,Bδ
i ) < mδ(u,A) + δ .

By the definition of m there are functions vδi ∈ SBDp(Bδ
i ) such that vδi = u

around ∂Bδ
i and F (vδi , B

δ
i ) ≤ m(u,Bδ

i ) + δL2(Bδ
i ). We define

vδ :=
∞∑
i=1

vδiχBδi + uχNδ
0

where N δ
0 := Ω \ ∪iBδ

i .
By the BD compactness theorem vδ ∈ BD(Ω) and by the SBD closure

theorem (see also [29, Theorem 11.3]) we conclude that vδ ∈ SBDp(Ω) and

Evδ =
∞∑
i=1

Evδi Bδ
i + Eu N δ

0 ,
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with
|Evδ| N δ = 0, µ(N δ) = 0 , F (vδ, N δ) = 0

where N δ := A ∩N δ
0 . Further,

F (vδ, A) =
∞∑
i=1

F (vδi , B
δ
i ) + F (vδ, N δ) ≤ mδ(u,A) + δ + δL2(A) .

We claim that vδ → u in L1(Ω,R2). Since F (·, A) is lower semicontinuous,
this will imply

F (u,A) ≤ lim inf
δ→0

F (vδ, A) ≤ lim inf
δ→0

mδ(u,A) = m∗(u,A) .

To prove vδ → u, we observe that by Poincaré’s inequality (see for example
[33, Proposition 1.7.6]), or [47, Theorem 2.2]), since diamBδ

i ≤ δ and vδ = u
on ∂Bδ

i we obtain

‖vδ − u‖L1(Bδi ,R2) ≤ cδ|Evδ − Eu|(Bδ
i ) .

Therefore

‖vδ − u‖L1(Ω,R2) ≤
∑
i

‖vδ − u‖L1(Bδi ,R2) ≤ cδ(|Evδ|(A) + |Eu|(A))

≤cδ(F (vδ, A) + F (u,A)) .

Since F (vδ, A) has a finite limit as δ → 0, this proves vδ → u in L1(Ω,R2).

Lemma 4.2. For any ball Br(x0) ⊂ Ω and δ > 0 sufficiently small we have

(i) lim
δ→0

m(u,Br−δ(x0)) = m(u,Br(x0));

(ii) m(u,Br+δ(x0))) ≤ m(u,Br(x0)) + β

ˆ
Br+δ(x0)\Br(x0)

(1 + |e(u)|p)dx +

β

ˆ
Ju∩Br+δ(x0)\Br(x0)

(1 + |[u]|)dH1.

Proof. We drop x0 from the notation. Choose vδ ∈ SBDp(Br−δ) with vδ = u
around ∂Br−δ and F (vδ, Br−δ) ≤ m(u,Br−δ) + δ. We define

wδ(x) :=

{
vδ(x) if x ∈ Br−δ ,

u(x) if x ∈ Ω \Br−δ .
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We have

m(u,Br) ≤F (wδ, Br) ≤ F (vδ, Br−δ) + F (wδ, Br \Br−δ)

≤m(u,Br−δ) + δ

+ β

ˆ
Br\Br−δ

(|e(u)|p + 1)dx+ β

ˆ
Ju∩Br\Br−δ

(1 + |[u]|)dHn−1 .

Since (1+|e(u)|p)L2 Ω+(1+|[u]|)H1 Ju is a bounded measure, we conclude
that

m(u,Br) ≤ lim inf
δ→0

m(u,Br−δ) .

Conversely, for any ε > 0 there is vε ∈ SBDp(Br) with vε = u around ∂Br

and F (vε, Br) ≤ m(u,Br) + ε. For δ > 0 sufficiently small one has vε = u on
Br \ Br−2δ and therefore m(u,Br−δ) ≤ F (vε, Br−δ) ≤ m(u,Br) + ε. Taking
first δ → 0 and then ε → 0 concludes the proof of (i). The proof of (ii) is
analogous.

Lemma 4.3. For µ-a.e. x0 ∈ Ω,

lim
ε→0

F (u,Bε(x0))

µ(Bε(x0))
= lim

ε→0

m(u,Bε(x0))

µ(Bε(x0))
,

where, as above, µ := L2 Ω + (1 + |[u]|)H1 (Ju ∩ Ω).

Proof. From m(u,Bε(x0)) ≤ F (u,Bε(x0)) one immediately obtains

lim sup
ε→0

m(u,Bε(x0))

µ(Bε(x0))
≤ lim sup

ε→0

F (u,Bε(x0))

µ(Bε(x0))

for any x0 ∈ Ω. To prove the converse inequality, we define for t > 0 the set

Et := {x ∈ Ω : there is εh → 0 such that

F (u,Bεh(x)) > m(u,Bεh(x)) + tµ(Bεh(x)) for all h} .

From this definition one immediately has

lim inf
ε→0

F (u,Bε(x0))

µ(Bε(x0))
≤ lim inf

ε→0

m(u,Bε(x0))

µ(Bε(x0))
+ t for all x0 ∈ Ω \ Et .

If we can prove that
µ(Et) = 0 for all t > 0 (4.3)

then, recalling that limε→0
F (u,Bε(x0))
µ(Bε(x0))

exists µ-almost everywhere, the proof
is concluded.
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It remains to prove (4.3) for an arbitrary t > 0. For δ > 0 we define

Xδ := {Bε(x) : ε < δ, Bε(x) ⊂ Ω, µ(∂Bε(x)) = 0,

F (u,Bε(x)) > m(u,Bε(x)) + tµ(Bε(x))}

and

U∗ :=
⋂
δ>0

{x : ∃ε > 0 s.t. Bε(x) ∈ Xδ} .

We first show that Et ⊂ U∗. Let x ∈ Et. Then for any δ > 0 there is ε ∈ (0, δ)
such that F (u,Bε(x)) > m(u,Bε(x))+tµ(Bε(x)). By Lemma 4.2 the function
ε → m(u,Bε(x)) is left-continuous; F (u,Bε(x)) is left-continuous because
F (u, ·) is a measure, therefore the same inequality holds for all ε′ ∈ (ε′′, ε).
In particular, there is one which additionally obeys µ(∂Bε(x)) = 0, so that
x ∈ U∗.

It remains to show that µ(U∗) = 0. We fix a compact set K ⊂ U∗ and
0 < δ < η. Let Uη :=

⋃
{Bε(x) : Bε(x) ∈ Xη} and

Y δ := {Bε(x) : ε < δ,Bε(x) ⊂ Uη \K,µ(∂Bε(x)) = 0} .

By definition, Xδ is a fine cover of K and Y δ of Uη \K. Therefore there are
countably many pairwise disjoint balls Bi ∈ Xδ and B̂j ∈ Y δ and a set N
with µ(N) = 0 such that

Uη =

(⋃
i∈N

Bi

)
∪

(⋃
j∈N

B̂j

)
∪N .

Then

F (u, Uη) =
∑
i

F (u,Bi) +
∑
j

F (u, B̂j) + F (u,N)

≥
∑
i

(m(u,Bi) + tµ(Bi)) +
∑
j

m(u, B̂j)

=
∑
i

m(u,Bi) +
∑
j

m(u, B̂j) + tµ(∪iBi)

≥mδ(u, Uη) + tµ(K)

where in the last step we used the definition of mδ. For δ → 0, the definition
of m∗ and Lemma 4.1 give

F (u, Uη) ≥ m∗(u, Uη) + tµ(K) = F (u, Uη) + tµ(K) .

Therefore µ(K) = 0, and by the regularity of µ we conclude µ(U∗) = 0.
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4.2 Bounds on the volume term

In this subsection we identify the volume energy density in the integral repre-
sentation for F to be the function f defined in (4.1). Throughout the whole
subsection we consider a fixed map u ∈ SBDp(Ω). Our first result shows that
the local volume energy density can be computed with a W 1,p-approximation
to the blow-ups of u (see (4.7–4.8) below), in the sense that

dF (u, ·)
dL2

(x0) = lim
ε→0

m
(
wε, Bε(x0)

)
L2(Bε)

. (4.4)

We will however not need (4.4), but only the apparently more complex version
in (4.5)-(4.6). Taking a diagonal subsequence they imply (4.4).

Lemma 4.4. For L2-almost any x0 ∈ Ω, any ε > 0, and any s ∈ (0, 1) there
are functions wsε ∈ W 1,p(Bsε(x0);R2) which obey

dF (u, ·)
dL2

(x0) ≤ lim inf
s→1

lim inf
ε→0

m
(
wsε, Bsε(x0)

)
L2(Bsε)

(4.5)

and

lim sup
s→1

lim sup
ε→0

m
(
wsε, Bs2ε(x0)

)
L2(Bsε)

≤ dF (u, ·)
dL2

(x0) (4.6)

and which approximate the affine function y 7→ ∇u(x0)(y − x0) + u(x0) in
the sense that

lim
ε→0

1

ε2

ˆ
Bε(x0)

|e(wsε)− e(u)(x0)|pdx = 0 (4.7)

and

lim
ε→0

1

ε2+p

ˆ
Bε(x0)

|wsε(x)− u(x0)−∇u(x0)(x− x0)|pdx = 0 . (4.8)

We remark that the ball in (4.6) has radius s2ε instead of sε. The estimate
would also hold on Bsε, the variant we chose is more convenient in the proof
of Lemma 4.7 (cp. (4.12)).

Proof. Let x0 ∈ Ω be such that

lim
ε→0

1

ε2

ˆ
Bε(x0)

|e(u)(x)− e(u)(x0)|pdx = 0 , (4.9)
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lim
ε→0

1

ε2

ˆ
Bε(x0)∩Ju

(1 + |[u]|)dH1 = 0 , (4.10)

and

lim
ε→0

1

ε3

ˆ
Bε(x0)

|u(x)− u(x0)−∇u(x0)(x− x0)|dx = 0 . (4.11)

By [4, Th. 7.4], L2-almost every x0 obeys (4.11), the other two are standard.
By (4.10), for sufficiently small ε one has H1(Ju ∩Bε(x0)) ≤ η(1− s)ε/2,

where η is the constant from Theorem 2.1. By Proposition 3.2 applied to
u− u(x0)−∇u(x0)(· − x0) there is w̃sε ∈ SBDp(Bε(x0)) ∩W 1,p(Bsε(x0);R2)
with properties (i)-(vii), then we set wsε := w̃sε + u(x0) +∇u(x0)(· − x0). In
particular, (4.7) follows from (3.3) and (4.9), while (4.8) follows from Lemma
4.5 below applied to w̃sε, estimating the right-hand side with (4.7), (vi), and
(4.9)-(4.11).

We first prove (4.6). By the very definition of m and the fact that F (wsε, ·)
is a positive measure, it follows

m(wsε, Bs2ε(x0)) ≤ F (wsε, Bs2ε(x0)) ≤ F (wsε, Bε(x0)) . (4.12)

Let (Bi)i∈N be the balls from Proposition 3.2. For M ∈ N we define

ws,Mε := u+ χ∪Mi=1Bi
(wsε − u) .

Then ws,Mε ∈ SBDp(Bε(x0)) and ws,Mε → wsε in L1 as M →∞. Further,

F (ws,Mε , Bε(x0)) ≤F (ws,Mε , Bε(x0) \ ∪Mi=1Bi) +
M∑
i=1

F (ws,Mε , Bi)

≤F (u,Bε(x0) \ ∪Mi=1Bi) + β
M∑
i=1

ˆ
Bi

(1 + |e(wsε)|p)dx

since ws,Mε = wsε is a W 1,p function on each Bi. By monotonicity and lower
semicontinuity of F we obtain

F (wsε, Bε(x0)) ≤F (u,Bε(x0)) + β
∞∑
i=1

ˆ
Bi

(1 + |e(wsε)|p)dx

≤F (u,Bε(x0)) + cL2(∪iBi)(1 + |e(u)|p(x0))

+ c

ˆ
Bε(x0)

|e(wsε)− e(u)(x0)|pdx
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and, recalling Proposition 3.2 (i), conclude the proof of (4.6) by (4.7) and
(4.9).

It remains to prove (4.5). Let vε ∈ SBDp(Bsε(x0)) be such that vε = wsε
around ∂Bsε(x0) and F (vε, Bsε(x0)) ≤ m(wsε, Bsε(x0)) + ε3. We define

ṽε(x) :=

{
vε(x) if x ∈ Bsε(x0)

wsε(x) if x ∈ Bε(x0) \Bsε(x0) .

By definition of m and additivity of F we obtain

m(u,Bε(x0)) ≤F (ṽε, Bε(x0)) = F (ṽε, Bsε(x0)) + F (ṽε, Bε(x0) \Bsε(x0))

where by locality of F and definition of vε

F (ṽε, Bsε(x0)) = F (vε, Bsε(x0)) ≤ m(wsε, Bsε(x0)) + ε3

and, since ṽε = wsε outside Bsε(x0) and H1(Jṽε ∩ ∂Bsε(x0)) = 0, recalling
(3.3) we obtain

F (ṽε, Bε(x0) \Bsε(x0)) ≤β
ˆ
Bε(x0)\Bsε(x0)

(1 + |e(wsε)|p)dx

+ β

ˆ
Ju∩Bε(x0)\Bs2ε(x0)

(1 + |[u]|)dH1

≤cβL2(Bε)(1− s2)(1 + |e(u)|p(x0))

+ cβ

ˆ
Bε(x0)

|e(wsε)(x)− e(u)(x0)|pdx

+ β

ˆ
Ju∩Bε(x0)

(1 + |[u]|)dH1 .

Dividing by L2(Bε) and taking the limit as ε→ 0 gives

lim
ε→0

m(u,Bε(x0))

L2(Bε)
≤ lim inf

ε→0

m(wsε, Bsε(x0))

L2(Bε)
+ cβ(1− s2)(1 + |e(u)|p(x0)) ,

where we used (4.7) and (4.10). Recalling Lemma 4.3 we obtain

dF (u, ·)
dL2

(x0) = lim
ε→0

m(u,Bε(x0))

L2(Bε)
≤ lim inf

s→1
lim inf
ε→0

m(wsε, Bsε(x0))

L2(Bsε)
.

This concludes the proof of (4.5).

The next Lemma is a reverse-Hölder estimate for functions with small
strain, of the form ‖v‖p ≤ r‖e(v)‖p + r−n/p

′‖v‖1.
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Lemma 4.5. For any p ≥ 1 there is c > 0 (depending on n and p) such that
for any v ∈ W 1,p(Br;Rn) one has

1

rn+p

ˆ
Br

|v|pdx ≤ c
1

rn

ˆ
Br

|e(v)|pdx+ c

(
1

rn+1

ˆ
Br

|v|dx
)p

.

Proof. By scaling it suffices to consider r = 1. By Korn’s inequality there is
an affine function a such thatˆ

B1

|v − a|pdx ≤ c

ˆ
B1

|e(v)|pdx .

Since a is affine,
ˆ
B1

|a|pdx ≤ c

(ˆ
B1

|a|dx
)p
≤ c

(ˆ
B1

|v|dx
)p

+ c

ˆ
B1

|v − a|pdx .

A triangular inequality concludes the proof.

Lemma 4.6. For L2-a.e. x0 ∈ Ω,

dF (u, ·)
dL2

(x0) ≤ f(x0, u(x0),∇u(x0))

where f was defined in (4.1).

Proof. Let x0, wsε be as in Lemma 4.4, for s ∈ (0, 1). We choose vsε ∈
SBDp(Bs2ε(x0)) such that vsε(x) = u(x0) +∇u(x0)(x−x0) around ∂Bs2ε(x0)
and F (vsε, Bs2ε(x0)) ≤ m(u(x0)+∇u(x0)(·−x0), Bs2ε(x0))+ε3. We extend it
to R2 setting it equal to u(x0) +∇u(x0)(· − x0) outside Bs2ε(x0) and choose
ϕ ∈ C∞c (Bsε(x0)) with ϕ = 1 on Bs2ε(x0) and ‖Dϕ‖∞ ≤ c/(s(1 − s)ε). We
define

zsε := ϕvsε + (1− ϕ)wsε .

We remark that zsε = vsε on Bs2ε(x0) and zsε ∈ W 1,p(Bsε(x0) \ Bs2ε(x0);R2).
Then

m(wsε, Bsε(x0)) ≤F (zsε , Bsε(x0)) ≤ F (vsε, Bs2ε(x0)) + F (zsε , Bsε(x0) \Bs2ε(x0))

≤m(u(x0) +∇u(x0)(· − x0), Bs2ε(x0)) + ε3

+ β

ˆ
Bsε(x0)\Bs2ε(x0)

(1 + |e(zsε)|p)dx .

In order to estimate the error term, we observe that in Bsε(x0)\Bs2ε(x0) one
has

∇zsε−∇u(x0) = (u(x0)+∇u(x0)(·−x0)−wsε)⊗∇ϕ+(1−ϕ)(∇wsε−∇u(x0))
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which implies
ˆ
Bsε(x0)\Bs2ε(x0)

(1 + |e(zsε)|p)dx ≤c(1− s)L2(Bsε)(1 + |e(u)|p(x0))

+ c

ˆ
Bsε(x0)

|e(wsε)− e(u)(x0)|pdx

+ c

ˆ
Bsε(x0)

|u(x0) +∇u(x0)(x− x0)− wsε|p

εpsp(1− s)p
dx.

Therefore, recalling (4.7) and (4.8),

lim sup
ε→0

F (zsε , Bsε(x0) \Bs2ε(x0))

L2(Bsε)
≤ c(1− s)(1 + |e(u)|p(x0))

and

lim sup
ε→0

m(wsε, Bsε(x0))

L2(Bsε)
≤ lim sup

ε→0

m(u(x0) +∇u(x0)(· − x0), Bs2ε(x0))

L2(Bsε)

+ c(1− s)(1 + |e(u)|p(x0))

=s2f(x0, u0,∇u(x0)) + c(1− s)(1 + |e(u)|p(x0)) .

Since s was arbitrary, this concludes the proof.

Lemma 4.7. For L2-a.e. x0 ∈ Ω,

f(x0, u(x0),∇u(x0)) ≤ dF (u, ·)
dL2

(x0)

where f was defined in (4.1).

Proof. We choose x0 and wsε as in Lemma 4.4, for s ∈ (0, 1). We let vsε ∈
SBDp(Bs2ε(x0)) be such that vsε = wsε around ∂Bs2ε(x0) and F (vsε, Bs2ε(x0)) ≤
m(wsε, Bs2ε(x0)) + ε3, and extend it to Bsε(x0) setting it equal to wsε out-
side Bs2ε(x0). We choose ϕ ∈ C∞c (Bsε(x0)) with ϕ = 1 on Bs2ε(x0) and
‖Dϕ‖∞ ≤ c/(s(1− s)ε) and define

zsε := ϕvsε + (1− ϕ)(u(x0) +∇u(x0)(x− x0)) .

Then

m(u(x0) +∇u(x0)(· − x0),Bsε(x0)) ≤ F (zsε , Bsε(x0))

=F (vsε, Bs2ε(x0)) + F (zsε , Bsε(x0) \Bs2ε(x0))

≤m(wsε, Bs2ε(x0)) + ε3 + F (zsε , Bsε(x0) \Bs2ε(x0)) .
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In order to estimate the error term, we observe that in Bsε(x0)\Bs2ε(x0) one
has

∇zsε −∇u(x0) = −(u(x0) +∇u(x0)(· − x0)− wsε)⊗∇ϕ+ ϕ(∇wsε −∇u(x0))

which leads as in the proof of Lemma 4.6 to

lim sup
ε→0

F (zsε , Bsε(x0) \Bs2ε(x0))

L2(Bsε)
≤ c(1− s)(1 + |e(u)|p(x0)) .

We conclude that for any s ∈ (0, 1)

lim sup
ε→0

m(u(x0) +∇u(x0)(· − x0), Bsε(x0))

L2(Bsε)

≤ lim sup
ε→0

m(wsε, Bs2ε(x0))

L2(Bsε)
+ c(1− s)(1 + |e(u)|p(x0)) .

Since s was arbitrary, this concludes the proof.

4.3 Bounds on the surface term

In the current subsection we identify the function g in (4.2) to be the surface
energy density in the integral representation of F . As above, we work with
a fixed map u ∈ SBDp(Ω).

We first prove a technical result.

Lemma 4.8. ForH1-a.e. x0 ∈ Ju there are functions wε ∈ SBV p(B2ε(x0),R2)
satisfying for all t ∈ (0, 2)

dF (u, ·)
dH1 Ju

(x0) = lim
ε→0

m(wε, Btε(x0))

2tε
. (4.13)

Proof. It suffices to consider points x0 such that the conclusions of Lem-
mata 3.4 and 4.3 hold true, the Radon-Nikodym derivative dF (u,·)

dH1 Ju
(x0) exists

finite,

lim
ε→0

µ(Bε(x0))

2ε
= 1 + |[u](x0)|, (4.14)

and

lim
ε→0

(1

ε

ˆ
Bε(x0)

|e(u)|pdx+
1

ε2

ˆ
Bε(x0)

|u(x)− ux0|dx
)

= 0, (4.15)

where ux0 is the piecewise constant function defined in (3.7). In view of all
these choices and thanks to Lemma 4.3 we may conclude that

dF (u, ·)
dH1 Ju

(x0) = lim
ε→0

F (u,Bε(x0))

2ε
= lim

ε→0

m(u,Bε(x0))

2ε
. (4.16)
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For ε > 0 small enough the function v2ε introduced in Lemma 3.4 belongs
to SBDp(B4ε(x0)) ∩ SBV p(B2ε(x0),R2) and it satisfies properties (i)-(vi).
We set wε := v2ε, we are left with proving that for all t ∈ (0, 2)

dF (u, ·)
dH1 Ju

(x0) ≥ lim sup
ε→0

m(wε, Btε(x0))

2tε
, (4.17)

dF (u, ·)
dH1 Ju

(x0) ≤ lim inf
ε→0

m(wε, Btε(x0))

2tε
. (4.18)

For the sake of notational simplicity we will prove inequalities (4.17) and
(4.18) only for t = 1.

We start off with (4.17). Let (εj)j be a sequence such that

lim
j→∞

m(wεj , Bεj(x0))

2εj
= lim sup

ε→0

m(wε, Bε(x0))

2ε
. (4.19)

Items (iii) and (iv) in Lemma 3.4 and the Coarea formula yield for a subse-
quence not relabeled for convenience that for L1-a.e. s ∈ (0, 1)

lim
j→∞

1

εj

ˆ
∂Bsεj (x0)∩{u6=wεj }

(
1 + |u− wεj |

)
dH1 = 0, (4.20)

µ
(
∂Bsεj(x0)

)
= H1

(
∂Bsεj(x0) ∩ Jwεj

)
= 0. (4.21)

We choose zj ∈ SBDp(Bsεj(x0)) such that zj = u around ∂Bsεj(x0) and

F (zj, Bsεj(x0)) ≤ m(u,Bsεj(x0)) + ε2
j ,

and define

ζj :=

{
zj Bsεj(x0)

wεj Bεj(x0) \Bsεj(x0).

The definition of zj, the growth conditions in (1.1), and the locality of F
yield

m(wεj , Bεj(x0)) ≤ F (ζj, Bεj(x0))

≤ F (zj, Bsεj(x0)) + β

ˆ
Bεj (x0)\Bsεj (x0)

(1 + |e(wεj)|p) dx︸ ︷︷ ︸
=:I

(1)
j

+β

ˆ
∂Bsεj (x0)∩{u6=wεj }

(1 + |u− wεj |)dH1

︸ ︷︷ ︸
=:I

(2)
j

+ β

ˆ
(Bεj (x0)\Bsεj (x0))∩Jwεj

(1 + |[wεj ]|)dH1

︸ ︷︷ ︸
=:I

(3)
j

≤ m(u,Bsεj(x0)) + ε2
j + I

(1)
j + I

(2)
j + I

(3)
j .
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We note that I
(1)
j and I

(2)
j are o(εj) as j →∞ thanks to Lemma 3.4 (ii) and

(4.20), respectively. Instead, employing Lemma 3.4 (vi) and (4.14) to bound

I
(3)
j we infer that

lim sup
j→∞

I
(3)
j

2εj
≤ lim sup

j→∞

β

2εj

ˆ
((Bεj (x0)\Bsεj (x0))∩Ju

(1 + |[u]|)dH1

= β lim sup
j→∞

µ
(
(Bεj(x0) \Bsεj(x0)) ∩ Ju

)
2εj

= (1− s)β(1 + |[u](x0)|). (4.22)

Therefore, by (4.16) we conclude

lim
j→∞

m(wεj , Bεj(x0))

2εj
≤ lim inf

j→∞

m(u,Bsεj(x0))

2εj
+ (1− s)β(1 + |[u](x0)|)

= s
dF (u, ·)
dH1 Ju

(x0) + (1− s)β(1 + |[u](x0)|).

Estimate (4.17) follows at once by (4.19) and by letting s ↑ 1 in the last
inequality.

Let now (εj)j be a sequence such that

lim
j→∞

m(wεj , Bεj(x0))

2εj
= lim inf

ε→0

m(wε, Bε(x0))

2ε
. (4.23)

Let λ ∈ (1, 2), arguing as for (4.20) and (4.21), up to a subsequence depending
on λ and not relabeled for convenience we may assume that for L1-a.e. s ∈
(0, 1)

lim
j→∞

1

εj

ˆ
∂Bsλεj (x0)∩{u6=wεj }

(
1 + |u− wεj |

)
dH1 = 0, (4.24)

and
µ
(
∂Bsλεj(x0)

)
= H1

(
∂Bsλεj(x0) ∩ Jwεj

)
= 0. (4.25)

Given zj ∈ SBDp(Bsλεj(x0)) with zj = wεj around ∂Bsλεj(x0) and such that

F (zj, Bsλεj(x0)) ≤ m(wεj , Bsλεj(x0)) + ε2
j ,

define

ζj :=

{
zj Bsλεj(x0)

u Bλεj(x0) \Bsλεj(x0).
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Using ζj as a test field for m(u,Bλεj(x0)), by the locality of F and its growth
conditions in (1.1)

m(u,Bλεj(x0)) ≤ F (ζj, Bλεj(x0)) ≤ m(wεj , Bsλεj(x0)) + ε2
j

+ β

ˆ
Bλεj (x0)

(1 + |e(u)|p) dx︸ ︷︷ ︸
I
(4)
j

+ β

ˆ
∂Bsλεj (x0)∩{u6=wεj }

(1 + |u− wεj |)dH1

︸ ︷︷ ︸
I
(5)
j

+ β

ˆ
(Bλεj (x0)\Bsλεj (x0))∩Ju

(1 + |[u]|)dH1

︸ ︷︷ ︸
I
(6)
j

.

The terms I
(4)
j and I

(5)
j are o(εj) by (4.15) and (4.24), respectively. The term

I
(6)
j can be estimated thanks to (4.14). Hence, we get by (4.16)

dF (u, ·)
dH1 Ju

(x0) = lim sup
j→∞

m(u,Bλεj(x0))

2λεj

≤ lim sup
j→∞

m(wεj , Bsλεj(x0))

2λεj
+(1− s)β(1 + |[u]|(x0)). (4.26)

Next, by choosing s ∈ (0, 1) for which (4.24) and (4.25) hold and sλ > 1, we
may use Lemma 4.2(ii) to infer

m(wεj , Bsλεj(x0)) ≤m(wεj , Bεj(x0)) + β

ˆ
Bsλεj (x0)\Bεj (x0)

(1 + |e(wεj)|p)dx

+ β

ˆ
(Bsλεj (x0)\Bεj (x0))∩Jwεj

(1 + |[wεj ]|)dH1. (4.27)

Clearly, the first integral is o(εj) by Lemma 3.4 (ii), while the other one can

be dealt with as I
(3)
j in (4.22). Thus, (4.26) and (4.27) give

dF (u, ·)
dH1 Ju

(x0) ≤ 1

λ
lim
j→∞

m(wεj , Bεj(x0))

2εj
+ (λ− 1)β(1 + |[u](x0)|).

In conclusion, by taking into account (4.23), we deduce (4.18) by taking first
the limit as s ↑ 1, for s ∈ (0, 1) chosen as explained above, and then as λ ↓ 1
in the latter inequality.

We are now ready to show that the function g in (4.2) is the surface energy
density of F . This task will be accomplished by proving two inequalities.
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Lemma 4.9. For H1-a.e. x0 ∈ Ju,

dF (u, ·)
dH1 Ju

(x0) ≤ g(x0, u
+(x0), u−(x0), νu(x0))

where g was defined in (4.2).

Proof. We consider the same x0 as in Lemma 4.8. In view of (4.13) and the
definition of g in (4.2) it suffices to show that

lim
ε→0

m(wε, Bε(x0))

2ε
≤ lim sup

ε→0

m(ux0 , Bε(x0))

2ε
, (4.28)

where wε is the function introduced in Lemma 4.8. To prove such a claim
consider any sequence (εj)j, we have that for L1-a.e. s ∈ (0, 1)

µ
(
∂Bsεj(x0)

)
= H1

(
∂Bsεj(x0) ∩ Jwj

)
= 0, (4.29)

where we have set wj := wεj .
Fix s ∈ (0, 1) as above and a test field zj ∈ SBDp(Bsεj(x0)) with zj = ux0

on ∂Bsεj(x0) such that

F (zj, Bsεj(x0)) ≤ m(ux0 , Bsεj(x0)) + ε2
j .

Consider a cut-off function ϕ ∈ C∞c (Bεj(x0), [0, 1]) such that ϕ ≡ 1 on
Bsεj(x0) and ‖∇ϕ‖L∞ ≤ 2

(1−s)εj . Define ζj := ϕ zj + (1 − ϕ)wj, with the

convention that zj is extended equal to ux0 outside Bsεj(x0). Therefore, by
using ζj as a test field for m(wj, Bεj(x0)) we infer from the growth condition
in (1.1) and the locality of F

m(wj, Bεj(x0)) ≤ F (ζj, Bεj(x0)) ≤ F (zj, Bsεj(x0))

+C

ˆ
Bεj (x0)\Bsεj (x0)

(1 + |e(wj)|p) dx︸ ︷︷ ︸
=:I

(7)
j

+
C

((1− s)εj)p

ˆ
Bεj (x0)\Bsεj (x0)

|wj − ux0|pdx︸ ︷︷ ︸
=:I

(8)
j

+ CH1
(
(Bεj(x0) \Bsεj(x0)) ∩ Jζj

)︸ ︷︷ ︸
=:I

(9)
j

+C

ˆ
(Bεj (x0)\Bsεj (x0))∩Jζj

|[ζj]|dH1

︸ ︷︷ ︸
=:I

(10)
j

≤ m(ux0 , Bsεj(x0)) + ε2
j + I

(7)
j + I

(8)
j + I

(9)
j + I

(10)
j , (4.30)

with C = C(β, p) > 0.
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By taking into account Lemma 3.4 (ii) and (v) we deduce that I
(7)
j +I

(8)
j =

o(εj) as j →∞. Moreover, as

H1((Bεj(x0) \Bsεj(x0)) ∩ Jζj \ (Jux0 ∪ Jwj)) = 0,

item (i) in Lemma 3.4 together with (4.14) give

lim sup
j→∞

I
(9)
j

2εj
≤ C(1− s)(1 + |[u](x0)|).

Furthermore, for H1-a.e. x ∈ Jζj ∩ (Bεj(x0) \Bsεj(x0)) it holds

|[ζj]| ≤ |[ux0 ]|χJux0∩Jζj + |[wj]|χJwj∩Jζj ≤ 2|[ux0 ]|χJζj + |[wj]− [ux0 ]|χJwj .

In turn the latter inequality implies by (4.14) and (4.29)

lim sup
j→∞

I
(10)
j

2εj
≤ C(1− s)|[u](x0)|

+ C lim sup
j→∞

1

2εj

ˆ
(Bεj (x0)\Bsεj (x0))∩Jζj

(|[wj]− [u](x0)|) dH1

≤ C(1− s)|[u](x0)|,

thanks to item (vi) in Lemma 3.4.
Finally, we obtain from (4.30)

lim inf
j→∞

m(wj, Bεj(x0))

2εj
≤ s lim sup

j→∞

m(ux0 , Bsεj(x0))

2sεj
+C(1−s)(1+ |[u](x0)|)

≤ s lim sup
ε→0

m(ux0 , Bε(x0))

2ε
+ C(1− s)(1 + |[u](x0)|),

and the claim in (4.28) follows at once by letting s → 1 in the inequality
above.

The reverse inequality is established arguing in an analogous fashion,
therefore we provide a more concise proof.

Lemma 4.10. For H1-a.e. x0 ∈ Ju,

dF (u, ·)
dH1 Ju

(x0) ≥ g(x0, u
+(x0), u−(x0), νu(x0))

where g was defined in (4.2).
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Proof. We consider the same points x0 as in Lemma 4.8. Take any infinites-
imal sequence (εj)j such that

g(x0, u
+(x0), u−(x0), νu(x0)) = lim

j→∞

m(ux0 , Bεj(x0))

2εj
,

and recall that (4.29) is valid for L1-a.e. s ∈ (0, 1) (as usual wj = wεj).
Having fixed such an s, let zj ∈ SBDp(Bs εj(x0)) with zj = wj on ∂Bsεj(x0)
be such that

F (zj, Bsεj(x0)) ≤ m(wj, Bsεj(x0)) + ε2
j .

Let ϕ ∈ C∞c (Bεj(x0), [0, 1]) be a cut-off function such that ϕ ≡ 1 on Bsεj(x0)
and ‖∇ϕ‖L∞ ≤ 2

(1−s)εj . Define ζj := ϕ zj + (1 − ϕ)ux0 , with the convention

that zj is extended equal to wj outside Bsεj(x0). By using ζj as a test field for
m(ux0 , Bεj(x0)) we infer from the growth condition in (1.1) and the locality
of F

m(ux0 , Bεj(x0)) ≤ F (ζj, Bεj(x0)) ≤ m(wj, Bsεj(x0)) + ε2
j

+C

ˆ
Bεj (x0)\Bs εj (x0)

(1+|e(wj)|p) dx+
C

((1− s)εj)p

ˆ
Bεj (x0)\Bsεj (x0)

|wj−ux0 |pdx

+ C

ˆ
(Bεj (x0)\Bsεj (x0))∩Jζj

(1 + |[ζj]|)dH1,

where C = C(β, p) > 0. Arguing as in the corresponding estimate in
Lemma 4.9 (cf. (4.30)), and by taking into account the choice of (εj)j we
conclude that

g(x0, u
+(x0), u−(x0), νu(x0)) ≤ lim inf

j→∞

m(wj, Bsεj(x0))

2εj
+C(1−s)(1+|[u](x0)|)

= s
dF (u, ·)
dH1 Ju

(x0) + C(1− s)(1 + |[u](x0)|).

The last equality follows from (4.13). The conclusion is achieved by letting
s ↑ 1 in the last inequality, with s ∈ (0, 1) satisfying (4.29).

4.4 Proof of Theorem 1.1

Proof of Theorem 1.1. The conclusion straightforwardly follows by Lemmata
4.6, 4.7, 4.9, and 4.10.

Proposition 4.11. The assertion in Theorem 1.1 holds also if property (iv)
is replaced by the weaker
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(iv’) There are α, β > 0 such that for any u ∈ SBDp(Ω), any B ∈ B(Ω),

α
(ˆ

B

|e(u)|pdx+H1(Ju ∩B)
)
≤ F (u,B)

≤β
(ˆ

B

(|e(u)|p + 1)dx+

ˆ
Ju∩B

(1 + |[u]|)dH1
)
.

Proof. Given F satisfying properties (i)-(iii) and (iv’), we define for δ > 0 a
functional Fδ : SBDp(Ω)× B(Ω)→ [0,∞) by

Fδ(u,B) := F (u,B) + δ

ˆ
Ju∩B

|[u]|dH1,

for u ∈ SBDp(Ω) and B ∈ B(Ω). Since Fδ satisfies properties (i)-(iv) of
Theorem 1.1, there are two functions f and gδ such that Fδ can be represented
as in (1.2). The family of functionals Fδ is pointwise increasing in δ, therefore
there exists the pointwise limit g of gδ as δ → 0. We conclude that the
representation (1.2) holds for F with densities f and g.

Remark 4.12. Since F is lower semicontinuous on W 1,p, the integrand f is
quasiconvex [1, 40]. Since F is lower semicontinuous on piecewise constant
functions, g is BV -elliptic [2, 3].

Remark 4.13. If the functional F additionally obeys

F (u+ a,B) = F (u,B),

for every u ∈ SBDp(Ω), every ball B ⊂ Ω, and every affine function a : R2 →
R2 such that e(a) = 0, then there are two functions f : Ω × R2×2 → [0,∞)
and g : Ω× R2 × S1 → [0,∞) such that

F (u,B) =

ˆ
B

f(x, e(u(x)))dx+

ˆ
B∩Ju

g(x, [u](x), νu(x))dH1 .

Remark 4.14. The bulk density f satisfies the growth conditions

α

∣∣∣∣ξ + ξT

2

∣∣∣∣p ≤ f(x, u, ξ) ≤ β
(

1 +

∣∣∣∣ξ + ξT

2

∣∣∣∣p ) (4.31)

for L2 a.e. x ∈ Ω and for all (u, ξ) ∈ R2 × R2×2.
In particular, with fixed u and x for which (4.31) holds, if f(x, u, ·) turns

out to be convex then the restriction of f(x, u, ·) to the subspace of skew-
symmetric matrices is constant. Therefore, f(x, u, ·) depends only on the
symmetric part of the matrix ξ rather than on the whole matrix.
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Instead, if f is not convex in ξ the growth condition in (4.31) does not
prevent the dependence on the skew-symmetric part of ξ. As an example, the
integrand f : R2×2 → [0,∞) defined by

f(ξ) := (ξ11 + ξ22)2 +
√

(ξ2
12 + ξ2

21)2 + 1− 2 det(ξ) (4.32)

satisfies
1

4
|ξ + ξT |2 ≤ f(ξ) ≤ 1

2
|ξ + ξT |2 + 1

for every ξ ∈ R2×2, but evidently f(ξ) depends also on the skew-symmetric
part ξ−ξT . In particular, f is not convex; note that f is actually polyconvex.

We do not know if there is g such that the functional F defined as in
(1.2) with f given by (4.32) satisfies the growth condition (1.1) and is lower
semicontinuous.
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