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Abstract

In this paper we study the planar squeeze flow of a Bingham plastic in the
lubrication approximation. We assume that the domain occupied by the fluid
is closed at one end and open at the other (planar geometry). We consider
two cases: (i) planar walls approaching each other in a prescribed way; (ii)
parallel walls whose shape depends on both time and longitudinal coordinate.
The dynamics of the unyielded region is determined exploiting the integral
formulation of the linear momentum balance. We prove that in proximity of
the closed end the material is always yielded, so that the rigid part is always
detached from it. When dealing with case (ii), we show that the dynamics
of the rigid domain is governed by a very complex integral equation, whose
qualitative analysis is beyond the aims of this paper. Conversely, in case (i)
we obtain an almost explicit solution.
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1. Introduction

A Bingham (or viscoplastic) fluid is a material that behaves as rigid body
for low stress values, or as a viscous fluid (whose viscosity may depend on
the local strain rate) when the stress state exceeds a critical threshold (we
refer the readers to the original papers by Bingham [3], [4] or to [5]). As
a consequence, unyielded regions that may stick to rigid walls or may be
transported by the flow can develop within the material. In extreme cases,
such regions may not exists at all or occupy the whole domain.

Modelling of Bingham materials has become increasingly important, es-
pecially because many materials encountered in industrial applications (e.g.
foams, pastes, slurries, oils, ceramics, etc.) exhibit viscoplastic behaviour.
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One of the most cited application of the Bingham model is toothpaste, which
visually exhibits the fundamental character of viscoplasticity: it flows (i.e.
deforms indefinitely) only if submitted to a stress above some critical value,
otherwise it behaves as a solid body.

Despite the apparent simplicity of the constitutive models (especially
when formulated within the implicit constitutive theory [17]–[22]) the flow
characteristics of these materials are difficult to predict, since they involve
unknown boundaries separating the yielded and the unyielded regions. This
is noticeably evident when considering specific settings such as squeeze flow
or channel flow with non uniform walls. In particular the squeeze problem
has been the subject of a series of papers of both experimental and theoret-
ical nature. Here we mention [8], [14], [16] [26],[20], [30] and the excellent
paper [27], together with recent review by Coussot [7] and the numerous
experimental papers therein cited.

When dealing with particular geometries that allow for major simplifica-
tions, such as the lubrication approximation [28], the Bingham model may
lead to paradoxes or contradictions that invalidates the assumption of a per-
fectly rigid unyielded phase, [13]. This is the case, for instance, of the the well
known “lubrication paradox”, which essentially consists in the prediction of a
plug speed that varies in the principal flow direction., meaning that a truly
unyielded region cannot exist (see, for instance, [9], [15], [23] and [10]). This
inconsistency has led some workers to consider strategies for overcoming the
paradox. Balmforth and Craster [1] and subsequently Frigaard and Ryan [9]
developed an asymptotic procedure that resolves the lubrication paradox and
builds a consistent solution for thin layer problems In practice they resolve
the paradox by considering higher order terms of the lubrication expansion
and by showing that actually the plugs are slightly above the yield stress.
They call these regions pseudo plugs and they prove that true rigid plugs are
embedded within them.

In the case of a squeeze flow the problem is still not exhaustively studied,
see [2]. For this peculiar problem the lubrication paradox was first pointed
out by Lipscomb and Denn in [13], who simply proved that a central un-
yielded rigid core cannot exist because of symmetry reasons. A major analy-
sis of the squeeze flow paradox between parallel discs was performed in [29],
where the Bingham model was viewed as a limiting case of a bi-viscous fluid
and where it was proved that the limiting process tending to the Bingham
model and the lubrication approximation lead to a contradiction. In a recent
paper by Muravleva [16] the planar squeeze flow of a Bingham fluid is stud-
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ied exploiting the asymptotic technique introduced in [1]. This technique,
which has been successfully exploited by Frigaard et al. [9] for the flow in
a channel with slowly varying width, allows to determine intact true plug
regions, overcoming thus the lubrication paradox.

In this paper we study the same problem presented in Muravleva [16],
but we use a different approach developed in [10]. In this approach, which
traces its roots back to [24] and [21], the whole unyielded region is treated
as an evolving non material volume, whose motion is determined only by the
stress applied by the fluid part. In practice the balance of linear momentum
of the unyielded region is written using the integral form of the momentum
balance, where only the external stress (i.e. the force exherted by the fluid)
acting on the boundary is required.

The advantage of our procedure lies in the fact that no assumption has to
be made on the order of magnitude of the stress components when applying
the lubrication scaling. In our opinion this is the correct way to proceed,
since in the rigid domain the Cauchy stress is “indeterminate” and we cannot
identify or verify a posteriori which term can be safely neglected when ap-
plying the scaling. The main result we get is that we are able to determine
a “true” unyielded plug and a “true” yielded surface directly at the leading
order with a plug speed that does not vary in the principal flow direction
(no pseudo-plug or fake yield surfaces). Moreover, differently from the vast
majority of studies on squeeze flow of Bingham plastics, we do not suppose
that the velocity of the plates is constant and that the gap width in which
the fluid is confined does not vary with time.

We study the squeeze flow between parallel plates that are approaching
each other in a prescribed way, i.e. planar squeeze flow. We begin by con-
sidering a planar geometry in which one end is closed, while on the other
a known uniform pressure is applied1. Then, in Section 4, we consider the
more general case of time-dependent non-flat walls. We develop the model
assuming that the ratio ε between the maximum channel width and the
channel length is very small, i.e. the lubrication regime. Accordingly the
flow equations are drastically simplified and explicit solutions can be found.

We prove that the unyielded part is always detached from the closed
end of the channel and confined between the squeezing surfaces. Actually

1We remark that assuming a “closed end” is equivalent to considering an open channel
with symmetry condition.
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the yield condition is met also at the channel closed end and in a portion
of the mid-plane, but both regions have at least O(ε) measure, so that the
microscopic dynamics occurring there cannot be observed at the leading order
approximation. Our analysis is indeed confined to the leading order and
models the flow on a length scale where O(ε) variations are not observable.
A higher order analysis may lead to the detection of unyielded parts even in
proximity of the above mentioned regions, as proved in [12].

2. Derivation of the model

Let us consider the flow of an incompressible Bingham fluid in a channel
of length2 L∗ and amplitude 2h∗(t∗), as depicted in Fig. 1. Because of
symmetry, we confine our analysis to the upper part of the layer, namely
[0, h∗ (t∗)]. The velocity field is v∗ = u∗(x∗, y∗, t∗)i+ v∗(x∗, y∗, t∗)j, where x∗,
y∗ are the longitudinal and transversal coordinate respectively.

The Cauchy stress is T
∗ = −P ∗

I + S
∗, where P ∗ = 1/3trT∗ and S is the

so-called deviatoric part. The Bingham constitutive equation can be written
in the implicit form [17]–[22]

D
∗ =

(
IID∗

2η∗IID∗ + τ ∗o

)

S
∗, (1)

which automatically gives the mechanical incompressibility condition trD∗ =
0. In particular η∗ is the viscosity, τ ∗o is the yield stress and

D
∗ =

1

2

(

∇v∗ +∇v∗T
)

, IIS∗ =

√

1

2
tr S∗2, IID∗ =

√

1

2
tr D∗2.

Equation (1) allows to express S
∗ as a function of D∗ only when IIS∗ ≥ τ ∗o ,

while D
∗ = 0, ⇔ IIS∗ ≤ τ ∗o , the stress being constitutively indeterminate.

We assume that the region where IIS∗ ≥ τ ∗o (yielded) and the region where
IIS∗ ≤ τ ∗o (unyielded) are separated by a sharp interface y∗ = ±Y ∗(x∗, t∗)
called the “yield surface”. We also define the inner plug

Ω∗
p∗ = {(x∗, y∗) : x∗ ∈ [0, L∗], y∗ ∈ [−Y ∗, Y ∗]} .

2The starred variables indicate dimensional quantities
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Of course, it may occur that Y ∗(x∗, t∗) = 0 for some x∗ ∈ (0, L∗) and/or for
some t∗, so that Ω∗

p∗ becomes a segment of zero measure. The rigid plug Ω∗
p∗

moves uniformly and its velocity is







u∗ = u∗
p(t

∗),

v∗ = 0, (by symmetry).
(2)

Considering a quasi-steady dynamics and neglecting body forces, the gov-
erning equations in the viscous region are the mechanical incompressibility
condition

trD∗ = 0,

and

−
∂P ∗

∂x∗
+

∂S∗
11

∂x∗
+

∂S∗
12

∂y∗
= 0, (3)

−
∂P ∗

∂y∗
+

∂S∗
12

∂x∗
+

∂S∗
22

∂y∗
= 0, (4)

where S∗
ij are the components of S∗, given by (1), when IIS∗ ≥ τ ∗o .

The integral momentum balance for the whole domain Ω∗
p∗ , in the absence

of body forces, is given by (see [11], [25] and [6])

∫

Ω∗

p∗

∂

∂t∗
(̺∗v∗) dV ∗ +

∫

∂Ω∗

p∗

̺∗v∗ (v∗ · n) dS∗ =

∫

∂Ω∗

p∗

(T∗n)dS∗, (5)

where ̺∗ is the material density. Neglecting the inertial terms, we get fol-
lowing equation3

∫ L∗

0

[−Y ∗
x∗T ∗

11 + T ∗
12]Y ∗+ dx∗ + P ∗

Y0
Y ∗
0 − P ∗

Y1
Y ∗
1 = 0. (6)

where P ∗
Yo

, P ∗
Y1

represent the normal stresses on x∗ = 0 and x∗ = L∗. Con-
cerning the boundary conditions, we impose

v
∗|y∗=h∗ · t = 0,

(

v∗|y∗=h∗ −w∗
)

· n = 0, (7)

3The expression [−Y ∗

x T
∗

11 + T ∗

12]Y ∗ + represents the force exerted by the viscous region
on the lateral side of the inner rigid core.
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w∗ ·n is the wall normal velocity and t is the wall tangent vector. On Y ∗ we
write

Jv∗Ky∗=Y ∗ = 0, (8)

JT∗n · tKy∗=Y ∗ = 0, JT∗n · nK y∗=Y ∗ = 0, (9)

while, on x∗ = 0 





u∗ = 0,

S∗
12 = 0,

(10)

In (8), (9) the symbol J...K denotes the jump across the interface y∗ = Y ∗

and we are also assuming J̺∗Ky∗=Y ∗ = 0. Boundary conditions (10) are
equal to the symmetry conditions one must impose on the symmetry axis
when considering an open channel, as in [16].

3. Squeeze between parallel plates

We consider h∗ = h∗ (t∗), and introduce

H∗ = max
t∗≥0

h∗(t∗).

Next, we define the aspect ratio ε = H∗/L∗, assuming ε ≪ 1. Then we
rescale the problem using the following non dimensional variables

x =
x∗

L∗
, y =

y∗

εL∗
, Y =

Y ∗

εL∗
, h =

h∗

H∗
, t =

t∗

T ∗
,

where T ∗ is the characteristic time scale, i.e. the “squeeze time”. We define
the characteristic transversal velocity as V ∗ = H∗/T ∗, and the longitudi-
nal velocity as U∗ = V ∗/ε, so that u = u∗/U∗, v = v∗/V ∗ = v∗/(εU∗).
Concerning the pressure, exploiting the Poiseuille formula we define P ∗

c =
(η∗L∗U∗)/H∗2 and set P = P ∗/P ∗

c , Pout = P ∗
out/P

∗
c , where P ∗

out is the (given)
pressure field applied at the channel outlet. We suppose that P ∗

out is constant
in time and space. Next we introduce

S =
S
∗

(η∗cU
∗/H∗)

, D =
D

∗

(U∗/H∗)
, IID =

IID∗

(U∗/H∗)
, IIS =

IIS∗

(η∗cU
∗/H∗)

,
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so that

D =
1

2








2ε
∂u

∂x

∂u

∂y
+ ε2

∂v

∂x

∂u

∂y
+ ε2

∂v

∂x
2ε

∂v

∂y







, S =

(

2 +
Bi

IID

)

D,

where

Bi =
τ ∗oH

∗

η∗U∗
=

1

ε

τ ∗o
P ∗
c

,

is the so-called Bingham number. The mechanical incompressibility con-
straint and momentum balance (3), (4) become

∂u

∂x
+

∂v

∂y
= 0, (11)

−
∂P

∂x
+ ε

∂S11

∂x
+

∂S12

∂y
= 0, (12)

−
∂P

∂y
+ ε2

∂S12

∂x
+ ε

∂S22

∂y
= 0. (13)

Equation (6) can be rewritten as
∫ 1

0

[PYx − εYxS11 + S12]Y + dx+ PY0Y0 − PoutY1 = 0, (14)

where we have considered Pout = PY1 . Boundary conditions (7) become

u|h = 0, v|h =
·

h, (15)

since the wall “squeeze velocity” (which is given) is
·

h = ∂h/∂t < 0 (see [13]).
Jump conditions (8) and (9) becomes

JuKy=Y = JvKy=Y = 0, (16)






JP K

[

1 + ε2
(
∂Y

∂x

)2
]

y=Y

+

[

ε3S11

(
∂Y

∂x

)2

− 2ε2S12

(
∂Y

∂x

)

+ εS22

]

y=Y

= 0,

JS12Ky=Y + ε

(
∂Y

∂x

)[

S22 − S11 − εS12
∂Y

∂x

]

y=Y

= 0,

(17)
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while conditions (10) become






u = 0,

S12 = 0.
(18)

3.1. Model at the ε0 approximation

Following [10], we look for a solution expressed as power series of ε, as-
suming Bi =O (1). We remark that

S12 =

[

1 +
Bi

|uy|

]

uy,

becomes S
(0)
12 = u

(0)
y − Bi, since we are looking for a solution with u

(0)
y < 0 in

the upper part of the channel. Thus equations (11)-(13) reduces to






∂u(0)

∂x
+

∂v(0)

∂y
= 0,

−
∂P (0)

∂x
+

∂

∂y

(
∂u(0)

∂y

)

= 0,

−
∂P (0)

∂y
= 0,

(19)

with boundary conditions






∂u(0)

∂y

∣
∣
∣
∣
y=Y

= 0, ⇔ II
(0)
D

= 0, on y = Y,

u(0)(x, h, t) = 0, no− slip.

(20)

To keep notation simple we suppress the superscript (0) and we denote ∂f

∂t
,

∂f

∂x
, ∂2f

∂x2 by ft, fx, fxx, respectively. From (19)3 we get P = P (x, t), so that

u = −Px

(h− y)(y − 2Y + h)

2
. (21)

Exploiting (19)1 along with (15), we find

·

h− v (y, t) =

∫ h

y

∂

∂x

[

Px

(h− y′)(y′ − 2Y + h)

2

]

dy′ .
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Next, evaluating u, v on Y and recalling conditions (16), we obtain

u|y=Y = up(t) = −Px

(Y − h)2

2
, (22)

v|y=Y =
·

h+
∂

∂x

[

Px

(Y − h)3

3

]

−
Yx

2
Px(Y − h)2 = 0. (23)

The plug equation (14) becomes

1∫

0

PYxdx− Bi+ PY0Y0 − PoutY1 = 0,

or equivalently

−

∫ 1

0

PxY dx = Bi. (24)

Recalling (18) we have uy = 0 in x = 0 implying Px|x=0 = 0. The solid region
is then detached from x = 0, since otherwise up ≡ 0, i.e. no rigid domain
motion. Accordingly there must be some s (t) ∈ [0, 1], not a priori known,
such that Y (x, t) ≡ 0, for 0 ≤ x ≤ s (t). Hence the spatial domain [0, 1] can
be split in two sub-domains (see Fig. 1):

• 0 ≤ x ≤ s (t), where Y ≡ 0;

• s (t) < x ≤ 1, where Y does not vanish.

Assuming that the longitudinal velocity is continuous across s (t), we have

up(t) = −
Px (s, t)

2
(Y (s, t)
︸ ︷︷ ︸

0

− h)2 = −
Px (s, t)

2
h2, (25)

where Px (s, t) is unknown at this stage. From (23) we get

−
·

h+
2

3

∂

∂x

[

−
Px

2
(Y − h)2

︸ ︷︷ ︸

up(t)

(Y − h)
]

− Yx

[

−
Px

2
(Y − h)2

]

︸ ︷︷ ︸

up(t)

= 0,

namely
·

h +
1

3
up(t)Yx = 0, (26)
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Figure 1: A schematic representation of the squeezing channel.

implying that Y is a linear non decreasing function of x. Thus, in order to
avoid physical inconsistencies, we set

Y (x, t) = max

{

0,−
3ḣs(t)

up(t)

(
x

s (t)
− 1

)}

. (27)

The local instantaneous discharge is given by

Q (x, t) =

∫ Y

0

updy +

∫ h

Y

udy = upY −
Px (x, t)

3
(h− Y )3 . (28)

Mass conservation then requires Q (x, t) = −
·

hx, so that Q (s, t) = −
·

hs, and

2

3

(

−
Px (s, t)

2
h2

)

︸ ︷︷ ︸

up(t)

h = −
·

hs, ⇒ up(t) = −
3

2

·

h

h
s, (29)
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which is positive since
·

h < 0. As a consequence

Y (x, t) = max

{

0, 2h (t)

(
x

s (t)
− 1

)}

. (30)

The fluid squeezes out of the channel only if Y (1, t) < h (t), namely when
s (t) > 2/3. In x ∈ [0, s] we have Y = 0 and the pressure fulfills equation
(23) with the boundary condition Px (0, t) = 0







Pxx =
3

h3

·

h, 0 < x < s, t ≥ 0

Px (0, t) = 0 t ≥ 0.

Therefore

P (x, t) =
3

·

h

2h3
x2 + A (t) ,

with A (t) still unknown at this stage. Recalling that Y is linear in x we
integrate (22) between x and 1 getting

P (x, t) = Pout +
3

2

·

h
( s

h

)3
[

1

2− 3s
−

1

2x− 3s

]

, s (t) < x ≤ 1. (31)

Then imposing the continuity of P across x = s we get

P (x, t) =
3

·

h

2h3

(
x2 − s2

)
+ Pout − 3

·

h
s2

h3

(
s− 1

2− 3s

)

, 0 ≤ x ≤ s (t) . (32)

Finally rewriting (24) as
1∫

s

PxY dx = −Bi,

we get

f(s) = s2
[
2 (1− s)

3s− 2
+ ln

(
3s− 2

s

)]

= −
2

3

Bih2

·

h
. (33)

Hence, solving (33) we find s (t) and we are able to determine the pressure
field in the whole channel and the rigid domain as well. We observe that
s(t) is not a material point so that, in principle, s(t) can also be still (i.e.
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ṡ(t) = 0), while the rigid plug is moving with velocity up(t). Fig. 2 shows
the behavior of the function f(s) in the l.h.s. of (33) with s ∈ (2/3, 1). We
easily realize that f(s) is is monotonically decreasing for 2/3 < s ≤ 1 and
that its range is [0,+∞). So, given any −(2Bih2)/(3ḣ) > 0, there exists one
and only one s fulfilling (33). From (31), (32) we compute the force acting

0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

1

2

3

4

5

6

7

8

9

Figure 2: Behavior of f (s) for 2/3 < s ≤ 1.

on the unit surface of upper plate, namely

P (t) =

∫ 1

0

P (x, t) dx = Pout +

·

hs3

2h3

5− 3s

2− 3s
−

3
·

hs3

4h3
ln

(
3s− 2

s

)

.

Exploiting (33) we get

P (t)− Pout =
Bi

2

s

h
− ḣ

( s

h

)3 1

(3s− 2)
. (34)
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Remark 1. We notice that in the domains

D1 = {x = 0, 0 ≤ y ≤ 1} , D2 = {0 ≤ x ≤ s, y = 0} . (35)

the invariant IID = 0. This fact indicates that D1, D2 must be part of the
unyielded portion of the fluid and, in principle, they should be embedded
in the rigid plug. Actually this is not true since all the points lying in the
vicinity of D1, D2 belong to the sheared part of the flow (yielded domain).

This “inconsistency” can be explained by observing that we can only state
that D1, D2 are regions of zero measure at the zero order approximation, i.e.
they appear to be 1D objects at the length scale that neglects O(ε) terms. If
we consider higher order expansions then we will likely find that D1, D2 are
no longer 1D. This is exactly what happens in [12], [27], where an unyielded
region of O (ε) thickness is found near x = 0.

In practice the “microscopic” dynamics occurring on D1, D2 cannot be
observed macroscopically and we cannot rule out the existence of O (ε) un-
yielded regions in the vicinity of x = 0 and y = 0.

The same argument can be used to conclude that the linearity of Y in x
holds only at the zero order. This would explain the discrepancies with some
numerical simulations one can find in the literature that are performed for
a “not so small” ε and that show nonlinear profiles of the yield surface (see
[16]). Performing an asymptotic analysis that includes higher order terms,
one could find a nonlinear correction of the yield surface profile which is
clearly not “observable” at the leading order.

Remark 2. When Bi → 0, the solution of (33) is simply s = 1, i.e. the solid
region does not exists at all (as physically expected for a Newtonian fluid).
Furthermore formula (34) reduces to

P (t)− Pout = −
ḣ

h3
,

corresponding to the Newtonian fluid planar squeeze, [13]. These results
confirms the physical consistency of our model.

3.2. Numerical simulation

In this section we perform some numerical simulations to analyse the
behaviour of our asymptotic solution at the leading order. To illustrate the
the dependence of the solution on the Bingham number we consider two
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cases: Bi = 1 and Bi = 25. We plot the yield surface Y , the pressure field P
and the axial velocity u, assuming that the plates have constant velocity so
that

h(t) = 1− t, ḣ(t) = −1. (36)

This choice for h(t) is completely arbitrary and can be obviously replaced
with any other prescribed motion of the plates. We consider t ∈ [0, 0.6], which
guarantees that the plates do not come in touch in the select time interval.
We set hf = h(0.6), representing the half gap width at time tf = 0.6 and
sf = s(0.6) representing the onset of the rigid plug at time t = 0.6. The yield
surface Y and pressure field P are plotted for different times t belonging to
the selected time interval and for x ∈ [0, 1]. The axial velocity u is plotted
at time t = 0.6 (i.e. when h = hf ) for a finite number of x ∈ [sf , 1] and for
y ranging in [0, hf ].

In Fig. 3, 4 we have plotted the yield surface Y (x, t) and the upper plate
y = h(t) at different times in the time interval [0, tf ]. We have plotted the
upper plate only for x ∈ [s(t), 1] so that the evolution of the onset of the
plug x = s(t) is visible. We notice that the slope of the unyielded plug
becomes smaller as s(t) increases, as expected. In Fig. 5, 6 we have plotted
the pressure field at different times in the time interval [0, tf ] in the whole
domain x ∈ [0, 1]. Also for this case the position x = s(t) has been put in
evidence. We notice that the pressure within the gap increases as Bi increases.

In Fig. 7, 8 we have plot the axial velocity profile at time t = 0.6 for
some fixed x ∈ [sf , 1]. In particular velocity is plotted for x = 0.69, x = 0.73,
x = 0.77, x = 0.81, x = 0.85. As one can easily observe the velocity of the
plug is the same for each (x, y) belonging to the plug.
Finally in Fig. 9, 10 we have plotted the squeeze force given in (34) for
different values of the Bingham number, Bi. We have plotted (34) for the
linear squeeze (36) and for the exponential squeeze

h(t) = exp(−t), ḣ(t) = − exp(−t). (37)

We observe that the linear squeeze requires a grater squeezing force than the
exponential squeeze. This is physically consistent, since in the linear case
the plates move faster than in the exponential case.

4. Squeeze between surfaces

In this section we generalize the problem to the case in which the par-
allel plates are surfaces y = ±h∗(x∗, t∗) that are approaching the channel

14



0.7 0.75 0.8 0.85 0.9 0.95 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Bingham number Bi=1

distance from the closed end x

h
a

lf 
g

a
p

 w
id

th
 h

(t
)

 

 
Yield surface Y(x,t)
Upper plate h(t)
x=s(t)

Figure 3: Y for Bi = 1 and h given by (36)
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Figure 6: P for Bi = 25 and h given by (36)

centerline, as shown in Fig. 11. In this case

H∗ = max
x∗∈[0,L∗]

t∗>0

h∗(x∗, t∗),

and we again assume H∗/L∗ = ε ≪ 1. The theory develops exactly as in
section 3, so that (24) still holds. We split [0, 1] into [0, s] and [s, 1], so that
continuity of u across s (t) yields

up(t) = −
Px (s, t)

2
h(s, t)2.
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Figure 8: u for Bi = 25 and h given by (36)
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Figure 10: Squeeze force for exponential h(t),
(37)

Recalling (23) we find

ht +
1

3
up(t)Yx +

2

3
up(t)hx = 0,

which generalizes (26). We thus get the following Cauchy problem






Yx =
3

up

[

−ht −
2

3
uphx

]

,

Y (s, t) = 0,

16



Figure 11: A schematic representation of the squeezing channel.

whose solution is

Y (x, t) =
3

up

[

−

∫ x

s

htdξ −
2

3
up(h(x, t)− h(s, t))

]

, (38)

where s is still unknown. Following (27) we set

Y (x, t) = max

{

0, −
3

up

∫ x

s

htdξ − 2(h(x, t)− h(s, t))

}

. (39)

The local discharge is

Q (x, t) =

∫ Y

0

updy

︸ ︷︷ ︸

upY

+

∫ h

Y

[

−Px

(h− y)(y − 2Y + h)

2

]

dy

︸ ︷︷ ︸

−
Px(x,t)

3
(h−Y )3

,

while mass conservation ht +Qx = 0 implies

Q(x, t) = −

∫ x

0

htdξ,

17



since Q(0, t) = 0. We find

Q(s, t) = −

∫ s

0

htdξ = −
Px(s, t)h

2(s, t)

2
︸ ︷︷ ︸

up

2h(s, t)

3
,

implying

up(t) = −
3

2

1

h(s, t)

∫ s

0

htdξ, (40)

which is the generalization of (29). In conclusion, substituting (40) into (39),
we find

Y (x, t) = max

{

0, −2h(x, t) + 2h(s, t)

∫ x

0
htdξ

∫ s

0
htdξ

}

. (41)

In x ∈ [0, s] the pressure fulfils







−ht +
∂

∂x

[

Px

h3

3

]

= 0,
0 < x < s (t) ,
t ≥ 0,

Px (0, t) = 0, t ≥ 0,

(42)

so that

P (x, t) =

∫ x

0

[
3

h(x̃, t)3

∫ x̃

0

htdξ

]

dx̃+ A(t), (43)

with A (t) to be determined. In x ∈ [s, 1] we have

Px(x, t) = −
2up(t)

(h− Y )2
,

so that

Px =
3

h(s, t) [h(x, t)− Y (x, t)]2

∫ s

0

htdξ, (44)

with Y given by (41). We observe that (42) and (44) yield Px|s− = Px|s+ .
Let us now integrate (44) between x and 1 with the boundary condition
P (1, t) = Pout. We find

Pout − P (x, t) =
3

h(s, t)

∫ s

0

htdξ

[∫ 1

x

d x̃

(h(x̃, t)− Y (x̃, t))2

]

(45)

18



Imposing P |s− = P |s+ , from (43), (45) we find A(t), so that the pressure
can be written in terms of s throughout the whole domain. Substituting (41)
and (44) into (24) we get4

∫ 1

s

[

−2h(x̃, t) + 2h(s, t)

∫ x̃

0
htdξ

∫ s

0
htdξ

]

+
[

h(x̃, t)−

[

−2h(x̃, t) + 2h(s, t)

∫ x̃

0
htdξ

∫ s

0
htdξ

]

+

]2dx̃ = −
Bi

[
3

h(s, t)

∫ s

0
htdξ

] ,

(46)
which provides an integral equation for the unknown s(t). Equation (46) can
be solved once we know the explicit form of the function h(x, t).

When h(x, t) = f(x)g(t), with5 f · g > 0, then (46) can be rewritten as

(∫ s

0

fdξ

)2 ∫ 1

s

[

−f(x̃)
(∫ s

0
fdξ

)
+ f(s)

(∫ x̃

0
fdξ

)]

+
dx̃

[
f(x̃)

2

(∫ s

0
fdξ

)
−

[

−f(x̃)
(∫ s

0
fdξ

)
+ f(s)

(∫ x̃

0
fdξ

)]

+

]2 =

= −
2Bif(s)g(t)2

3ġ(t)
. (47)

Example 3. Let us consider

h(x, t) = f(x)g (t) , with f (x) = e−βx, g(t) = e−αt,

where α, and β both positive. Exploiting (47) we find

4(1− e−βs)2

β

∫ 1

s

(e−βs − e−βx)

[e−βx(3− e−βs)− 2e−βs]2
dx =

(
2Bi

3α

)

e−βse−αt. (48)

4Notice that max {0, f} = [f ]
+
, where [f ]

+
denotes the positive part of f , i.e.

[f ]
+
=

{
f, if f > 0,
0, if f ≤ 0.

5f and g must have the same sign.
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or equivalently

(1− e−βs)2

β2e−2βs

[

ln
|2 + e−β − 3eβ(s−1)|

|e−β − eβ(s−1)|
+

2(eβ(s−1) − 1)

2 + e−β − 3eβ(s−1)

]

︸ ︷︷ ︸

G(s)

=

(
2Bi

3α

)

e−αt,

(49)
which is an implicit equation for s(t). Notice that taking the limit β → 0 of
the l.h.s. of (49) we recover the l.h.s. of (33), as expected. The plot of G(s),
for β = 0.4, is shown in Fig. 12. We immediately realize that (49) admits a
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Figure 12: Behavior of G(s), with β = 0.4.

unique solution s(t) ∈ (ŝ(β), 1], with

ŝ(β) = 1 +
1

β
ln

[
e−β + 2

3

]

,

20



for each value of (2Bi/3α) e−αt. In particular it is easy to show that

2

3
< ŝ(β) < 1, ∀β > 0,

so that s ∈ (2/3, 1) for all t > 0. Recalling (41) we get

Y (x, t) = 2e−αt

[
e−βs − e−βx

(1− e−βs)

]

. (50)

Clearly Y > 0 for every x > s, and Y = 0 at x = s. Actually we can show
that Y and h never meets. Indeed, suppose that Y (x, t) < h(x, t), then

2

[
e−βs − e−βx

(1− e−βs)

]

< e−βx,

or analogously
2eβx < 3eβs − 1. (51)

Hence Y < h if and only if (51) holds true for each x ≥ s. Now recall that
s ≥ ŝ(β) > 2/3, for every finite time t > 0 and β > 0. Therefore

2eβx ≤ max
x∈[s,1]

{2eβx} = 2eβ = 3eβŝ − 1 < 3eβs − 1,

which proves that (51) holds true. As a consequence we get

0 ≤ Y (x, t) < h(x, t), ∀ x ≥ s, t > 0.

We observe that Y → h, which in turn tends to 0, only in the limit t → ∞.
In Fig. 13 we have plot the advancing front x = s(t) for different values of
Bi ranging from Bi = 0.1 to Bi = 100. The parameters used are α = 2 and
β = 0.4.

5. Conclusions

Many papers have been devoted to the squeeze flow between two coax-
ial flat disks. Here we do not consider the circular case, whose topology
prevents the presence of any unyielded regions, but we focus on the simpler
planar geometry, assuming further that the plates motion is prescribed. Op-
erating in a lubrication framework, we model: (i) the flow caused by two
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Figure 13: The advance of the front x = s(t) for Bi ranging between 0.1 and 100.

parallel planes, of infinite width, that are approaching to one another; (ii)
the squeeze caused by two symmetric surfaces (which may even change their
shape over the time) approaching one to the other. In both cases we deal
with a channel whose walls are symmetrically moving toward the centerline.
In particular, one of the channel ends is closed while on the other an external
known pressure is imposed.

Applying a technique developed in [10], which stems from the works by
Safronchik [24] and Rubinstein [21], we have solved the flow in the yielded
region and then modeled the unyielded dynamics simply exploiting the linear
momentum balance for non material volumes. A simple physical argument
led us to conclude that, at the leading order, any solid region has to be
detached from the closed end of the channel. Hence a viscous region is located
between x = 0, and x = s (t), the latter being the abscissa of the incipient
rigid region which extends from y = −Y to y = Y . Actually, within the
fully viscous region IID vanishes in two domains of zero measure. This fact
indicates the possibility that there may be unyielded areas of O (ε) measure,
as shown in [12]. Actually, our two scale approach prevents a detailed analysis
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of the dynamics at this scale (see Remark 1).
In section 4 we have generalized the problem considering plates whose

shape may depend on x and t. We have proved that the evolution of the
unyielded region is governed by a very complicated integral equation whose
analysis is beyond the scope of the present paper. We have considered a
special case in which the wall shape is the product of a function depending
on time only and a function depending on space only (separation of variables).
In this special case we have shown that the integral equation can be explicitly
solved.
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