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Carleman estimate for second order elliptic
equations with Lipschitz leading coefficients and
jumps at an interface

M. Di Cristo* E. Francini' C-L. Lin?
S. Vessella? J-N. Wang?

Abstract

In this paper we prove a local Carleman estimate for second order elliptic
equations with a general anisotropic Lipschitz coefficients having a jump at
an interface. The argument we use is of microlocal nature. Yet, not relying
on pseudodifferential calculus, our approach allows one to achieve almost opti-
mal assumptions on the regularity of the coefficients and, consequently, of the
interface.

How to cite this paper: This paper has been accepted in J. Math. Pures Appl. 108
(2017) 165-206, and the final publication is available at
http://dz.doi.org/10.1016/j.matpur.2016.10.015
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1 Introduction

Since T. Carleman’s pioneer work [Car|, Carleman estimates have been indispensable
tools for proving the unique continuation property for partial differential equations.
Recently, Carleman estimates have been successfully applied to study inverse prob-
lems, see for [Is], [KSU]. Most of Carleman estimates are proved under the assump-
tion that the leading coefficients possess certain regularity. For example, for general
second order elliptic operators, Carleman estimates were proved when the leading co-
efficients are at least Lipschitz [H], [H3]. The restriction of regularity on the leading
coefficients also reflects the fact that the unique continuation may fail if the coeffi-
cients are only Hoélder continuous in R" with n > 3 (see examples constructed by
Pli§ [P] and [M]). In R?, the unique continuation property holds for W!? solutions
of second elliptic equations in either non-divergence or divergence forms with essen-
tially bounded coefficients [BJS], [BN], [AM], [S]. It should be noted that the unique
continuation property for the second order elliptic equations in the plane with essen-
tially bounded coefficients is deduced from the theory of quasiregular mappings. No
Carleman estimates are derived in this situation.

From discussions above, Carleman estimates for second order elliptic operators
with general discontinuous coefficients are not likely to hold. However, when the
discontinuities occur as jumps at an interface with homogeneous or non-homogeneous
transmission conditions, one can still derive useful Carleman estimates. This is the
main theme of the paper. There are some excellent works on this subject. We mention
several closely related papers including Le Rousseau-Robbiano [LR1], [LR2], and Le
Rousseau-Lerner [LL]. For the development of the problem and other related results,
we refer the reader to the papers cited above and references therein. Our result is
close to that of [LL], where the elliptic coefficient is a general anisotropic matrix-
valued function. To put our paper in perspective, we would like to point out that
the interface is assumed to be a C* hypersurface in [LL] and the coefficients are C*
away from the interface. Here we prove (Theorem 2.1) a local Carleman estimate for
operator with leading coefficients which have a jump discontinuity at a flat interface
and are Lipschitz continuous apart from such an interface. From this estimate, under
a standard change of coordinates, a Carleman estimate for the case of a more general
CY1 interface follows. The obvious reason of assuming the interface being C'! is that
when we flatten the boundary by introducing a coordinates transform, the Jacobian
matrix of this transform is Lipschitz and hence the coefficients in the new coordinates
remain Lipschitz on both side of the interface (see Remark 2.2). The approach in [LL]
is close to Calderén’s seminal work on the uniqueness of Cauchy problem [Cal] as an



application of singular integral operators (or pseudodifferential operators). Therefore,
the regularity assumptions of [LL] are due to the use of calculus of pseudodifferential
operators and the microlocal analysis techniques.

The aim here is to derive the Carleman estimate using more elementary methods.
Our approach does not rely on the techniques of psuedodifferential operators, but
rather on the straightforward Fourier transform. Thus we are able to relax the regu-
larity assumptions on the coefficients and the interface. We first consider the simple
case where the coefficients depend only on the normal variable. Taking advantage
of the simple structure of coefficients, we are able to derive a Carleman estimate by
elementary computations with the help of the Fourier transform on the tangential
variables. To handle the general coefficients, we rely on some type of partition of
unity. In Section 2 after Theorem 2.1 we give a more detailed outline of our proof.

2 Notations and statement of the main theorem

Define Hy = xg: where RY = {(z,y) € R*' x R|y =2 0} and xgn is the char-
acteristic function of R7. Let us stress that for a vector (x,y) of R", we mean
r=(r1,...,7,_1) € R" and y € R. In places we will use equivalently the symbols
D, V, 0 to denote the gradient of a function and we will add the index = or y to
denote gradient in R"~! and the derivative with respect to y respectively.

Let uy € C(R"). We define

u = H+U+ +H u_= Z Hiui,
+

hereafter, we denote >, ay = ay +a_, and for R*! x R

L(z,y,0)u = Z Hydiv,, (As(z,y)Vaus), (2.1)
-
where
A:I:('Ivy) = {azi](x7y) Zj:l? LS Rnil? y e R (22)

is a Lipschitz symmetric matrix-valued function satisfying, for given constants Ay €
(0, 1], My > 0,

Molz|? < Ax(z,y)z - 2 < Nz, Y(z,y) € R™, V2 € R” (2.3)
and
A< (@, ) = A (@, y)| < Mo([a" =z + ]y = y]). (24)
We define
ho(x) := uy (7,0) —u_(x,0), Vo € R" 1 (2.5)

hy(z) = Ay (2,0)Vyyuy(2,0) - v — A (2,0)Vyyu_ (2,0)-v, Vo € R"1 (2.6)



where v = —e,,.
Let us now introduce the weight function. Let ¢ be

oi(y) = oy + By?/2, y>0,

o) = { p-(y) = a_y + By?/2, y <0, 20

where ay, a_ and [ are positive numbers which will be determined later. In what
follows we denote by ¢, and ¢_ the restriction of the weight function ¢ to [0, +00)
and to (—oo,0) respectively. We use similar notation for any other weight functions.
For any € > 0 let

and let, for § > 0,

¢5($, y) = ¢6 (6_11:7 5_1y) . (28)
For a function h € L*(R"), we define

il(f,y) =/ h(z,y)e @ de, €e€R"L
Rn—1
As usual we denote by H'/?(R"™!) the space of the functions f € L?(R""!) satisfying

GRS

with the norm

VB = [+ IEP) PP (2.9

Moreover we define

B f(x) — f(y)]? 12

and recall that there is a positive constant C', depending only on n, such that

[ JIFORs < e <0 [ leIF©Fas

Rn—1

so that the norm (2.9) is equivalent to the norm || f||z2@n-1) + [f]1/2rn-1. We use
the letters C, Cy, C1, - - - to denote constants. The value of the constants may change
from line to line, but it is always greater than 1.

We will denote by B,(x) the ball centered at z € R"™! with radius r > 0. When-
ever = 0 we denote B, = B,(0).



Theorem 2.1 Let u and Ay(x,y) satisfy (2.1)-(2.6). There exist oy, 3,00,70
and C depending on Ao, My such that if 6 < 0y and 7 > C, then

ZZTS Qk/ s Pe 27¢Ny)dxdy+2273 Qk/ | DFus (2, 0) 224520 gy

+ k=0 + k=0 Rt
+ ZT Td)é 1/2 Rn—1 + Z Td)&iu:t O)]%/Q,R”71

<C (Z/ (z,y,0)(uz) > ¥ @) dxdy + [e7¢5¢ O)hl]l/an 1
R?

3
HTa Do) (O s + 5 / hoPPerest= 1. / |h1|2627¢5(m’0)dx)
Rn—l ]Rn—l

(2.10)
where u = Hyuy + H u_, uy € C*°(R") and suppu C Bsja X [—010, 67|, ho and hy
are defined in (2.5) and (2.6), respectively, and ¢s is given by (2.8).

Remark 2.2 FEstimate (2.10) is a local Carleman estimate near the flat interface y =
0. As mentioned in the Introduction, one can derive from (2.10) a Carleman estimate
for more general interfaces: if the interface is locally represented by the graph of a
CYY function g(x), the map (z,y) — (z,y — g(x)) flattens the interface and changes
the operator preserving the Lipschitz character of the leading coefficients. Of course,
the weight function in the new Carleman estimates will be changed accordingly.

On the other hand, an estimate like (2.10) is sufficient for some applications such
as the inverse problem of estimating the size of an inclusion by one pair of boundary
measurements [FLVW].

Remark 2.3 Let us point out that the level sets

{(x,y) € Bsja X (=0ro,010)) : ¢5(x,y) = t}

have approximately the shape of paraboloid and, in a neighborhood of (0,0), Oy¢s > 0
so that the gradient of ¢ points inward the halfspace RY;. These features are crucial
to derive from the Carleman estimate (2.10) a Hélder type smallness propagation es-
timate across the interface {(z,0) : x € R"™} for weak solutions to the transmission
problem

,C(l', Y, @)u = Zi Hj:bj: . uni + C+ U4,
us(z,0) —us(x,0) =0, (2.11)
A (2,0)V,us(x,0) - v—A_(2,0)V, u_(2,0) v =0,

where by € L*(R", R") and cx € L*(R™). More precisely if the error of observation

of w is known in an open set of R%, we can find a Holder control of u in a bounded
set of R™. For more details about such type of estimate we refer to [LR1, Sect. 3.1].
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The proof of Theorem 2.1 is divided into two steps as follows.

Step 1. We first consider the particular case of the leading matrices (2.2) inde-
pendent of = and we prove (Theorem 3.1), for the corresponding operator L(y,d),
a Carleman estimate with the weight function ¢(x,y) = ¢(y) + sv - =, where s is
a suitable small number and v is an arbitrary unit vector of R*"!. The features
of the leading matrices and of the weight function ¢ allow to factorize the Fourier
transform of the conjugate of the operator L(y,d)u with respect to ¢. So that we
can follow, roughly speaking, at an elementary level the strategy of [LL] for the oper-
ator L(y,d). Nevertheless such an estimate has only a prepatory character to prove
Theorem 2.1, because, due to the particular feature of the weight ¢ (i.e. linear with
respect to ), the Carleman estimate obtained in Theorem 3.1 cannot yield to any
kind of significant smallness propagation estimate across the interface.

Step 2. In the second we adapt the method described in [Tr, Ch. 4.1] to an
operator with jump discontinuity. More precisely, we localize the operator (2.1) with
respect to the x variable and we linearize the weight function, again with respect the
x variable, and by the Carleman estimate obtained in the Step 1 we derive some local
Carleman estimates. Subsequently we put together such local estimates by mean of
the unity partition introduced in [Tr].

3 Step 1 - A Carleman estimate for leading coef-
ficients depending on y only

In this section we consider the simple case of the leading matrices (2.2) independent
of x. Moreover, the weight function that we consider is linear with respect to x
variable, so that, as explained above, the Carleman estimates we get here are only
preliminary to the one that we will get in the general case.

Assume that

As(y) = {ai(y) ?,j:l (3.1)

are symmetric matrix-valued functions satisfying (2.3) and (2.4), i.e.,
olz)? < Ax(y)z- 2 < Nz, Yy R, Yz € R” (3.2)
[Ax(y) = A (") < Moly' —¢"|, V9" €R. (3.3)

From (3.2), we have
at,(y) > X VyeR. (3.4)

In the present case the the differential operator (2.1) became

Ly, )u =Y Hidivy,(As(y)Vayus), (3.5)

where u =Y Hiuy, uy € C*(R")



We also set, for any s € [0,1] and v € R"! with |y] <1

o(x,y) = p(y) +sy-v=Hiopy + H ¢, (3.6)

where ¢ is defined in (2.7).
Our aim here is to prove the following Carleman estimate.

Theorem 3.1 There exist 1y, So, 19, C and By depending only on \g, My, such
that for 7 > 19, 0 < s < 59 < 1, and for every w = >, Hywy with suppw C
By X [—719,7T0], we have that

2
ZZTS2k/ ]Dkwi|2627¢d$dy

+ k=0 +
1
2> /  IDFw(a, 00PNz + 3 r[(we) (-, Ol e
T k= " *

+ ) 10,7 we) (- 0)]F jppn s + Y _[Val€™Pwi) (-, 0)]3 g 0
+ +
(3.7)
< /R |L(y, 0)w|*e*  dady + [V (€70 (w (-, 0) — w_(-,0)))]} oz

C
+ [N AL (0) Vo ywy (2,0) - v — A_(0)Vyw_(2,0) - )]} pns
+

\]

/ 20| A (0)V, yuwr, (2,0) - v — A_(0)Vaw_(x,0) - v[de
Rnfl

—|—7'3/ 1 @0y, (2,0) — w_(, O)|2dx) :
R~

with 8 > By and a4 properly chosen.

3.1 Fourier transform of the conjugate operator and its fac-
torization

To proceed further, we introduce some operators and find their properties. We use
the notation 9; = 0,, for 1 < j < n — 1. Let us denote Bi(y) = {bﬁ(y) ?;1, the

symmetric matrix such that, for z = (z1, -+, 2,21, 2,) =: (¢, 25),
Bi(y)2' -2 = As(y)z - 2 | et (3.8)
IR E G
In view of (3.2) we have
MZP < Be(y)? -2 < YR, VyeR V2 e RV (3.9)

A1 < Ag depends only on Ag.



Notice that

i) = ah(y) — LT k=1 oL (3.10)
Now let us define the operator
n—1 4+
Ti(y; 0x)ui = a,:t]( >8jui. (311)

It is easy to show, by direct calculations ([LL]), that
divy, (As(y)Vaeyus) = (0y + To)an, (y)(0y + Ti)us + div, (B (y)Veus ).  (3.12)
Now, let w =Y, Hywy, where wy € Cg°(R"). We set
0o(x) := wy(x,0) —w_(z,0) forz e R" ! (3.13)
01(x) == AL (0)V,ywi (2,0) - v — A (0)V,yw_(2,0)-v forx e R"  (3.14)

where v = —e,,.
By straightforward calculations we get

U (9) Oy + T4 (y, 0) ) (2,9) ly=0 — 0 () (9 + T-(y, 02) Jw—(,y) [y=0= —0: ().
(3.15)
In order to derive the Carleman estimate (3.7) we investigate the conjugate op-
erator of L(y,0) with €7 for ¢ given by (3.6). Let v = e™®w and © = e 7Y%y, then
we have
w=e % = Z Hye ™%y, = Z Hie 7%* 0,
+ +

and therefore
e L(y,0)(e ™) = ™™ L(y, 0) (e TFD).

It follows from (3.12) that
€Ly, 0)(eT) =Y Hi[(0, — Tl + Ti)ap, (y) (9 — 7l + T )]
+

+ ) Hydivy(Bi(y)Vais),
+

which leads to
eT¢£(y, 8)(6_7‘%) =" L(y,0)(e7TFD)

= 7N T HL[(0y — 7@l + Ta)am,(9)(9y — 7l + Ti) (677 0 ) (3.16)
] .

+ e Z Hydiv, (Bi(y)Va(e ™ vy)).
+
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By the definition of T4 (y, 0,), we get that

n—1 i

Tnae ) = e

+

= e TVE Ti (y, Op — TS’)/)’Ui

S

0 Uy — TSY;U4)

To continue the computation, we observe that

(D, = 7 + Ty )k, (5) 0y — 7k + Ty ) (e ™7 0]

(3.17
—(3y — 7@+ Te(y, 00 — 757)) () (8 — 70 + Te(y, 0p — T57) ) v )
and
e 7 div,, (Bi(y)Vm(e Y ))
St (2 S 22 N (3.18)
= b5 (y) O ve — 28T b (Y) 0ok + 57T Z b5 (Y)Y Yk v+
J:k=1 k=1 k=1

Combining (3.16), (3.17) and (3.18) yields

e™L(y,0)(e )
— Z H, [(ay — 79 + T (y, 0 — 757)) (y )(0 — 79 + T (y, 0 — TS’y))vi}

+ ZHﬂE Z bjk 8 WUt — 28T Z bjk )0juLy + s 22 Z bﬁc 'mkvi}

J,k=1 J,k=1 7,k=1
(3.19)
Now, we will focus on the analysis of €™ L(y, d)(e""%v). To simplify it, we intro-
duce some notations:

fl,y) = e™L(y, 0)(e ™), (3-20)
n—1
Be(6,7,y) = Y b)ém, SeRY (3.21)
§k=1
(&) ® [B(&,€.y) + 2is7B4(€,7,y) — s°T° B (7,7, 9)], (3.22)
and .
(&) = ZZ Z (3.23)
By (3.19), we have
y) = HyPyiy, (3.24)
+



where

Pioy ::(8y — Tl +ite (4 iTsy, y))afn(y) (8y — Tl +ite(§+ iTs, y))@i
— (1) G (€, )0
(3.25)
Our aim is to estimate f(z,y) or, equivalently, its Fourier transform f(¢,y). In
order to do this, we want to factorize the operators Py.
For any z = a + ib with (a,b) # (0,0), we define the square root of z,

a4+ Va2 + b2 b

Vz= +i :
2 V2 VET )

It should be noted that R/z > 0.
We define two operators

By =0y +ite(§+itsy,y) — (19l + V), (3.26)

Fy =0y +ite(é+itsy,y) — (1l — /(o). (3.27)
With all the definitions given above, we thus obtain that

Py = Ean,(y)Fyoy — 0,0, (G:L_n(y) \/Z), (3.28)

P o_=F_a,,(y)E_0_+0_0, (a;n(y)\/c__). (3.29)

Let us now introduce some other useful notations and estimates that will be
intensively used in the sequel.

After taking the Fourier transform, the terms on the interface (3.13) and (3.15),
become

—_—

M0(E) = 04 (€,0) — 0_(€,0) = 0y () (3.30)

and
() = —er@00, (z)
= a;,(0)[9,04(€,0) = T 04 (€,0) + it (§ + iTsv,0)04 (€, 0)] (3.31)
4y, (0)[8,0-(€,0) — T 0_(&,0) + it _ (€ + iTs7,0)0-(&,0)].
For simplicity, we denote
V:t (5) = ain(o) [ayﬁi (57 0) - 7_Oéiliﬁ:l: (ga O) + Zti (5 + Z.TS’% 0)'[]:|: (ga 0)} ) (332)
so that

Vi(§) — V(&) = m(§). (3.33)
Moreover, we define
B

10



From (3.9) we have
MIEP < B(€,6,y) SATEP, VyeR VEER™, (3.34)

and, from (3.3),
0,B+(&,m, )| < Milgllnl, V& neR™, (3.35)

where M; depends only on A\g and My. In a similar way, we list here some useful
bounds, that can be easily obtained from (3.9) and (3.3).

Xol€] < m (€ y) < N, (3.36)
|0ym (€, )| < Mo, (3.37)
(& )| < A5, (3.38)

0yt (&, y)| < Ms|€], (3.39)
(& )] < oda) €] + 8777, (3.40)
)

10,C2 (&, )| < Mu(JE” + s°77). (3.41

Here Ay = v/ A\gA1, A3 depends only on Ay, while My, M3 and M, depends only on )
and Mo.

3.2 Derivation of the Carleman estimate for the simple case

The derivation of the Carleman estimate (3.7) is a simple consequence of the auxiliary
Proposition 3.1 stated below and proved in the following Section 3.3 via the inverse
Fourier transform.

Let us define

L= sp ME0

cern—1\ {0} M—(&,0)

Note that, by (3.36), A2 < L < A\;%. Now we introduce the fundamental assumption
on the coefficients a4 in the weight function. As in [LL], we choose positive a; and
a_, such that

L<2% (3.42)

a_
This choice will only be conditioned by Ag. These constants will be fixed.
Let us denote

A = (el + 7).

We now state our main tool.

11



Proposition 3.1 There exist 1y, So, p, B and C, depending only on Ay and My, such
that for T > 1y, supp0+(&,-) C [—p, pl, s < sp < 1, we have

—ZW Mz +—ZH@% Mzeesy
A4 . )
D 06 M ey + A D V(O + A 026, 0)F
+ +

-
(Z 1Pe02(& )2y + Al (E)1” + /\3\770(5)!2) : (3.43)
Here Ry ={y e R : y =2 0}.

Proof of Theorem 3.1. Substituting (3.24) and the definitions of 7y, 7; (see (3.30),
(3.31)) into the right hand side of (3.43) implies

1 .
;ZHaﬁUi(f,')H%mi ZWJ’ 02 (& 2@y + — ZH?& DR
—|—AZ|V:|: |2+ASZ|Ui50

<C (Z 1£(& ey + AlemC00: () + A3|€T¢("°)90(')IQ> :
+

(3.44)
Recalling (3.32), it is not hard to see that

AZ|8vi§O)\2<C(AZ|Vi \2+A3Z\vi50 ) (3.45)

Since A* > [€]272 + [€]* + 74, [ + €127 + |€]7% + 7° < CA®%, and A3 < C'([¢PP + 7%),
by integrating in &, we can deduce from (3.44) and (3.45) that

Z 2’7'3 2k /n Dkvi‘z + Z[vai('70)]3/2,ﬂgn—l + Z[ayvi(.70)]?/2,R"71
+

+ k=0

+ZT2[Ui('7 I/QR” 1 +Z / ‘V Ui X, O ’ dx
+
+ Z T/ |00 (2, 0)|*da + Z 73/ lvs(,0)|*dz (3.46)
+ Rt + Rn—1
<C <||f||%2(Rn) + [em("o)el(')ﬁ/z,ﬂ&%l + [Va: (ew("O)QO('))H/z,R"fl

—I—T/ 627¢(I’0)|91]2dw + 73/ 627¢(”’0)\00|2dx) .
Rnfl Rnfl

Replacing vy = €™+ w4 into (3.46) immediately leads to (3.7). O

12



3.3 Proof of Proposition 3.1

Let k be the positive number

P (1 - LO‘—‘) (3.47)

2 a4

depending only on A\g and M,.
The proof of Proposition 3.1 will be divided into three cases

( 2
T
- 280
ma(e0) _ M
(1—r)ay = — 2s5’
m+(570)
(I —r)oy

Recall that Ay = v/AgA;1 (from (3.36)) depends only on Ag. Of course, we first choose
a small s < 1, depending on )y and M, only, such that

mo(.0) _ Xl
(1 —rK)ay = 28

, VE&eR"™

A smaller value sy will be chosen later in the proof.
We need to introduce here some further notations. First of all, let us denote by

PY EY, and F?

the operators defined by (3.25), (3.26) and (3.27), respectively, in the special case
s = 0. We also give special names to these functions that will be used in the proof:

w+(£7 y) = a:zrn(y)FJr@Jr(éa y)? W (57 y) = a;n(y>E*@* (67 y) (348>
and, for the special case s = 0,
W6 y) = ah W FL0 (&), W26 y) = g () B2 (&), (349)
Case 1: A2l
2
T > ™ (3.50)

Note that, in this case, we have |¢| < 2);%so7, which implies
T <A< VBT (3.51)

We will need several lemmas. In the first one, we estimate the difference Pty — P9,

13



Lemma 3.2 Let 7 > 1 and assume (3.50), then we have

[Py (& y) — PLOL(€,y)| < Cstlr(as + 1+ Bly)|0 (& y)| + 0,0+ (&, v)]], (3.52)

where C' depends only on Ao and M.

Proof. First, we point out that

o Bi(§7£7y)
C+(&Y)ls=0 = Tty

Y

By simple calculations, and dropping + for the sake of shortness, we can write

Po(&,y) — P9(&,y) = I + Iy + I, (3.53)
where
I, = (it(£ +iTsy,y) — it(€, y))am(y) (8y — 79" +it(€ +iTsy, y))@,
I = (0, — 79" +it(&,y)) ann(y) (it(€ +iT57,y) — it (€, y)) 0,
and

I3 = a’fm(@/)gi(é.u y) - Bi(€7 57 y)
By linearity of ¢ with respect to its first argument (see (3.23)) and by (3.38), we have
(€ +ims7,y) — t(E )| = [tiTsy, y)| < A3'sT,
which, together with (3.2) and (3.50), gives the estimate

|11 A3t Ag sT{10y0] + T(ax + Bly[o] + A3 (€] + sT)lol}

<
< Cst{|0,0| + [t(ax + Bly|) + s7]|0|}, (3.54)

where C' depends on Ay only. On the other hand, by linearity of ¢ and by (3.39), we
have

10y (1€ + iTs7,y) = (& y)| = 10y (t(iTsy,y))| < MssT,
which, together with (3.2), (3.3) and (3.50), gives the estimate

|| < Cst{|0,0| + [r(ax + Bly|) + s7]|0|}, (3.55)

where C' depends on Ay and M, only.
Finally, by (3.22), (3.34) and (3.50),

| I5| = |2is7 B+ (€,7,y) — s*7° B (7,7, y)| < Cs7° (3.56)

where C' depends only on \g. Putting together (3.53), (3.55), (3.54), and (3.56) gives
(3.52). O

14



Lemma 3.2 allows us to estimate || P204 (&, )|| 12w, instead of ||Pris (&, )| r2(ry)-
Let us now go further and note that, similarly to (3.28) and (3.29), we have

PO{LF - E+&nn( )F U+ - v+8 (CL ( )er(S y))
PY_ = Fla,, (y) 20 + 0-0,(ay,(y)m-(&, y))-
We can easily obtain, from (3.3) and (3.37), that
|PYoy — Eay, (y) Yo | < Clg|[oy] (3.57)

and

(P20 — Flag,(y)E20-| < Clg][o-|. (3.58)

—nn

where C' depends only on A\ and M,.

Lemma 3.3 Let 7 > 1 and assume (3.50). There exists a positive constant C de-
pending only on Ao and My such that, if sy < 1/C then we have

Ala, (0) Y01 (&, 0)* + A%10.4 (€, 0)]* + AM[04 (&, )2y + A0y 0+ (€ )72y
< C||Py o4 (8, )||L2(R+) (3.59)

and

—Alay, (0)E20_(&, 0)[* = A*[o_(&, 0)” + AM[o- (&, NIZee) + A9y (& MIz2e
< Cl|P-o-(& )2y, (3.60)

where supp(0- (€,)) < [0, 3] and supp(i-(€.))  [~55.0]
)

Proof. Since supp 0, (x,y) is compact, 0, (£,y) = 0 when |y| is large and the same
holds for the function w?(§, y) defined in (3.49). We now compute

||E+w+(§, ')||L2(R+)
= /D 10,w (€, y) + ity (&, y)wl (€ y)[Pdy + /D [ray + 78y + mi (& y)*|wl (& y)Pdy
—23?/0 [Ty + 7By + mi (& y)]|0L (&, ) [0,wl (&, y) + it (&, y)wl (&, y))dy.  (3.61)

Integrating by parts, we easily get

— 2R /0 [Ty + 78y + mo (& y)]@} (£, 9)[0,w) (&, y) + ity (&, y)wl (&, y)ldy

~ (3.62)
~ o+ m OIS EOF + [ 75+ ami (€It €. Py
By (3.50) and (3.37), we have that
T8+ 0ymy (&, y) > 78 — Mylé| > 78 — 21500 > My > 73/2 > 0 (3.63)

15



provided 0 < sy < fj\)ﬁ Combining (3.51), (3.61), (3.62) and (3.63) yields

B2 (6, ) o,y > / [rary + 7By + m (€ )Pl (€. y) Pdy
+[7—a+ + m4 (57 0)] |w3- (fa 0) |2

> W [ ey + CTALEEOP, (364

where C' depends only on \.
Similarly, we have that

N6 M 2 [ 10,4(60) + it (€ )i € )Py
[T 8y = 6 )Pl € Pay + [ra =m0 (6. O)F
+ [T - amatnllone P (3.65)
The assumption (3.50) and (3.36) imply
Tay + 70y —mo(&,y) > Tay = A ¢ > Tay — 2X050Ts0 > Tay /2

provided 0 < sy < 222

< —*. Thus, if we choose

A2 3
0<30§min{1 & 2t 2},

TAM,T 4
we obtain from (3.63) and (3.65)
Ol (€ Mgy = [ 10,046 + it (€ e )P
0 [Close Py + Ao (€ 0P (3.66)

Additionally, we have that

| it vitenise iy

> < [T (10,0600 20,0 €€ )00 (E)] + 14 €06 ) )
[ (30l = it oute ) dy

3| isenPay =3l [ loenan (3.67)

0

Vv
™
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for any 0 < ¢ < 1. Choosing ¢ sufficiently small, we obtain, from (3.66) and (3.67),

o0

Cl (€ Nomn = [ 0sl&nPly+A* [ foulen)Pdy+Mlonc. OF, (63)

0

where C' depends only on A\g and M,.
Combining (3.64) and (3.68) yields

A2 / 9,0 (6,9) + A1 / 04 (€ 9)2 + Ao (€. O) + Al (€, 0)?

<CO||ELWS (€ ) T2, )

where C' depends only on Ay and M. From (3.52), since supp(04(§,-)) C [0,1/5]
and (3.50) holds, we have

P26 oy < 201P20 (6 )l
ey (A? [Toenra [ |@+(£,y)|2> (3.70)
0 0

Moreover, by (3.57) and (3.50),

(3.69)

IESwL (€, )z, < 2M1PL04 (€ )2y +030A2/0 [0, (& ). (3.71)

Finally, by (3.69), (3.70) and (3.71) we get (3.59), provided sy is small enough.
Now, we proceed to prove (3.60). Applying the same arguments leading to (3.62),
we have that

|F2W2 (¢, ')||%2(R,)

> / [ra+ 76y —m (&Pl (€ y)Pdy - [ra —m (& 260 15 7o)

" / 178 — Bym_ (& y))|w° (€, v) [*dy.

oo

By (3.36) and (3.50) and since supp(0—_(&,-)) C [—57, 0], we can see that

25
Ta_ + 7By —m_(&y) > Ta_ /2 — N HE| > Tal /2 — 205 Tsg > Ta_ /4 (3.73)

provided 0 < sg < (3.72) and (3.73), it follows

Oé2

1Pl €Ny = T [ W (EnPay —ra lul (€O

> o [Py - CARE P, (3T
0
Arguing as before and recalling (3.51) we obtain (3.60). O

We now take into account the transmission conditions.
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Lemma 3.4 Let 7 > 1 and assume (3.50). There exists a positive constant C de-
pending only on A\g and My such that if so < 1/C' then

AZIVi |2+A?’Zlvi(§0l2+/\42|lvi ||L2Ri)+AQZ||8Uﬂ: Nizes)

+
< CZ 1P+ (&, 22y + CAM(E + CA3|770( I (3.75)

where supp (04 (¢, -)) C [—55, F] with co = min (o, 1).
Proof. It follows from (3.59) and (3.49) that, for some C' depending only on \g and

M07
Alwg (§,0)]* + A%04 (€, 0)* < Cl[Pro4 (&, ) 72ry ) (3.76)
By (3.32), (3.49), (3.36) and (3.38) we easily get
Vi(§) = wy (§,0) = an, (0) (75t (7, 0) + m (€, 0)) 0+ (€, 0),
hence
AV < 2A|wg (€, 0)] + CA%04. (&, 0)|* < C[|Prie (&) [Z2q, ) (3.77)

where C' depends only on A\g and M,.
By (3.30) and (3.59), we have that

A[o-(&,0)]* < 2A%04.(&, 0)* + 2A%no(O)* < ClI P20 (€, )| T2, ) + 28°m0(§)]%.
(3.78)
Using the definition of 7; (see (3.31)) and (3.77), we also deduce that

AVZ(OFF < 2MV (O + 28 (&)1 < ClIPr04 (€, )l L2,y + 2Am O (3.79)
Putting together (3.76), (3.77), (3.78) and (3.79) , we then obtain

A3Z|vi £,0) \2+AZM (O < Cl P4 (£,0) 72w, ) + 2% 00 (E)* + 2AIm ()]

(3.80)
We now use (3.59) and (3.60) and get

A4Z||vi Mzews) JFAQE:Ha 04 (& L2 re)
<CZ||PAEU¢ M Famyy + Alwg (€,0)7 + A%o_ (&, 0)[

Arguing similarly as we did for (3.77) and using (3.79) and (3.80) we get
A4ZHU¢ Nrz@a) +A22H5 04 (& )2 ea)

SCZ || Peds (€, )22y + 2MV-(E)° + CA*[0_(€,0)
~ (3.81)

(ZHPﬂ:vi Mz + Alm (& )|2+A3lno(§)l2>,

18



where C' depends on Ay and My only. The proof is complete by combining (3.80) and
(3.81). O

Since 7 > 1, it is easily seen that (3.75) implies

AZIVi |2+A?’Z\vi€0| +—levi Niz@y) + Z!Iavi N2

<C (Z 1P (€, )l Za s + Am(E)” + A3|no(€)l2> ,
+

(3.82)
where C' depends on Ay and Mj only.
cae ¥ me(€0) _ Xl
= K; o STS G (3.83)
In this case, by (3.36) we have
|f‘ <7< 223’? (3.84)

In addition, in view of the definition of (4, (3.34), (3.83), and recalling that Ay =
VAo and s < sg, we have that

3
el = A3 (3.85)
It is not hard to see from (3.40), (3.41), (3.84), (3.85) that

10,/ Ce| < Msle, (3.86)

where M;s depends only on \g and M,. Moreover, if we set Ry = Ry/(x > 0 and
Jy = 4/ (s, then (3.86) gives

|0y Ree| + 10, J2| < M5[¢]. (3.87)
Using (3.86), we can easily obtain from (3.28), (3.29) that

and

(P (&,y) — Foa,,(y)E_0_(§,y)| < ClE[[0-(€,9)], (3.89)

where C' depends only on A\ and M,.
We now prove the following lemma.
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Lemma 3.5 Assume (3.83). There ezists a positive constant C depending only on
Xo and My such that, if 0 < s < C~Y, B3> C and 7 > C, then we have

AIVL(E) + a5, (0)V/ € (€, 0)04 (€, 0) > + A?||ah, (y) Fyig (€, ')||%Q(R+)

3.90
<C||Eyat, () Frog (& N em,) (3:90)

and
A|V+(£) + a:Lrn<0) V C+(£7 O>,ﬁ+(£7 O>|2 + A3|Iﬁ+(£7 0)|2 )
(3.91

+A4/o |ﬁ+(§,y)|2dy+A2/o \3y@+(£,y)|2dy§ C||P+@+(€a')”%2(R+)

provided supp(i+ (£, -)) C [0, 3].

Proof.

Eiwi(§y) = [0, +it (§+iTsy,y) — ¢ — Vwi (& y) =1 — I,

where I3 = Oywy + it (& +iTsy,y)ws — iJrwy and Iy = Taswy + 7Pyws + Rywy.
Our task now is to estimate

||E+W+(§a')||%2(R+) :/ |13|2dy+/ [ray + 78y + Ryl [Pdy — 2%/ L1,dy.
0 0

0
(3.92)
We first observe that

o / LI = - / frevs + 78y + Ry (6,10, (10 (6, 9) )y
0 0
2 / frevs + 78y + Ry(€,)]ts (75, ) s (6,9) Py
- / 76+ 0, R (€. )l (€. 9) Py + [rovy + Ry (€, 0)]|wy (6,0

2 / ey + 78y + Ry (6, )]ts (757, y) s (6,9) Py

> / 7B+ 0, R (€.) — Ngts(rony + 78y + Ryl (€,9)Pdy
+ [ras + R (&,0)]|w (€,0))7,

(3.93)
where in the last inequality we have used the fact that Ry > 0. Combining (3.92)
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and (3.93) yields
1 Evws (€ )| T2y

> /OOO[(m+ + 7By + Ry)? + 7B+ 0B (& y) — A3 sT(Tay + 7By + Ry)]|ws (€ y)| dy
+ [ray + Ri(&,0)]Jwy (€,0)

A A
> 0 |<v+(§,y)|2dy+5|w+(§,0)l2

(3.94)
provided sy is small enough. Formulas (3.32) and (3.27) give

wi(£,0) = Vi (&) + a,,(0)v/ ¢4 (8, 0)04 (€, 0), (3.95)

which leads to (3.90) by (3.94).
We now want to derive (3.91). Let us write

Fyoy = [0, + it (§+iTsv3y) — 79 + /(g = 15 — I,

where [5 = 0,04 + it (£ + itsvy;y)04 + iJi04 and I = Ta 0y + 70y — R0y,
Thus, we have

|1 F4 01 (6 )22, )

= = ) o (3.96)
:/ | Is|2dy + / [ray + 78y — Ry |0, (&, ) Pdy — 2§R/ I5Igdy.
0 0 0

Repeating the computations of (3.93) and (3.94) yields
1 F 04 (6 )22y

Z/ |I5]2dy+/ [Ta++75y—R+]2]6+(§,y)]2dy+/ (78 — 0, R)|04(&,y)[*dy
0 0 0

= Cor [ Iray 18y = Ryl 60y + [y~ Ry(€ 0o (€0

(3.97)
We observe that
R — RC + |G+
o 2
and, by simple calculations,
Bi (éu fv y)
< —RCg + 22—, 3.98
el = e 2 ) (599
which gives the estimate
B (€, &y
R < | P20 ey, (3.99)
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From (3.83) and (3.99), we deduce that
— R (£,0) > T1ar —m4(£,0) > Ttay — (1 — K)Tay = kTay. (3.100)
On the other hand, using (3.100), (3.87) and (3.84), we can obtain that for y > 0
Tay + 70y — Ri(§,y) =taq — Ri(§,0) + 78y — Ry (& y) + R (€, 0)
>krray +y(78 — CT) > KTay
provided f is large enough. Furthermore, if 0 <y < 1/, then
[ray + 78y — Ry >+ (18 — 0,R.) — Cst|ray + 78y — Ry| > (kTay)?/4 (3.101)

provided sy is small enough and 7 is large enough. Now it follows from (3.97), (3.100),
and (3.101) and arguing as in (3.67), that

C||Fy o1 (&)1 2,

= = 3.102
2/ Iayﬁ+(§,y)\2dy+/\2/ [0 (& y)[Pdy + Alo,(€, 0)]". (3102
0 0

Finally, by (3.88), (3.90), and (3.102), we can easily derive (3.91) provided 5 > C,
7> C and sy < 1/C for some C' depending on Ay and M,. O

Similarly, we can prove that

Lemma 3.6 Assume (3.83). There ezists a positive constant C depending only on
Xo and My such that, if 0 < so < C~! and 7 > C then we have

— AVZ() = a7, (0)v/C-0- (€, 0) + Ay, () B-0- (&, ) [22qe

: (3.103)
<C||F_a,,(y) —U—( 7')||L2(]R_)

and
0

CAVE) — ap(0)v/C 0 (€. 02 — Ao (£, 0) + A3 / o (€, y)|2dy
o (3.104)

0
A / 10,0 (€. 9)2dy < ClIP0_(€.)|Zage .

provided supp(i_(, ) C [~ %5, 0].

Proof. Let w_(§,y) = a,,(y)E-0-(§,y) = apn(9)[0y + it (§ + iTs7,y) — Tl —
V- (€, y). If we write
_UJ_(g, y) = [7 - 187

where

I; = Oyw_+it_(§y)w_ +iJ_w_
Iy = Ta_w_ +10yw_ +t_(Ts7,y)w- — R_w_,
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we have

0
[Fw (&) [2age., > —2R / L Idy
0

— / e + 78y + t_(rs7.) — R_(&, )10, (w_(£.9))dy

—00

_ / 78+ 8,t_(rsv,y) — 8,R_(&,y)llw_ (&, y)*dy

—0o0

- [t— (7—877 0) +710- — R_ (57 0)] |w— (57 0)|2

0
> / 7B — Mys — 2Mys0M\y 7w (,9) Py — (s + a )l (6,0),

—00

hence, by (3.84),

0
1P (€ )fa 2 CA [ (€ 0) Py = CAo- (€0, (3.105)
provided sy is small enough. Since, by (3.32) and (3.26),

w-(£,0) = V(&) = a,,(0)v/¢-0-(&,0),

we get (3.103).
To derive (3.104), we denote

E—@—(é-?y) = [9 - IlO?
where

Iy = O, +it_(&,y)o_ —iJ_i_,
Ly = Ta - +7Pyd- +t_(7s7,y)0- + R_0_.

Observe that if —5= <y < 0 then

28
Ta_ + 7By +t_(1sy,y) + R_ > 71a_/2 — \3'sT > Ta_ /4 (3.106)
provided sq is small. Furthermore, by choosing again sy small, we can make
T84 OyR_ + Oyt_(1sv,y) > 7 (B — 2M580A; > — M3s0) > 0. (3.107)
With the help of (3.106) and (3.107), and arguing as in (3.67) we get

CllE-0-(& e

RPN 2 o [0 ) ) ) (3.108)
> [ o eoPar+ 2 [ o6 Py - A€ 0P
Using (3.103), (3.108) and (3.89), we obtain (3.104) provided 7 is large. O
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Lemma 3.7 Assume (3.83). There exists a positive constant C, depending only on
Xo and My, such that if s < C~1, B> C and 7 > C then we have

AZ|V:i: |2+ASZ|Ui §,0) |2+ASZ||Ui &Nz +AZ|I0 (IO |1

<C (Z 1Pe2(8, )22 ey + Alm (&) +A3lno(£)\2> )

(3.109)
provided supp(v+(&,-)) C [—;—%, %)] with cg = min (a_, 1).
Proof. We obtain from (3.91) that
Al (€, 0)2 + Ao (€, 0) < CIIPo4 (€, ) Bage (3.110)

On the other hand,
AV < 2M|wi (&, 0)] + CA%[04.(&,0)* < Cl[Pri4 (&, )2k, - (3.111)
Using the definition of 7y and (3.110), we see that

Ao (& 0)* < 2A%[0,. (&, 0)” + 2A%mo (€)1 < ClIPw04 (&, )7,y + 2A°%mo(E)]*
(3.112)
Summing up (3.110) and (3.112) yields

A*N " [0+(€,0)) < ClIPLog (€, ) Fag, ) + 2070 (6) . (3.113)
n

Likewise, the definition of 7; and (3.111) lead to

AV < OlIPy iy (&, ) T2,y + 2Am (&) (3.114)
Putting together (3.111), (3.113), and (3.114), we deduce that
A3Z [0:(&,0)]" + AZ Ve(©)F < ClPi4 (& L2, ) +20%m0(€)]* + 2AIm ().

(3.115)
Finally, we first use (3.91) recalling that A > 7 > 1, (3.104), and then (3.114), (3.115)
to get that

A os(E oy + A D N10y0(E ) e
+ +
SOZ H‘Pﬂ:@ﬂ:<§’ )”%/Q(Ri) + A|‘7—(§) - ar_m(O)R—(gu O>{}—(§7 0)|2 + A3|f}—(§7 O)|2
+

<C (Z P04 (&) T2y ) + Alm (€ +A3!no(§)\2> -
: (3.116)
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The proof is complete by combining (3.115) and (3.116). 0

We conclude Case 2 by observing that we can write (3.109) in the form
AZWi |2+Agz|vi (& 0)]° + A4Z||Ui )72 Ri)+/\22||3 02 (& 72 gay)

<C (Z 1Pe2(8, )l 2oy + MmO + A3|770(5)\2> :
+

(3.117)
where C' depends only on A\g and M,.
Case 3: 0
< Mal&0) (3.118)
(1—r)oy
In this case, we have
2X, €]
— (£ 3.36), (3.47)).
< Rl (o (336). (347))
From the definition of (4 (see (3.22)) and the inequality
Bi(&,&y) — ST By, 7:4) = M[é] — At sP P > 1|€I2,
that holds for sq is sufficiently small, we can derive the estimates
( 2
%Ci Z %’5‘27
Ry > €],
| Je| < 4);3%sT, (3.119)

9,Gel < My (14 22220 ) €2 1= Ml
| 10,7/ Cal < 5E[E] = Ml

Lemma 3.8 Assume (3.118). There exist a positive constant C' such that, if so <
C~t and 7 > C, then we have

Al (€, 0)2 + A / s (€. 9)Pdy + / 1Oy (€, 9) Py < CJ|Easo (€. )|Boges .

’ (3.120)

Furthermore, if supp(0-(¢,-)) C [=37,0], then

0 0
2 [Py s [ 100 €y < ClIE-o- (€ e, + CAlo- (€ O)P
(3.121)
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Proof. We write
Eiwy =1y — L,

where

[1]_ = ayw+ + Zt+ (57 y)w+ - iJ+w+7
]12 = TOo Wy + Tﬁyw—i— + R+W+ + t"r (TS’Y’ y)w""’

and thus

B wi (& )2,

:/ 111 |*dy + / [Tas 4+ 78y + Ry + ty (157, y)*|ws (& y) Pdy — 2%/ L1 112dy.
0 0 0
(3.122)
We first estimate
— 2%/ [11j12
0
= [+ 0B 6w + Oyt (s e € 0) Py
0
+ [rag + Ry (€,0) +ty(7sv,0)]|we (&, 0)? (3.123)
00 A\ -
>~ = Mysr) [ oy (6 )Py + <m+ T ) i (€0
0

> _CA / s (€ 9)Pdy + CAlws (€, 0)2,
0

provided sy is small enough. Combining (3.122) and arguing as in (3.67), we get
(3.120). Likewise, we obtain (3.121). O

Lemma 3.9 Assume (3.118). There exists a positive constants C, depending on
o, My, such that if so < C™', 7> C, and B > C, then, for supp(9.(&,-)) C [0, %],
we have that

A2 [

T Jo

|@+(§,y)|2dy+%/ 10,04 (&, y)?dy < C <||F+17+(fa ')||%2(R+) +A|@+(f;0)|2> :
0
(3.124)

Proof. Write
Foop = Lz — Iy,

where

Ly = 0,04 + ity (§ y)vy + i 04

Iy = 7Tayiy +7Pydy — Ryty +1(787,y)04.
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We have
1 F 04 (€ ) 2wy

:/0 |113|2de +/0 p|@+(§,y)|2dy + [ty — R (§,0) + t+(73%0)]|@+(570)|2-

(3.125)
where p = [-Tay — 70y + Ry — t (757, y)]* + (78 — 9, Ry + Oyt4 (757, 9)).
We claim that
A2
p>C—. (3.126)
T
By (3.119) and (3.118), we deduce that for 0 <y <1/3
Ry — 1oy — 78y — t(757,y)
(3.127)

A A
>71E = g + 14 Ay s0) 2 T

provided [£] > Cor = 4)\;*(ap +14+ A3 s0)7. By (3.127), we can easily obtain (3.126)
in the case of |{] > Cy7 with 7 large. On the other hand, when |{| < Cy7, we can
estimate

A2
p>718—0yRy + Oyt (157,y) > 78 — M;Cor — MysT > —
-

N ™

T >

| ™

(3.128)

provided f is big enough. The estimate (3.124) is an easy consequence of (3.125) and
(3.126). O

Lemma 3.10 Assume (3.118). There exist positive constants C' and py, depending
only Ao and My such that if supp(0_(&,-)) C [—p1,0] then

A (6,0 + A2llw (€ MEaqay < CIF-w- (&) Eae . (3.129)
Proof. From (3.48), we have

supp(w—(§,-)) € supp(0-(&,-)).

We first compute
0
R [ lel(Pw)o-dy

0 0
—R / €10, w_o—dy — / Ellra + 78y + t_(rs7) — B_(€9)]|w_|?dy

—00

0
5 6llo- (€ 0P + [ [€llR-(&sy) — ra- — 8y — (57, )Py

(3.130)
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We want to show that

Culll < R_(§,y) —Ta- — 7By — (757, y). (3.131)

Assume that (3.131) is true. From (3.130) and (3.131), it follows that

0

Sl (€. OP + [ CuléPlo- (€ o) Py

—0o0

<R /_ I€](Fow_ )@ (3.132)

o o

0
<G [ IRl €lay+C [P €l

which implies (3.129).
To establish (3.131), we first note that, by simple calculations, we obtain

Im_(£,0) — R-(§,0)] < Csf¢],
which can be used to derive for y < 0

R_(§y) —Tta_ — 7By —t_(T57,9)
>m_(£,0) — |R-(£,0) —m_(£,0)| — |[R_(&,y) — R—(£,0)| — T~ — A3'7s (3.133)
>m_(§,0) —ta_ — C(s+ [y|)[¢]-

On the other hand, by the definition of L, (3.36) and (3.118), we can estimate

m4(€,0) La_ K A2k
— > > .

(3.134)

Combining (3.133) and (3.134) yields (3.131) provided s and |y| are small. O

m_(£,0) —Ta_ >

(1 —r)ay

Lemma 3.11 Assume (3.118). There exists C, depending only on Ao and My, such

that if so < C~', 7> C, B> C, then for supp(v.(&,-)) C [0, %] we have

AV (&) + a5, (0)3/C (€, 0)04 (€, 0) ] + A?[|FLog (&, ) |72 w, )

) ) (3.135)
<C (P2 (€ Mgy + A0 €M)
Furthermore, if supp(0_(&,-)) C [—p1,0], for p1 as in Lemma 3.10, then
A|V— (5) - a;n(o) C— (ga O)f]— (ga O)|2 + A2||E—{)— (57 >||%2(R_)
(3.136)

<C (I1P-0- (& Mgy + A0 ey -
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Proof. Inequality (3.135) follows from (3.120) and (3.88). Similarly, (3.136) follows
from (3.129) and (3.89). O

Lemma 3.12 There exist C, psy, depending only on \g and My, such that if so < C71,
7> C, B> C then for supp(v+(&,-)) C [—p2, po] we have that

A? . 9
AZWi |2+ASZ|Ui £,0) |2‘|‘_Z||Ui £, ||L2(Ri T;HGin(Q‘)HL?(Ri)

<C (ZHPivi & MIEeey) + Alm(€ )|2+A3lno(£)\2>-
(3.137)

Proof. By (3.119),

Ala,,(0)3/ €4 (€, 0)04.(€,0) + a, (0
>Alay, (0)R+(8,0)0+ (€, 0) + a,, (0) R—

1.5
26A3|U+(£7 O)’27

m N—
A

A ‘,\r
(@) /\
~ M
ST
+ )
—_
m D
~ +
o~

hence, by (3.30) and (3.33) we have

15
6A3’U+(£7O)|2

<AJat,(0)3/C1(€,0) + a,(0)1/C(0-(&,0) +770)|2
=AVy +a (0)7/04(£,0) +a, (0 \/_v (£,0) = V_ —m — nn\/Zﬁ0’2

<4 (AIV4 + af, (0)v/C 0 (€ 0) + AV = a, (0 \/ “0 (& 0+ Al 2 4+ A%mof?)
(3.138)
By (3.135), (3.136) and (3.30) we get

A3 Z ’ﬁi(ga O)’2
+

<C (ZHPivi & Mizeay + A2N[04 (& )2,y + Alm(€ )!2+A‘°’|no(£)|2> :
(3.139)
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Again from (3.135) and (3.136)
AV [?
<AV, + a1, (0)V/C 04 (§,0)] + 20, (0)1/Cy 4 (€, 0)
<AV, + a1, (0)V/ G0 (6,00 + CA®[0, (&, 0)
SOV, + 0, (0)v/Cri (€, 0) 2 + € (AIV- =z, (0)V/C-0- (&, O + Al (€)[? + A%mo(©) )

<C (Z [P0 (8, )ITaay + A%N104(6, ) Z2my) + Alm(E) + A3|n0(5)|2> :
+

(3.140)
By (3.33),
AZM ©P=<c (ZHPﬂ:Ui & Niz@ey + A0+ (& o,y + Alm (&) +A3|no(§)|2) :
(3.141)

Combining (3.121), (3. 124) (3.135) (3.136) and (3.139), we deduce that

A? .
72||Ui(€")||%2(Ri ZH@ 028, M2ee)
+

(A || F 04 ()| [72 ®Ry) T N||B-o-(¢ a‘)H%?(R,) + A7 Z |02 (&, 0)|2> (3.142)

+

<C <Z P08, )IZame) + A%M104 (6 2y + Alm(E) + Agl%(é)?)
+

Finally, putting together (3.139), (3.141) and (3.142) yields
AZ|Vﬂ:|2+A3Z!Uif 0) |2+—Z:||8 0+(¢ HLQ(Ri)—i_ Zl\vi N2

<C (Z 1 Peie (€, ) Faqyy + Alml® + A%Inof* + A% o (&, -)Ilimi))
+ +

that gives (3.137) if we take T large enough to absorb the term CA? Y~ [|04(&, )| \%2(]%).

Now are ready to finish the proof of Theorem 3.1. Combining all cases (3.82),
(3.117), (3.137), we conclude that

AZ|V|2+A3Z|%§0|+—ZI|3U¢ HLQRi—'__Z”U:‘: NEz@e)

<C (Z P04 (€, ) Z2my) + Alml]® +A3|770\2> :
+
(3.143)
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Recall that

Py =(0, — ¢y +ite (E+iTsy,y))an,(y) (0, — Ty + it (€ +iTsy,y)) b
— ap (Y) (e (€, y) o,

which implies
|8§@i| <C (|Pif)i| + A0, 04| + A2|@i|) ,

where C' depends only on A\g and M,.
Therefore, we can derive

1 X
;Z 18502 (€, )22y
T

R A A A? R
<C <Z 1P (6, M Tagmay + — D 11026 Moy + — D 10,02 (¢, ~)Hiz<Ri>) :
+ + +

(3.144)
The estimate (3.43) follows directly from (3.143) and (3.144). O

4 Step 2 - The Carleman estimate for general co-
efficients

Having at disposal the Carleman estimate when AL = AL(y), we want to derive it
for Ax(x,y). The main idea is to ”approximate” Ay (x,y) with coefficients depending
on y only. For this purpose we will make use of a special kind of partition of unity
introduced in the next section.

4.1 Partition of unity and auxiliary results

In this section we collect some results on a partition of unity that will be crucial in
our proof. In particular we will carefully describe how this partition of unity behaves
with respect to the function spaces that we use.

For any r > 0 and z € R" !, we define Q,(z) = {y e R" ' : Jy; —a;| < r, j =
1,2,-+-,n—1}
Let ¥y € C§°(R) such that

0<vy<1, supp¥p C (—3/2,3/2) and Uy(t) =1 for t € [-1,1].
Let 9(x) = Yo(x1) - - - Yo(xy_1), so that
supp ¥ Cég/2 (0) and Yo(x) =1 for x € Q1(0).
Given u > 1 and g € Z" !, we define
Ty =9g/p
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and

Thus, we can see that

supp Vg, CQs/9y (2g) C Qayu(y)

and
|Dk199,u‘ < Cl:uk(XQs/zu(Zg) - XQ1/#(ng))’ k=0,1,2, (4.1)

where C| > 1 depends only on n.
Notice that, for any g € Z" 1,

card ({g' € Z"" : supp ¥y, Nsupp ¥, # 0}) =5""". (4.2)

Thus, we can define

Dulw) = > Vg, >1, xR (4.3)

g€anl

By (4.1), we get that )
|Dk19u| < Copt, (4.4)

where Cy > 1 depends on n.
Define

Ngu(T) = ﬁg,u(x)/ﬁu@)a re R
then we have that
dogeznlgn =1, TE R™,

SUPP Mg, C Q32 (T4) C Qayulzy), (4.5)
‘Dkngu“'l S C3MkXQ3/2u,(xQ)’ k = 07 17 27

where C3 > 1 depends on n.

In Section 2 we have recalled the definition of HY2(R"™!) and its seminorm
[-]1/2,rn-1, in what follows we will also need the seminorm

|z

where Q, = Q,.(0).

Lemma 4.1 Let f € C°(R" ') and suppf C Qs,/a for some r < 1. There exists a
positive constant C', depending only on n, such that

c! C
e+ S [ 1@ < Pl <Uag + 5 [ f@fdn (41)

T
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Proof. It follows easily from (2.9) and (4.6), that

[fﬁ/Q,Rn—l =1+ [f]%/ZQw (4.8)

— 2 2
122/ / |f(z) = f(y)] dyd.rzZ/ / 1f ()l dydz.
-1\ Jo. [Tyl B-1\Qr Qa0 17— YI"

Note that there is a positive constant C,, > 1, depending only on n, such that, for
z € R\ Q, and y € Q3,/4, we have

where

C, ol < |z —yl < Culal,
hence, by using Fubini theorem, there is a constant C' depending only on n, such that

c1 C
— 1f)Pdy < T <= [ |f(y)|*dy,
Qr r

T

that, together with (4.8), gives (4.7). O

Proposition 4.1 Let {¢;} ezn-1 be a family of smooth functions such that supps, in
contained in the interior of Qs/2,(x,), then

(Y alne 2O\ X llnagent Sonf l6l) @9)
B 2 (Zg
w

gezn—1 gezn—1 gezn—1

where C' depends only on n.

Proof. Let ' = px and y' = py, then

|z 5) ~ Sy o)
Sl = [ e S S gy
g

z —y|"
2
_ o / / | D gezn—1 ST /1) = 3 gezn—1 5o (¥ /1) 0/ de,

Rn—1 JRn—1 ‘:U/ - y/|TL
In what follows we continue to denote the functions ¢,(x/p) by ¢,(z) and, for any
x = (21, ,2n_1) € R" we denote by ||z|| = max{|z;| : j=1,--- ,n—1}. Note

that supp sy CQyps (9) = {z € R"™1 : [|z — g]| < 3/2}.
We write
2

n—1 Sg\L) — n—1 S,

/ / | 2gezn=159(@) = Lgeznt o)l dedy = I, + I, (4.10)
Rn—1 JRn—1 ‘l‘ - y‘n
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where

X{|le—yl|<1} dxdy

s .:/ | 2 gezn1 59(®) = ez (W)
L R2(n—1)

|z —y|"
| > pezn—1 Sg(x) = 2 coma Sg(y) P

Let us first estimate I5. It is not hard to see that

s </ 2l P ogezn1 5o (@)* + 21 D pezn S (1)
2 =
R2(n—1)

|z —y|"

| 2o gezn-1 So(@)

’.CE - y’n Rn—1 gEZ"fl

X{||z—y|>1}3dxdy

where ¢y =4 [, |y[™"dy.
Now, since we have card ({¢g’ € Z"™' : suppsy Nsupps, # 0}) =571, we get

| Z So(a)|* <57 Z o ()],

962”71 962”71
so that
Resta 3 [ g5 Y / Q@de. (411)
gEZn 1 geZn 1 2(9)

Concerning I;, we can see that

I :/ ’ ZgEZ"‘l §g($) - ZgEZ"‘l gg(y)|2
! R2(n—1)

|z —y|"

| D ez Sg(2) = > e so(y)?
< /Q( /R e T X{llo—yll<1ydyda.
2(9) n-1

ot |z =yl

X{||z—yl|<13d2dy

Let us note that for each x € Q2(g) we have
2 sl = > wl@)
hezn—1 lh—g||<3

and

dist||.|(Q2(g), Qa(h)) > 1, for ||g — hl| > 5,
where dist)|(Q2(g), Q2(h)) = min{||z —w|| : z € Q2(g), w € Q2(h)}. Therefore, we

have

[1<Z/

gezn—17 Q2(9) ||h—g||<a

_ / / ’Z\\g —gl|<3 S (@) — Z||g”7h‘|<3 gg”(y)dedx.
2(9) v Q2(h)

|z —y|"

2
/ | 2 g—al1<3 So () = 2o grezn— Sgr (Y)] dyde
Q2(h)

|z —y|"

gEZ” !lh—gll<4
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Now we note that if [|h — g|| <4, y € Q2(h) and x € Q2(g) then we have

Yo =Y )

llg" —h||<3 llg" —glI<7
and

Yool = ) ).

llg’—gl|<3 llg’—glI<7
Thus

dydx

/ | 2017 —gli<7 (5o (#) = 5o ()
Q2(h)

|z —y|"

IIZ/

gezn—1 IIh gll<4

<151 |Sg7(2) — s (y >|2d d
)OI - |x_y|n ydzr.

g€z~ ||h—gl|<4|lg” —glI<7

Since Q2(h) C Qe(g) when ||h — g|| < 4, by interchanging sums and by using trivial
estimates from above, we obtain

I <15n71 Z Z / / |§g// gg”( )|2d’ydx
b Q2(9) /Qel(g |$_y|n

gezn—1 |[h—g||<4 |lg" —gl|<7

2
g 7 g 17

<(9-15°)"" ) / / (@ gn< y) dydz (4.12)
Rn—1 JRn—1 ]:C—y]

//ezn 1

< ¥ {g taun+ [, lrloPds].
2

g// cZn— 1

(we used (4.7) in the last inequality) where C' depends on n only. Combining (4.11)
and (4.12), the proof is complete. O

Proposition 4.2 Let F € C®(R"Y) N HY2(R"1) with supp F C Q3/9,(x,), and let
a be a function satisfying
|a(2)| < Ea,  la(z) — a(a’)] < Ko|z — 2], (4.13)

for z,x,x' € suppn,, Nsupp F' and E,, K, positive constants. Then, there is a
constant C' depending only on n such that,

[0F ]} 9.0, ) < C | EXF1 100, ) + Kflfl/Q ( )]F(y)de : (4.14)
1 I 2 (Zg
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Proof. By (4.6),

(aF 2 iy /2 /2 N )—a(y)F(y)IQdIdy

|z —y|"

of (M|W%>F@Pgmw%mwmm3m@
Q2(zq Q2($q |z —y[" |z —y| ’

< C | EXFL: a0, (o)) +K2M_1/Q ( )|F(y)|2dy
H 2 (Zg

Proposition 4.3 Let f € C=°(R"!)n HY/2(R"1). Then

Y nguliega@) <C ([fﬁ/z]&nl +M/R

gezn—1

U@WQ.

n—1

Proof. By (4.6),

2 _ 2
2 xg Q2 mg ’x_y’n

where

I= 2/ / ‘ Mg,u(T) — 779#("#)‘2 |z — y| "dxdy.
QZ(% Qz(zg
By (4.5),
reacye [ [ MOy <cn [ s
2 (zg) % (zg) |ZU — | Q%(xg)

If we now use (4.2) and add up with respect to g € Z"! we get (4.15).

Proposition 4.4 Let f € C=°(R"')n HY2(R"™). Then

Z f v&?ng,,u«]%/Z,Qg(xg) <C (MQ[fﬁ/z,Rn—l + /Rn_1 |f(y)|2dy> :

gezn—l

We omit the proof that proceeds in the same way as that of Proposition 4.3.
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4.2 Estimate of the left hand side of the Carleman estimate,
I

We are ready to derive the Carleman estimate for general coefficients. In order to
make clear the procedure that we follow let us introduce and recall some notation
and some definitions. Let 0 < § < 1 and define

A% (w,y) = A0z, 0y), (4.19)
Ls(z,y,0)w = Z Hidiv, , (A% (2, y) Ve ws), (4.20)
+

and the transmission conditions

Oo(z) = wi(x,0) —w_(x,0),
01(z) = A% (z,0)V, ws(2,0) - v — A (2,0)V, yw_(z,0) - v.

Next, with z, = g/ g € Z" !, we define

A% (y) = A% (24, y) = Asr(624,0y),
Ls oy, )w =3, Hedivg, (A% (y)Vayws).

It is not hard to observe that
Xo|z]2 < A% ()22 < M\gYz2, Wy e R, Vz e R
and
|AY () — A% (y)| < Modly' — yl.

Concerning the weight functions, let us introduce the following notation.

he(z) == —elz[?/2,

H.(z,1,) := el — x,4]?/2,

Ve(@,y) = p(y) + he(w),

Ve g(®,y) = p(y) + Vihe(xy) - (7 — 24) + he(y),

where ¢(y) is defined in (2.7). Moreover assume that o, ,a_, [ are fixed positive
numbers such that 8 > B, and \;! < >t in such a way that condition (3.42) is

satisfied by the operator Ls4(y, d) and Theorem 3.1 holds true for such an operator.
Note that

wcﬂg(x7y) - Q/Jg(lﬂ,y) = HE(x7x9)7 (4'21)

so that, trivially,
e < e < 2TV i Q (x,). (4.22)
I
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Let us define

2
E(w) = Z Z 32k / | DFwy [P dady
i n

k=0 +
1
+ 3=k / | DFw. (x, O)|262w5(w’0)dx
227" 129

+ Z 72 [e™= 00y, (-, O)]%/ZRn—l

+
+ Z[ay@ws “wy)(+,0 1/2 ro-1 T Z 0)]?/2,]1{”—17

+

that will be used to estimate the left hand side of (2.10).
In the present subsection we prove that if suppw C U := By s X [=710,70] and if
we choose

7>1/e and p= (e7)"?, (4.24)
then
E(w) < CY 2 cpm1 E(wng,) + CRy, (4.25)

where

1Y | e 0w, O + Vs, 0F + (e, 0))da

and C depends only on \g, M.
Now, in order to obtain (4.25) we estimate from above each term in (4.23). By
(4.5), we can write

wi(r,y) = > we(z, y)ngu(z). (4.26)

gGZ”71

From (4.2), (4.21) and (4.26), we can see that

2
273_2k/ |Dkwi|262w5 dzdy
k=0 RY

(4.27)
<C Z 273 2k/ |Dk wingu)|2 s drdy
gezZn—1 k=0 4
and )
Z 32k / |D*w, (z, 0>|2e2wa(w,0) dr
k=0 o (4.28)

<C Z ZT?, 2k/ k(wing’#)(%0)|2627ws,g(w,0) de,

gezZn=1 k=0 Rn—t
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where C' depends only on n.
Using (4.9), we obtain

[Vx(e””swi)(v0)]?/2,11@—1 = [V:c(ewg Z wi%w)('aO)Hm,Rn—l

gezn—1

<C Z [vx<ewang,uwi)('a O)H/ZQ;(%) + N/ ‘Vx(ewgng,uwi)@? 0)|2d$

geanl Q%(fq)

(4.29)
V(e NguW+)(,0)
:eTwE(x7O)ng,vaw:|: (x7 0) + eng(m’O)w:I:ang#(x? 0) — (€T{L‘)€T¢E(x’0)779,uwi($7 0)7

by (4.2), we have that

Z M/ V(€™ n, ywa ) (,0)|2d
(4.30)

<C (u/ 2@y (z,0)*dx + ,u5/ ezwf(x’o)mi(x,O)\de) :
Rn—1 Rn—1
Let us now state and prove two useful estimates.

Lemma 4.2 If supp f C Q3/2,(x,), then we have that

wwM%mwlchﬁ%w%m@Mm+gé()uwwwwwmﬁ,
2/u{Zg

(4.31)
and
wa%w%%wls0<mﬂ*%%@Mm+u/ |ﬂ@mﬁMWMQ,
QZ/;A(xg)
(4.32)

where C' depends only on n.

Proof. For sake of shortness, we only show the proof of (4.32). The proof of (4.31)
is similar but slightly simpler.
Denote by

= feﬂlﬂa(.’o)’ a = e (Weg—%=)(-0)
so that suppF' C Q2/,(z4) and

fews’g("o) =al.

39



Notice that, by (4.21) (and recalling that e7 = p?), we have

la(x)] < ™Y and |Va(z)| < 2uvn — 127V for every = € Qay,(7,).

We can now apply Lemma 4.1 and, then, Proposition 4.2 (with E, = ¢*"~1 and
K, =2pyv/n — 1e21) and get
[fewe’g("o)]%/zknfl = [aFﬁ/ZR"*l
<(C ([G’F]%/Q,Qg/u(mg) + ,U/ |aF|2d1')
Q2/;L(xg)
<C <[F]%/27Q2/M(x9) + u/ |F|2d:v> ;
QQ/p(mg)
that is (4.32). .
Lemma 4.3
[.IeTwE( )ng Mwi]l/Q Qg/ ilfg) < C([ Twa(‘,o)ng7uwi]%/27Q2/u($g)
) (4.33)

+ — / |ng,uw:|: (ZL‘, 0) |2€2ﬂbe(ac,0)dx> ]
QQ/;L(IQ)

Proof. We apply Proposition 4.2 with a(z) = z and F(x) = ™=@y, (z)wx(,0).
Since supp w+(+,0) C B2 we have, with the notation of Proposition 4.2, F, = 1/2,
K, =1, so that (4.33) follows. O

Let us now estimate » 4 > c7n [V (e™=n, wi)(, 0)]%/2,62;(%) from (4.29).
m

Since

V(€™ g pwa) (2, 0) = €™V (ng w) (2, 0) — (e7a)e™n uwe (2, 0),

we can deduce from (4.2), (4.31) and (4.33) that

Z [Vx(ewsﬁg,uwi)(‘aO)H/Q,Qg(%) <2 Z [67%('70)Vx(779,uwi)('70)]?/1@;(%)

geZn71 96Zn71
+2(eT)? Z [xema(-,o)%#wi)@0)]5/2@2(%)
gezn—1 Z
<C Z e g (07 (nguwi)h/z Q2 (zg) T H Z / (Mg wi)|2627ws(x,o)dx
gEZn ! QEZ"‘ 1 QQ/;/. Ig
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+(eT)? Z [ng( O)nguwi)]l/zczz(xg)‘l‘“ eT) Z / ‘7797uwi‘2€2w5(x’0)d35

geEZN— 1 gEZLN— 1 Q2/M CEq

<C Z [eTwe’g(”O)Vx(ﬁg,uwi)ﬁ/z,cgg(xg)+(57)2 Z [ews"’("o)ﬂg,uwi)]?/z,Qg(xg)
W n

gEZn71 geanl
—l—,u/ 2@\ (x,0)2de + (" + M)(€7’)2/ V=@ |y, (a, 0)]2(135)
Rn—1 Rn—1

(4.34)
Combining (4.29), (4.30) and (4.34), and recalling that e7 = p? (and that u > 1) we
have

(e7¥ Zwing,u)<'a 0)]%/2,11@*1 <C Z [eT%’g("O)vz(ng,uwi)('7 0)]?/2@2(%)
g 13

gezn—l

+p Z e C0n, g (-, 0)]%/2,622(9:5;)_‘_“\4 2@y (x,0)*dx
m

EZ” 1 n—1

+ ,u5/ 2TV @0 gy (J:,O)|2dx) :
Rn—1
(4.35)

In a similar way, we estimate the terms [0,(e™<* 30 winy,)(,0)]7ppn1 and
72 [em= 00 37 wing )3 pnr and finally get (4.25). Notice that in deriving (4.25) we
make use of pt = (e7)? < 72

4.3 Estimate of the left hand side of the Carleman estimate,
11

In this section, we will continue to estimate the upper bound of Z(w) using (4.25).
The task now is to connect the estimate to the operator L(x,y,d) given in (2.1).
To this aim we apply Theorem 3.1 to the function wn, , with the weight function
Vg = o(y) — ey - &+ £lx,]?/2. In order to do this we notice that if suppw C U :=
Bijs x [—10,70] and p > 4 then either |z4] < 1 or suppn,, N By, = 0 so that, in
both the cases, we can apply Theorem 3.1.

By applying (3.7) and by adding up with respect to g € Z"~!, we obtain that

D E(wngu) C Y (A +d) +d)), (4.36)

gEZn71 gezn 1
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where

d(}) = ’Eé,g(yva)(wng,uﬂzezwi‘gdxdy,
Rn
d‘gi)t :T3 /'Rn_1 |67¢5,g($,0)60;g7u($)|2dx + [v$(67¢5,900;97“)(.’ O)}%/Z,R“—lv

By =T / e Oy (@) P+ [T O, (O e
where we set

Oosg.u(@) == w(z, 0)ngu(x) — w- (2, 0)14,.(x) = Oo(2)1g,4, (4.37)
Origu(@) := A(—Sﬁg(o)vx,y(wvmg,u) V= Aﬁg(o)vx,y(w—ng,u) v (4.38)
We will estimate the three terms of (4.36) separately.
Estimate of > ;.. d 51&'

By (2.3), (2.4), (4.5) and (4.19) we obtain that

1Ls,4(y, 0)(wng,u)|
<|Ls(z,y, 0)(weng )| + |Ls(,y, 0)(wangu) — Lsg(y, 0)(weng,.)]
gl L5(2, y, 0) (wa)| + Ong | AL (2, y) — AL (24, y)|| D*we |
+CXQ%(:)39) (n|Dw| + p? )

gl £5(,y, ) (W) + OXQy (ag) (0 [ D*w| + p| Dwes| + pPlwsl)

which, together with (4.2), (4.22) and (4.24), implies

S dl) < CZ / L5y, 0)(ws) 2 dedy + CRsy  (4.39)

gezn—1

where

Ry =6%p172 Z/ | D2w.|? ™o x dady + 11 Z/ | Dw.|? €*™=* dxdy
+ JRY + JRL
+ Z / lw | €2V dady.
+ YRL

Estimate of 3 ;.- dé?,i.
By (4.2) and (4.22),

S / a0y (2)Pde < O / O (o) Pdz,  (4.40)
Rnl

gezn—1 Rt
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where C' depends only on n.
Next, we note that V,(e™=96y, ) = €729V 00,4, — TETTV900.4 .
From (4.2), (4.15), (4.32), (4.33), and (4.37), it follows that

Z [vw(ewg’g 00:9..) (- 0>]%/2,Q2 (zg)

gezn—1
<C Z [ el V QOgM]l/Q Qz(:v ) + (7’6) [ TYe(: 0)90]1/2 Rr—1 (4.41)
gEZn71

—l—u/ 2@\ 0| 2dx + ,u5/ eszf(x70)|90\2dx) .
Rn—1 Rn—1
On the other hand, by (4.15), (4.18) and (4.33), we obtain that

Z [eﬂﬁs('vo)Vmeo;gyu]%ﬂ,@% (zg)

gezn—1

<C ([Vale™00) 3 s + ™ O00] o (4.42)

—l—,u/ 2@ 0o 2dx + ,u5/ eQTwe(”’0)|90|2dx) :
Rn—1 Rn—1

Finally, putting together (4.40) and (4.42) yields
o dPl<c ([vx(ewaeo)(-, 0]} jpnt +7° / 20|00 |2z - Rg> . (4.43)
gEZ”*l Rn—1

where

Ry = Z <M4[€Tws("0)w:l:('a 0)]?/2,11@—1 + ”/ O (-, 0)Pda

+ Rn—1

+N5/ 2T’¢51E0 ‘w ( )’2d$)
Rn—1

Estimate of > ;. . d égl.

By (4.38) and by straightforward computations we can write 6,4, as

Orign = 0119 + J 1) + J(Q) + Jﬂ, (4.44)
where
Jé,ﬂ =W+ Ay (62,0)Vayng - v — w_A_(62,0)Va g, - v,
JC) =ngu(Ay (524,0) — A (02,0)Vaywy - v

— Ny u(A_(024,0) — A_(62,0))V,w_ - v,
Jg(iz =wi (AL (dz4,0) — A4 (02,0))Vayng - V
—w_(A_(024,0) — A_(6x,0)) Vg - V-

43



By (2.3), (2.4) and (4.5),
gl < O s (,0) Xay (o)
+
[Tl S COpTt Yy Vo, 0) g (4.45)
+

|J!§i2| < 05/‘_1 Z Ve ygul|we(,0)],
+

where C' depends on Ao, My and n. From (4.2), (4.5), (4.22), (4.44) and (4.45), we
have that

> / |eVe0@0g, ()] dm<C< / 10126270 gy
Rn—1 Rn—1

gezn—1t

$P Y [ Ve 0P s (4.46)
+

827 + 12 Z/ lw (z,0)[%e 279 (2,0) )

We now turn to the second term of déi)L. We first derive from (4.2), (4.15), and

(4.32) that
Z [e7 e (0 91779#]1/2]1&" 1
gezn (4.47)
<Cle™ 00,12 jp g + Cpi /Rn ) 161 [7* V=0 .

Again by (2.3), (2.4), (4.2), (4.14), (4.18), (4.32), and (4.45) we get

Z [eTwE’g("O)Jg(l,Z]l/Q Rn-1

gGZn—l
<C <M3 Z/ |wa(x,0)2e* ™0 dz + p? Y e Owy (., 0)]%/2,11@—1) :
+ JReE +

We now go to the next term »° _;.-1[e TYe,q( Jﬁ]m ro—1- BY (2.3), (2.4), (4.2),

(4.48)
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(4.5), (4.14), (4.32), (4.33), and (4.45) we have that
> OO g

gezn—1

<CY | D [y u(As (6, 0) — As(62,0))Vaywr - v 0, (00)

+M Z / |Ai(5xg7 0) —_ A:I:((Sl‘, 0)|2|vx7ywi|2627¢8(1=70)dw

4+ g€Zn71
+52M_1/ |ny(wi€T¢s)($ O)|2dﬂj—|—52 -1 2/ |wi($,0)|2€27w6(x’0)d$)
Rn—1 Rn—1
SCZ (52M_2[Vx,y<wiewe( ))]1/2 g-1 + 02 e el )wi]1/2 R7—1
+
462,71 Ve, we (2,0 20270 (@.0) g0 4 52,172 w4 (z,0 2027:(2.0) g
/j’ sY ’ :u )
Rn—l Rn—l

(4.49)
Now we estimate Y ;. 1 [e70=o(0) Jégﬁz]f Jopn-1- As in the previous estimates and
using (4.14), (4.18), and (4.32), we obtain that

Z [eTwE"’("O)Jg(?’,Zh/z Rn—1

gezn—1
(4.50)
<C (522[67%(.70) (-, 0)]F 1/2rn-1 0 MZ/ lwy(, 0)]%e 2T¢E(I’O)d$> ;
+ n—1

where C' depends on Ay, My and n. Finally, combining (4.46), (4.47), (4.48), (4.49),
and (4.50) implies

el o I A ) R
g€Z’n*1 Rn—1
where
Ry =8> Y (Vo (wze™) (O s + (107 4 82077) D[ Ows (- 0)f s
+ +

271 Z /n1 V2w (2, 0)] 227V @0) gy

+ (e + %7 + %P Z/ lw(z,0)%e 279e(2.0) 1.
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Consequently, we have from (4.25), (4.36), (4.39), (4.43) and (4.51) that

Z(w) <C (Z / |Ls(z,y, 0)(ws)|* T+ dady + [e70V01]3 5 gns
+ JRL

+ [V (€700) (-, 0)F jpn 1 + 7° / 2= @0)|g ()2 da (4.52)

Rn—1

—i—T/ 627%(9”’0)|61 (x)\de + R5) ,
Rnfl

where

Rs :52M_2 Z/ |D2wi]2 ezwfdxdy + qu Z/ |Dwi|262w5dmdy
+ R% + R}
+ N4 Z/ ‘wi’2 e2‘rws¢d$dy + (,U + 62571) Z/ \Dwi(:c, 0)‘2627¢8(I,0)dx
i + Rn—1

+ pr Z/ lwa (z,0)|2e* = @0 dx + (u* + 6*u~2r )Z[ 0w (-, 0)]F g e
+

+ 0% Z[D(wiewg)(', 0)]3 /2 n-1-
n

We now set 6 = ¢ and choose a sufficiently small §; and a sufficiently large 7,
both depending on A, My, n such that if ¢ < §y and 7 > 79, then R5 on the right
hand side of (4.52) can be absorbed by =(w) (defined in (4.23)). In other words, we
have proved that

ZZT?) 21<;/ ‘2 27wad$dy+ZZT3 Qk/ DF i(m,O)]262¢5(x70)dx

+ k=0 + k=0 R
+ Y e wa (-, )7y g +Z (€7 w4) (-, 0)]7 jo n s +Z (€™ ws) (- 0)]F jp ns
n

<C (Z /n ‘55($,y, a)(wi)|2 €2Tw5dl'dy + [67—1%("0)91]%/27]1@7171 + [VI<€Tw590)(-, 0)]%/273@71
+ +

+T3/ |00|262T’¢}6(x70)d$ + 7_/ |01|2627w5($70)dx) .
Rn—1 Rn—1
(4.53)

Now, applying (4.53) to the function w(x,y) = u(dz,dy), by a standard change of
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variable and multiplying by 6%, we have

2
Z Z 7_372]{?62]674 / ‘Dkui’2627’¢5(x,y)dl_dy
+ k=0 RY
1
+ Z Z 7_3—2k52k—3 / |Dkui (.73, O) ’262¢5(x,0)d$

R — Rt

+ Z 726_2[67"5“("0) +(-,0 1/2 Rr—1 + Z e ) (- 0)]%/2711@”‘1
£

go( / \ﬁ(a;,y,a)(ui)ﬁe?wé(%y)dmg+[ef%ﬂv@hl]?/zwl
:l: R

e
T 2 7 2 _27¢s(z,0) T 2 _27r¢5(x,0)
+[Va(e 5h0)('»0)]1/2,R"—1+§ |ho| "™t dx"’g |ha |77 da )
Rn—l R”_l

where ¢s 4 is given by (2.8). Since d < 4y, estimate (2.10) follows.
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