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Lincoln NE, U.S.A. Firenze, ITALY
gavalos(at)math.unl.edu francesca.bucci(at)unifi.it
Abstract

In this work we investigate the uniform stability properties of solutions to a well-
established partial differential equation (PDE) model for a fluid-structure interaction. The
PDE system under consideration comprises a Stokes flow which evolves within a three-
dimensional cavity; moreover, a Kirchhoff plate equation is invoked to describe the dis-
placements along a (fixed) portion — say,  — of the cavity wall. Contact between the
respective fluid and structure dynamics occurs on the boundary interface 2. The main
result in the paper is as follows: the solutions to the composite PDE system, correspond-
ing to smooth initial data, decay at the rate of O(1/t). Our method of proof hinges upon
the appropriate invocation of a relatively recent resolvent criterion for polynomial decays
of Cp-semigroups. While the characterization provided by said criterion originates in the
context of operator theory and functional analysis, the work entailed here is wholly within
the realm of PDE.

1 Introduction

1.1 The mathematical model, statement of the main result

In this paper we focus on the problem of deriving rational rates of uniform decay for a fluid-
structure partial differential equation (PDE) system; this model has appeared repeatedly in
the literature, in one form or another. (See e.g., [14], [19], [5].) This composite system of PDE
describes the interactions of a viscous, incompressible fluid within a three-dimensional bounded
domain O (the cavity), with an elastic dynamics displacing along a boundary interface Q2. More
precisely, let the walled cavity within which the fluid evolves be denoted as O, a bounded subset
of R3. This bounded set O will have sufficiently smooth boundary 90, with 90 = SUQ, and
SNQ = (. In particular, O has the following specific spatial configuration:

QcC{x=(x1,22,0)} , SC{z=(x1,22,23):23<0};

see, e.g., the picture below.
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In consequence, if v(x) denotes the exterior unit normal vector to 0O, then
vl =10,0,1]. (1.1)

In addition, we assume throughout that the domain O and the boundary interface 2 satisfy the
following assumption (where the picture above illustrates a geometrical configuration which is
consistent with the case (G.2)):

Assumption 1.1 (Geometric Assumption). The pair [O, ] is assumed to fall within one of
the following classes:

(G.1) O is a conver domain with wedge angles < %77, Moreover, Q) has smooth boundary, and
S is a piecewise smooth surface;

(G.2) O is a convex polyhedron having angles < %w, and so then Q is a convex polygon with
angles < %7‘(‘.

Remark 1.2. The reason for Assumption 1.1 is that, if [O, 2] obey either (G.1) or (G.2), then
for smooth initial data [ug, w1, ws] one is assured of sufficiently smooth solutions [u, w,w;] to
the fluid-structure system (1.2) below. (See [4, Appendix], and the definition of associated
fluid-structure generator A,: H, — H, in (2.9)-(2.10) of Section 2.) Such higher regularity
will justify the PDE multiplier computations, which are requisite for our derivation of rational
decay rates.

With respect then to the assumed geometry, and with “rotational inertia parameter” p > 0,

the PDE model is as follows, in solution variables u(z,t) = [u'(z,t),u?(z,t),u3(z,t)] and
w(x,t):
u—Au+Vp=0 in O x (0,7) (1.2a)
div(u) =0 in O x (0,7) (1.2b)
u=20 on S (1.2¢)
u = [ut,u? u?] = [0,0,w] on Q, (1.2d)
wyy — pAwy + A%w = plo in Q x (0,7) (1.2¢)
0
w = a%] =0 on 99 (1.2f)

with initial conditions
[u(0), w(0), we(0)] = [uo, wo, w1] € H,. (1.3)

Here, the space of initial data H, is defined as follows: Let

Hy = {f € L2(0): div(f) =0, f-v]s =0} (1.4)



and A
{H&(Q) NL2Q) ifp>0

R VL) ifp=0,
where
L2(Q) := {w€L2(Q): /wszO}.
Q

Therewith, we then set

H, = {[f, ho,ha] € Hy x [H2(Q) N L2(Q)] x V,,, )
with f - vl = [0,0, %] -0,0,1] = hn } |

As thus presented, the fluid PDE component of this fluid-structure dynamics consists of
a three-dimensional incompressible Stokes flow which evolves within the walled cavity O, in
solutions variables u(x, t) and p(x, t), with u being the fluid velocity and p the pressure contraint
(see (1.2a)-(1.2b)). As for the structural component: on the cavity wall portion 2 a fourth order
plate equation of either Kirchhoff (p > 0) or Euler-Bernoulli (p = 0) type is invoked to describe
the displacements along €; clamped boundary conditions are in place on 99 (see (1.2¢)-(1.2f)).

In addition, we note that for the fluid PDE component, the no-slip boundary condition
is in play only on the wall S of the fluid container (see (1.2c)). In particular, there is a
matching of velocities on §2, by way of accomplishing the coupling betweeen the respective fluid
and structure components (see (1.2d)). Moreover, the disparate dynamics are coupled via the
Dirichlet boundary trace of the pressure; in particular, pressure variable p appears as a forcing
term in the plate equation (1.2e) in 2. We should also state that in general, fluid-structure
PDE models with ‘fixed” boundary interface {2 are physically relevant when operating under the
assumption that these cavity wall displacements are small relative to the scale of the geometry;
see [21].

We remind the reader that well-posedness for the initial /boundary value problem (1.2)-(1.3)
when p = 0 (i.e., when the elastic equation is of Euler-Bernoulli type), was originally established
n [19], by using Galerkin approximations. A novel proof of well-posedness pertaining to both
cases p = 0 and p > 0, based upon the classical Lumer-Phillips Theorem (where the linear
dynamics is governed by an appropriate operator A,; that is, (2.9) below with domain (2.10)),
as well as on a particular use of the Babuska-Brezzi Theorem (see, e.g., [29, p. 116]), has been
recently given in [5]. The corresponding statement is as follows.

Theorem 1.3 (Well-posedness [5]). The operator A, : H, — H, defined by (2.9)-(2.10)
generates a Cy-semigroup of contractions {eAt}t>0 on H,. Thus, given [ug,wo, w:] € H,, the

weak solution [u,w,w;] € C([0,T);H,) of (1.2)-(1.3) is given by (2.4).

Remark 1.4. The issues of well-posedness in the natural energy space, or of (local in time)
existence, uniqueness and regularity of solutions have been the object of extensive investigation
during the last decade, especially in the case of a well-recognized nonlinear FSI for the motion
of an elastic body immersed in an incompressible fluid; see [11] and [31], along with their
references. Variational and semigroup well-posedness for linearized versions of this model has
also been considered in the literature; e.g., in [21] and [8], respectively. It is here important to
emphasize that the FSI PDE models which are considered in the above-mentioned references
are structurally quite different — in terms of their respective coupling mechanisms — than the
present one under consideration. For the well-posedness and long-time behaviour analysis of
other closely related fluid-plate PDE models, we refer the reader to [18] and [15].



The literature on FSI with moving interface is also extensive; see [20] and the recent [27],
along with references therein. (For the sake of conciseness and consistency we omit any reference
to FSI with compressible fluids.)

If one performs a simple energy method, which would commence by multiplying the fluid
PDE (1.2a) by u and the structural PDE (1.2e) by wy, and continue by integrating in time and
space, one would find an underlying dissipation of the energy which governs the fluid-structure
system. This dissipation comes solely from the gradient of the fluid component u. Given
this fluid dissipation which propagates onto the entire fluid-structure PDE, an investigation of
the stability properties for this coupled system would seem to be appropriate. We recall that
uncoupled Stokes flow is governed by a uniformly decaying (and analytic) Cp-semigroup. On
the other hand, uncoupled Kirchhoff plate dynamics exhibits a conservation of energy.

Thus, in the present work the long-time behaviour, as ¢ — +o00, of the linear dynamics
described by (1.2) is addressed, with focus on the more challenging case p > 0 (the elastic
equation is of Kirchhoff type). When p = 0, uniform (exponential) stability of finite energy so-
lutions holds true; this issue has been dealt with in [19], by using Lyapunov function arguments
(in the time domain). A different proof of the aforesaid result has been subsequently given in
[4], with a proof geared rather toward establishing certain sufficient resolvent estimates in the
frequency domain. A similar ‘frequency domain perspective’ leads us in the case p > 0 to infer
a weaker notion of uniform decay for the fluid-structure problem (1.2)-(1.3). In particular, the
main result of this paper is the following stability result pertaining to strong solutions, which
provides rational rates of decay.

Theorem 1.5 (Main result: Rational decay rates). Let the rotational inertia parameter
p be positive in (1.2e). Then for initial data [uy,wo, w1] € D(A,), the corresponding solution
[u, w,wy] € C([0,T);D(A,)) of (1.2)-(1.3) satisfies the following decay rate for time t large
enough:

||[u(t)7w(t)7wt(t)”|Hp S % ||[u0aw07w1]||D(Ap) . (16)

Remark 1.6. The primary virtue of this result is that it establishes uniform stability, along
with explicit decay rates, for an actual FSI — namely, with pressure term actually present in
the PDE model — with no added dissipation; see the detailed discussion in the next Section.

Remark 1.7. Exponential decay for solutions of the present FSI model does not seem likely:
owing to the coupling mechanism of the disparate PDE dynamics, via the matching of structural
and fluid velocities, control of the mechanical velocity solution variable in H*(2)-norm is quite
problematic. By contrast, exponential decay of the FSI model for p = 0 is possible, inasmuch
as the mechanical velocity solution component can be readily controlled in (energy) L2?-norm,
via the Dirichlet trace of the dissipative fluid velocity; see [19] and [4]. Given the uniform decay
rate of order O(1/t!7¢) which was obtained in [22] for a ‘simplified’ FSI model (see also [9]),
the rational rate obtained in Theorem 1.5 appears optimal.

1.2 Background and further remarks

We should note that in principle, one might attempt to derive the rational decay estimate (1.6)
by an analysis in the “time domain”; the associated energy method is in principle abstractly
outlined, e.g., in [33, Theorem 3.2.2, p. 43]. However, the details of proof in the time domain
would seem to be quite daunting; a technical insight on this issue is given below.

As it is well known, the energy/multipliers method underlies the pioneering contributions
to the study of stabilization of single wave and plate equations, dating back to the seventies,



as well as the fundamental work carried out by many authors during the eighties and nineties.
(See the monographs [32], [30], [37, Vol. II] and their references.) The cornerstone work [36]
laid the foundations for a fairly general method to derive decay rates for PDE systems, under
the possible challenges of nonlinear localized or boundary damping in place, as well as nonlinear
forces, with the wave equation as a prototype PDE model (we recall explicitly [41], [1] and the
conclusive [45], beside [33, Section 3.2]).

It has been shown in the existing literature that intrinsically appropriate differential and/or
operator theoretic multipliers can be useful in the task of attaining decay rates for the associated
energies of certain, physically relevant, systems of coupled hyperbolic/parabolic PDE. Examples
of coupled PDE systems which are amenable to such treatment include thermoelastic systems,
where it was shown in [7] that an underlying dissipation, which emanates solely from the
parabolic component, suffices to render the entire composite system uniformly exponentially
stable. The aforesaid ideas and techniques have been adapted to pinpoint the stability properties
of other composite systems of PDE, such as magneto-elastic or magneto-thermoelastic systems
(see, e.g., [43]), structural acoustic models (in the absence or presence of thermal effects: see [3],
[38]); and only very recently, certain FSI. It should be observed that the PDE analysis of both
latter problems (acoustic-structure and fluid-structure interactions) give rise to significantly
higher difficulties, these partly owing to the coupling which takes place through boundary traces.

While a thorough literature review would go much beyond the scope of the present Intro-
duction, it is however important to emphasize that inasmuch as the subject of well-posedness
itself of certain FSI has been an open problem until very recently, even in the case of linearized
versions like the Stokes-Lamé system (see Remark 1.4), the topic of uniform stability of FSI is
presently rich with open questions. With the exception of the aforementioned [19], along with
[4] — each which deals with the same kind of FSI studied in the present work, and both providing
a proof of exponential rates of uniform decay for finite energy solutions — and of this contribu-
tion, the studies on the stability properties of solutions to PDE systems which describe actual
FSI, in the absence of any form of additional dissipation, are ongoing as conclusive answers are
still lacking.

Most results available in the literature concern ‘simplified’ models comprising a heat equation
(in place of the Navier-Stokes or the Stokes system) and a vectorial wave equation (in place of
the system of elasticity), wherein the coupling of the two dynamics occurs through a boundary
interface, via certain (flux) transmission conditions. Indeed, difficult technical hurdles are
encountered already in the preliminary study of these systems of coupled heat-wave PDE. See
[46], and [22] (the latter obtaining the sharper rates of decay O(1/t'7¢)), whose analysis is based
on the multiplier method in the time domain, and on the strength of requisite observability
inequalities. In contrast, the results of [9] rely upon an analysis in the frequency domain, with
an ultimate view of invoking the powerful resolvent criterion devised in [12]. The proper use of
this abstract resolvent criterion entails the derivation of a series of nontrivial PDE estimates,
for said simplified FSI. (The announced proof in [9] of the optimal rate O(1/t) for the decay of
strong solutions has been deferred to a separate, forthcoming paper.)

On the other hand, the recent study in [10] is carried out for a physically relevant FSI of the
literature — i.e., with pressure term present —, where the geometry is that of a three-dimensional
elastic body, immersed in a fluid occupying a three-dimensional space; see, e.g., [21]. The work
in [10] actually yields exponential decay for the given FSI dynamics; however, to achieve this
result, an additional mechanical dissipation is incorporated in the model.

We should also point out the papers [34, 35], which are devoted to the feedback stabilization
problem for the true (nonlinear) model of the same FSI; see also the references therein. The
reader is referred to the monograph [16, Chapters 5, 6, 11, 12] and to the recent paper [17]
for well-posedness and asymptotic behaviour results/techniques provided for other flow and



flow-plate interactions.

Aiming as we are to obtain sharp decay rate estimates for the solutions to the initial /boundary
value problem (IBVP) (1.2)-(1.3), with the preliminary analysis of [4] in hand, which considered
the case that the elastic wall dynamics is modeled via the Euler-Bernoulli equation (that is,
when p =0 in (1.2¢)), we choose as in [4] to operate here in the “frequency domain”. To wit,
we will invoke an energy method with respect to a formally ‘Laplace transformed’ version of the
system (1.2)-(1.3), with the ultimate objective of applying the sharp resolvent criterion in [12]
(see a penultimate version of this resolvent criterion in [40]). As we mentioned above, such a
frequency domain approach was previously utilized in [9], by way of establishing rational decays
for a coupled heat-wave system.

We should state at the outset that one advantage which the frequency domain method enjoys
over the time domain one, is that the former eventually allows for an adequate treatment of the
pressure variable (as it appears as a forcing term in the plate equation (1.2e)). In particular,
upon formally taking the Laplace Transform of (1.2)-(1.3), we will obtain a corresponding static
fluid-structure system with frequency domain parameter 8 essentially replacing time variable
t (see (4.4) below). Subsequently, one can then attempt to invoke classic Stokes Theory for
(static) incompressible fluid flows.

Alternatively, if one were working directly with the time evolving fluid-structure system
(1.2)-(1.3), by way of analyzing the pressure term p(x, t)|q, it seems likely to us that there would
be the necessity of microlocalizing the fluid-structure system in order to obtain the required
a priori estimates. Besides being quite technical in its own right, such a pseudo-differential
approach might even be ultimately unavailing, inasmuch as there would be the issue of keeping
a close track of the time dependent constants which would surely accumulate in the course of
such a microlocal analysis. Hence, we are drawn instead to a frequency domain analysis which
would ultimately appeal to the aforesaid resolvent criterion in [12], recorded as Theorem 3.1 in
Section 3.

We finally note that uniform stability results for higher dimensional coupled PDE systems
(namely, involving equations on n-dimensional manifolds, with n > 1), which are attained via
frequency domain methods, are largely not available in the literature. We recall the recent
polynomial decay result obtained in [25] for a complicated Mindlin-Timoshenko plate model,
which depends upon a frequency domain approach and an argument by contradiction, with a
view of invoking the aforesaid resolvent criterion in [12]; see also [26]. In general, those few
higher dimensional results typically rest upon an argument by contradiction, in the style of
[40], by way of establishing the requisite resolvent estimate in Theorem 3.1. By contrast, in
the present paper we explicitly generate the necessary frequency domain estimate, as in [9] and
[10].

We finally point out the recent work [2] where — in the case of a one-dimensional model
— appropriate resolvent estimates are established in order to infer exponential or polynomial
stability for a thermoelastic Timoshenko beam, with decay rates that are shown to be optimal.
(The one dimensionality of the problem plays a key role in the proof of optimality.)

Outline of the paper. We conclude this Introduction with a brief overview of the paper’s
contents and organization. In Section 2 we introduce the functional and semigroup setup for
the PDE problem. A PDE result pertaining to the fluid pressure, obtained in [6] and recorded
here as Lemma 2.1, allows for a clear (and yet non trivial) definition of the linear operator
which underlies the fluid-structure dynamics.

Section 3 is devoted to the spectral analysis for the dynamics operator, this being of intrinsic
interest, as well as a prerequisite step for the proof of our main result, that is Theorem 1.5.
The core of the proof of Theorem 1.5 is found in Section 4.



2 Semigroup framework

In this Section we recall from [6] the semigroup setup for the IBVP problem (1.2)-(1.3). Al-
though the Cy-semigroup e#* underlying the linear evolution (1.2)-(1.3) was introduced in [19],
a more explicit definition of the dynamics operator is given, based upon a certain identification
of the fluid pressure p as the solution to an appropriate elliptic problem; see Lemma 2.1 below.

Let Ap : D(Ap) C L?(2) — L*(Q) be given by
Apg=—Ag, D(Ap)=H*(Q)NH(Q). (2.1)
If we subsequently make the denotation for all p > 0,

D(AD) if p>0

L*(Q) if p=0" (2.2)

P, =1+ pAp, D(Pp)—{

then the mechanical component (1.2e)-(1.2f) can be written as
Pywgy + A = plo  on (0,7).
Using that
D(P,/?) = {ﬁg)) ’ i .
(see [24]), we can endow the Hilbert space H, with norm-inducing inner product

([f, wo, wr], [ﬁ@o,@l])Hp = (f. f)o + (Awo, Adp)q + (Ppl/zwhp,}/z@l)sz,

where (-,-)o and (-, -)q are the L2-inner products on their respective geometries.

We note here the necessity, as there was in [19], for imposing that the wave initial displace-
ment and velocity each have zero mean average. To see this: invoking the boundary condition
(1.2¢)-(1.2d) and the fact that the normal vector v coincides with [0,0, 1] on £ , we have then
by Green’s formula, that for all ¢ > 0,

/th(t)dz:/s2u3(t)dz:/aou(t)~yda:0. (2.3)

And so we have necessarily,

/w(t)dx:/wodx forall t>0.
Q Q

This accounts for the choice of the structural finite energy space components for H,, in (1.5).

Well-posedness of the IBVP (1.2)-(1.3) has been fully discussed in [5] and [6, Appendix]
for both cases p > 0 and p = 0. The proof of well-posedness provided in [5] hinges upon
demonstrating the existence of a modeling semigroup {eAPt} >0 C L(H,), for an appropriate
generator A, : H, — H,. Subsequently, by means of this family, the solution to (1.2)-(1.3), for
initial data [ug,wo, w1] € H,, will then of course be given via the relation

u(t) Ug
wt) | =e* | wy | €C(0,T];H,). (2.4)
wy () w1y

We recall here that the particular choice here of generator A4, : H, — H,, is dictated by the
following consideration, whose proof is given for the reader’s convenience.



Lemma 2.1 ([5]). If p(t) is a viable pressure variable for (1.2)-(1.3), then pointwise in time
p(t) necessarily satisfies the following boundary value problem, for [u(t), w(t)] “smooth enough”:

Ap=0 in O
% = Au - V|S on S (2.5)
o+ By tp =B AR Ay on Q.

Proof. To show that p is harmonic in €2, we take the divergence of both sides of (1.2a) and use
the divergence free condition in (1.2b). Moreover, dotting both sides of (1.2a) with the unit
normal vector v, and then subsequently taking the resulting trace on S will yield the boundary
condition in (2.5) that pertains to S. (Implicitly, we are also using the fact that w =0 on S.)

Finally, we consider the particular geometry which is in play (with v = [0,0, 1] on Q). Using
the equation (1.2e) and the boundary condition (1.2d), we have on §2

PfleQw = —wy +P;1p|Q
d _
= _%(0,0711&) ' V+Pp 1p|Q

:—[’LLt~Z/]Q+P;1p|Q

Ip -
= —[Bu-vlg+ 30|+ P,

which gives the boundary condition in (2.5) that pertains to Q. O

The boundary value problem (BVP) (2.5) can be solved through the agency of appropriate
harmonic extensions from the boundary of O, that are the ‘Robin-Neumann’ maps R, and R,
defined by

_ g of _ oOf  po1p :
Ryg=f«={Af=0 m0, 5> =0ons, L+ P f=g onQ};
R g — -0 i of _ of —1p _
Rpg—f<:>{Af—0 in O, ay—gonS, 81/+P” f—OonQ}.
By the Lax-Milgram Theorem, we have
R, e L(H™Y2(Q),H'(0)), R,eL(HY*S),H(0)). (2.6)

(We are also using implicitly the fact that P, L is positive definite, self-adjoint on .)

Therewith, the pressure variable p(t), as necessarily the solution of (2.5), can be written
pointwise in time as

p(t) = Gp,lw(t) =+ Gp,QU(t) s (2'7)

where G, 1 and G2 are defined as follow:
Goiw = Rp(Pp_lAQw) ; (2.8a)
Gpou = Ry(Au?|) + R, (Au-vlg). (2.8b)

The above relations suggest the following choice for the generator A, : H, — H,. We set

A — VGPQ *VGp.,l 0
A, = 0 0 I (2.9)
P1Gpal, —P7'A*+P7lGoal, O



with domain

D(4,) = {[u,wl,wg] €eH,: ue Hz((’)); wy €S,, wa € Hg(Q),
(2.10)
u=0onS, wu=(0,0,ws)on Q},

where the space S, in (2.10) is as follows:

[ E¥Q)NHQ), p>0
PTOVHY Q) NHEZQ), p=0.

The fact that the operator A, defined by (2.9)-(2.10) is the infinitesimal generator of a Cy-
semigroup e»! on the space H,, for any given p > 0, has been shown in [5]. (See also [4,
Appendix|, where a detailed proof of higher regularity of strong solutions is produced.) Thus,
well-posedness of the IBVP (1.2)-(1.3) in the function space H, is an immediate consequence
(see Theorem 1.3).

Remark 2.2. Note that if [u, wy, ws] € D(A,), then Au-v|po € H™1/2(90), and so A, [u, wy, w,]
is indeed well-defined (note in particular the entries 1-1 and 3-1 of matrix A, and (2.8b)). This
is s0, as u € H%(0), and Au is divergence free. Indeed, in general we have the classic basic
trace estimate for any function p € L%(O) with div(u) € L?(0):

1A - Vool gr-1/20) < € (Iulloo + [div(u) o) (2.11)

(see e.g., [44, Theorem 1.2, p. 7]).

In what follows, we will have need of the following regularity result for solutions of Stokes
system on 2, in the scenarios (G.1) or (G.2) of Assumption 1.1. (As € is a bounded Lipschitz
domain, then the well known elliptic regularity results in [44] do not ostensibly apply.)

Lemma 2.3 (Lemma 3.1 in [4]). With [O,Q] obeying the Assumption 1.1 — including the
flatness of  and (G.1)-(G.2) — we consider the following inhomogeneous Stokes problem, with
parameter A > 0:

Au— Au+ Vp =u* mn O
div(u) =0 in O
ulg = [0,0, 0] on S

ulo = [0, 0, w] in Q, (2.12)

where data [u*,w] € L?(O) ><Hg/2+6 (Q), with € > 0, and w satisfying the compatibility condition
fﬂ wd) = 0. Then one has the following regularity estimate for the solution pair [u,p]:

lulla2(0) + Pl e (0)nz20)/r) < C)\“[U*yw]HLz(O)XHg/2+e(Q) . (2.13)

Hereafter the parameter of rotational inertia p will be assumed to be positive. The case
p = 0 was treated in [4].

3 Spectral analysis

In order to establish the sharp estimate of the decay rates for the solutions of the PDE system,
we will, as we said, use a powerful frequency domain criterion by Borichev and Tomilov, which
for the readers’ convenience is recorded below.



Theorem 3.1 ([12]). Let (T'(t))i>0 be a bounded Cy-semigroup on a Hilbert space H with
generator A, such that iR C p(A). Then, for fized o > 0 the following are equivalent:

(1) R(is; A) =O(|s]*),  |s| = o0; (3.1)
(@) Tzl = ot *)|allpeay, — t—+oo.

To apply the above result, we need as a preliminary to show that the imaginary axis belongs
to the resolvent set p(A,) of the dynamics operator A,. The present Section is entirely devoted
to this objective.

3.1 A =0 is in the resolvent set o(A,)

We begin our analysis by showing that the dynamics operator A, is boundedly invertible on the
state space H,, for p > 0.

Proposition 3.2. The generator A, : D(A,) C H, — H, is boundedly invertible on H,.
Namely, A =0 is in the resolvent set of A,.

Proof. Given data [p*,w},ws] € H,, we look for [, w1, ws] € D(A,) which solves

*

[ [
Ay | w1 | = wi |- (3.2)
w2 w3

Component-wise, we obtain then from (2.9) the coupled system of operator theoretic equations

Ap —VGopu — VGiw = p*
wy = Wi
Pp_lGQIQ/J/— Pp_1A2W1 +Pp_1G1

’le =Wy,

where we denoted, in short, by G; the linear operators G, ;, i = 1,2, defined in (2.8a) and
(2.8b), respectively. We invoke now the definition of the G; in (2.8), set

w9 = Giwy + Gg,u, (33)

and consider the definition of the fluid-structure generator (2.9)-(2.10). Then, finding [y, w1, wa] €
D(A,) which solves the abstract equation (3.2) is equivalent to finding {[u,w:i,ws], M0} €
D(A,) x H'(O) which solves

Ap—Vmy = p* in O (3.4a)
divpe =0 in O (3.4b)
pw=0 on S (3.4c)
w=(0,0,ws) on (3.4d)
wo = wj in Q (3.4e)
Pp_lAchl - Pp_17r0|Q = —w; in Q (3.4f)
ow
wy = 87711 =0 on ON). (3.4g)

(i) The Plate Velocity. From (3.4e), the velocity component wy is immediately resolved.
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(i) The Fluid Velocity. We next consider the Stokes system (3.4a)-(3.4d). From (3.4e) and
(3.4d) it follows that u|so satisfies

/ M'VdUZ/ [0,0,u3]T-Vda=/w2dU:/wi‘dazO (3.5)
80 Q Q Q

(as [u*,wi,ws] € H,). Since this compatibility condition is satisfied and data {u*,wi} €
L%(0) x HZ(Q), we can find a unique (fluid and pressure) pair (i, q0) € [H2(O)NHy] x
H!(O)/R which solves

Ap—Vgo=p* inO

div(p) =0 in O (3.6)

w=(0,0,w7) inQ, p=0inS.

Moreover, one has the estimate

lallez 0y, + lgollaroym < C [y + lwillzz ] 5 (3.7)
see [44, Theorem 2.4 and Remark 2.5] and Lemma 2.3 above.

(i1i) The Mechanical Displacement.  Subsequently, we consider the equations (3.4f)-(3.4g)
pertaining to the (plate) component w;. By Lax-Milgram and either (i) classical elliptic theory
(see [39]) if structural geometry  obeys assumption (G.1), or (ii) the “polygonal” regularity
result in [13] if structural geometry Q obeys assumption (G.2), we then have the following: there
exists a solution &y € H3(Q) N HZ(£2) to the boundary value problem

{62@1 ; QPlo — Pws inQ (3.8)
w1 =5%+t=0 on 0f),
where ¢ is the (pressure) variable in (3.6); moreover, the following estimate holds true:
1Ol g3z < Cllaole + Powslla-1(a)
< Cllgolellgi/2@) + 1Pwsll -1
< Cfllp*swi,wsllln, - (3.9)

(In the last inequality we have also invoked Sobolev trace theory and (3.7)).

Now if, as in [19], we let P denote the orthogonal projection of H3(Q) onto HZ(Q) N L?(Q)
(orthogonal with respect to the inner product [w,@] = (Aw, A@),), then one can readily show
that its orthogonal complement I — P can be characterized as

(I —P)HZ(Q) = span{w: AG=1inQ, o= g—w =0on 39}; (3.10)
v
see [19, Remark 2.1, p. 1639].
With these projections, we then set
wy = Poy T := qo — A*(I — P&y ; (3.11)

therefore, by (3.8) and &y = Py + (I —P)wy, we will have that w; solves (3.4f)-(3.4g). (And of
course since 1y and go differ only by a constant, then the pair (u, mo) also solves (3.4a)-(3.4d).)
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Thus, in view of classical elliptic theory (when Q obeys G.1), or the polygonal regularity
result in [13] (when Q obeys G.2), (3.7) and ((3.9), we obtain the estimate

lwill s @)naz @iz ) + 1m0l o) <
< C (A% = P)ar 2o ol 2.0y + |1 Ppwi ]l r-1(02)) (3.12)

< COllw" ot wsllla,

where implicity we are also using the fact that A2(I —P) € L(HZ(f2),R), by the Closed Graph
Theorem.

(v) Resolution of the Pressure. At this point we invoke the estimate (2.11) in Remark 2.2, and
(3.7), to have the following trace regularity for the fluid velocity in (3.6):

181 V]| 100y < C lllaoll o) + 117 L20)]

< C Il llas + i llmzo)] -

To use this estimate: the pressure variable my of problem (3.2) — given explicitly in (3.11) —
solves a fortiori

(3.13)

Aﬂ'o =0 in O
9 = Ap-vls on S (3.14)
970 + Prlmy = Py A%wy + Apd|,  on Q.

We justify the previous assertion. Applying the divergence operator to both sides of (3.4a)
and using divy = divp* = 0, we obtain that m is harmonic in O. Next, dotting both sides of
(3.4a) with repect to the normal vector, and subsequently taking the boundary trace on the
portion S, we get the corresponding boundary condition in (3.14). (Implicitly we are also using
W V|S =0, as [ﬂ*,wTaWS] € HP)

Finally, since p* - v|g = w3, as [p*,w],wi] € H,, from (3.4f) it follows that

P;17T0’Q = wy+ P;lAle
= Ap-vlg—Vm-v|g+ Pp_lAle,
which gives the boundary condition on Q.
Necessarily then, the pressure term must be given by the expression
w9 = Giw, +G2,U,€ Hl(O), (315)
with the well-definition of the right hand side ensured by (3.13).

Finally, we collect: the fluid variable u as the solution to (3.6) with the estimate (3.7),
the respective structure and pressure variables wy,ws and m given by (3.4e) and (3.11), along
with the estimate (3.12) (and where @; is defined by (3.8)); (3.15) characterizes the pressure
7o in terms of the variables wy and p. This shows that the solution of (3.4) actually belongs to
D(A,). In short, 0 € p(A,), which concludes the proof. O

3.2 A =if is in the resolvent set p(A)

Let us recall the expression of the dynamics operator semigroup A, in (2.9). In straightforward
fashion, one can then compute the associated adjoint operator A7: D(A;) CH, — H, to be

A—-VG,, VG, 0
AF = 0 0 -1, (3.16)
g 1 —1A2 -1
Pp Gp,2|Q Pp A — Pp Gp}1|Q 0
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with D(A}) = D(A,). The above operator will be utilized in the proof of the following result.

Proposition 3.3. Let 0(A,) be the spectrum of the dynamics operator A, defined by (2.9)-
(2.10). Then iRNo(A,) =0.

Proof. Let 0,(A,), 0+(A,), 0,(A,) denote, respectively, the point, continuous and residual
spectrum of the operator A.

1. (Point spectrum) We aim at showing that iR No,(A,) = 0. Given 5 € R\ {0}, we consider
the equation

% %
Ap w1 = 26 w1 (317)
w2 w2

for some [y, w1, ws] € D(A,). Moreover, we set
o = Gpi(wi) + Gpa(p) . (3.18)

Taking the inner product of both sides, and subsequently integrating by parts, then it follows

2

0 p m

B wi = |4, | w1 |, w
w w w

2 I, 2 2

= (Ap— Vo, 1)p + (Awa, Awr)g + (—A%w1 + molg s wa)o =
0
(7T0|Q (07 0, 1)7 (070,(;)2))5) - (V/L, v:“)(? + <6I/;L“u> - <7TOV» N>Q +
Q

—+ (AOJQ, Awl)Q + (VAwl, ng)Q =
= (ACUQ, Awl)g — (Awl, AWQ)Q — (VILL, V,LL)O +

Oy 11t 0
+ Opsit® |,] 0 , (3.19)
6$3:u3 /-LS 9]
or
2
K 2
s wi = —[|[Vullp — 20 Im(Awr, Awz)a ; (3.20)
w2 H,

whence we obtain (after using Poincaré’s Inequality)
w=0 in0O. (3.21)

In turn, the boundary condition 1 = (0,0,ws2) on 2, intrinsic to elements of D(A,), yields as
well
wp =0 inQ. (3.22)

And furthermore, the second component relation in (3.17), combined with the appearance
of A, in (2.9), yield ifw; = w,. Hence for § # 0,

w1 =0 inQ. (3.23)

The relations (3.21), (3.22) and (3.23) give the conclusion that i is not an eigenvalue of A4,.
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2. (Restdual spectrum) We aim at showing that iRNo,(A,) = 0. Given 8 € R\{0}, if i3 is in the
residual spectrum of A,, then necessarily if3 is in the point spectrum of A7 : D(A}) C H, — H,;
see e.g., [23, p. 127]. In this case, given the appearance and the domain of A* in (3.16), we

p
proceed verbatim along the lines of Step 1. to deduce that iR No,.(A4,) = 0.

3. (Continuous spectrum) This is by far the most challenging part of the proof. To make the
inference that ¢{R has empty intersection with the continuous spectrum, it is enough to show
that iR does not intersect with the approxzimate spectrum; see e.g., [23, p. 128].

To this end, let 5 € R\ {0} be given. If i3 is in the approximate spectrum of A,, then by
definition there exists a sequence

o0

Hn Hn
Wi, C D(A,) such that for all n: Win =1
W2 n n=1 W2 n H,
Hn Hn Fn 1
and | wi, = (if—Ap) | win | satisfies Wi, < —. (3.24)
¥ * n
w2,n W2 n w2,n H,
We consider therewith the relation
Hn o
(iB=Ap) | win | =] Wi, | - (3.25)
(“}2’” w;,n
In PDE terms, each [y, w1, ws ] satisfies the following problem:
1B — Apon, + Vi, = 1, in O (3.26a)
div(p,) =0 in O (3.26Db)
fn =0 on S (3.26¢)
tn = (0,0, wsa.,) on 0 (3.26d)
iBwin — Wan = Wi, in Q (3.26¢)
iBwyn + Py AWy — P pnl|, = w3, in Q (3.26f)
6&117”
wl,n‘Q = oy o~ 0 on 02 (3.26g)
where, for each n, the associated pressure term is given by
Pn = lel,n + GQﬂn . (327)

Multiplying both members of the expression (3.25) by [pn,w1,n,ws,n] and integrating by parts
gives

* 2
) Hp, Hn Hn
[Vinllo = Win | 5] wWin —iB ||| win — 2ilm(Awy n, Awa n)a -
w3 4, wa,n H, w2 | |y,
We have then from (3.24) that
tn — 0 (strongly) in H'(O). (3.28)
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In turn, from the boundary condition (3.26d) and the Sobolev Embedding Theorem, we
have

||w2,nHH1/2(Q) = ||/1’§LHH1/2(Q) <C ||,unHH1(O) )

whence
wam — 0 (strongly) in HY2(Q). (3.29)

At this point, we invoke the unique decomposition
Dn = Cn + Gn, (3.30)

where for each n,
¢, = constant; ¢, € L*(O)/R. (3.31)

Then, from the known finite energy well-posedness of Stokes flow — see, e.g., Theorem 2.4 and
Remark 2.5 of [44] — we have from (3.26a)-(3.26¢)

C (lliBunllrz (o) + Il 200y + 1]z o)
Cp (Il o) + 1Lz (o)) s (3.32)

whence we obtain from (3.28) and (3.24),

||L1n||L2(O)/R

IAIA

¢n — 0 strongly in L?(0). (3.33)
Moreover, since each g, is harmonic a fortiori, we have available the boundary trace estimate

lanloollm-1200) < Cllanllzz(0)
< Cs (lpnller o) + e o) (3.34)

(see e.g., [6, Proposition 1]; in attaining the second estimate we have also used (3.32)); appealing
again to (3.28) and (3.24) we then have

gnloo — 0 strongly in H_l/Q(O) ) (3.35)

Now using the decomposition (3.30) in the structural equation (3.26f), we have for all n,
en = —nla + Aw1, 4+ iBPwon — Ppw}
and so a measurement in the H~2(f2)-topology gives
leal 11l z-20) = || — anlo + A%wi1p + iBPwapn — PpWE,nHH*%Q) (3.36)
<Cp (||Qn|QHH*1/2(Q) + le,nHHg(Q) + llwz,n llL2(@) + Hw;n“D(P;/Z)) . .
Combining (3.24), (3.35) and (3.29) with (3.36) we achieve the conclusion that

{¢n}n>1 is uniformly bounded in n.

Hence, there is a subsequence of constants — still denoted as {c¢y, }>1 — which satisfies for some

c,
¢n — ¢ (strongly) in C. (3.37)
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We now turn our attention to the mechanical system (3.26f)-(3.26g), that is
AW = pulo — iBP,wan + Pyws,, inQ
=0 on 0fL.

8&117”
Wi,n =

T G

By way of looking at this sequence of boundary value problems, let us invoke the realization
A of the biharmonic operator, defined by Ay := A%p, p € D(A) = H4(Q) N HZ(Q). Then we
have abstractly

Awi = o+ qulo — iBPywan + Pows, € [D(AY?)],

where D(AY/?) = HZ(Q) from [24].
Applying the inverse A1 € L(L?(2),D(A)) to both sides of the above equality gives

win = A" en + A (qnla — iBP,won + Ppws ) € D(AY?). (3.38)

(In arriving at this conclusion, we are implicitly using the fact that D(A'/2) C D(P,).) Sub-
sequently we can then pass to the limit in (3.38) (meanwhile using (3.37), (3.35), (3.29) and
(3.24)) so as to have

O = lim wy, = lim A7 '¢, = A716. (3.39)

n—oo n— oo

Thus, this (structural) limit must satisfy

A% =¢ inQ, o= g—“’ =0 on 0Q. (3.40)
14

Now since wy,,, € H3(Q) N [ﬁQ(Q)] for every n, then so is strong limit @. But from (3.40) and
the characterization (3.10), we have also that @ € [HZ(Q) N IA/2(Q)]L Thus,

lim w;,, =0. (3.41)

n—oo
Finally, from (3.26e),
wW2n = iﬁwl,n - win )

whence we obtain with (3.24) and (3.41),

lim w;, =0 in D(P)/?). (3.42)

n—oo

The limits in (3.41) and (3.42), combined with the one in (3.28), now contradict the fact
from (3.24) that
H[mel,mwzn]HH =1 n.
P

Since f € R\ {0} was arbitrary, we conclude that the approximate spectrum of A, does not
intersect with iR. O

4 Proof of Theorem 1.5 (Main result)

Here we will utilize Theorem 3.1 (see [12, Theorem 2.4]) in the case currently being considered;
namely, p > 0, so that rotational forces are accounted for in the fluid-structure PDE dynamics.
By way of ultimately invoking the aforesaid resolvent criterion, we consider arbitrary data
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¥, wi,ws] € H,, and the corresponding pre-image [p, w1, ws] € D(A,) which solve the following

relation for given 8 € R:
*

H H
(B—A,) | w1 | =| wi | €eH,. (4.1)
w2 w3

With respect to this relation, the proof of Theorem 1.5 will be established if we derive the
following estimate for |3| sufficiently large (and a positive constant C):

*

H H
w || <] v ||| (4.2)
w2 |||, w3 H,

this is the frequency domain estimate (3.1) with a = 1.
Using the definition of A, : D(4,) C H, — H,, this gives

B —Ap+VG,1wi + VG, op = p* in O
iPuwr — we = wj on 2

1Bws + P;l A%wy — P;le71W1|(2 — P;le72u|g2 = wj on (2.

Upon a rearrangement and setting pressure variable

m™=Gpiwi + Gpapt, (4.3)
we then have
i —Ap+Vr=u* in O
wy = ifw; — wy on
—B%w1 — ifwt + Pp_1A2w1 - Pp_l’]T|Q =wj on .

We have then following (static) fluid-structure PDE system:

ifu—Ap+ Vi = p* in O (4.4a)
div(p) =0 in O (4.4b)
uw=0 on S
p= [t 6?1’ = [0,0,iBwr — wi] on ) (4.4c)
wo = ifwy — wy in Q (4.4d)
—B% Pywy + A%wq — 7|g = Pyws + iBP,w; in Q (4.4e)
wilon = % oo 0 on 0§). (4.4f)

Step 1. (An estimate for the fluid gradient) Let us return to the resolvent equation (4.1). It is
easily seen that an integration by parts gives the following static dissipation relation:

7 1
(7'5 - Ap) w1 ’ w1
ws w2 |) g,
2
W
= 8| w H + (| Vull?) + 2im(Awy, Aws)q ;
w2

H,
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see (3.19)-(3.20). Combining this with relation (4.1), we then have

2

"
i || w +1Vllo + 2 Im(Awy, Awg)o =

W2 H,

p p w !
= (Z/B - Ap) w1 ) w1 = wik ’ 1 ’
w2 w2 H, w3 2 Hy
whence we obtain
2 " :
Vil =Re [ | o || |] o
w5 w2 H,

Step 2. (Control of the S-mechanical displacement in a lower topology) Using the fluid Dirichlet
boundary condition in (4.4c) we have

iﬁwl = MS|Q +wik .

We estimate this expression by invoking in sequence, the Sobolev Embedding Theorem, Poincaré’s
inequality and (4.5). Through these means we then obtain

||ﬁw1HH1/2(Q) < HMSIQ'*'WT H1/2(Q)
< C(IVullzxo) + iz
w* p
< C Re| | wi || w + llwtll gz o) | - (4.6)
w3 wo

H,

Step 3. (Control of the mechanical displacement) We multiply both sides of the mechanical
equation in (4.4e) by @y and integrate. This gives the relation

2 * . *
(A2w17w1)L2(Q) = 62HPP1/20J1HL2(Q) + (7T|97W1)Q + (Ppw2 + lﬁppwlawl)L?‘(Q) . (47)

(3.i) To handle the first term on the right hand side of (4.7), we invoke Poincaré’s Inequality,
thereby obtaining

8213 201 gy = B2 (It + Al Ve oy ) < Co? Vet |2y - (4.8)
Now
B2||VW1H2L?(Q) = B(Vwi, BVw1) 1 o) = B{Vw1, BYW1) p1/2(0)x r-1/2(0)

< ClBl lwill sz 1Bwill iz -

Subsequently, interpolating between H?(Q) and H'/?(Q) with interpolation parameter 6 = 1/3
(see e.g. [39], or [42]), we obtain

2
B Verll ey < CLBI2 I8 lwnll ooy 18wl 1720

2/3 1/3
< C 18P lln 23y 181y | 1Bz -

18



Via Young’s inequality, with conjugate exponents 3 and 3/2, we then have

2 2/3 4/3
BV |72y < C llonllray 181272 18wl re gy < ellwtlfrzgay + CelBl 18wz
subsequently reinvoking the estimate (4.6), we then have for |3] > 1,

*

[ [
2 *
B2HVW1HL2(Q) < 6”“1“%12(9) +Ce|B] | ||Re wi || w + ||w] H%IS(Q)
w3 | wa H,
"k [ 7P
< 2¢€||| wi + C B ||| wt . (4.9)
w2 H, w}‘ H,

Applying the obtained estimate (4.9) to the right hand side of (4.8) yields now

2 2

*

I I

2 *
ﬂQHP/}/leHLZ(Q) < Cpe w1 +Ce|B? Wi . (4.10)

w2 w3

H, H,

(5.11) To handle the second term on the right hand side of (4.7), we observe that since
(i, w1, ws] € Hy, then in particular
/ w1 dQ=0.
Q

In consequence, one has wellposedness of the following boundary value problem (see [44, The-
orem 2.4 and Remark 2.5]):

—AY+Vqg=0 in O
div =0 in O
W) (4.11)
Yls =0 on S
TMQ = (¢1a¢27¢3)|92 (0,0,0.)1) on 1,
with the estimate
[Vl 0 + lallzz0) < Cllwtll iz (4.12)

(implicitly, we are also using Poincaré inequality).

With this solution variable 1 of (4.11) in hand, we now address the second term on the right
hand side of (4.7). Since the normal vector v equals (0,0,1) on Q (and as the fluid variable u
is divergence free), we have

o 0
<7T|Q7WI>Q:_ 57 + Trlﬂl/) 0
w1 w1

L2(2) L2(2) (4.13)

__(9m
o (3V7w) L2(90) * (ot ¥)ragao)

after invoking the boundary conditions in (4.11).
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The use of Green’s Identities and the Stokes system in (4.11) then gives

ou
(e wi)o = —(5,w)mw) + (7lov %) 12 o)
= _(A'u’w)Lz(O) - (Vn, Vz/))L%O) +(Vm, ¢)L2(0)
= _7’6 (uv’lp)LQ(O) - (V’LL, vw)Lz(o) + (’UJ*; 7/1)L2(O) .

Estimating this right hand side by means of Poincaré Inequality, we then have for |G| > 1,

|(lo, wi)a| < C1BI VY L20) (IVullLz o) + u*llL2 (o)) ; (4.14)
and subsequently refining this inequality by means of (4.5), (4.12) and (4.6), we establish
1/2
W %
(7o, w)a] < ClBllwillgiz@) | |Re | | wi |, ] w + e o) | <
w}‘ w2 H,
1/2
I p
<C | |Re wi || w + |t ll 2 ()
w3 wa H,
X 1/2
It p
Re | | wi |,| w1 + ez | =
w3 wWo H,
1/2
w I w I
=C Re LUT y | W1 + |Re UJT y | w1 ||M*HL2((/))+
w3 wa H, w3 wa H,
1/2
u*
+|Re wi |, | wr lwillzz) + lwillzz@ 1 2 o)
w3 wa H,

Multiple applications of the inequality |ab| < ea? + C.b? yield now

2 . 2
It It
}(W\Q,wl)Q’ <e w1 + C. wi . (4.15)
wo H, w3 H,

(8.ii1) Tt remains to handle the third term on the right hand side of (4.7). By way of estimate
(4.9) we have readily for |5] > 1

|(Ppws + iﬁPpwi‘,wl)Lz(Q)] = (w3 + iﬁwi‘,wl)Lz(m + p(Viws + ifwi], le)m(m}

<G, |8l valHLQ(Q)(vaﬂ|L2(Q) + ||V‘*’§||L2(Q))

) R (4.16)
Iz H
<2€|l| wi + C |8 wi
w2 H, w3 H,
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Applying now (4.10), (4.15), and (4.16) to the right hand side of (4.7), and using the fact
that wq satisfies hinged boundary conditions, we then have

”Ale%?(Q) = (A%Jl,wl)

L2(Q)
2 . 2
K ) K (4.17)
<e(C,+3) wq + C|f| wy .
Wo H, w3 H,

Step 4. (Control of the mechanical velocity) Via the resolvent relation wy = ifw; — wi we have
w2l 1) < Bwillar @) + lwillar @) < ClIBVwilL2 ) + [lwillar @) »

after again using Poincaré Inequality. Applying (4.9) once more, we attain

2 2

*

p "
lwall3ri (@) < €C|| | wi +C B ||| wi . (4.18)

wa w5

H, H,

To finish the proof of Theorem 1.5, we collect (4.5), (4.17) and (4.18). This gives the
following conclusion: the solution of the resolvent equation satisfies, for || > 1, the estimate

2 2 . 2
1 [ MR
w1 <eC w1 + C. || wi ,
*
w2 H, w2 H, w2 H,

which gives the estimate (4.2), for € > 0 small enough. This concludes the proof of Theorem 1.5.
O
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