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The interest in the interplay between chirality and magnetism dates back to 

Pasteur,1 but intense research is still devoted to it,2 being relevant for a wide class of 

phenomena that range from skyrmions3-5 to magnetochiral conductance.6 

Magnetism and chirality are directly connected in the interaction between matter 

and electromagnetic radiation through the magneto-chiral dichroism and 

birefringence,7-10 which was observed only recently by Rikken & Raupach11  in 

luminescence spectra and successively using X-ray radiation.12 Magneto-chiral 

dischroism (MD), a non-reciprocal, or directional, effect on the absorption of 

unpolarized light by a magnetized chiral systems, is a fascinating phenomenon that 

has been suggested to be at the origin of homochirality of life on the earth,13 as an 

alternative to parity violating14 electroweak nuclear interactions. It is generally a 

very weak effect, and only a few  examples are known with limited information on 

the factors that originate the phenomenon.15-19  Here we report a thorough X-ray 

spectroscopic investigation of the magnetochiral effect detected at the K-edge of 

3d-metals in two isostructural molecular helicoidal chains comprising either 

anisotropic Cobalt(II) or isotropic Manganese(II) ions. A strong magnetochiral 

dichroism was observed in the CoII chain system, suggesting that a key role is 

played by the orbital contribution to the magnetism, which is also responsible of 

the non-collinear spin structure and magnetic bistability of this system. 

The interaction between light and matter is a powerful tool to investigate the 

simultaneous breaking of spatial symmetry, i.e. the lack of inversion symmetry, and of 

https://www.nature.com/nphys
http://www.nature.com/doifinder/10.1038/nphys3152


Available as Nature Physics 11 (2015) 69–74 at: http://www.nature.com/doifinder/10.1038/nphys3152  

2 

 

the time reversal symmetry, as in the case of a magnetized non-centrosymmetric  

medium. These symmetry conditions are satisfied in magneto-electric media and 

multiferroics, but they can also be observed in molecular paramagnetic and diamagnetic 

systems in presence of an external magnetic field.  

The systems investigated here can be considered intermediate between these two 

classes. They consist of isostructural one-dimensional (1D) molecular chains of formula 

[M(hfac)2NITPhOMe]∞, where bipositive metal ions (M=Mn2+ and Co2+) are shielded 

by ancillary ligands (hfac=hexafluoroacetylacetonato) and bridged to form a polymeric 

chain by stable nitronyl-nitroxide (NIT) organic radicals (NITPhOMe = 2-(4-meth-

oxyphenyl)-4,4,5,5-tetramethylimidazoline-l-oxy1,3-oxide) carrying a delocalized 

unpaired electron. The [M-NIT]∞ helical structure in the crystalline phase is generated 

by the three-fold screw axis (see Figure 1). Despite the absence of chiral constituents 

the compounds form enantiopure crystals, crystallising either in the chiral P31 or P32 

space groups.20,21 The compounds are optically active and exhibit a significant second 

harmonic generation efficiency.22 The magnetism of both compounds is governed by the 

strong intra-chain antiferromagnetic exchange interaction between the paramagnetic 

metal ions and the spin S=1/2 of the organic radicals, with exchange constant, J =235K 

and 495 K for the Co23 and Mn20 derivative respectively. The exchange Hamiltonian for 

a chain of N spins written as 𝐻𝑒𝑥 = 𝐽 ∑ 𝑠2𝑖−1𝑆2𝑖
𝑁/2
𝑖=1 + 𝑠2𝑖+1𝑆2𝑖 , where the small s on odd sites 

represents the radical spin while the capital S on even sites either the Co or Mn spin. 

However, a completely different behaviour is observed for the two metal ions. In the 

case of Mn2+, Heisenberg 1D ferrimagnetic behaviour is observed due to the lack of 

orbital contribution for this d5 ion, with strong long range correlations and 3D ordering 

below T= 6.0 K induced by the weak interchain dipolar interactions. On the contrary, 

high spin Co2+ ions in octahedral environment have a significant orbital moment 
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resulting in a strong magnetic anisotropy with the easy axis of magnetization of each ion 

forming an angle of ca 50° from the helix axis (Figure 1a). Interestingly the Cobalt 

derivative was the first system exhibiting slowing down of the magnetization dynamics 

in the paramagnetic phase, as predicted by Glauber for the 1D Ising model,24 with an 

activation barrier of about 170 K for the reversal of the magnetization and  magnetic  

hysteresis in the absence of long range order observed below 5 K.21 Finite size effects 

with collective reversal of spin segments25 and an unprecedented mechanism to control 

magnetization dynamics through  light-induced domain-wall kickoff has also been 

recently observed in this fascinating material.23 

 

Figure 1. Structures of the molecular magnetic helices and experimental set-up.  View of 

the simplified structure of the [M-NIT]∞  molecular helices containing Co2+ (a) and Mn2+(b) 

ions bridged by organic nitronyl-nitroxide radicals, with the radical unit highlighted by the red 

circle. The metal ions are highlighted as large spheres. The ancillary hfac ligands and the radical 

backbone are in grey, while the conjugated bonds carrying the magnetic exchange interaction 
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are highlighted in yellow, with the radical oxygen atoms in red and nitrogen ones in blue.  Some 

group of atoms, i.e. CF3, CH3, and O-CH3, have been omitted for the sake of clarity. The helices 

develop along the crystallographic c axis of the P31/P32 space groups. The green arrows 

represent the orientation of the magnetic moments when the magnetic field is applied parallel to 

the c axis. c) Schematic side view of the geometry of the experiment where needle-like single 

crystals were mounted on a copper sample holder to form an angle of 15° between the chain 

direction and the propagation vector, 𝑘⃗ , of the X-rays, which is collinear with the applied 

magnetic field. d) Photography of the sample mounting view from above, with a ruler for 

reference.  

To investigate the magnetochiral dichroism of these 1D molecular crystals hard 

X-ray radiation was used to get element-specific information. The excellent stability of 

the ID12 beamline of ESRF resulted to be mandatory to investigate single crystals of 

[Mn-NIT]∞ and [Co-NIT]∞ chains with small dimensions (0.30.38 mm).  X-ray 

absorption spectra were measured at the Co and Mn K-edges, i.e transitions promoting 

electrons from the 1s core level occurring around 6.5 keV and 7.7 keV, respectively, 

using total X-ray fluorescence yield detection mode (see methods for details). 

By recording the absorption spectra with opposite + (circular left) and - (circular 

right) polarizations and with a magnetic field  applied either parallel or antiparallel to 

the X-ray wavevector, B, we could obtain the four relevant quantities:  

XANES = 1/4{[ µ (-,B+) + µ (+,B+) ] + [µ (-,B-) + µ (+,B-)]}      (1) 

XNCD = 1/2{[ µ (-,B+) - µ (+,B+)] + [µ (-,B-) - µ (+,B-)] }          (2) 

XMCD = 1/2{[ µ (-,B+) - µ (+,B+)] - [µ (-,B-) - µ (+,B-)]}           (3) 

XMD = {[ µ (-,B+) + µ (+,B+)] - [µ (-,B-) + µ (+,B-)]}               (4) 

where µ(,B) stays for the absorption measured for the indicated polarization and sign 

of the magnetic field. XANES (X-ray Absorption Near Edge Structure) represents the 

isotropic absorption spectrum; XN(M)CD stays X-ray natural (magnetic) circular 

dichroism signals and are defined as the difference in absorption spectra for the two 

circular polarizations. The XNCD signal is independent of the applied magnetic field, 

whereas XMCD changes its sign when the direction of applied magnetic field is 
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reversed. Magnetochiral effect manifests as changes in absorption for two directions of 

of magnetic field and as such does not require polarized light. In order to be able to 

disentangle the XMχD from other dichroisms we sum up the spectra recorded with 

right and left circularly polarized X-rays. The spectra accumulation was performed 

changing field polarity and light helicity in a cyclic way to minimize eventual drift 

effects in the evaluation of the dichroic quantities. No detectable radiation damage was 

observed for all investigated crystals. 

First, room temperature XNCD spectra were recorded on several crystals to 

identify two enantiomeric crystals of each [M-NIT]∞ chain; then selected crystals were 

transferred to an experimental station equipped with a 17 Tesla superconducting magnet 

and constant flow Helium cryostat. These crystals were mounted on the cold finger of 

the cryostat and oriented with the crystallographic c (helix) axis forming an angle of 15° 

with the vector of propagation of the light k , the latter being parallel to the applied 

magnetic field B  (Figure 1c-d). A field of 3 T was employed at T=5 K to reach 

magnetic saturation. In these conditions neither the ferromagnetic order of the Mn chain 

nor the slow relaxation of the Co chain play any significant role. 

Before describing the results we briefly recall here some fundamental differences 

in the interaction between matter and light when moving from UV-visible to hard X-ray 

radiation.  Being atomic core states involved in X-ray promoted transitions, the long 

wavelength approximation is still valid despite the high energy. Thus the interaction can 

be expressed in the usual multipolar expansion:  

 

int 1 1 2E M E= + +H
       

(5)  

where E1 stays for the interaction between the electric dipole and the electric field of 

the electromagnetic radiation, M1 for the magnetic dipole – magnetic field interaction, 

and E2 for the electric quadrupole – electric field gradient interaction. Differently from 

UV-Vis, in X-ray spectroscopy, M1 interaction is negligibly small, involving atomic 
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states with different principal quantum number, while E2 becomes relevant, given its 

linear dependence with the energy of the transitions. 

As the absorption cross section is proportional to the square of the transition matrix 

element  
2

int| |f i H  pure electric dipolar (E1E1), magnetic dipolar (M1M1) and 

electric quadrupolar (E2E2) contributions and two interference terms (E1M1) and 

(E1E2) must be considered. The latter is a traceless rank-2 tensor and, in contrast to 

pseudoscalar E1M1 term, averages to zero in randomly oriented samples. In X-ray 

spectroscopy it is thus necessary to work with a single crystal or to brake artificially the 

orientational isotropy of space, for example by dissolving a chiral molecule in an 

aligned liquid crystal.26  

This drawback, compared to visible-UV experiments, is fully compensated by the 

fact that high optical quality and transparency of the crystals is not required. Moreover 

birefringence is very small, particularly at the high energies employed here. The greatest 

advantage of X-ray spectroscopy is, however, its element selectivity.  

The different dichroic contributions to X-ray absorption and their symmetry 

properties are summarized in Table 1. Note that time reversal symmetry can be broken 

either by the spontaneous magnetic ordering in the sample or by the application of an 

external magnetic field.  

 

  Parity 
Time 

Reversal 

XNCD E1M1+E1E2 - + 

XMCD (E1E1+E2E2)M + - 

XMD (E1M1+E1E2)M - - 

https://www.nature.com/nphys
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Table 1. Different dichroic contributions to the radiation-matter interaction. The involved 

mixed terms of the radiation-matter interaction and their parity behaviour is listed for each type 

of dichroism. M stays for the sample magnetization. For the sake of completeness we recall 

that other dichroisms can be obtained with linearly polarized light though they are beyond the 

scope of this article. They are: X-ray Linear dichroism, X-ray Magnetic Linear dichroism, 

which are both parity and time-reversal even, and non-reciprocal linear dichroism, which is 

parity odd and time-reversal odd.  

 

In Figure 2 the normalized absorption (XANES) spectrum and corresponding  

dichroic contributions, obtained according to eq. 2-4, are shown for two enantiomeric 

[Co-NIT]∞ crystals. The dichroic signals are normalized to the intensity of the XANES 

signal for transition to the continuum, i.e. the absorption signal detected at the energy 

well above the absorption edge taken as unity. The results of similar experiments for the 

Mn derivatives are reported in Figure 3.  

Figure 2 and 3 unambiguously show that the three detected dichroic signals, when 

compared for enantiomeric crystals, are in agreement with the symmetry properties 

reported in Table 1. Non zero XNCD and XMD  signals are indeed compatible with 

the crystal symmetry. In fact the P31/P32 space groups are among the few ones 

exhibiting all magneto-electric effects, including the existence of toroidal (or anapole) 

moments.27,28 As magnetochiral dichroism is in general a weak phenomenon, whose 

intensity is evaluated as the difference of much larger quantities, the comparison of the 

three dichroic signals is mandatory. Given the fact that every dichroic signal reverses its 

sign according to parity and time-reversal symmetries of optical transition involved (see 

Table 1), the presence of artefacts can be safely excluded.  

Beyond parity effects, also the spectral features of the dichroic signals provide 

useful information. Natural circular dichroism is zero for any pure transitions  and could 

be observed in the X-ray range only via an interference E1E2 term. This contribution is 
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non-zero only if the system has no inversion symmetry. Absence of inversion symmetry 

allows the atomic orbitals of different parity (e.g., p- and d-) to hybridize. In the case of 

absorption at the K-edge of transition metals, this corresponds to 3d-4p hybridization 

and the XNCD signal is in fact observed at the pre-edge, the feature at the low energy 

side of the absorption edge, of both [Co-NIT]∞ and [Mn-NIT]∞ helices, ca. 7710 eV and  

6540 eV, respectively. Interestingly XNCD is significantly different from zero on a 

wide energy range, ca. 50 eV, for both [M-NIT]∞ systems. This implies a significant 

hybridization of extended states formed by empty orbitals (e.g. 4p-4d, 4d-5p, etc.) that 

is compatible with the low symmetry of the metal site induced by the ligands. Similar 

wide-energy XNCD features were also observed in NdIII 29  and NiII 30 compounds, in 

which the chirality is induced by the structural arrangement of non-chiral moieties, 

whereas the XMCD signal for a CoII complex with chiral coordination is present only in 

the pre-edge region where the 3d orbitals contribute predominantly.31  

 

 

Figure 2. X-ray absorption and dichroic spectra of [Co-NIT]∞ helix.   X-ray near edge 

absorption spectra at the K-edge of Co measured at B=3T and T=5 K. The dichroic 

https://www.nature.com/nphys
http://www.nature.com/doifinder/10.1038/nphys3152


Available as Nature Physics 11 (2015) 69–74 at: http://www.nature.com/doifinder/10.1038/nphys3152  

9 

 

contributions estimated according to equations (2-4), and expressed as percentage of the 

XANES absorption intensity at the continuum (7780 eV), are reported for two opposite 

enantiomers, the second one in pale grey for clarity. The dotted black lines correspond to the 

calculated XANES and XNCD for the P31 enantiomer, whose helicity is shown in the inset, 

reporting a schematic view of the helix of non-collinear spins..  

 

Figure 3. X-ray absorption and dichroic spectra of [Mn-NIT]∞ helix.   X-ray near edge 

absorption spectra at the K-edge of Mn measured at B=3T and T=5 K. The dichroic 

contributions estimated according to equations (2-4), and expressed as percentage of the 

XANES absorption intensity at the continuum (6590 eV), are reported for two opposite 

enantiomers, the second one in pale grey for clarity. The black lines correspond to the calculated 

XANES and XNCD for the P31 enantiomer, whose helicity is shown in the inset reporting a 

schematic view of the helix of collinear spins.   

 

Both XANES and XNCD were reproduced by calculations performed using the 

FDMNES (Finite Difference Method Near-Edge Structure) package.32 The electronic 

structure around Co and Mn atoms were calculated using the multiple scattering theory 

https://www.nature.com/nphys
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within the muffin-tin approximation, based on a mono-electronic approach. Calculations 

were performed for clusters built from crystallographic data for P31 space group 

including hydrogen atoms. Views of the asymmetric units generating the chain structure 

are provided in Supplementary Figure 1 together with a list of selected bond distances 

and angles (Supplementary Table 1), Natural circular dichroism was calculated 

considering E1E2 transitions only (see methods for details). The spectral features of 

both derivatives are  reproduced with a reasonable agreement to assign unambiguously 

the P31 space group, whose chirality is shown in the inset of Fig. 2 and 3, to the crystals 

having their spectra drawn in colour in the corresponding figure. XNCD intensity at the 

pre-edge is about twice larger for the [Mn-NIT]∞ helix, in agreement with the larger 

number of holes in the 3d orbitals and the larger calculated density-of-states (DOS) of 

the d-orbitals at the Fermi level, reported as supplementary Figure 2. 

Concerning XMCD, for which interference E1E2 contributions are forbidden by 

symmetry consideration, the dichroic signal is due to both the dipolar E1E1 (1s -> 4p) 

transitions at the rising edge and the quadrupolar E2E2 (1s->3d) transitions at the pre-

edge part of the spectrum, where the partially occupied 3d orbitals are involved. Given 

the fact that the initial 1s state has no spin-orbit coupling, the XMCD at the K-edge is 

probing only orbital magnetization of the final states. For a d5 ion (Mn2+) K-edge 

XMCD at the pre-edge is thus expected to be much weaker than for the Co derivative. 

Comparing Figure  2 and 3 it is well evident that XMCD at the pre-edge is significantly 

reduced passing from Co to Mn, despite that the magnetization is higher in the latter. On 

the contrary, XMCD at the rising edge, which is originated by the orbital polarization of 

the 4p states, is fairly similar for the Co and Mn helices, as expected (see also the 

calculated p-type DOS in Supplementary Figure 2). Finally, passing to X-ray 

magnetochiral dichroism, we notice that it originates from the same interference 

interaction terms as XNCD, though combined with the orbital magnetization of the final 

states of the absorbing atom. Here a significant difference is observed between the two 

https://www.nature.com/nphys
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systems. [Co-NIT]∞ helices exhibit a large XMD signal whose intensity exceeds that 

of the XMCD signal. To allow a better comparison with data extracted from UV-visible 

spectroscopy the dichroic contributions are plotted as their correspondent Kuhn 

asymmetry, i.e.  g=µ/µ, where µ is the absorption. The results are shown in the inset of 

Figure 4 and reveals that the magnetochiral effect exceeds 3% of the corresponding 

absorptions, thus a remarkable quantity compared to previous reported values, for 

instance two orders of magnitude stronger than what obtained from preliminary 

measurements at the K edge on a CrIII-NiII molecular ferromagnet30 or to that measured 

in adsorption experiments in the UV-vis range on a ferromagnetically ordered CrIII-MnII 

molecular compound.17    

As far as the spectral shape is concerned XMD signal is absolutely different 

from the other dichroic contributions, showing a well-defined narrow peak around 7710 

eV, i. e. at the pre-edge. This is nicely in agreement with qualitative expectations, being 

a quantitative analysis of this effect beyond currently available theoretical models. In 

fact, the intensity of the magneto-chiral contribution depends on the interference E1E2 

term but also on the orbital magnetism of the final state that is significantly different 

from zero only where 4p orbitals are admixed with partially filled 3d orbitals, i.e. at the 

pre-edge, where the calculated DOS (see Supplementary Figure 2) reveals significant 

contribution of both type of orbitals. A dichroic signal extending on a wider spectral 

region is instead observed for  XNCD due to hybridized extended empty orbitals like for 

instance 4p-4d, 4d-5p etc. .     

Passing to the [Mn-NIT]∞ helix, Figure 3 reveals a dramatic decrease of the 

XMD signal, which becomes hardly detectable. The intensity of XMD is often 

assumed in the literature to be proportional to the product of natural and magnetic 

dichroism16 but a rigorous general treatment has not yet been developed.  Our element 

selective experiments clearly show the limited validity of this assumption in the hard X-

ray range.  
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In order to get a deeper understanding of this phenomenon, we have also checked 

how XMCD and XMD depends on the extent of magnetization of the absorbing atoms 

by performing the experiment on the [Co-NIT]∞ helix as a function of applied magnetic 

fields in the range 0 - 3 T at T=8 K, thus above the freezing temperature of the 

magnetization of this slow relaxing material. The field dependence of the maximum 

signal, measured at 7713.2 and 7711.5 eV for XMCD and XMD , respectively, is 

reported in Figure 4. The experiment unambiguously reveals that the two dichroic 

contributions have exactly the same field dependence, suggesting that the magnetization 

of the absorbing atoms enters directly in the magneto-chiral effect. 

 

 

Figure 4. Field dependence of magnetic and magneto-chiral dichroism of the [Co-NIT]∞ 

helix.  XMD (red dots) and XMCD (blue dots) measured at the photon energy of their 

maximum intensity (see inset) are reported as a function of the magnetic field applied at 15° 

from the c crystallographic axis at T=8 K. The two signals rescale on the same curve. In the 

inset the photon energy dependence of the intensity of the dichroic contributions  (XNCD in 

green, XMCD in blue, XMD in red) is reported as the asymmetric ratio g=µ/µ, i.e. 
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normalizing the signal to the absorption intensity at the same photon energy, which is assumed 

to be zero before the K-edge. The arrows indicate the photon energy used to record the field 

dependence of the corresponding dichroic signals.  

It is interesting to frame our results in the current knowledge of this relatively 

recent and still unexplored magneto-optical effect. Here all chiral contributions to X-ray 

absorption spectra are simultaneously detected and their lineshape are analyzed. 

Moreover we have found that magnetochiral dichroism at the Co K-edge is as large as 

the other dichroic contributions. A very large XMD, g1% at room temperature, has 

been recently reported for a chiral paramagnetic molecule comprising Terbium(III) and 

Nickel(II) atoms.19 Surprisingly, the effect was detected only at the L3-edge of Tb, 

despite that no symmetry reasons should hamper its observation at the L2-edge. This 

clearly shows how elusive the detection of the magnetochiral effect can be and 

underlines the relevance of a complete characterization as the one presented here. 

Additional information can be extracted by the unprecedented possibility to 

compare the magnetochiral behaviour of two isostructural 1D systems showing very 

different magnetic properties. First of all it is well evident that the asymmetry factor of 

the magnetochiral effect in this energy range is not simply the product of the natural and 

magnetic ones, because in this approximation a large signal should be observed over 

wide energy range and much stronger XMD should be observed for [Mn-NIT]∞.  In 

addition the XMD signal is only significant for transitions involving 3d partially filled 

orbitals and only in the presence of a strong orbital contribution, as in the case of a d7 

ion in octahedral environment, which is responsible of the non-collinear spin 

arrangement along the helix of the [Co-NIT]∞ helix.  

It would be interesting to investigate if the three-fold screw axis generating the 

molecular [M-NIT]∞ helices plays a significant role in the large magnetochiral 

dichroism observed here. Other chains comprising the same building blocks and 

differing only for the organic group on the radical aliphatic instead of aromatic (see 

https://www.nature.com/nphys
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Supplementary Figure 4) have been structurally and magnetically characterized but 

unfortunately all of them crystallize in centrosymmetric space groups.33 However, 

thanks to the element selectivity of the X-ray absorption, it has been possible to 

compute the XNCD of acentric mixed-metal structures artificially segregating Co and 

Mn on sites of opposite  parity compared to the inversion centre (see Supplementary 

Figure 5). The results, obtained using the previously described computational approach, 

are reported reveal a significant decrease to ca. 1/3 of the XNCD calculated signal when 

passing from the P31/P32 to the P21 crystal space group, as shown in Supplementary 

Figure 3.  As the trigonal space group of the investigated helices is induced by the -

stacking interactions between the aromatic substituent on the radical and the ligand on 

the metal,33 this observation suggests a route to enhance the magnetochiral effect in 

molecular materials through a rational chemical design.  

In conclusion, the investigated magnetic molecular helices results to be a model 

system to study in detail the magnetochiral effect. The symmetry of the material is 

compatible with  a large variety of magneto-electric effects,34 still poorly investigated in 

molecular materials. According to sum rules35 the X-ray magnetochiral dichroism could 

be associated with the presence of atomic anapole orbital moment, L, originated from 

toroidal orbital currents centred on the Cobalt atoms. These orbital currents originate 

from the hybridized 3d-4p states allowed by the absence of inversion symmetry of the 

atom and therefore they are much stronger that what one would expect for those induced 

by the parity breaking due to the electroweak interaction. It is important to underline 

that this atomic anapole orbital moment should not be confused with the macroscopic 

toroidal moment that could originate from the peculiar non collinear orientation of the 

magnetic moments along the three-fold helix, which is compatible with Dzyaloshinskii-

Moriya interactions. To investigate this additional contribution a less local probe, i.e. 

UV-visible light, is however necessary.  Last but not least we recall that the [Co-NIT]∞ 

molecular helix presents the additional feature of magnetic bistability in the 
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paramagnetic phase. This systems seems a good candidate for the detection of the 

“inverse” magnetochiral effect, i.e. the induction of magnetic polarization in a chiral 

system by irradiation with non-polarized light. This effect, although theoretically 

predicted,36 is the one still not evidenced by experiments in the scenario of light-matter 

interaction. Freezing at low temperature the light induced magnetization of this bistable 

molecular material should favour its detection, though very weak. 

 

 

METHODS 

 

Crystals of [Mn(hfac)2NIT]∞ and [Co(hfac)2NIT]∞ were prepared as previously 

reported.33,33 Single crystals with needle shape of largest dimension of ca. 10×0.5×0.5 

mm3 were selected and checked for absence of twinning with a Oxford Diffraction 

single crystal diffractometer.  

The X-ray absorption experiments were carried out at the ID12 beamline of the 

European Synchrotron Radiation Facility (ESRF), which is dedicated to polarization 

dependent X-ray spectroscopy in the photon energy range from 2 to15 keV.37 For the 

experiments at the Mn and Co K-edge the source was the helical undulator APPLE-II 

which provides a high flux of either right or left circularly polarized x-rays photons with 

polarization rate in excess of 0.95. The helicity could be changed in a time less than 5 

seconds. X-rays were monochromatized by the Si <111> double crystal monochromator 

ensuring the energy resolution better than the intrinsic broadening due to the finite core-

hole lifetime. The samples were mounted on a cold finger of a constant flow Helium 

cryostat inserted in a bore of superconducting solenoid producing a magnetic field up to 

17 Tesla. The sweep rate to reverse the direction of magnetic field rate was 2T/min. All 

spectra were recorded in total X-ray fluorescence detection mode in backscattering 

geometry using Si photodiodes. No dichroic contributions to the fluorescence is 

expected in this energy range. Either the helicity of the incoming X-rays or the direction 

of magnetic field were changed after each consecutive energy scans to minimize any 

eventual artefacts in the measurements.  
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The XANES and XNCD spectra using FDMNES code.32 Calculations were 

performed for clusters built from crystallographic data for P31 space group including 

hydrogen atoms. Crystallographic data are available through the Cambridge Structural 

Database (http://www.ccdc.cam.ac.uk/Community/Requestastructure/Pages/ 

Requestastructure.aspx)  using  the doi codes 10.1021/ic00020a029 and 

10.1039/B004244G for Mn and Co derivatives, respectively. Natural circular dichroism 

was calculated considering E1E2 transitions only. Self-consistent calculations including 

relativistic effects were also performed and similar results were obtained. Clusters of 

radius of 14 Å were employed to reproduce the main features in the XNCD, as a further 

increase of the cluster size did not lead to any improvement. The same procedure was 

repeated for an aliphatic radical analogue (space group P21/c, doi n°  

10.1021/ic00283a018) by replacing the Mn atoms on the screw axis of opposite 

chirality, generated by the inversion centre, with Co atoms. The structural similarity 

between the Mn and Co derivatives and their complete miscibility to form mixed 

species suggest that no significant structural stress is induced in this artificial model.  

The spectra were convoluted to a Lorentzian, with an energy dependent width to take 

into account the core-hole lifetime, with a Gaussian line to account for the energy 

resolution of monochromator. The calculated absorption cross sections were normalized 

to the same edge jump to the continuum as in the experiment.  

  

‘Supplementary Information accompanies the paper on www.nature.com/nature.’ 
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