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Mathematical models for fluids with pressure-dependent

viscosity flowing in porous media

Lorenzo Fusia,∗, Angiolo Farinaa, Fabio Rossoa

aDipartimento di Matematica e Informatica Ulisse Dini
Viale Morgagni 67/a - 50134 Firenze

Abstract

In this paper we study three filtration problems through porous media, as-
suming that the viscosity of the fluid depends on pressure. After showing that
in this case Darcy’s law is “formally” preserved (meaning that the formal re-
lation remains unchanged except for viscosity that now depends on pressure),
we focus on the following problems: Green–Ampt infiltration through a dry
porous medium; the Dam problem; the Muskat problem. For each model
(free boundary problems) we obtain explicit solutions that allow to quantify
the detachment from the classical case, where with the word “classical” we
mean that viscosity is taken constant

Keywords: Filtration, Darcy’s Law, Pressure Dependent Viscosity,, Exact
Solutions

1. Introduction

Fluids with viscosity depending on pressure have recently drawn a lot of
attention from the scientific community. In the last decades a remarkable
amount of experimental literature has been produced to support the claim
that viscosity may vary with pressure (even if the fluid remains incompress-
ible), proving that in many cases it is imperative to take such a dependence
into account [8], [7], [3]. Of course many empirical models have been proposed
[5], many of which take also into account the dependence on temperature.
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Concerning the empirical formula adopted (see, e.g., [19]) we indicate the
linear law

µ(P ) = αP, or µ(P ) = µo(1 + αP ),

and the exponential (or Barus) law

µ = µoe
αP .

Some other possibilities can be found, for instance, in [10], [11].
The flow of a fluid through a porous medium is typically described by

means of the well known Darcy’s law, which gives a linear relation between
the discharge and the pressure gradient. Darcy’s law can be derived through
an homogenization procedure studying the Stokes flow at the micro-scale
and then upscaling the system to the macro-scale (see, for instance, [12] and
[4]). This derivation is well known when one deals with a viscous incom-
pressible/compressible fluid, and it has been recently studied for the case
of a fluid with pressure dependent viscosity [16]. We also refer the readers
to [17] for the description of general thermodynamic framework (based on
the criterion of maximal rate of entropy production) to obtain Darcy and
Brinkman models and their generalizations.

In this paper we briefly outline how Darcy’s law has to be modified in
the case of a pressure-dependent viscosity and apply such modified version
to some classical filtration problems. In particular, we begin by proving
that “formally” Darcy’s law remains the same, except for the fact that now
viscosity is a function of pressure, namely

q = − k

µ(P )
(∇P − f). (1)

In section 2 we concisely outline the derivation of (1), referring the readers
to the original paper [16]. The original part of this article can be found in
sections 3–5, where we use (1) to study how three classical models: Green
Ampt model (section 3); the Dam problem (section 4); the Muskat problem
(section 5). We will show that explicit solutions can be found and illustrate
the qualitative behavior of such solutions.

The use of (1) allows indeed to extend models that have been investigated
using the classical Darcy’s law to the case of pressure dependent viscosity.
Indeed, an interesting application has been described in [18] and in [15].
Special flows of fluid with pressure depend viscosity (even not strictly related
to filtration) have been recently studied in detail [20], [6].
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2. Darcy’s law for a fluid with pressure dependent viscosity

In this section we briefly recall how (1) can be obtained via homogeniza-
tion. We refer the reader to [16] for all the details. Let Ω = Ωs ∪ Ω` be the
periodic cell consisting of a solid and a liquid part and let us suppose that
the stress tensor in the fluid phase is given by T = −P I+2µ(P )D(u), where
u is the velocity field,

D(u) =
1

2

(
∇u +∇uT

)
, (2)

is the symmetric part of the velocity gradient ∇u, P is pressure and µ (vis-
cosity) is a smooth bounded function of P . Assuming incompressibility and
creeping flow with no-slip on the solid boundary Γs we write the governing
equations 

∇ · u = 0, in Ω`,

−∇P + µ∆u + 2µ
′
D[∇P ] = −f , in Ω`,

u = 0, on Γs,

(3)

where f represents the body force vector and where

(
2D[∇P ]

)
i

=
3∑
j=1

∂P

∂xj

(
∂ui
∂xj

+
∂uj
∂xi

)
.

Problem (3) is written for the macroscopic variable x . We introduce the
microscopic variable εy = x, and write the classical expansion [1]

u = εα
∞∑
k=0

εku(k)(x,y), P = εβ
∞∑
k=0

εkP (k)(x,y), (4)
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where u(k) and P (k) are Ω−periodic and α, β are parameters yielding physi-
cally meaningful solutions. Problem (3) can be reformulated as

ε∇x · u +∇y · u = 0, in Ω`,

−ε2∇xP − ε∇yP + µ[ε2∆xu + ε∆xyu + ∆yu]+

+2µ
′
{
ε2Dx[∇xP ] + ε(Dx[∇yP ] + Dy[∇xP ]) + Dy[∇yP ]

}
= −f , in Ω`,

u = 0, on Γs.
(5)

Now we plug (4) into (5) and consider the leading order (the smallest integer
values for α, β providing non-zero solutions are α = 2, β = 0)

∇y · u(0) = 0, in Ω`,

∇yP
(0) = 0, in Ω`,

−∇xP
(0) −∇yP

(1) + µ(0)∆yu
(0)+

2
(
µ(0)
)′{

Dy(u
(0)) [∇yP

(0)]︸ ︷︷ ︸
=0

}
= −f , in Ω`,

(6)

where µ(0) is µ(P (0)). We observe that P (0) = P (0)(x) so that, at the leading
order, the pressure does not depend on the microscopic coordinates. The
system (6) reduces to

∇y · u(0) = 0, in Ω`,

−∇xP
(0) −∇yP

(1) + µ(0)∆yu
(0) + f = 0, in Ω`,

(7)

which is “formally” equivalent to the the system obtained when deriving
Darcy’s law in the case of a Newtonian fluid [12]. We now give a weak
formulation of problem (6) and show how the modified Darcy’s law can be
derived. Let us consider the Hilbert space

H(Ω) =


w = (w1, w2.w3) : w ∈ H1(Ω`), w Ω− periodic

w = 0 on Γs, ∇y ·w = 0.

 ,
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endowed with the scalar product

< v,w >H(Ω)=

∫
Ω`

(
∇yv · ∇yw

)
dy =

∫
Ω`

3∑
i=1

(
∇yvi · ∇ywi

)
dy.

We multiply equation (7)2 by a test function w ∈ H(Ω) and integrate over
Ω` (
∇xP

(0) − f
)
·
∫

Ω`

wdy = µ(0)

∫
Ω`

w ·∆yu
(0)dy −

∫
Ω`

w · ∇yP
(1)dy. (8)

Using the divergence theorem, and recalling that w is periodic and that
w = 0 on Γs, equation (8) can be rewritten as(

f −∇xP
(0)
)
·
∫

Ω`

wdy = µ(0)

∫
Ω`

∇yw · ∇yu
(0)dy.

Therefore we may reformulate the problem in a variational form: find u(0) ∈
H(Ω) such that

µ(0) < u(0),w >H(Ω)=
(
f −∇xP

(0)
)
·
∫

Ω`

wdy, ∀ w ∈ H(Ω). (9)

One can show that this problem admits a unique solution using Lax-Milgram
lemma. Next, to derive Darcy’s law 1 we consider the auxiliary problems

∇y · ui = 0, in Ω`,

−∇ymi + ∆yui + ei = 0, in Ω`,

ui = 0 on Γs,

i = 1, 2, 3, (10)

where mi is a Ω-periodic function and where ei is the unit vector along yi.
The weak formulation of problem (10) is: find ui such that

< ui,w >= ei ·
∫

Ω`

w dy, ∀ w ∈ H(Ω), i = 1, 2, 3. (11)

The existence and uniqueness of a solution is once again guaranteed by Lax-
Milgram lemma. Now, let u(0) be the solution of problem (9) and let ui be
the solutions of problem (11). One can easily prove that

u(0) =
1

µ(0)

3∑
i=1

(
fi −

∂P (0)

∂xi

)
ui.
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Let us extend u(0) and ui to zero in the solid phase of Ω, define q =
1

|Ω|
∫

Ω`
u(0) dy, and

ki =
1

|Ω|

∫
Ω`

ki dy. (12)

Then, denoting with k the tensor with entries (κ)i,j = ki · ej we get (1),
namely

q = − k

µ(P )
(∇xP − f) ,

which is the “modified” Darcy’s law (1) for a fluid whose viscosity depends
on pressure.

3. Application to the Green-Ampt infiltration model

Figure 1: The Green Ampt model

As a first example we study how the use of relation (??) modifies the classical
Green-Ampt infiltration model [? ]. For the sake of simplicity we limit
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ourselves to consider the one dimensional setting depicted in Fig. 1, assuming
that a dry medium occupying the region z < 0 is penetrated by a fluid
supplied at the surface z = 0. We assume that the motion is driven by gravity
(i.e. f = −ρgk) and by a pressure difference applied between the injection
surface z = 0, and the wetting front z = s (t), namely ∆P = P |z=0−P |z=s =
Po − Ps, with Po > Ps > 0. We assume that the permeability tensor is
diagonal with constant entries κ and that the viscosity is a smooth function
of pressure. Supposing that everything depends only on the coordinate z,

the mass conservation gives
∂q

∂z
= 0, with

q(t) = − κ

µ(P )

(
∂P

∂z
+ ρg

)
, (13)

q being the discharge. Denoting by φ the porosity of the medium, we impose

that the wetting front velocity
·
s (t), coincides with the molecular velocity,

i.e. ṡφ = q. Hence the problem for the pressure becomes
∂P

∂z
= −

(
µ (P ) q

κ
+ ρg

)
, 0 < z < s (t) ,

P |z=0 = Po.

(14)

Integration entails

z =

∫ Po

P (z)

κ dy

qµ (P ) + ρgκ
.

If we now impose P |z=s = Ps, we get

s =

∫ Po

Ps

κ dy

ṡ φµ (P ) + ρgκ
, (15)

which, together with s(0) = 0 defines the nonlinear ODE for the wetting
front s(t) (which is actually a free boundary).

Remark 1. If we neglect gravity we get

d

dt

(
s2
)

=

∫ Po

Ps

κ dy

φ µ (P )
= const., ⇒ s(t) ∝ −

√
t.
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Remark 2. Assuming µ = const., we retrieve the classical Green-Ampt
model. Indeed integration of (15) entails

ṡ =
1

s

[
κ(Po − Ps)

φµ

]
− κρg

φµ
.

An interesting case is the one in which the dependence of viscosity on pressure
is exponential, namely Barus law µ = µoe

αP . In this case (15) becomes

s

κ
=

∫ Po

Ps

dy

ṡ φµo e
αP + ρgκ

,

whose integration yields

s ρg =

[
y − 1

α
ln |ṡ φµo eαP + ρgκ|

]Po

Ps

.

We find

|ṡ φµo eαPs + ρgκ| = |ṡ φµo eαPo + ρgκ|eαρgs−αPo+αPs ,

or equivalently

ṡ =

(
ρgκ

φµoe
αPs

) [
±eαρgseα(Ps−Po) − 1

1∓ eαρgs

]
. (16)

In (16) the “plus” or “minus” sign must be specified. We take the plus sign
in the denominator since it gives a solution with non singular ṡ(0). Hence,

setting σ = eα(Ps−Po) < 1, γ = ρα, and ω =
ρgκ

φµoe
αPs

, we have this Cauchy

problem 
ṡ = −ω

[
σeγs + 1

1 + eγs

]
,

s(0) = 0.

(17)

Integration of (17) yields

ωt = −s+
1

γ

(
1− 1

σ

)
ln

(
1 + σeγs

1 + σ

)
,
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which defines t as a function of s. For |s| � 1 (i.e. when the penetration
front is sufficiently close to z = 0) we may expand to get

s ≈ −σ + 1

2
ωt,

meaning that the free boundary initially grows linearly in t.

4. Application to the Dam problem

Figure 2: The Dam problem

In this section we use (1) to study the classical rectangular Dam problem
[2]. Referring to Fig. 2 we assume that a fluid with pressure dependent
viscosity is flown through a porous strip [0, xout] × [0,∞). The saturated
and unsaturated domains in the strip are separated by a sharp interface
Γ. Pressure is set to zero at the dry boundaries and it is assumed to be
hydrostatic on those parts of the boundary in touch with the fluid. The so-
called “phreatic” surface Γ is supposed of the form z = f(x). The discharge
q is assumed to be tangential on Γ and on z = 0. In this case all the variables
depend on x and z and the problem is bi-dimensional. We suppose that the
viscosity is of the form µ = µoe

αP (the linear case is simply obtained taking
the first order approximation).
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Remark 3. Assuming incompressible flow ∇ · q = 0, we notice that the
modified Darcy’s law implies that the equation for P is no longer the Laplace
equation (pressure is no longer an harmonic function).

To study the Dam problem we introduce the function

π = −
∫ P

P ∗

κ

µ(y)
dy < 0,

dπ

dP
= − κ

µ(P )
< 0,

where P ∗ is a reference pressure. Of course the function π is invertible and
we have

q = ∇π − κρg

µ
ez,

so that

∆π = ρg

(
1

µ

dµ

dP

)
∂π

∂z
= ρg

[
d

dy
lnµ

]∣∣∣∣
y=P (π)

∂π

∂z
.

In particular, since µ = µoe
αP , we have

π =
κ

µoα

[
e−αP − 1

]
,

and

∆π = ρgα
∂π

∂z
. (18)

Remark 4. If we take µ = µo(1 + αP ) and P ∗ = 0 then

1 + αP = exp
(
−αµoπ

κ

)
,

and

∆π =

(
ρgκ

µo

)
· ∂
∂z

[
exp

(παµo
κ

)]
(19)

We now write the problem for the variable π. We rescale the variables as

P̃α−1 = P,

(
κ

αµo

)
π̃ = π, q̃

(
κρg

µo

)
= q,

1

ρgα
z̃ = z,

1

ρgα
x̃ = x.

10



Neglecting the tildes, the problem is the following (see [2] for all the details)

∆π =
∂π

∂z
, x ∈ (0, xout), 0 < z < f(x),

π(0, z) = e−(zin−z) − 1, z ∈ [0, zin],

π(xout, z) = e−(zout−z) − 1, z ∈ [0, zout],

π(xout, z) = 0, z ∈ [zout, f(xout)],

∂π

∂z
= π + 1, z = 0, x ∈ [0, xout],

π(x, f(x)) = 0, x ∈ [0, xout],

q · n|Γ = [∇π − ez] · [−f
′
, 1] = 0, on Γ.

(20)

Remark 5. Notice that condition (20)5 comes from taking q·k = 0 on z = 0.

Remark 6. Existence and uniqueness of problem (20) can be proved following
[2] with minor changes.

We are interested in estimating the overall discharge

Q =

∫ f(x)

0

q · idz,

when µ = µ (P ). To this aim we take an interval [x1, x2] ⊂ [0, xout] and
consider the region E = {(x, z) : x ∈ (x1, x2), z ∈ (0, f(x))}. We have∫

E

∇ · q dS =

∫
∂E

q · n dσ = 0,

so that
∫ f(x1)

0
q · ex dz =

∫ f(x2)

0
q · ex dz. Therefore

Qxout =

∫ xout

0

dξ

(∫ f(ξ)

0

∂π

∂x
dz

)
= I1 + I2 + I3

11



where

I1 =

∫ zin

f(xout)

dξ

(∫ f−1(ξ)

0

∂π

∂x
dx

)
,

I2 =

∫ f(xout)

zout

dξ

(∫ xout

0

∂π

∂x
dx

)
,

I3 =

∫ zout

0

dξ

(∫ xout

0

∂π

∂x
dx

)
.

Recalling the boundary conditions of (20) we get

Qxout =

∫ zin

0

[
1− e−(zin−z)

]
dz −

∫ zout

0

[
1− e−(zout−z)

]
dz,

which yields the nondimensional discharge

Qxout = (zin − zout) + e−zin − e−zout .

In dimensional variables the above becomes

Qµoαxout
κ

= (zin − zout) + e−ρgαzin − e−ρgαzout .

We notice that expanding around α ≈ 0 and taking the leading order we get

Qµoαxout
κ

=
z2
in − z2

out

2
,

which is the expression for the discharge when viscosity is constant [2].

5. The Muskat problem

In this section we consider the extension of the so-called Muskat problem,
that is the one of two immiscible fluids flowing in a porous medium where one
is displacing the other [14]. In particular, we consider the one-dimensional
problem for two fluids with pressure dependent viscosities. Referring to Fig.
3 we suppose that the regions occupied by the two fluids are Ω1 ∪ Ω2 where
Ω1 = [0, s(t)], Ω2 = [s(t), L] and where x = s(t) is the separating interface
which is not a known (free boundary). Assuming that the flow is driven

12



Figure 3: The Muskat problem

by a constant pressure difference ∆P = Po − PL > 0 applied at the lateral
boundaries x = 0, x = L we write

q1 = − κ

µ1(P )

∂P

∂x
, x ∈ Ω1,

∂q1

∂x
= 0, ⇒ q1 = q1(t),


q2 = − κ

µ2(P )

∂P

∂x
, x ∈ Ω2,

∂q2

∂x
= 0, ⇒ q2 = q2(t).

On the free boundary x = s(t) we impose the the continuity of pressure and
the continuity of flux

q1(t) = q2(t) = φṡ, P |s+ = P |s− = P ∗

where φ ∈ [0, 1] is, as usual, the medium porosity and P ∗ = P (s(t)) is
unknown. It is easy to check that

qi(t) = − ∂

∂x

∫ P

P ∗

κ

µi(y)
dy, i = 1, 2,

so that integration between x and s yields

φṡ(s− x) =

∫ P

P ∗

κ

µi(y)
dy, i = 1, 2.

Imposing the conditions for pressure on the lateral boundary we get

φṡs =

∫ Po

P ∗

κ

µ1(y)
dy, φṡ(s− L) =

∫ PL

P ∗

κ

µ2(y)
dy. (21)

13



Remark 7. If we suppose that µ1, µ2 are constant, then eliminating P ∗ from
(21) we get

ṡ[s(µ1 − µ2) + Lµ2] =
∆Pκ

φ
,

whose integration with the initial datum so ∈ (0, L) entails

s2 − s2
o

2
(µ1 − µ2) + Lµ2(s− so) =

∆Pκ

φ
t, (22)

which is the classical solution of the Muskat problem. Notice that, from (22),
we can obtain the time at which fluid 1 has completely displaced fluid 2,
namely

tL =
φ

2∆Pκ

[
µ2(L− so)2 + µ1(L2 − s2

o)
]
.

Let us now consider

µ1 = β1e
α1P , µ2 = β2e

α2P .

In this case integration of (21) yields

β1φṡs

κ
=

1

α1

[
e−α1P ∗ − e−α1Po

]
, (23)

β2φṡs

κ
=

1

α2

[
e−α2P ∗ − e−α2PL

]
, (24)

Eliminating P ∗ between (23) and (24) we get

α2

α1

ln

[
β1α1φṡs

κ
+ e−α1Po

]
= ln

[
β2α2φṡ(s− L)

κ
+ e−α2PL

]
,

which provides the nonlinear fully implicit ODE for s, namely
[
β1α1φṡs

κ
+ e−α1Po

]α2

−
[
β2α2φṡ(s− L)

κ
+ e−α2PL

]α1

= 0,

s(0) = so ∈ (0, L).

(25)

In Fig. 4 we have plotted the solution of (25) for different value of the
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Figure 4: Plot of solution of (25) for increasing

parameters. The plot shows the adimensional solution obtained rescaling
space with L and time with

T =
β1φL

2

κPo
.

Solutions are displayed for different values of the ratio θ = α2/α1, in particu-
lar we have taken θ ∈ [1, 4]. The dashed line denotes the solution of the linear
case (22), obtained with the same rescaling. As one can see, an increase in
θ (which means that fluid 2 becomes more viscous) implies a longer time for
completely displacing fluid.

6. Conclusions and perspectives

In this paper we have shown some applications of the modified Darcy’s
law (1). This law has been rigorously obtained via homogenization [16]. We
have studied some classical filtration problems to show how the dependence
on pressure affects the qualitative behavior of the solution. In particular
we have focussed on the Green-Ampt model, the Dam problem and Muskat
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problem. Of course many others problem can be studied using this modified
version of Darcy’s law.

In particular we mention the Buckley-Leverett transport model for a two
immiscible fluid flow in porous media. In this case the problem (that can
be solved autonomously in the saturation when discharge and viscosity are
constant, see [13]) becomes much more complicated. We plan to devote a
future paper to this problem.
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