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Abstract 

Ferritins are ubiquitous iron storage proteins. Recently, we identified a novel 

metal-binding site, transit site, in the crystal structure of phytoferritin. To elucidate the 

function of the transit site in ferritin from other species, we prepared 

transit-site-deficient mutants of human H ferritin, E140A and E140Q, and their iron 

oxidation kinetics were analyzed. The initial velocities of iron oxidization were reduced 

in the variants, especially in E140Q. The crystal structure of E140Q showed that the 

side chain of the mutated Gln140 was fixed by a hydrogen bond, whereas that of native 

Glu140 was flexible. These results suggest that the conserved transit site also has a 

function to assist with the metal ion sequestration to the ferroxidase site in ferritins 

from vertebrates. 
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Abstract 

Ferritins are ubiquitous iron storage proteins. Recently, we identified a novel 

metal-binding site, transit site, in the crystal structure of phytoferritin. To elucidate the 

function of the transit site in ferritin from other species, we prepared 

transit-site-deficient mutants of human H ferritin, E140A and E140Q, and their iron 

oxidation kinetics were analyzed. The initial velocities of iron oxidization were reduced 

in the variants, especially in E140Q. The crystal structure of E140Q showed that the 

side chain of the mutated Gln140 was fixed by a hydrogen bond, whereas that of native 

Glu140 was flexible. These results suggest that the conserved transit site also has a 

function to assist with the metal ion sequestration to the ferroxidase site in ferritins 

from vertebrates. 
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1. Introduction 

Ferritin is a ubiquitous iron storage protein that possesses ferroxidase activity (E.C. 1.16.3.1). In 

general, ferritin molecules form hollow, spherical cage-shaped oligomers composed of 24 

subunits, which can be related by 2-, 3- and 4-fold symmetry axes. The outer diameter of the 

oligomer is approximately 120 Å while the diameter of the inner cavity is around 80 Å. 

Thousands of iron molecules can be incorporated into the inner cavity via ferroxidation 

occurring in the ferroxidase site [1,2]. In vertebrates, ferritin usually functions as a 

hetero-polymer composed of two distinct subunits, the H (Heavy) chain and the L (Light) chain. 

The H and L chain composition of ferritins is tissue specific, e.g., L-chain-rich ferritin is found 

in the tissues involved in long-term storage of iron such as the liver, while H-chain-rich ferritin 

is found in the tissues with more active iron metabolism such as muscle. The H chain possesses 

the ferroxidase site and mainly contributes to the oxidative incorporation of iron, whereas the L 

chain lacks the ferroxidase site [1,2]. Two major active sites have been identified as the key sites 

for the iron incorporation: 1) the hydrophilic channel around the three-fold symmetry axes; and 

2) the ferroxidase site. Iron, usually ferrous iron, enters from the hydrophilic three-fold channel 

(iron entry) [3] and is then transferred to the ferroxidase site and oxidized (ferroxidation), then 

is sequestered to the side chains of acidic amino acid residues positioned on the inner cavity 

surface (nucleation). The three-fold channel forms a funnel-like structure lined with the acidic 

residues Asp131 and Glu134 in the human H chain. In the known crystal structures, one to three 

metal ions are seen in this channel. After entry from the channel, iron atoms are sequestered to 

the ferroxidase site, which is composed of six amino acid residues, namely Glu27, Tyr34, Glu62, 

His65, Glu107 and Gln141, in the human H chain [4]. Ferrous irons are oxidized and generate a 

µ-1,2-peroxodiiron(III) intermediate, which immediately decays to a µ-1,2-oxodiiron(III) 

intermediate [5–8]. 
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 Although active sites in the iron storage process have been discovered and well characterized, 

the connections between the known active sites have not been clarified in detail. Recently, 

Turanoa and co-workers suggested that the ferrous iron was translocated in the 4-helix bundle 

from the ferroxidase site to the E-helix positioned around the four-fold symmetry axes [9]. 

Concerning the translocation from the entry channel to the ferroxidase site, we identified a 

novel metal binding site, known as the ‘transit site’, in the crystal structure of soybean ferritin 

No. 4 (SFER4) [10]. The metal ion at the transit site is coordinated by the side chain of Glu173 

and the carbonyl oxygen of the main chain of Thr168. These residues, especially Glu173 of 

SFER4, are strictly conserved in ferritins from other species. Glu173 corresponds to Glu140 of 

the human H and L chains. Almost all of the reported sequences of vertebrate ferritin have this 

glutamate residue; however, in an exception, this residue is substituted for by lysine in the 

sequence of the mouse L chain. Santanbrogio et al. suggested that this substitution causes the 

low iron incorporation activity of the mouse L chain compared with the human L chain [11]. 

 Here, to confirm the function of the transit site in vertebrate ferritin, we have compared the 

ferroxidase activity of the human H chain with its variants, E140A and E140Q, whose transit 

sites were substituted for by alanine and glutamine, respectively. According to the fast kinetics 

assay, the mutants showed a delay in ferroxidase activity, especially in the E140Q mutant. These 

results were supported by the X-ray crystallographic analysis of these molecules. Thus, the 

transit site was proven to assist with the metal ion movement in vertebrate ferritin as well as 

phytoferritin. 

 

2. Materials and methods 

2.1. Protein expression and purification 

Construction of the expression plasmid for human H ferritin was performed in a way similar to 
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that described previously [12]. In brief, the cDNA of the human H ferritin (Accession No. 

BC016009) encoding 182 amino acids was amplified by PCR using the primer set of (5′- 

ACGACCGCGTCCACCTCGCAG-3′) and (5′- 

GCGAAGGATCCTTAGCTTTCATTATCACTG -3′). The resulting fragment was 

5′-phosphorylated and digested by BamHI. The sticky end of the product of NcoI digestion of 

pET21d (Novagen) was blunted by T4 DNA polymerase (Takara) then digested by BamHI. The 

resultant human H fragment and pET24d digest were ligated to construct an expression plasmid 

of pET_humanH. The expression plasmids for the variants E140A and E140Q were obtained by 

oligonucleotide site-directed mutagenesis using pET_humanH as a template. These expression 

plasmids were introduced into the Escherichia coli strain BL21(DE3) (Novagen). The positive 

transformants of each construct were grown at 37 °C on LB medium supplemented with 50 mg/l 

of carbenicillin. Protein expression was induced with 100 µM IPTG (isopropyl 

β-D-1-thiogalactopyranoside) when the cell density reached an A600 of 0.6. Eventually, the cells 

were harvested by centrifugation after 3 hours of induction and resuspended in Buffer A (10 

mM Tris-HCl pH 7.5, 1 mM EDTA (ethylenediaminetetraacetic acid), 0.15 M NaCl, 0.1 mM 

p-APMSF (p-amidinophenyl methanesulfonyl fluoride hydrochloride), 0.2 µM pepstatin, 0.5 g/l 

leupeptin) to the concentration of 40 g (fresh weight bacteria)/L, followed by disruption by 

sonication. The supernatant of the resulting crude extract was collected by centrifugation and 

incubated at 60 °C for 10 minutes. The heat stable supernatants were further purified by 

ammonium sulfate fractionation (40-60% saturated fraction), anion exchange chromatography 

and size exclusion chromatography according to the purification method for soybean ferritin 

described previously [10].  

 

2.2. Kinetics assay of iron core formation 
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Apo ferritins were prepared using thioglycolic acid as a reductant as described previously [13]. 

The prepared apo-ferritin was dialyzed against the working buffer (50 mM HEPES-Na, pH 7.0). 

Concentrations of purified proteins were adjusted to 2.0 µM by the absorbance at 280 nm [14]. 

Single wavelength stopped-flow kinetics experiments were performed using the SX.18MV 

stopped-flow instrument (Applied Photophysics). Equal 50 µl volumes of a weakly acidic 

(NH4)2Fe(SO4)2 solution (24–96 µM) and a buffered apoferritin solution (2 µM) were mixed at 

25 °C in the thermostatted sample compartment containing a 20-µl quartz stopped-flow cuvette 

with a 0.2-cm path length. All quoted concentrations are the final concentrations obtained after 

mixing the two reagents together. Fe(II) oxidation was monitored by the absorbance at 310 nm, 

which is the specific absorption maximum of µ-oxo-bridged Fe(III) species [6]. Data were 

acquired every 12.5 ms. The molar absorptivity of 4570 (cm-1M-1), which was calculated for 

µ-oxo-bridged Fe(III) [6], was used to calculate the kinetic parameters. The initial rates were 

determined by a linear fit of the data points from 0 to 50 ms after mixing, representing the first 

phase of the iron oxidation kinetics curve. The initial velocities were measured from four to five 

independent experiments at each Fe concentration. 

 

2.3. Crystallization, data collection and structure determination 

 Purified human H ferritin and its variants were concentrated to 10 mg/ml in a buffer consisting 

of 10 mM Tris-HCl at pH 7.5 and 0.15 M sodium chloride. Crystals of native human H ferritin 

were obtained using the hanging drop vapor diffusion method by mixing equal volumes of the 

protein sample and mother liquid, which was composed of 0.1 M BICINE-Na at pH 9.0 and 

1.9–2.0 M of magnesium chloride. Cubic crystals (space group F432; a=b=c=182.5 Å; VM=2.99 

Å3/Da for one subunit per asymmetric unit) appeared within a week at 20 °C. The crystallization 

conditions for the variants, E140A and E140Q, were the same as that of the native crystal. 
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Diffraction data of the crystals of the native, E140A and E140Q variants were collected to 

resolutions of 1.52, 1.9 and 1.58 Å at 100 K at the SPring-8 beamline BL38B1 and BL26B1 

after flash cooling with 30 % glycerol as a cryoprotectant. Data were processed, merged and 

scaled with the HKL-2000 (HKL Research) [15]. Data processing statistics are shown in Table I.  

 The structure of native human H ferritin was determined using the deposited structure of the 

human H chain (PDB ID: 2FHA) and the current data set. Refinement was performed using the 

REFMAC5 program [16] and PHENIX software [17]. The structure was rebuilt using COOT 

0.6.1 [18] on a σ-weighted (2|Fo|–|Fc|) and (|Fo|–|Fc|) electron density map. The structures of the 

variants, E140A and E140Q, were determined using the final model of the native human H 

ferritin, and the refinement strategy was the same as that used for the native. Final refinement 

statistics for these proteins are shown in Table 1. Figures 2 and 3 were produced by PyMOL 

(DeLano Scientific, San Carlos, CA). Structure factors and coordinates have been deposited in 

the RCSB Protein Data Bank with accession codes, 3AJO (native human H chain ), 3AJP 

(E140A) and 3AJQ (E140Q). 

 

3. Results 

3.1. Initial velocity of iron oxidation in native H ferritin and its variants 

 To evaluate the function of the transit site in iron sequestration to the ferroxidase site in human 

H chain ferritin, we prepared purified native H ferritin and its transit site variants, E140A and 

E140Q, and analyzed their iron oxidation/nucleation activity. The proper oligomeric formation 

of the variants was verified by gel filtration (data not shown). UV spectral absorption at 

305–330 nm has been traditionally used to monitor the ferroxidase activity of ferritins. The 

absorbance around the wavelength, which is characteristic of µ-oxo-bridged Fe(III) dimmers, 

increases as a result of the Fe(II) oxidation in the ferroxidase site of ferritin. Figure 1 shows the 
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time-dependent increase of the absorbance at 310 nm in a rapid kinetics assay of ferritin species 

in which 96 µM of Fe(II) was mixed with 2 µM of ferritin (1/1 Fe(II) atoms per ferroxidase site). 

The initial velocity of native human H ferritin was 63.1 ± 7.17 µM/sec, whereas those of the 

variants E140A and E140Q were 36.2 ± 4.47 µM/sec and 29.0 ± 1.56 µM/sec, respectively. All 

the calculated values were significantly different (P < 0.01) in the variants. Furthermore, the 

values were also significantly different between two variants (P < 0.05). These tendencies were 

also observed at the ferritin/Fe(II) ratios of 2/48 (data not shown). These results showed a delay 

in iron oxidation and core formation in the transit site variants of human H ferritin, among 

which the rate in the E140Q variant was rather strongly affected. 

 

3.2. Three-dimensional structural analysis of native human H ferritin and its variants 

 To investigate why the rates of iron oxidation and core formation were affected differently in 

the variants, we crystallized the native human H ferritin and its variants and performed 

structural analyses. Until now, crystallizations of the human H chain were performed using the 

mutant K86Q, in which the surface lysine residue is substituted for glutamine [4, 19]. However, 

we obtained highly symmetrical cubic crystals (space group F432) of human H ferritin without 

any modifications. Crystals of the transit site variants, E140A and E140Q, were obtained in a 

condition similar to native crystallization. In these crystals, inter-molecule contact was mediated 

by magnesium ions positioned around the side chains of Asp84 and Lys86 (Fig. 2a). The 

statistics regarding the data collection for and refinement of these crystals are shown in Table 1. 

Diffraction data sets of native human H, E140A and E140Q were collected up to resolution of 

1.52, 1.9 and 1.58 Å, respectively. The final structural models of the native and its variants 

showed good geometries. The root mean square distances of all atoms of the proteins were 

0.403 (between native and E140A) and 0.523 (between native and E140Q) (Table 1), suggesting 
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that the structures are nearly identical except for the mutated residues. At the ferroxidase sites, 

two magnesium ions were seen in conventional site A, which was coordinated by Glu27, Glu62 

and His65, while site B of the native and its variants were not occupied in this crystallization 

condition (Fig. 2b). Instead of the conventional site B, a magnesium ion is seen adjacent to the 

ferroxidase site, and this ion is coordinated by the side chains of the ferroxidase member, Glu61, 

and Gln58 (Fig. 2b). We define this site as ‘site B′’ in this article. Site B′ is more accessible from 

the inner cavity and the transit site, Glu140. The geometries of the amino acid residues, water 

molecules and coordinated magnesium ions around the ferroxidase sites of all ferritins are 

nearly identical, suggesting that the ferroxidase sites of the variants were not disrupted by the 

transit site mutation. Other magnesium ions are seen around the three-fold symmetry channel 

(Asp131 and Glu134), four-fold symmetry channel (His173), outer surface (Asp84 and Lys86) 

and near the transit site (Glu140). Among these binding sites, three magnesium ions are seen 

around the funnel-like three-fold symmetry channel (Figs. 2c, d) in accordance with previous 

studies [19]. The first magnesium ion from the entrance of the channel is coordinated by the 

side chain of Glu134, the second is coordinated by the side chains of Glu134 and Asp131, and 

the third, which also faces the inner cavity, is coordinated by the side chain of Asp131. The first 

and second magnesium ions appear on the three-fold symmetry axes (Fig. 2c). 

 The transit site of the native H ferritin, Glu140, was disordered and had two or more 

alternative conformations (Fig. 3a), whereas the conformation of the side chains of the transit 

sites in the variants were unambiguously determined in their crystal structures (Figs. 3b, c). In 

one of the alternative conformations of Glu140, the side chain is oriented toward the three-fold 

entry channel, while in another conformation it is oriented toward site B′ of the ferroxidase site. 

In E140A, the substitution of the transit site to alanine caused a hydrophilic route to develop 

from the 3-fold symmetry axes to the ferroxidase site, as in the case of the soybean ferritin 



10 
 

E173A variant [10]. On the other hand, the substituted glutamine side chain was 

hydrogen-bonded to a water molecule, which was not seen in the crystal structure of the native 

and E140A (Fig. 3c). In addition to the hydrogen bond with the Gln140 side chain (2.56 Å), this 

water molecule formed hydrogen bonds with the main chain oxygen of Glu134 and Thr135 

(2.63 and 3.04 Å, respectively), and the main chain nitrogen of Asn139 (2.83 Å), resulting in the 

fixation of the glutamine side chain (Fig. 3d). This side chain fixation caused the blockage of 

the hydrophilic route, which enabled the passage of metal ions or water molecules. 

 

4. Discussion 

 Recently, the pathway for metal ion movement in the ferritin shell has received a great deal of 

research attention. As the active sites for iron sequestration in ferritin, two major components 

have been identified, namely the acidic residues lining the three-fold channel and the 

ferroxidase site. These sites have been identified as active sites for the metal sequestration 

process of ferritin. It has been suggested that the channels around the three-fold symmetry axes 

mainly function as iron entry channels for ferritin [3]. In this study, we have identified three 

magnesium ions in the channel (Figs. 2c, d). These arrangement of magnesium ions are 

reminiscent the metal ion pathway from the outer part of the shell to the inner cavity through the 

channel, because this channel is the only entrance for the metal ions [20]. In contrast to the 

observation by Toussaint et al., Cys130, which was positioned at the entrance to the three-fold 

channel, did not have alternative conformations, and no metal ion was seen to be coordinated 

with this residue in our crystal structure [19]. The alternative conformation of the side chain of 

this cysteine is suggested to facilitate metal ion entry into the channel [19]. Even though there 

was no such tendency in the cysteine residue in our crystal structure, this cysteine residue may 

be part of a pathway of metal ion movement in vertebrate ferritin, because it has also been 
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reported that the cysteine residue (Cys126 of the L chain ferritin) binds a metal (Pd) ion, and it 

has been suggested that this residue forms a pathway for metal ion movement [21]. This 

cysteine residue may constitute the first contact for metal ions at least in vertebrate ferritin, after 

which the metal ions are transferred to Glu134 and/or Asp131. However, this cystein residue is 

absent in plant or bacterial ferritin. Concerning the translocation of metal ions among the active 

sites, it was suggested that the Glu61 assists with the metal ion movement from the ferroxidase 

site to the inner cavity, mainly because the residue in the crystal structure has two alternative 

conformations [4]. More recently, Turano et al. demonstrated that the iron(III) species oxidized 

in the ferroxidase site was translocated in the 4-helix bundle to the E-helix positioned around 

the four-fold symmetry axes using NMR spectrometry [9]. In contrast, there have been few 

studies that have described the metal ion movement from the three-fold symmetry channel to 

the ferroxidase site. In relation to this movement, we have identified a transit site in the crystal 

structure of soybean ferritin [10]. This site, Glu173 of the soybean ferritin (SFER4), is a highly 

conserved residue among ferritins from various species. In this study, we have demonstrated 

that Glu140 of the human ferritin H chain, corresponding to Glu173 of SFER4, also functions as 

a transit site in human H chain ferritin. The transit site variants, E140A and E140Q, have shown 

a delay in the iron oxidation/nucleation rate compared with that of native human H similar to 

the case of the rapid kinetics assay of soybean ferritin and its transit site variants (Data not 

shown). Furthermore, the iron oxidation/nucleation rate of E140Q was found to be slower than 

that of E140A. In the E140A variant, a new hydrophilic route emerged from the three-fold 

symmetry axes to the ferroxidase site, much like the case of soybean ferritin [10]. These 

hydrophilic routes enable the metal ions to pass through. On the other hand, the side chain of the 

substituted Gln140 was fixed by the hydrogen bond formed with a water molecule, which was 

hydrogen-bonded to the main chain oxygen of Glu134. This side chain fixation may hinder the 
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ions from following the route toward the ferroxidase site. The side chain of the Glu140 of native 

human H ferritin did not form any hydrogen bonds; therefore, it can move freely to assist in the 

metal ion movement from the three-fold channel to the ferroxidase site. These results support 

the hypothesis that the glutamate residue, Glu140, in the human H chain also acts as the transit 

site as seen in soybean ferritin.  

 Thus, we have demonstrated the significance of the transit site in iron loading to the 

ferroxidase site. Together with the metal binding sites in the three-fold channel, we can 

postulate that the pathway for metal ion movement from outside of the three-fold channel to the 

ferroxidase site via the transit site in ferritins is as follows. Metal ions are incorporated into the 

three-fold channel of ferritin with the assistance of the Cys130 side chain in vertebrate ferritin. 

They are then captured by Glu134 and transfered to Asp131. Next, ferrous ions are guided to the 

transit site, Glu140, via Thr135 and His136. The side chain of the transit site, Glu140, brings 

metal ions to site B′ of the ferroxidase site and, ultimately, ferrous ions are oxidized in 

ferroxidase sites A and B. The transit site is further conserved in ferritins from prokaryotes. 

Whether the conserved acidic residue functions as the transit site in iron accumulation in 

prokaryotic ferritins remains a very intriguing question. 
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Figure legends 

 

Figure 1  

Ferrous oxidation by ferroxidase sites of native human H ferritin and its variants, E140A and 

E140Q. Progress curves for the generation of ferric oxo species monitored at 310 nm were 

plotted every 25 ms, after rapid mixing of solutions of ferrous iron sulfate ammonium (96 µM in 

0.1 mM HCl) and recombinant ferritin proteins (2 µM of 24-mer in 50 mM HEPES-Na, pH 7.0). 

The progress curve of the sample without any apo-ferritin was also plotted as a control. The 

formation of µ-oxo-bridged Fe(III) was calculated from the absorbance at 310 nm using the 

molar absorptivity. Data are given as the means of at least four individual experiments.  

 

Figure 2 

(a) Inter molecule contact of the crystal structure of native human H ferritin. Involved subunits 

are shown in green, purple, cyan and yellow chains. The magnesium ions and water molecules 

are shown as red and blue balls. (b) Ferroxidase site of native human H ferritin. 

Metal-coordinated bonds and hydrogen bonds are shown in black and blue broken lines, 

respectively. (c)(d) The structure of the metal ion entry channel penetrating along the three-fold 

symmetry axis and metal binding site in the channel. The channels are represented with two 

different orientations: (c) aligned on the three-fold axis and (d) perpendicular to the axis. 

 

Figure 3 

Structures around the transit site in the native H chain (a) and its variants, E140A (b) and E140Q 

(c). The electron densities (2|Fo|-|Fc|) contoured 2.0 σ of the transit sites and Glu134 together 

with the hydrogen-bonded water molecules are shown as mesh. Ferroxidase sites and binding 

magnesium ions are also represented. The magnesium ions and water molecules are shown as 

red and blue balls. (d) Comparison of the structures around the transit sites of the native H 

ferritin and the E140Q variant. The side chains of Glu140 alternative conformations in the 

native H chain are shown in green, while the side chain of Gln140 is shown in cyan. The 

magnesium ions are shown as red balls. Water molecules shown in the coordinates of the native 

structure or E140Q variant are shown as green and cyan balls. The distances of the hydrogen 

bonds between the water molecule in E140Q and the adjacent atoms are shown (Å). 

 



 

          Native  E140A  E140Q 

Data collection statistics 

 Beam line   BL26B1  BL38B1  BL38B1 

 Space group  F432  F432  F432 

 Lattice parameter (Å)  182.723  182.974  182.354 

 Wave length (Å)  0.9  0.9  0.9 

 Resolution (highest shell) (Å) 20-1.52 (1.57-1.52)  50-1.9(1.97-1.9) 50-1.58 (1.64-1.58) 

 No. of unique reflections 40,578   21,170  36,077 

 Completeness (%)  99.9 (98.6)  99.7 (100)  99.9 (100) 

 Data redundancy   30.6 (10.9)  15.3 (13.9)  20.1 (18.3) 

 Rmerge   0.049 (0.352) 0.073 (0.325) 0.046 (0.383) 

 I/σ(I)   9.6 (2.71)  19.5 (12.7)  20.5 (11.2) 

 

Refinement statistics 

 Protein molecules per asymmetric unit      1 

 No.of atoms 

  Protein   1,473  1,476  1,464 

  Solvent   229  192  200 

  Mg2+   12  10  11 

 Rwork/Rfree    0.171/0.183  0.178/0.218  0.175/0.185 

Rms deviations from ideality 

 Bond length (Å)  0.006  0.006  0.006 

 Bond angle (deg.)  0.966  0.967  0.955 

Average B-factor (Å2) 

 Main chain   10.1  16.5  14.0 

 Side chain   14.1  20.4  18.2 

 Water   22.0  25.7  26.1 

 Mg2+   20.0  19.5  26.3 

Rms deviations from native          -    0.403  0.523 

 

Table 1 

Data collection and refinement statistics for the crystals of human H ferritin and its variants, E140 A 

and E140Q. 
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