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Infinitely many shape-invariant potentials and cubic
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We provide analytic proofs for the shape invariance of the recently discovered
�Odake and Sasaki, Phys. Lett. B 679, 414 �2009�� two families of infinitely many
exactly solvable one-dimensional quantum mechanical potentials. These potentials
are obtained by deforming the well-known radial oscillator potential or the
Darboux–Pöschl–Teller potential by a degree � ��=1,2 , . . .� eigenpolynomial. The
shape invariance conditions are attributed to new polynomial identities of degree
3� involving cubic products of the Laguerre or Jacobi polynomials. These identities
are proved elementarily by combining simple identities. © 2010 American Institute
of Physics. �doi:10.1063/1.3371248�

I. INTRODUCTION

In a previous letter,1 two sets of infinitely many shape-invariant2 potentials were derived by
deforming the radial oscillator potential3,4 and the Darboux–Pöschl–Teller �DPT� potential5,6 in
terms of a polynomial eigenfunction of degree � ��=1,2 , . . .�. As the main part of the eigenfunc-
tions of these exactly solvable quantum mechanical systems, the exceptional �X�� Laguerre and
Jacobi polynomials were obtained.1 The lowest ��=1� examples, the X1 Laguerre and Jacobi
polynomials, are equivalent to those introduced in the pioneering work of Gomez-Ullate et al.7,8

within the Sturm–Liouville theory. The reformulation in the framework of quantum mechanics and
shape-invariant potentials was done by Quesne et al.9,10 By construction these new orthogonal
polynomials satisfy a second order differential equation �the Schrödinger equation� without con-
tradicting Bochner’s theorem,11 since they start at degree �, ��=1,2 , . . .� instead of the degree zero
constant term.

Here we present analytical proofs of the main assertion that these deformed potentials are
indeed shape invariant, which could not be given in the letter1 due to the lack of space. For both
the deformed radial oscillator potential and deformed trigonometric/hyperbolic DPT potentials, the
condition for shape invariance for each � is satisfied if a certain identity involving cubic products
of the Laguerre or Jacobi polynomials holds. To the best of our knowledge, these infinitely many
identities were not presented before. We show that these identities are derived by combining
several elementary relations among the Laguerre or Jacobi polynomials.

This paper is organized as follows. In Sec. II the general setting of shape invariance and the
deformation of a potential in terms of a polynomial eigenfunction is recapitulated together with
many preparatory materials. In Sec. III we show that the condition for shape invariance for each
� is attributed to a certain polynomial identity of degree 3� involving cubic products of the
Laguerre or Jacobi polynomials of various parameters, �3.4� and �3.11�. Then we show that these
identities are simply derived by combining simple relations among the Laguerre polynomials �3.5�
and �3.6� and Jacobi polynomials �3.12� and �3.13�. Section IV is for a summary and comments on
related results to be published in a forthcoming paper.
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II. GENERAL SETTING

As in Ref. 1, let us start with a generic one-dimensional quantum mechanical system in a
factorized form,

H = A†A = p2 + U�x�, p = − i�x, U�x� =
def

��xw�x��2 + �x
2w�x� , �2.1�

A=
def

�x − �xw�x�, A† = − �x − �xw�x� . �2.2�

Here we call a real and smooth function w�x� a prepotential. It parametrizes the ground state wave
function �0�x�, which has no node and can be chosen real and positive, �0�x�=ew�x�. It is trivial to
verify A�0�x�=0 and H�0�x�=0.

Shape invariance is realized by specific dependence of the potential, or the prepotential on a
set of parameters �= ��1 ,�2 , . . .�, to be denoted by w�x ;��, A���, H���, En���, etc. The shape
invariance condition to be discussed in this paper is written simply

A���A���† = A�� + ��†A�� + �� + E1��� , �2.3�

or ��xw�x;���2 − �x
2w�x;�� = ��xw�x;� + ���2 + �x

2w�x;� + �� + E1��� , �2.4�

in which � is a certain shift of the parameters. Then the entire set of discrete eigenvalues and the
corresponding eigenfunctions of H=H���,

H����n�x;�� = En����n�x;��, n = 0,1,2, . . . , �2.5�

�n�x;�� = �0�x;��Pn���x�;�� , �2.6�

is determined algebraically,2,4,12,13

En��� = �
k=0

n−1

E1�� + k�� , �2.7�

�n�x;�� � A���†A�� + ��†
¯ A�� + �n − 1���† � ew�x;�+n��. �2.8�

The polynomial eigenfunction Pn���x� ;��, which is the Laguerre or Jacobi polynomial in ��x�,
satisfies

− �x
2Pn���x�;�� − 2�xw�x;���xPn���x�;�� = En���Pn���x�;�� . �2.9�

Here ��x� is a function of x called the sinusoidal coordinate.14

In Ref. 1 a shape-invariant prepotential w�x ;��=w0�x ;�� is deformed by a polynomial eigen-
function �� of its Hamiltonian to produce another shape-invariant prepotential w� ��=1,2 , . . . .�,

w��x;�� =
def

w0�x;� + ��� + log
�����x�;� + ��

�����x�;�� , �2.10�

in which �� is related to the polynomial eigenfunction Pn above �2.6�. It should be noted that the
normalization of the polynomial ���x ;�� is irrelevant to the deformation. The �=0 case corre-
sponds to the original system. The �th Hamiltonian and eigenfunctions, etc., are given by

A���� =
def

�x − �xw��x;��, A����† = − �x − �xw��x;�� , �2.11�

H���� =
def

A����†A���� , �2.12�
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H������,n�x;�� = En�� + �����,n�x;�� , �2.13�

��,n�x;�� = ���x;��P�,n���x�;��, ���x;�� =
def ew0�x;�+���

�����x�;�� . �2.14�

The orthogonality of the eigenfunctions of the Hamiltonian H���� reads

� ���x;��2P�,n���x�;��P�,m���x�;��dx = h�,n����nm, h�,n��� 	 0, �2.15�

in which ���x ;��2 is the orthogonality measure and P�,n�x ;�� is the nth member of the excep-
tional �X�� orthogonal polynomial. It is expressed in terms of ���x�’s and Pn�x�’s as shown in
�2.22�, �2.27�, and �2.34�.

In this paper we will demonstrate that the deformed prepotential w� ��=1,2 , . . .� actually
satisfies the shape invariance condition,


��x;�� = 0, �2.16�

in which 
��x ;�� is defined by


��x;�� =
def

��xw��x;���2 − �x
2w��x;�� − ��xw��x;� + ���2 − �x

2w��x;� + �� − E1�� + ��� ,

�2.17�

for the three cases, the radial oscillator and the trigonometric/hyperbolic DPT discussed in Ref. 1.
The proof consists of two steps. First in Sec. III we transform, by utilizing the differential equa-
tions for �����x� ;��, �2.41�, etc, the shape invariance condition �2.17� into an identity involving
products of three Laguerre or Jacobi polynomials of various parameters, �3.4� and �3.11�. The
trigonometric and hyperbolic DPTs lead to the same identities. Second these cubic identities are
proven by combining simple identities among the Laguerre or Jacobi polynomials of neighboring
degrees n, n−1 and parameters �, ��1, 
, 
�1.

Here we show various data necessary for the proof. They are recapitulated from Ref. 1.

�1� Radial oscillator:

� =
def

g, � = 1, g 	 0, �2.18�

En��� = 4n, ��x� =
def

x2, 0 � x � � , �2.19�

�0�x;�� =
def

e−x2/2xg ⇔ w0�x;�� =
def

−
x2

2 + g log x , �2.20�

Pn�x;�� =
def

Ln
�g−1/2��x�, ���x;�� =

def

L�
�g+�−3/2��− x� , �2.21�

P�,n�x;�� = ���x;g + 1�Pn�x;g + �� − ��−1�x;g + 2�Pn−1�x;g + �� . �2.22�

�2� Trigonometric DPT:

� =
def

�g,h�, � = �1,1�, h 	 g 	 0, �2.23�

En��� = 4n�n + g + h�, ��x� =
def

cos 2x, 0 � x �
�

2 , �2.24�
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�0�x;�� =
def

�sin x�g�cos x�h ⇔ w0�x;�� = g log sin x + h log cos x , �2.25�

Pn�x;�� =
def

Pn
�g−1/2,h−1/2��x�, ���x;�� =

def

P�
�−g−�−1/2,h+�−3/2��x� , �2.26�

P�,n�x;�� =
def

a�,n�x;��Pn�x;� + ��� + b�,n�x;��Pn−1�x;� + ��� , �2.27�

a�,n�x;�� =
def

���x;g + 1,h + 1� +
2n�− g + h + � − 1���−1�x;g,h + 2�

�− g + h + 2� − 2��g + h + 2n + 2� − 1�

−
n�2h + 4� − 3���−2�x;g + 1,h + 3�

�2g + 2n + 1��− g + h + 2� − 2� , �2.28�

b�,n�x;�� =
def�− g + h + � − 1��2g + 2n + 2� − 1�

�2g + 2n + 1��g + h + 2n + 2� − 1� ��−1�x;g,h + 2� . �2.29�

�3� Hyperbolic DPT:

� =
def

�g,h�, � = �1,− 1�, h 	 g 	 0, � � nB =
def

� 1
2 �h − g���, �2.30�

En��� = 4n�h − g − n�, ��x� = cosh 2x, 0 � x � � , �2.31�

�0�x;�� =
def

�sinh x�g�cosh x�−h ⇔ w0�x;�� = g log sinh x − h log cosh x , �2.32�

Pn�x;�� =
def

Pn
�g−1/2,−h−1/2��x�, ���x;�� =

def

P�
�−g−�−1/2,−h+�−3/2��x� , �2.33�

P�,n�x;�� =
def

a�,n�x;��Pn�x;� + ��� + b�,n�x;��Pn−1�x;� + ��� , �2.34�

a�,n�x;�� =
def

���x;g + 1,h − 1� +
2n�− g − h + � − 1���−1�x;g,h − 2�

�− g − h + 2� − 2��g − h + 2n + 2� − 1�

−
n�− 2h + 4� − 3���−2�x;g + 1,h − 3�

�2g + 2n + 1��− g − h + 2� − 2� , �2.35�

b�,n�x;�� =
def�− g − h + � − 1��2g + 2n + 2� − 1�

�2g + 2n + 1��g − h + 2n + 2� − 1� ��−1�x;g,h − 2� . �2.36�

In �2.30� �x�� denotes the greatest integer not equal or exceeding x. Here Ln
����x� is the Laguerre

polynomial and Pn
��,
��x� is the Jacobi polynomial. The polynomial eigenfunction P�,n�x ;�� �2.22�,

�2.27�, or �2.34� is a degree �+n polynomial in x. In a future publication15 we will present
equivalent forms of the X� polynomials P�,n�x ;�� which appear much simpler than those given in
�2.22�, �2.27�, and �2.34�. Needless to say that the deforming polynomials �����x� ;�� and
�����x� ;�+�� are of the same sign in the domain for all the three cases. In other words, the
deforming polynomials do not have a zero in the domains listed in �2.19�, �2.24�, and �2.31�,
respectively. To see this we use the expansion formula of the Laguerre and Jacobi polynomials,

Ln
����x� =

1

n!�k=0

n
�− n�k

k!
�� + k + 1�n−kx

k, �2.37�
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Pn
��,
��x� =

�� + 1�n

n! �
k=0

n
1

k!

�− n�k�n + � + 
 + 1�k

�� + 1�k
�1 − x

2
�k

. �2.38�

For the radial oscillator we obtain

�����x�;�� = �
k=0

� �g + � + k −
1

2
�

�−k

k!�� − k�!
x2k 	 0, �2.39�

and for the trigonometric/hyperbolic DPT,

�− 1�������x�;�� =	
�g + 1/2��

�! �
k=0

�
�� − k + 1�k�h − g + � − 1�k

k!�g + � − k +
1

2
�

k

�sin x�2k 	 0

�g + 1/2��

�! �
k=0

�
�� − k + 1�k�g + h + 2 − � − k�k

k!�g + � − k +
1

2
�

k

�sinh x�2k 	 0.

�2.40�

because each term in summation is positive. This guarantees the positive definiteness of the
orthogonality measure ���x ;��2 �2.14� and the singularity free structure as well as the Hermiticity
�self-adjointness� of the Hamiltonian. The oscillation theorem for the one-dimensional quantum
mechanical systems dictates that the nth excited state polynomial eigenfunction P�,n���x� ;�� has
n zeros in the domain �2.19�, �2.24�, or �2.31�, although it is a degree �+n polynomial in �.

Let us note that the terms of the form of the complete square ��x�����x� ;�� /�����x� ;���2,
��x�����x� ;�+�� /�����x� ;�+���2, and ��x�����x� ;�+2�� /�����x� ;�+2���2, cancel out in

��x ;�� �2.17�. Then we use the fact that, corresponding to �2.9�, the deforming polynomial
�����x� ;�� also satisfies a second order linear differential equation,

− �x
2�����x�;�� − 2�xw̃0�x;�,���x�����x�;�� = Ẽ���������x�;�� , �2.41�

where w̃0�x ;� ,�� and Ẽ���� are

w̃0�x;�,�� = 	
1

2
x2 + �g + � − 1�log x :radial osci.

w0�x;− g − �,h + � − 1� :trig.DPT

w0�x;− g − �,h − � + 1� :hyper.DPT,

 �2.42�

Ẽ���� = 	− 4� :radial osci.

E��− g − �,h + � − 1� :trig.DPT

E��− g − �,h − � + 1� :hyper.DPT.

 �2.43�

Substituting �2.10� into �2.17� and using the shape invariance of the undeformed system 
0�x ;�
+���=0 and �2.41�, we obtain


��x;�� �
1

2
����;������;� + ������;� + 2��

= �xw̃0�x;� + 2�,���x����;� + 2������;������;� + ��

− �xw̃0�x;�,���x����;������;� + ������;� + 2��
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+
1

2
�Ẽ��� + 2�� − Ẽ���������;������;� + ������;� + 2��

+ �xw0�x;� + �����x����;� + ������;�� − �x����;������;� + �������;� + 2��

− �xw0�x;� + �� + ����x����;� + 2������;� + �� − �x����;� + ������;� + 2�������;��

− �x����;���x����;� + ������;� + 2�� + �x����;� + ���x����;� + 2������;�� , �2.44�

where �=��x�. It is essential that the right hand side of �2.44� is now a polynomial in ��x�
because �x��x��xw0 and �x��x��xw̃0 and ��x��x��2 are expressed by ��x�,

�x��x��xw0�x;�� = 2 � 	g − ��x� :radial osci.

− �g − h + �g + h���x�� :trig.DPT

g + h + �g − h���x� :hyper.DPT,

 �2.45�

�x��x��xw̃0�x;�,�� = 2 � 	g + � − 1 + ��x� :radial osci.

g + h + 2� − 1 + �g − h + 1���x� :trig.DPT

− �g − h + 2� − 1 + �g + h + 1���x�� :hyper.DPT,

 �2.46�

��x��x��2 = 4 � 	��x� :radial osci.

1 − ��x�2 :trig.DPT

− �1 − ��x�2� :hyper.DPT.

 �2.47�

III. CUBIC IDENTITIES

The conditions for the shape invariance �2.16� are shown to be equivalent to cubic identities
involving the Laguerre or Jacobi polynomials.

A. Radial oscillator

We fix � and use a new parameter � instead of g,

� =
def

g + � − 1
2 . �3.1�

By using the forward shift relation for the Laguerre polynomial,

�xLn
����x� = − Ln−1

��+1��x� , �3.2�

the polynomial �� and its derivative are expressed as

����;�� = L�
��−1��− ��, �x����;�� = �x�L�−1

��� �− �� , �3.3�

where �=��x�. After replacing −��x� with x and dividing by 4, the condition for the shape
invariance �2.16� with �2.44� is transformed into the following polynomial identity of degree 3� in
x which contains products of three Laguerre polynomials of various parameters:

0 = − xL�−1
��+2��x�L�

��−1��x�L�
����x� − �L�−1

��� �x�L�
��+1��x�L�

����x� + �x + � + 1�L�−1
��+1��x�L�

��+1��x�L�
��−1��x�

+ xL�−1
��� �x�L�−1

��+1��x�L�
��+1��x� − xL�−1

��+1��x�L�−1
��+2��x�L�

��−1��x� . �3.4�

To the best of our knowledge, this identity has not been reported before. For �=0 this identity is
trivial, since L−1

����x�=0. For lower � it can be easily verified by direct calculation.
Below we will prove the identity �3.4� for an arbitrary positive integer � by combining a few

elementary relations among the Laguerre polynomials of neighboring degrees n and n−1 and
neighboring parameters �, ��1,
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Lemma �A� Ln
��−1��x� + Ln−1

��� �x� = Ln
����x� , �3.5�

Lemma �B� xLn−1
��+1��x� − �Ln−1

��� �x� = − nLn
��−1��x� , �3.6�

which can be verified elementarily based on the expansion formula of the Laguerre polynomial
�2.37�. The right hand side of the identity �3.4� can be written as

r.h.s. of �3.4� = − xL�−1
��+2��x�L�

��−1��x��L�
����x� + L�−1

��+1��x��

+ xL�−1
��+1��x�L�

��+1��x��L�
��−1��x� + L�−1

��� �x��

+ L�
��+1��x���� + 1�L�−1

��+1��x�L�
��−1��x� − �L�−1

��� �x�L�
����x��

= L�
��+1��x��L�

����x��xL�−1
��+1��x� − �L�−1

��� �x��

+ L�
��−1��x��− xL�−1

��+2��x� + �� + 1�L�−1
��+1��x���

= L�
��+1��x��L�

����x��− �L�
��−1��x�� + L�

��−1��x��+ �L�
����x��� = 0. �3.7�

Here we have used Lemma �A� in the first two curly brackets �¯ � and Lemma �B� in the next two
curly brackets. This concludes the proof of the identity �3.4�.

B. Trigonometric DPT

We fix � and use new parameters � and 
 instead of g and h,

� =
def

− g − � − 1
2 , 
 =

def

h + � − 3
2 . �3.8�

By using the forward shift relation for the Jacobi polynomial,

�xPn
��,
��x� = 1

2 �n + � + 
 + 1�Pn−1
��+1,
+1��x� , �3.9�

the polynomial �� and its derivative are expressed as

����;�� = P�
��,
����, �x����;�� = �x�

1
2 �� + � + 
 + 1�P�−1

��+1,
+1���� , �3.10�

where �=��x�. The condition for the shape invariance �2.16� with �2.44�, after replacing ��x� with
x and dividing by −��+�+
+1�, is simplified to a polynomial identity of degree 3�, which
contains products of three Jacobi polynomials of various parameters,

0 = 2�� − 1��1 + x�P�−1
��−1,
+3��x�P�

��,
��x�P�
��−1,
+1��x�

+ 2�
 + 1��1 − x�P�−1
��+1,
+1��x�P�

��−2,
+2��x�P�
��−1,
+1��x�

− 2���1 + x� + �
 + 2��1 − x��P�−1
��,
+2��x�P�

��,
��x�P�
��−2,
+2��x�

+ �� + � + 
 + 1��1 − x2�P�−1
��+1,
+1��x�P�−1

��,
+2��x�P�
��−2,
+2��x�

− �� + � + 
 + 1��1 − x2�P�−1
��,
+2��x�P�−1

��−1,
+3��x�P�
��,
��x� . �3.11�

To the best of our knowledge, this identity has not been reported before, either. For �=0 this
identity is trivial, since P−1

��,
��x�=0. It is straightforward to verify this identity for lower � by
direct calculation.

Below we will prove the identity �3.11� for an arbitrary positive integer � by combining a few
elementary relations among the Jacobi polynomials of neighboring degrees n and n−1 and neigh-
boring parameters ��1, 
�1.,

Lemma �C� 2�� − 1�Pn
��−1,
��x� − �n + � + 
��1 − x�Pn−1

��,
+1��x� = 2�n + � − 1�Pn
��−2,
+1��x� ,

�3.12�
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Lemma �D� 2�
 + 1�Pn
��−1,
+1��x� + �n + � + 
 + 1��1 + x�Pn−1

��,
+2��x� = 2�n + 
 + 1�Pn
��,
��x� .

�3.13�

It is straightforward to demonstrate Lemma �C� by using the expansion formula for the Jacobi
polynomials �2.38�. By using the property Pn

��,
��−x�= �−1�nPn
�
,���x�, Lemma �D� is obtained from

Lemma �C� with the replacements x→−x, �→
+2, 
→�−1. The right hand side of the identity
�3.11� can be written as

r.h.s. of �3.11� = �1 + x�P�−1
��−1,
+3��x�P�

��,
��x�

� �2�� − 1�P�
��−1,
+1��x� − �� + � + 
 + 1��1 − x�P�−1

��,
+2��x��

+ �1 − x�P�−1
��+1,
+1��x�P�

��−2,
+2��x�

� �2�
 + 1�P�
��−1,
+1��x� + �� + � + 
 + 1��1 + x�P�−1

��,
+2��x��

− 2���1 + x� + �
 + 2��1 − x��P�−1
��,
+2��x�P�

��,
��x�P�
��−2,
+2��x�

= P�
��,
��x�P�

��−2,
+2��x� � ��1 + x��2�� + � − 1�P�−1
��−1,
+3��x� − 2�P�−1

��,
+2��x��

+ �1 − x��2�� + 
 + 1�P�−1
��+1,
+1��x� − 2�
 + 2�P�−1

��,
+2��x���

= P�
��,
��x�P�

��−2,
+2��x�P�−2
��+1,
+3��x�

� �� + � + 
 + 2���1 + x��x − 1� + �1 − x��x + 1�� = 0. �3.14�

Here we have used Lemma �C� and Lemma �D� in the curly brackets �¯ �. This concludes the
proof of the identity �3.11�.

It is well known that the Laguerre polynomial is obtained from the Jacobi polynomial in the
following limit:

lim

→�

Pn
��,
��1 −

2x



� = Ln

����x� . �3.15�

When the same limit is applied, the Lemma �C� and Lemma �D� reduce to Lemma �A� and Lemma
�B�. Likewise the cubic identity for the shape invariance of X� Jacobi polynomial �3.11� reduces to
that of the X� Laguerre polynomial �3.4�, when divided by �4 and � is replaced by �+1.

C. Hyperbolic DPT

Here we briefly remark that the shape invariance condition for the deformed hyperbolic DPT
reduces, as expected, to the same identity as that for the trigonometric DPT �3.11� derived above.
We fix � and use new parameters � and 
 instead of g and h,

� =
def

− g − � − 1
2 , 
 =

def

− h + � − 3
2 . �3.16�

By using �3.9�, the polynomial �� and its derivative are expressed just same as �3.10�. The
conditions for the shape invariance �2.16� with �2.44�, after replacing ��x� with x and dividing by
�+�+
+1, are simplified to the same identity �3.11� as that for the trigonometric DPT.

IV. SUMMARY AND COMMENTS

Analytic proofs are provided for the shape invariance of the recently derived infinite family of
potentials1 obtained by deforming the radial oscillator potential and the trigonometric/hyperbolic
DPT potential5,6 by a degree � ��=1,2 , . . .� eigenpolynomial. The shape invariance conditions are
reduced to new polynomial identities of degree 3� involving cubic products of the Laguerre �3.4�
or Jacobi polynomials �3.11�. Then these identities are proven elementarily by combining simple
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linear identities �3.5� and �3.6� among the Laguerre and �3.12� and �3.13� among the Jacobi,
polynomials of neighboring degrees n , n−1, and of neighboring parameters, � , ��1 and

 , 
�1. Even these linear identities seem not widely recognized.

The totality of the eigenvalues and the corresponding eigenfunctions together with the nor-
malization constants, etc., of these infinite family of quantum mechanical systems are obtained via
the Rodrigues-type formulas �2.7� and �2.8� and reported as �17�–�21�, �29�–�36�, and �44�–�46� of
Ref. 1. In a future publication,15 we will present analytic derivation of various results reported in
Ref. 1. They include derivation of equivalent but much simpler looking forms of the X� polyno-
mials together with the normalization constants, the verification of the actions of the forward and
backward shift operators on the X� polynomials, Gram–Schmidt orthonormalization for the alge-
braic construction of the X� polynomials, the analysis of the second order differential equations for
the X� polynomials within the framework of the Fuchsian differential equations in the entire
complex x-plane, etc. In these analysis, the linear identities Lemma �A� to Lemma �D� play
important rôles. The forward and backward shift relations mentioned above �Eqs. �49�, �22�, �37�,
and �47� of Ref. 1� are also reduced to polynomial identities involving cubic products of the
Laguerre or Jacobi polynomials. We will provide proofs for them in the future publication,15 too.

Let us also mention that the same method, deformation in terms of a degree � eigenpolyno-
mial, applied to the discrete quantum mechanical Hamiltonians for the Wilson and Askey-Wilson
polynomials produced two sets of infinitely many shape-invariant systems together with excep-
tional �X�� Wilson and Askey-Wilson polynomials ��=1,2 , . . .�.16
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