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M. Kubota1, and T. Mizusaki6 

 

Abstract  Unique types of textures and vortices of superfluid 3He in restricted geometries have 

been discussed.  We investigated cw-NMR in rotating 3He A-phase in parallel plate geometries 

with gaps of 12.5 µm at 3.05 MPa. We observed a very sharp spectrum at rest which had shifted 

negatively as f = fL - 0.93 fA(T), where fA (T) is the full transverse dipole shift in A-phase.  The 

large negative shift of 0.93 fA(T) indicates that l⊥d. When we rotated the sample with rotation 

speed Ω faster than the critical ΩFr, a new satellite signal appeared nearly at fL.  The satellite 

signal intensity increased with increasing Ω, reached a maximum at Ωc and slowly decreased up to 

the maximum Ω of 2π rad/s.  When Ω decreased from the maximum speed, the satellite signal 

rapidly decreased and disappeared at 5.5 rad/s down to zero rad/s.  We measured the temperature 

dependence of the satellite signal intensity, ΩFr and Ωc. We propose a model for the satellite 

signal, which is attributed to spin wave in Fréedericksz transition region induced by the counter 

flow.   We also compare the satellite signal with Kee and Maki’s bound pair of HQV. 
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1. Introduction 

 

New types of textures, vortices and coupling effects of textures with flow1, which are 

quite different from those in bulk superfluid 3He2, have been discussed for superfluid 3He-

A phase in parallel plate geometries3-7. We have studied cw-NMR in rotating superfluid 
3He-A phase confined in a narrow gap between parallel plates, whose separation, D, is 

comparable to or smaller than the dipole coherence length, ξD
8, 9.  In 3He-A, two vectors 

describe the order parameter, that is, the orbital part of the order parameter are 

characterized by l, and the spin part of that by d1.  In the parallel-plate geometry, l points 

perpendicularly to the surface and d is perpendicular to the applied magnetic field.  We 

apply the field perpendicular to the surfaces of plates, and thus d⊥l. This configuration is 

very different from that of the bulk 3He-A, where l // d.  In the parallel plate geometry, 

the textures are controlled by surfaces, magnetic field and flow (rotation). When the 

sample is rotated faster than a certain critical counter flow velocity vc = (vn-vs)c, vortices 

are introduced and exotic vortices are expected in the parallel plate geometry, where vn is 

normal fluid velocity and vs is superfluid velocity.   The flow orients l along v, the 

texture is affected by the flow and may cause Fréedericksz transition1 (FT). 

 There are many types of vortices found in a bulk sample2.  However, in the 

parallel-plate geometry with a gap of about ξD, l are locked perpendicularly to the surface, 

a soft core (continuous) vortices observed in a bulk sample cannot exist and a singular 

(phase) vortex (SV) may be expected.   The half quantum vortex (HQV) with a 

circulation number N = ±1/2 was predicted by Volovik and Mineev3 and independently 

by Cross and Brinkman4.  The stability of HQV and SV under various conditions of 

temperature, magnetic field and rotation speed has been discussed5, 6, 7.  Recently a 

bound pair of HQV (b-HQV) and its NMR-signal have been discussed by Kee and Maki5 

and were compared with our results8.  So far, three kinds of vortices, such as SV, HQV 

and b-HQV, have been predicted in parallel plate geometry. 

  We investigated cw-NMR spectra of 3He-A in the parallel-plate geometry with a 

spacing of 12.5 µm in a field perpendicular to the plates8, 9.  We found a new satellite 

signal, which appeared under rotation for some range of the rotation speed Ω. These 

results have been compared with Kee-Maki's6 phase diagram of b-HQV and free HQV as 

a function of Ω and with our model8 of the spin wave signal in the region of the flow-

induced FT.  In this report, we show our spin wave model in some detail and discuss the 



3 

temperature dependences of the critical rotation speed for creation of the new satellite 

signal, the satellite signal frequency and intensity in comparison with our model. 

 

2. EXPERIMENTAL RESULTS AND ANALYSIS 

 

Figure 1 shows the sample cell.  The sample cell for parallel plate geometry was made 

by stacking two kinds of polyimide films with thicknesses of 12.5 µm and 25 µm shown 

by (a) and (b). All 12.5 µm-films (b) have holes of radius R = 1.5 mm and slits of 0.3 

mm-wide channels, which connect other holes of bulk space (R=1.5 mm).  The other 25 

µm-films (a) have holes (R =1.5 mm), which serve a bulk part of the sample.  The two 

kinds of film are stacked together one on other to form 110 spaces with gaps D=12.5 µm 

(see the cross sectional view (d)).  Each space (12.5 µm gap and 3 mm diameter) forms 

parallel plate geometry and is connected by a 0.1 mm slit to the bulk sample.  These 

films are packed inside Stycast sample cell (c). We prepared two NMR coils to detect 

NMR signals for 3He-A sample in parallel plate geometry and the bulk, shown in (e).    

 

        

Fig. 1. (color online) Sample cell.  Two kinds of films (a) and (b) to be used for 3He in parallel 

plate geometry. NMR cell (c) for the parallel-plate sample.  (d) Cross sectional view of the stacks 

of the parallel plates.  The sample cell (e) assembled with parallel-plate and bulk samples and Pt-

NMR thermometer.  
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The sample was set to the ISSP rotating cryostat and could be rotated up to 2π rad/s.  

The sample pressure was 3.05 MPa and cw-NMR was taken at the Larmor frequency fL = 

869 kHz.  The NMR magnetic field H = 26.7 mT was applied perpendicularly to the 

film surface and the rotation axis was also perpendicular to the surfaces. 

 

 

Fig. 2. (color online) Typical NMR absorption spectra as a function of the normalized frequency 

shift from fL. Solid line is spectrum taken at Ω = 1.80 rad/s and dotted line is one for Ω = 0.01 

rad/s. The satellite signal around Δf / fL = -0.07 is shown in inset on an expanded scale. 

 

Figure 2 shows typical cw-NMR absorption spectra for 3He-A in parallel plate 

geometry taken at T = 0.81 Tc, where the transition temperature, Tc, was 2.46 mK and the 

horizontal axis is the frequency shift from the Larmor frequency fL normalized by fA(T) = 

ΩA(T)2 / 2fL and ΩA(T) is the longitudinal frequency in A-phase1.  The sample was cooled 

down at rest through Tc and the dotted line was taken at a rotation speed Ω = 0.01 rad/s 

and the solid curve at Ω = 1.80 rad/s.  We cooled down the sample with a very small Ω 

in order to make sure that the l-texture is uniform and regarded it as the sample cooled 

through Tc at rest.  The inset shows the high frequency peak (called a satellite signal) of 

the spectrum taken at Ω =1.8 rad/s subtracted by the spectrum at rest in the range of Δf / fL 

between -0.3 and 0.3.  The main peak was fully-negatively-shifted and a higher 

frequency peak is near fL.   The small high frequency peak at rest comes from a few 

layers of solid signals on the whole surface area of films.  This is confirmed by the 

resonance frequency almost at fL and the temperature dependence of the signal intensity, 

which follows Curie-Weiss law.  The negatively-shifted main peak is signal from the 

uniform texture of 3He-A in parallel plate geometry. As we started to rotate the sample, 

the main peak intensity started to decease at Ω=1.0 rad/s while the higher frequency 
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increased.  The higher frequency peak subtracted by the solid 3He signal at Ω = 0 is 

called a satellite signal. The satellite signal happened to be almost at the same frequency 

as the solid signal.  Total signal intensity of the sum of the main peak and the satellite 

signal is always conserved under rotation and we can identify the satellite peak induced 

by rotation.  

In uniform texture, the transverse NMR resonance frequency is given by, 

 

! 

f = fL + Rt

2
"
#A (T)

2

2 fL
= fL + Rt

2
" fA (T),   (1) 

 

where 

! 

R
t

2
= cos(2") and θ is the angle between l and d1.  In bulk sample, θ = 0 and 

fA(T) is measured from bulk A-phase NMR.  The angle θ in parallel plate geometry is 

expected to be π/2 and

! 

R
t

2 is -1.  The temperature dependence of the main peak is given 

by

! 

f = fL " 0.93 fA (T)  by using measured values of fA(T) in the bulk sample.  The 

sharpness of the main peak and 

! 

R
t

2
= "0.93  indicates that l is oriented almost 

perpendicular to d and films are stacked uniformly and parallel to each other (see also the 

cross sectional view (d) in Fig. 1). 

The satellite signal introduced by rotation appears at 

! 

R
t

2= -0.07.  Since the solid 

signal appears almost at the same frequency as that for the satellite signal, we define the 

intensity of the satellite signal Is(Ω) as, 

 

 

! 

Is(") = (I( f .") # I( f ,0))df
fL # fA / 3

fL + fA / 3

$ ,    (2) 

 

where 

! 

I( f ,")  is the NMR intensity at a frequency f under Ω, as shown in Fig. 1 and the 

solid signal is subtracted to get the satellite signal.  In Fig. 3, the normalized 

! 

I
s
(")  by 

Itotal, denoted as 

! 

I
s

'
(") , is plotted as a function of Ω, where Itotal is a constant for any Ω.  

The interval of the integrals in Eq. (2) is somewhat arbitrary and is chosen to cover the 

line width of the satellite signal near fL, as shown in the inset of Fig. 2. 
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Fig. 3. (color online) Normalized satellite signal intensity as a function of Ω. Dotted line is the 

spin wave intensity predicted by the FT model. 

. 

This data was taken at T = 0.81 Tc when the sample was cooled through Tc at rest 

and the sample started to rotate at T < Tc, as shown by arrows in the direction for data to 

be taken.  In acceleration from Ω = 0, no change was observed in the NMR spectrum 

and no satellite appears below ΩFr = 1 rad/s.  Above ΩFr, the satellite signal was 

observed nearly at fL, and increased rapidly up to Ωc = 1.8 rad/s.  The satellite signal had 

a maximum at Ωc, decreased gradually as Ω increased and became almost constant above 

4 rad/s up to 2π rad/s.  When Ω was deceased from 2π rad/s, the satellite signal deceased 

rapidly and disappeared at 5.5 rad/s down to Ω = 0.   

We define here ΩFr at which the satellite signal appears and Ωc at which the 

satellite signal takes a maximum value.  The Is(Ω) vs. Ω shows a large hysteresis.  It 

should be noted that when Ω changes between 0 and Ωc, Is(Ω) is reversible.  But once Ω 

increases beyond Ωc, Is(Ω) is not reversible any more and shows the hysteresis.   It is 

also noted that when the sample is cooled through Tc with rotation speed of Ω = 2π rad/s, 

the satellite signal was not observed and when Ω was decreased down from 2π rad/s to 

zero, no change in spectrum and no satellite signal were observed down to Ω = 0.   

 It may be important to investigate temperature dependence of the satellite signal 

to find the origin of the satellite signal. The satellite-signal frequency depends on T but  

! 

R
t

2= -0.07 do not depend on T.  We show ΩFr and Ωc as a function of T in Fig. 4.  
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Fig. 4. Temperature dependence of ΩFr and Ωc.  

 

The vertical axis on left-hand-side is the velocity at the edge of the sample and is 

obtained by V = RΩ = 1.5 mm Ω.  Both Ωc and ΩFr do not depend on T and the average 

values are Ωc = 1.70 rad/s (Vc = 2.6 mm/s) and ΩFr = 1.1 rad/s (VFr = 1.7 mm/s). 

 Figure 5 shows the temperature dependence of Is(Ω).  Since Ωc and Itotal do not 

depend on Τ, we pick up values of Is(Ω) at Ω = Ωc and I’s(Ωc) = Is(Ωc)/ Itotal are plotted 

against T/Tc.   The value of I’s(Ωc) are 0.22 at T/Tc = 0.8 and tends to become zero at Tc.  

It should be noted that I’s(Ωc) and thus Is(Ω) depend on T even though all quintiles such 

as ΩFr, Ωc and Itotal are independent of T. 

            

Fig. 5. Temperature dependence of the normalized satellite intensity at Ωc. 

  

3. DISCUSSION  
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When we rotated 3He-A in the parallel plate geometry, rotation would cause the coupling 

of the texture with flow and introduction of quantized vortices.  Regarding vortices, 

three kinds of vortices, SV, HQV and b-HQV, have been proposed.  No NMR signal is 

expected to be observed for SV and HQV.  Kee and Maki suggested that HVQ form 

bound pairs at low vortex density, which would cause a large spin wave signal trapped by 

b-HQV. In this section, we introduce our model to explain the observed satellite signal, 

which is attributed to the spin wave signal trapped in the dipole potential of the flow-

induced FT region. We also compare our result with Kee and Maki’s b-HQV model. 

 

3.1. Flow-induced FT and spin wave in the FT region 

 
When the sample is rotated, the normal component of the superfluid rotates as a solid 

body and the normal fluid velocity is written as vn = rΩ, where r is distance from the 

rotation axis.  Because of the anisotropic energy gap of A-phase along l, normal flow 

tends to orient l parallel to the flow.  Between parallel plates, l texture under a normal 

flow is determined by a balance between orientational forces (the boundary condition of l 

on the surface, the flow and the dipole interaction and the bending energy)1.  Under such 

competitions, it is well known that there is a threshold in the counterflow velocity vFr, 

above which the system undergoes a Fréedericksz transition (FT) from a uniform texture 

to a non-uniform one.  We numerically calculate FT and spin wave trapped by dipole 

potential caused by FT transition.  Our model is as follows: The parallel plate has a gap 

of D which is comparable to ξD and the plate is in x-y plane and the z-axis is 

perpendicular to the plate.   The normal fluid (or counter flow) flows with velocity v 

along x-axis.  We fix d along x-direction to minimize the magnetic field energy. The l-

vector is given by

! 

l = sin" e
x

+ cos" e
z
, where β is a angle between the z-axis and l.  We 

determine the l-texture by minimizing the following free energy10 as, 

! 
! 

F = dz
1

2
"#v

2 + ("
//
$ "# )v

2
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' 
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2
v
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5 
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8 
8 $D / 2

D / 2

9  , (3) 

 

where the 1st term is the sum of kinetic energy of flow and bending energy and the 2nd 

term is the dipole energy.  We minimize the above free energy subjecting the boundary 

condition that l is perpendicular to the wall and determine the l-texture as a fixed normal 

flow velocity v.   The distribution of l is determined as a function of z and the dipole 

energy (

! 

" (d # l)
2 = sin2 β(z)) has position dependence.  The l around z = 0 (at the 
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middle of the gap) can be deflected along the flow when the normal flow exceeds a 

critical velocity, vFr. Since D is comparable to ξD, non-uniform dipole field can trap a spin 

wave and a new satellite signal of the spin wave appears in NMR spectrum.   

In Fig. 6, the inset shows the spin wave frequencies as a function of v for various 

values of a parameter, D/ξD. The FT appears at v = vFr and its spin wave frequency rapidly 

increases from 

! 

R
t

2= -1 and then is saturated at some value.  The results are very 

sensitive to the choice of ξD.  The calculated critical velocity vFr is about 3 mm/s and the 

saturated value of the frequency is about 

! 

R
t

2~ 0 (f ~ fL) for ξD = 10 µm.  Figure 6 shows 

the calculated NMR spectrum by using the inset of Fig. 5 for a case of Ω = 1.8 vFr / R, 

where v(r) = rΩ for 0 < r < R and R = 1.5 mm, D = 12.5 µm and ξD = 10 µm.  We 

identified the onset value of v for the satellite signal as vFr and vFr = RΩFr = 1.5 mm/s and 

ΩFr = 1.0 rad/s was found (see Fig. 3).  The spin wave frequency was 

! 

R
t

2= - 0.07 (see 

Fig.2).  The agreement with the experiment is good for the choice of ξD=10 µm. 

Now we consider the spin wave signal intensity and the hysteresis as a function 

of Ω, as shown in Fig. 2 

 

        

Fig. 6. The FT-induced spin wave frequency predicted for ξD = 10 µm. The inset is the spin wave 

frequency in the FT region as a function of the counter flow velocity for various values of D/ξD. 
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Fig. 7. (color online) Flow profile of the normal fluid velocity vn (r) (dotted line) and the 

superfluid velocity vs (r) (solid curve) as Ω increases in (a) and (b) and then decreases in 

(c) and (d) after it reaches a maximum Ω. 

 

Figure 7 schematically shows flow patterns of normal fluid velocity (dotted line) 

vn(r) = rΩ and superfluid velocity (solid curve) vs(r) in the rotational direction in 

the parallel plate geometry.  The region where v = vn - vs > vFr is illustrated as a 

shaded area.  In acceleration: (a) For Ω > ΩFr, FT region proceeds inward as 

rotation speed increases, where vs = 0.  (b) For Ω > Ωc, vortices are created at r = 

R and form a vortex cluster around the rotation center, which expands outward as 

Ω increases to keep vn - vs = vc at r = R.  In deceleration: (c) vortex cluster 

expands with keeping the number of vortices. The FT region quickly shrinks as 

rotation speed decreases. (d) there is no FT region.  A similar model of vortex 

distribution in bulk liquid11 is used to evaluate the superfluid flow effect on Is(Ω). 

Above ΩFr in acceleration, FT starts from r = R and expanded inward in 

the acceleration as 1- (rFr/R)2 as illustrated in Fig. 7 (a), where rFr = RΩFr / Ω is the 

inner edge of the FT region.  The critical rotation speed at the peak of I's(Ω)), Ωc 

= 1.85 rad/s, can be attributed to a critical velocity for creation of vortices in the 

parallel-plate geometry at the edge of the sample. Here we do not consider any 

pinning effect on vortices between plates.  Vortices produce superfluid flow, vs, 

and reduce the counterflow velocity.  In this model, vortices come into the 

superfluid so that the counterflow at the wall is maintained as vn (R) - vs (R) = vc, 

where vc = RΩc is the critical velocity for vortex, and these vortices form a cluster 

around the rotation center.  Inside the cluster, there is no macroscopic 
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counterflow and thus no FT region.  While the outside of the cluster region, the 

counterflow is given as vn (r) - vs (r) = rΩ - κ Nv / 2 π r, where κ is the quantum of 

circulation and Nv is the number of vortices, the FT region is reduced in area by 

the vortices.  In deceleration, the vortex cluster expands with keeping the vortex 

number [Fig. 7 (c)], and the FT region disappears in further deceleration [Fig. 7 

(d)]. 

In Fig. 3, we plot the area where the counterflow exceeds vFr as a function 

of Ω as a dashed line with a fitting parameter α as α[1- (rFr)/R]2].  This line 

describes Is'(Ω) very well by adjusting α = 0.3.  This good coincidence strongly 

supports our interpretation that FT is taking place above ΩFr by counter flow and 

the counter flow effect is reduced by vortices which appear above Ωc.   

NMR spectrum taken in deceleration between Ω =5.5 and 0 rad/s 

correspond to the case shown in Fig. 7 (d), where the counter flow velocity should 

be smaller than vFr and therefore there is no FT region, and should be identical to 

the initial spectrum shown by a dotted line in Fig. 1 taken at Ω = 0 rad/s. 

However, there should be lots of vortices trapped in this case but no vortex signal 

was observed.  This result indicates that vortices in the parallel plate geometry 

were not observed by NMR and vortices in parallel-plate geometry are quite 

different from soft-core vortices observed in the bulk A-phase2. This implies that 

the vortices may be SV or HQV (not b-HQV predicted by Kee and Maki5).  It is 

noted that the main peak signal in the case of Fig. 7(d) was identical to that 

without vortices and did not show any broadening of the line width under 

influence of vortices. This also implies that vortices in the parallel plate geometry 

do not have soft cores.   

One of the results which does not agree with FT-induced spin wave model 

is that we need a large reduction factor α = 0.3 to explain the size of I’s(Ω).  The 

spin-wave wave function in the FT region is uniform across the gap of the parallel 

plate and we expect the fitting parameter α should be about 1, which disagree 

with the observed value of 0.3.  Furthermore, the only fitting parameter in the 

calculation is ξD, which is temperature-independent.  Therefore FT-induced spin 

wave model does not predict any strong temperature dependence of I’s(Ω), which 

contradicts the result shown in Fig. 4.  Further studies would be needed to reveal 

the nature of vortices and the satellite signal which we believe to be attributed to 

the FT-induced spin wave signal. 
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3. 2. Kee and Maki’s b-HQV model and its satellite signal 

 

Kee and Maki studied stability conditions among singular vortex, HQV and b-HQV as 

a function of rotation speed where average distance between two vortices 2a is given by 

1/ (π a2) = 2Ω / Nκ, where κ is quantum circulation and N the number of quanta per 

vortex.  They predicted that, (a) The SV is unstable against HQV if Ω < 5 x 106 rad/s.  

(b) The b-HQV is most stable for small Ω with a low density of vortices.  (c) For Ω > 

Ωc, free HQV is more stable than b-HQV.  They estimate Ωc = 2~12 rad/s. (d) the b-

HQV are detectable by NMR. 

 They interpreted the result of satellite signal I’s(Ω) shown in Fig. 3 as follows.  

The ΩFr corresponds to some kind of the critical speed of rotation for vortex nucleation 

and for Ω > ΩFr, b-HQV are introduced and the vortex density increases as Ω increases.  

At Ω = Ωc, b-HQV breaks into free HQV.  Since free HQV does not contribute to 

NMR signal, I’s(Ω) decreases as the number of b-HQV decreases.  They pointed out 

that the spin wave is trapped at b-HQV and the observed intensity I’s(Ω) and frequency 

of the b-HQV spin wave agree with our observation. 

Their result of the critical values of pair-braking speed of rotation, spin wave 

frequency and intensity does not strongly depend on T so that they could not explain the 

temperature dependence of I’s(Ω) shown in Fig. 5.  Their model of b-HQV does not 

agree with the hysteresis curve in Fig. 3, particularly in the decelerated process where 

I’s(Ω) quickly disappeared down to Ω = 0.  It is difficult to explain the history-

dependent result for I’s(Ω) by this model unless some pinning effects of vortices are 

introduced. 

 

4. Summary 

 

We have measured NMR on 3He-A under rotation in parallel plate geometry whose gap 

was comparable to ξD ~ 10 µm.  We found a very narrow main peak at rest with 

! 

R
t

2 = 

-0.93 (almost full negative shift), that indicates the sample had a uniform texture with 

the configuration of l⊥d.  When we rotated the sample, a new satellite peak appeared 

at 

! 

R
t

2= -0.07 for Ω > ΩFr = 1.1 rad/s.  The satellite intensity I’s(Ω) reached a 

maximum at ΩC = 1.7 rad/s and decreased gradually as Ω was increased.  When Ω 

decreased from the maximum rotation speed of 2π rad/s, I’s (Ω) decreased rapidly and 
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disappeared below 5.5 rad/s and down to 0 rad/s.   The quantities, ΩFr, Ωc and

! 

R
t

2, did 

not depend on T but I’s(Ω) depended on T. 

Based on hysteresis of the satellite signal against Ω, we propose the spin wave 

model in the flow-induced FT region.  We calculated the flow-induced FT and the 

spin wave frequency and intensity trapped in the FT region.  The spin wave frequency 

or 

! 

R
t

2 and the onset velocity of the FT, Vc, agree well with experimental result when 

we chose ξD = 10 µm.   In order to explain the hysteresis in I’s(Ω), we introduced the 

vortex nucleation critical rotation speed Ωc and velocity vc = RΩc.  For Ω > Ωc, the 

introduction of vortices reduces the counter flow velocity and thus decreases I’s(Ω).  

This model agrees well with experimental results except for the temperature 

dependence I’s(Ω, Τ ) and the size α = 0.3. 

We compared our result with Kee and Maki’s model.  They claimed that the 

satellite signal comes from b-HQV.   They identified that Ωc is the pair-breaking 

critical rotation and b-HQV becomes non-bound free HQV for Ω > Ωc.  They 

estimated Ωc to be 2~12 rad/s and a size of signal I’s(Ω) , which agrees with our results. 

However their model does not explain the hysteresis and temperature dependence of 

I’s(Ω).  
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