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EQUIVALENCE OF DOMAINS ARISING FROM DUALITY
OF ORBITS ON FLAG MANIFOLDS III

TOSHIHIKO MATSUKI

ABSTRACT. In Gindikin and Matsuki 2003, we defined a Gg-K¢ invariant sub-
set C(S) of G¢ for each Kc-orbit S on every flag manifold G¢/P and conjec-
tured that the connected component C(S)g of the identity would be equal to
the Akhiezer-Gindikin domain D if S is of nonholomorphic type. This con-
jecture was proved for closed S in Wolf and Zierau 2000 and 2003, Fels and
Huckleberry 2005, and Matsuki 2006 and for open S in Matsuki 2006. It was
proved for the other orbits in Matsuki 2006, when Gpg is of non-Hermitian
type. In this paper, we prove the conjecture for an arbitrary non-closed Kc-
orbit when Gy is of Hermitian type. Thus the conjecture is completely solved
affirmatively.

1. INTRODUCTION

Let G¢ be a connected complex semisimple Lie group and Gg a connected real
form of G¢. Let K¢ be the complexification in G¢ of a maximal compact subgroup
K of Gg. Let X = G¢/P be aflag manifold of G¢, where P is an arbitrary parabolic
subgroup of G¢. Then there exists a natural one-to-one correspondence between
the set of K¢-orbits S and the set of Gg-orbits S” on X given by the condition:

(1.1) S+ 8 <= SNS is non-empty and compact
(IM2]). For each Kc-orbit S we defined in [GMI] a subset C(S) of G¢ by
C(S)={z € Ge¢ | SN S is non-empty and compact}

where S’ is the Gg-orbit on X given by (1.1).

Akhiezer and Gindikin defined a domain D/K¢ in G¢/Kc as follows ([AG]). Let
gr = £ @ m denote the Cartan decomposition of gg = Lie(Gr) with respect to K.
Let t be a maximal abelian subspace in im. Put

t={¥ et||a(Y)| < § for all a € T}
where X is the restricted root system of g¢ with respect to t. Then D is defined by
D = Ggr(expt™)Kc.
We conjectured the following in [GMI].
Conjecture 1.1 (Conjecture 1.6 in [GMI]). Suppose that X = G¢/P is not Kc-

homogeneous. Then we will have C(S)g = D for all Kc-orbits S of non-holomorphic
type on X . Here C(S)g is the connected component of C(S) containing the identity.
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Remark 1.2. When Gg is of Hermitian type, there exist two special closed Kc-
orbits S = KcB/B = Q/B and Sy = KcwoB/B = Quy/B on the full flag
manifold G¢/B, where @ = K¢ B is the usual maximal parabolic subgroup of G¢
defined by a nontrivial central element in ¢ and w is the longest element in the
Weyl group. For each parabolic subgroup P containing the Borel subgroup B, two
closed Kc-orbits S1 P and Sy P on G¢/P are called of holomorphic type and all the
other Kc-orbits are called of nonholomorphic type. Especially all the non-closed
Kc-orbits are defined to be of nonholomorphic type.

When Gp is of non-Hermitian type, we define that all the Kc-orbits are of
nonholomorphic type.

Let S,p denote the unique open dense Kc¢-B double coset in G¢. Then S(’)p is
the unique closed Gr-B double coset in G¢. In this case we see that

C(Sop) = {z € G | #Sp D S, }-

It follows easily that C(S,p) is a Stein manifold (cf. [GMI], [H]). The connected
component C(Sop)o is often called the Iwasawa domain.
The inclusion

D C C(Sop)o

was proved in [H]. (Later [M3| gave a proof without complex analysis.) On the
other hand, it was proved in [GMI], Proposition 8.1 and Proposition 8.3, that
C(Sop)o C C(S)p for all Kc-P double cosets S for any P. So we have the inclusion

Hence we have only to prove the converse inclusion
(1.3) C(S)ycD

for Kc-orbits S of nonholomorphic type in Conjecture 1.1.
If S is closed in G¢, then we can write

C(S)={reGec|xScS}.

So the connected component C(S)y is essentially equal to the cycle space introduced
in [WW]|. For Hermitian cases the inclusion (1.3) for closed S was proved in [WZ2]
and [WZ3]. For non-Hermitian cases it was proved in [FH] and [M4].

When S is the open K¢-P double coset in G, the inclusion (1.3) was proved in
[M4] for an arbitrary P generalizing the result in [B].

Recently the inclusion (1.3) was proved in [M5] for an arbitrary orbit S when
Gr is of non-Hermitian type. So the remaining problem was to prove (1.3) for
non-closed and non-open orbits when Gy is of Hermitian type.

In this paper we solve this problem.

In the next section we prove the following theorem.

Theorem 1.3. Suppose that Gr is of Hermitian type and let S be a non-closed
Kc-P double coset in Ge. Then there exist Kc-B double cosets S1 and Sy contained
in the boundary 0S = S — S of S such that

$(§1 ] gg)d N S(/)Cl 7é (b

for all the elements x in the boundary of D. Here Sy denotes the dense Kc¢-B
double coset in S.
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Remark 1.4. It seems that E'I and :S’\; are always distinct Kc-orbits. But we do
not need this distinctness.

Corollary 1.5. Suppose that Gg is of Hermitian type and let S be a non-closed
K¢-P double coset in G¢. Then C(S)o = D.

Proof. Let Sy be as in Theorem 1.3. Let ¥ denote the set of the simple roots in
the positive root system for B. For each o« € ¥ we define a parabolic subgroup
P, =BUBw.,B

of G¢. By [GM2], Lemma 2, we can take a sequence {aj, ..., a,} of simple roots
such that

dimg So Py, -+ Po, = dime So + &
for k=0,...,m = codimcSp. Then it is shown in [M5], Theorem 1.4, that
(1.4) z € C(S)N DY = 28N S, Pa,, -+ Poy = SN S},

Let x be an element in the boundary of D. Then it follows from Theorem 1.3
that

m

2(0S)N S, # 6.
If « is also contained in C(S), then it follows from (1.4) that
z(0S) N SgyPa,, -+ Pay, = ¢.

. rcl . . . /
Since S; is contained in the closed set Si, Py, -+ Po,, we have

2(0S) N Sy = o,
a contradiction. Hence x ¢ C(S). Thus we have proved C(S)y C D. O

Section 3 is devoted to the explicit computation of the case where Ggr = Sp(2,R).
We use Proposition 3.2 in the proof of Lemma 2.4 in Section 2. Another simple
example of the SU(2, 1)-case is explicitly computed in [M4] Example 1.5.

2. PROOF OF THEOREM 1.3

Let j be a maximal abelian subspace of it. Let A denote the root system of the
pair (gc,j). Since G is a group of Hermitian type, there exists a nontrivial central
element Z of it and we can write

gc=Ffcdndn

where Al = {a € A | a(Z) > 0}, n = @, cat 0c(j;a) and * — ¥ denotes the
conjugation in g¢ with respect to gr. Let @ be the maximal parabolic subgroup
of G¢ defined by Q = K¢ expn. Let AT be a positive system of A containing A
Then it defines a Borel subgroup B = B(j, A™) of G¢ contained in Q.

Let P be a parabolic subgroup of G¢ containing B. Let S be a non-closed K¢-P
double coset in G¢ and let Sy denote the dense K¢-B double coset in S. By [MI],
Theorem 2, we can write

So = Kccy, - cy,wB
with some w € W and a strongly orthogonal system {~1,...,vx} of roots in A}.
Here W is the Weyl group of A and

¢y, = exp(X — X)

with some X € gc(j, ;) such that c%j is the reflection with respect to ;.
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Let © denote the subset of U such that P = BWgB where Wg is the subgroup
of W generated by {w, | @ € ©}. Let Ag denote the subset of A defined by

No={BecA|p= ZnaaforsomenQGZ}.
acO

Ifv; € wAg forall j = 1,...,k, then it follows that ¢, € wPw forallj=1,....k
and therefore

Sw! = SyPw ! = Kcey, - -c%wa_1 = KcwPw™!

becomes closed in G¢, contradicting the assumption. Hence there exists a j such
that 7; ¢ wAe. Replacing the order of 71, ..., 7, we may assume that

1 ¢ whe.

Let [ denote the complex Lie subalgebra of gc generated by gc(j,v1) ® gc(j, —71)
which is isomorphic to s{(2,C) and let L be the analytic subgroup of G¢ for . Then
we have (LN Kc¢)cy, (LNwBw™') = (LN Ke)e,'(LNwBw™!) since both of the
double cosets are open dense in L. Hence we have

So = Kcey, - e, wB = ch,;llcw ceqwB = Keey, - - ey wy, wB.
If v ¢ wA™, then vy € w,, wA™T. So we may assume
7€ wAt,
replacing w with w., w if necessary. Let ¢ denote the real rank of Gg.

Lemma 2.1. There exists a maximal strongly orthgonal system {f1,..., 08¢} of
roots in A} satisfying the following conditions:

(i) If v1 is a long root of A, then 1 = 1 and 7va,...,7x € RBa @ -+ ® RS,
(If the roots in A have the same length, then we define that all the roots are long
700tS.)

(i1) Ify1 is a short root of A, then v1 € RG1 ®RB2 and 7o, ...,k E RB3H--- P
RS,.

Proof. First suppose that gg is of type AIII, DIII, EIII, EVII or DI (of real rank
2). Then the roots in A have the same length. So we have only to take §; = ~; for
j=1,...,k and choose an orthogonal system {01, ..., 3} of roots in A containing

{517 CIE 7616}
Next suppose that gg = sp(¢,R). Write

A={te,te; |1<r<s<f}U{F2e. |1<r</(}
and
A ={e,+tes |1<r<s<iu{2e, |1<r<¥}

as usual using an orthonormal basis {e1, ..., e} of j*. If 1 = 2e,., then {fs, ..., B¢}
= {2e; | s # r} satisfies condition (i). If 1 = e, + e5 with r # s, then we put 8; =
2e, and (2 = 2e,. Assertion (ii) is clear if we put {0s,..., 08¢} = {2e, | p # 7, s}.

Finally suppose that gg = s0(2,2p — 1) with p > 2. Then the real rank of gg is
two, and we can write

A={te,te; |1 <r<s<ptU{te,|1<r<p}

and
At ={e1te, |2<s<p}U{e}
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with an orthonormal basis {e1, ..., e,} of j*. If k = 2, then we have y1 = 1 = e1%e;
and v9 = 2 = €1 F es with some s. If £ =1 and 73 = e; + e4, then 51 = 71
and B2 = e; Fes. If K =1 and v = e;, then we may put f; = e; + es and
52 = €1 — €a. O

Definition 2.2. (i) Define a subroot system A; of A as follows.
If 7 is a long root of A, then we put

Ay ={£p1} = {En}
On the other hand if 7 is a short root of A, then we put
A =AN R/ ®RB2)

(which is of type Ca).

(ii) Put Ay ={a € A |« is orthogonal to Aq}.

(ili) Let [; denote the complex Lie subalgebras of g¢ generated by @aeAj gc(j, @)
for j =1,2.

(iv) Let Ly and Lo denote the analytic subgroups of G¢ for [; and [5, respectively.

It follows from Lemma 2.1 that
¢y, € Ly and that c,,---cy, € Lo.

Let X; be nonzero root vectors in gc(j, 5;) for j =1,...,¢. Then we can define
a maximal abelian subspace

E=R(X, - K1) @ O R(X, — X7)
in m and a maximal abelian subspace
a=R(X;+X1) & &RX,+ Xy)
in m as in [GMI], Section 2. Since the restricted root system X(t) is of type BCy
or Cy, the set tT is defined by the long roots in (t). Hence it is of the form
=M+ +V |V et}

where tj+ = {s(X; — X;) | =(7/4) < s < m/4} by a suitable normalization of X;
forj=1,...,¢

Put Tt = expt™ and A = expa. Then it is shown in [GMI], Lemma 2.1, that
AQ = T7Q and hence that

GrQ =KAQ = KT"Q
by the Cartan decomposition Gg = K AK. The closure of GrQ in G¢ is written as
(GrQ)* = GrQ U Greg, QU Greg,cg,Q U -+ U Greg, -+ ¢3,Q

where ¢g, = exp(m/4)(X; — X;) for j = 1,...,¢ ([WZI], Theorem 3.8). We also see
that

(2.1) Greg, -+ c3,Q = Keg, g, T} - T, Q

where TjJr = exp t;r since we can consider the action of the Weyl group Wi (T') on
T which is of type BC,.
By the map

L: K — (2Q,20Q)
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the complex symmetric space G¢/Kc is embedded in G¢/Q x Ge/Q ([WZ2]). It is
shown in [BHH], Section 3, and [GMI], Proposition 2.2, that

(D/Kc) = GrQ/Q x GrQ/Q.
Lemma 2.3. Suppose that
L(zKc) € Grep, Q/Q x GrQ/Q

and that v is a long root of A} . (If the roots in A have the same length, then we
define that all the roots are long roots.) Define a K¢-B double coset S1 by

§1 = Kcey, -+ - e wB.
Then §1 is contained in S = S — S and
51 NS, +# ¢.

Proof. 1t is clear that we may replace x by any elements in the double coset Grz Kc.
By the left Gg-action we may assume that = € Q. By the right Kc-action we may
moreover assume that z € N since Q = NK¢. Since K = K¢ N Gg normalizes N,
we may assume by (2.1) that

xQ = cp ta - tQ
with some t; € TjJr for j =2,...,£. As in [WZ2], we write
g =Cy =c=c ct and :tj_tg|r for j=2,...,¢
with ¢™, ¢ € N and ¢, t;r € Q. Then we have
r=cty---1,.

It follows from Lemma 2.1 and Definition 2.2 that c.,---¢c,, € La. Since
Ad(c,, -+ - ¢y, )j is 6-stable, the double cosets

S, = (Lg n K(C)C’Yz el (L2 N wafl)
and
St, = (LaNGR)Cy, -+ €y (Lo NwBw ™)

correspond by the duality ([M1], Theorem 2).
It follows from Lemma 2.1 (i) and Definition 2.2 that

¢t ey and tQi,...,tEt € Lo.

It follows moreover from Definition 2.2 (i) that [; = s((2, C).
Write y = t5 ---t, . Then we have

yQ =t2---1,Q CTTQ C GrQ

and
yQ = Q C GrQ.
Hence we have
ye€ Lyn(C(S1)NC(S2)) =LaND

by [GMI], (1.3). By the inclusion (1.2) this implies that the set ySr, N Sy, is
nonempty and closed in Ly. Take an element z of ySr, N S’Lz.
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Since v, € wA™T, we have ¢t € wBw™!. Since ¢t € L; commutes with elements
in Lo, we have

cz € cySr, = c cTy(La N K¢)eyy -+ ¢y (Lo NwBw™ )

=c y(LaNKc)ey, - cyct (Lo NwBw™)

Cc yKeey, - c%wa_1 =25 w
On the other hand we have

cz € eS8y, = c(LaNGR)Cy, -+ €y (L2 NwBw™ 1)
= (Ly N GRr)Cy, Cypy oy (Lo NwBw ™) € Shw™".
Hence 2.5; N Sb # ¢. It is clear that - S5t = S because
(Li N Ke)(Li NwBw ™) € (L1 N Ke)e(Ly NwBw ™)) = L.
Now we will prove Sy ¢ S. Consider the map
¢ : Kc\Ge/B 3 KcgB — B(g)~'gB € B\Gc/B
introduced in [Sp] where 6 is the holomorphic involution in G¢ defining K¢c. We
have _
©(S1) = Bwtw,, - wy, wB
and
0(S) = (SoP) C Pw tw,, - w,, wP = BWew 'w,, - - w.,, wWeDB.

So we have only to show
(2.2) w iy, - wy,w ¢ Wow tw,, -+ wy, wWe.

Let Z be an element in j defining P. This implies that Z is dominant for AT and
that {a € U | a(Z) = 0} = O. Let w; and ws be elements in Wg. Let B( , )
denote the Killing form on g and let Y., denote the element in j such that

n(Y)=B(Y,)Y,) forallY €j.
Then we have
B(Z,w wy, - wywZ) — B(Z, wiw ™ wy, w.y, - wey, wwa Z)

= B(wZ — wy, WZ, Wy, - Wy, wZ)

2B(Y,,, wZ)
= mB(waw Wy wZ)
2B(Y- Z)?
_ ( ’Y17w ) >0
B(Y’YUY’Yl)
since 71 ¢ wAg. Thus we have proved (2.2). O

Lemma 2.4. Suppose that

U(zKc) € Grep, Q/Q x GrQ/Q
and that vy is a short root of A}. (We assume that gr = sp(¢,R) or so(2,2p — 1)
with p > 2.) Define a Kc-B double coset S1 by S1 = Kcgey, - - - ¢y, wB where

_Je if y1 is the simple short root of AT,
cg if n is the non-simple short root of AT
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Here AT = Ay NwA™ and 3 is the long simple root of AY. Then S, is contained
in 0S = S — S and
251 NS, + ¢.

Proof. Tt follows from Lemma 2.1 (ii) and Definition 2.2 that
cgl,tgjE € L; and tsi,...7tjt € Ls.

It follows moreover from Definition 2.2 (i) that [; = sp(2, C).

Write y = t5 ---t, . Then by the same argument as in the proof of Lemma 2.3
we see that the set ySr, N S’Lz is nonempty and closed in Ly. Take an element z of
ySr, N S/L2'

The positive system AT of A; consists of two long roots and two short roots.
Since v, € A}, v is either of these two short roots. Write 21 = gty -

First assume that v; is the simple short root of A}. Then it follows from
Proposition 3.2 (i) in the next section that

(2.3) z1(Ly N Ke)(Ly NwBw™) N ((Ly N Gr)ey, (L1 NwBw ™))%

is nonempty. Note that L; NwBw~! and ; correspond to wg, ngzl and ¢ in the
next section, respectively. Let z; be an element of (2.3). Then we have

z1z2 € z1(L1 N K¢) (L1 N U)Bufl)ySL2
=x1(L1 N Ke)(Li NwBw™ M )y(La N Ke)ey, -+ - ey (La NwBw ™)
= 21y(L1 N Kc)(La N K¢)ey, -+ - ¢y (L1 NwBw™ 1) (Ly NwBw ™)
CaKcey, - cpwBw ™! = xS 1w
and
z12 € (L1 N Gr)ey, (L1 NwBw™1))s]
= ((L1 N Gr)ey, (L NwBw™ 1)) (La N GRr)ey, -+ oy (Le NwBw ™)
C (Grey Cyy - cpwBw ™) = S w1t
So we have z.5; N S(’)Cl # ¢. We can prove S c8l—g by the same arguments as
in the proof of Lemma 2.3.

Next assume that 7; is the non-simple short root of AT. Then it follows from
Proposition 3.2 (ii) in the next section that

z1(L1 N Kc)eg(Lr N wBw™) N ((L1 N GRr)cy, (L1 N wa_l))Cl

is nonempty. Note that L; NwBw™!, v, and § correspond to B, & and 3, in the
next section, respectively. By the same argument as above we can prove

281 NS, £ ¢.

It follows from Remark 3.3 that S; C . Finally we will prove that S; ¢ S. Using
the same argument as in the proof of Lemma 2.3, we have only to show

(2.4) Wt wgw., - wy,w ¢ Wew tw,, -+ w.,, wWe.
Let Z and Y,, be as in the proof of Lemma 2.3. Define Y3 € j so that
B(Y)=B(Y,Y3) foralY €j.
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Then we have
B(Z,w wgw., -+ wy,wZ) — B(Z,wiw ™ wa, w.y, - wey, wwa Z)
= B(WaWZ — Wy, WL, Wy - - Wey, WZ)
= B(WZ — wy, WZ, Wy, -+ Wy, WE) — B(WZ — wawZ, W, - Wy, wZ)
2B(Y,,, wZ) 2B(Ys, wZ)
= 7B(Y 7w DY w _——_— —
B(Y’YI7Y'Y]) e ! B(Yﬁ’ Yﬁ)
QB(YM,wZ)2 2B(Ys,wZ)?
B(Y'Yl’Y’Yl) B(Yﬁ’yﬁ)
for wy,wy € Wg since

B(Y,,,wZ) >0, 0<B(YswZ)<B(Y,,wZ) and B(Ys Ys)=2B(Y,,,Ys,).

Thus we have proved (2.4). O

ka) B(Yﬁ>wV2"'w7ka)

>0

Using the conjugation on G¢ with respect to the real form Gy, the following
follows from Lemma 2.3 and Lemma 2.4.

Corollary 2.5. Suppose that
(zKc) € GrQ/Q x Grtz Q/Q.
Then there exists a Kc-B double coset §2 contained in S such that
28NS+ ¢.

Proof of Theorem 1.3. Let S be a non-closed K¢-P double coset in G¢. Then it
follows from Lemma 2.3, Lemma 2.4 and Corollary 2.5 that there exist Kc-B double
cosets S1 and Sy contained in 9S such that

(2.5) 2(S1US) NSy # ¢
for all z € 0D satisfying
(2.6) eKe € ' ((Grep, Q/Q x GrQ/Q) U (GrQ/Q x Grep, Q/Q)).
Suppose that
y(§1 U gg)d N S(/)Cl =¢
for some y € dD. Then there exists a neighborhood U of y in G¢ such that
Z(§1 U §2)d N S(/)Cl = ¢
for all x € U. But this contradicts (2.5) because the right hand side of (2.6) is
dense in 9(D/K¢). O
3. Sp(2,R)-CASE
Let G¢c = Sp(2,C) = {g € GL(4,C) | tgJg = J} where

(0 =1
J—<IQ 0).
Let

ke={(§ 1) |oe6L20} md Ga=GenUE = sn2R),
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Put Uy = Ce;®Ceq and U_ = Cez®Cey by using the canonical basis {e1, €2, €3,€4}
of C*. Then we have

Ke=QNnQ

where Q = {g € Ge | gUy =Uyyand Q ={g € Ge | gU_ =U_}.

The full flag manifold X of G¢ consists of the flags (V;, V) in C* where dim V; =
j, Vi C Vo and tuJv = 0 for all u,v € V5. Let B denote the Borel subgroup of G¢
defined by

B ={g € Gc|gCey =Ce; and gUy = U, }.
Then the full flag manifold X is identified with G¢/B by the map
gB = (‘/17‘/2) = (gC6179U+)'
There are eleven K¢-orbits

S1={(W,V2) [ Va = Uy},

Sy =A{(V1,Va) | V2 =U_},

Ss={(V1,Va) | V1 C Uy, dim(VonNU_) = 1},

Sy={(V1,Vo) | V1 CcU_, dim(VoNU;) =1},

Ss ={(V1,V2) [ Vi C UL} — (51U S3),

Se ={(Vi,Vo) | V1 CU_} — (S2 U Sy),

Sy ={(V1,Vo) | dim(VoaNUL) =dim(VaNU_) =1} — (S3 U Sy),
Ss={(V1,Va) | Vi nU; = {0}, dim(VanNU;) =1, VonU_ = {0}},
So ={(V1, Vo) | VinU_ = {0}, dim(VonU_) =1, VoanU; = {0}},
S0 ={(V1,Va) | VaNUx = {0}, ‘vJr(v) =0 for v € V; },

Sop = {(V1,Va) | Va N Ux = {0}, "vJr(v) # 0 for v € V; — {0}}

on X where

r(v) = ({)2 (}2) v

for v € C*. These orbits are related as follows ([MO], Fig. 12):

s, Sy S, S,
A
S5 S7 Se

1 2 1
Ss S1o S
2 1 2
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Let P; and P, be the parabolic subgroups of G¢ defined by
Pr=0Q and P, ={g€ Gc|gCes =Ce},
respectively. Then the above diagram implies, for example, that
S1P; = SsP, and that dimS; =dim S5 —1

by the arrow attached with the number 2 joining S7 and Sjs.
On the other hand define subsets

Cp=1{2€C*|(2,2) >0}, C_={zeC*|(z2) <0}
and Cp={z€C*|(z2) =0}

of C* using the Hermitian form (w, z) = Wy 21 +Ws 22 — W323 — Wiz4 defining U(2,2).
For v € C* define subspaces

J={ueC'|wJu=0} and vt ={ueC*|(v,u) =0}
of C*. Then Cy is devided as Cy = C§ U Cf where
Cs={veCy|v/ =vt} and Cf ={veCy|v #v}.
The Ggr-orbits on X are

Sy ={(Vi,Va) | Vo — {0} € O},
Sy = {(Vi,Va) | Va — {0} € C_},

Sy ={(V1,Va) | Vi — {0} C Cy, Van C_ # ¢},
Si={(V1,Va) | Vi — {0} C C_, VanCy # ¢},
SL={(Vi,Va) | Vi = {0} C Cy, VanC8 # {0},
Sk ={(Vi,Va) | Vi — {0} c C_, VanCy # {0}},
84 ={(V1,Va) | Vi — {0} C C§, Va ¢ Co},

St ={(Vi,Va) | V1 C C§, VanCy # ¢},
S6={(V1,Va) | Vi C C§, VanC # ¢},

Sio = {(V1,V2) | Vi — {0} C Cf, Va C Gy},
Sty ={(Vi,Va) | Vi C C§, Vo C Co}.

Here the Kc-orbit §; and the Ggr-orbit S} correspond by the duality for each
7=1,...,10,0p.
Take a maximal abelian subspace

ap O 0 0
0 0 0
)= Y(alaa2) 0 %2 —ay 0 a1, a2 S R

of tm. Using the linear forms e; : Y (a1,a2) — a; for j = 1,2, we can write
A = {£2e;,42e9,te; ez} and AT = {2e1,2e9,e1 + €2}

Write 81 = 2e;, B2 = 2e5 and § = e1 +e3. Take root vectors X1 = —F13 of gc(j, 1)
and Xy = —Foy4 of gc(j, B2) where Ej; (4,5 = 1,...,4) denotes the matrix units.
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Define
coss 0 —sins 0
- 0 1 0 0
tl(S) = exps(X1 — Xl) = exps(E31 — Elg) = sin s 0 COS § 0
0 0 0 1
and
1 0 0 0
- 0O coss 0 —sins
tg(s) = exXp S(XQ — Xg) = exXp S(E42 — E24) = 0 0 1 0

0 sins 0 coss
for s € R. Then we can write the Akhiezer-Gindikin domain D as
D =GrTT K¢

where TF = {t1(s1)ta(s2) | |s1] < 7/4, [s2] < w/4}. Write ¢g, = t;(w/4) and
wg; = t;(m/2) for j = 1,2. Then we can write

S; = KcgB and Sj’- = GrgB
for j =1,...,10,0p with the following representatives g ([M1], Theorem 2):

VAR! 2 3 4 15 6 7 8 9 10| op

g|e|WpWa, |WE, | Wy | €3y | CR Wy | CsWSB, | €3y | CBL WS, | C5 | CB1CB;

Here
10 0 -1
1 01 -1 O 0 —
Cs = ﬁ 0 1 1 0 = exp Z(X(S_Xé)
1 0 0 1

with X5 = —(E14 + Fa3) € gc(j, 9)-
The standard maximal flag manifold G¢ /@ is identified with the space Y of two
dimensional subspaces V, of C* such that ‘u.Jv = 0 for all u,v € V. by the map

Ge/Q>9Q — Vi =gUs €Y.
Similarly we also identify G¢/Q with Y by the map
Ge/Q29Q— V. =gU_ €Y.

As in Section 2 the complex symmetric space G¢ /K¢ is naturally identified with
the open subset

{(V},V2) € Ge/Q x Ge/Q | Vo nV_ = {0}}
of Gc/Q x Ge/Q 2Y X Y by the map
v:gKe — (V4 Vo) = (gUy, gU-).
Then the Akhiezer-Gindikin domain D/K¢ is identified with
GrQ/Q x GrQ/Q ={(V,,V.)eY xY |V, —{0} cCy and V_ — {0} C C_}.

Let 2 K¢ be an element of d(D/Kc) such that ((xK¢) € Gres, Q/Q x GrQ/Q.
Then it follows from Lemma 2.3 that

xKcgB N Greg, gB # ¢
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for g = e, wg, and cg,. This implies that

(3.1) xS1 N S§ # ¢,

(3.2) xS3N Sy # ¢

and that

(3.3) xS5 N S, # .

Since S4% = {(Vi,Va) | Vi C Co} D S}, it follows from (3.2) that
(3.4) 283N 8L £ ¢,

On the other hand since S],% > Sips it follows from (3.3) that

(3.5) 285N S, # ¢.
Remark 3.1. (i) If ((zKc) € GrQ/Q x Grtz Q/Q, then we can prove
xSy NSy # ¢, wS4NSg#¢, xSsN S, # ¢,
2SiNS. #£¢ and xS5N S~ # ¢

in the same way.
(ii) If we apply [M4], Theorem 1.3, to this case, then we have

x € 0D = x(S5 U Ss) NS, # .

So we see that the results in this paper are refinements of this theorem for Hermitian
cases.

By (3.4) and (3.5) we proved the following.

Proposition 3.2. If ((zKc) € Grep, Q/Q x GrQ/Q, then we have:
(i) zKcwg, BN (GRC(swﬁQB)Cl % ¢.
(ii) l‘K@C&B N (G]RQ;B)Cl £ ¢.

Remark 3.3. Tt is clear that Kcwg,B = S3 C S¢ = (Kccswg, B)? and that
K(CCBZB =S5 C Slcé = (K@CgB)Cl.
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