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Floating Black Hole in the Karch-Randall Model
and its Holographic Dual

Norihiro Tanahashi1) and Takahiro Tanaka2)

1Department of Physics, Kyoto University, Kyoto 606-8502, Japan
2Yukawa Institute for Theoretical Physics, Kyoto University,

Kyoto 606-8502, Japan

To investigate the holography in the Karch-Randall (KR) braneworld model, we con-
struct time-symmetric initial data of black holes floating in the bulk, and compare it with
its holographic dual, which is described by four-dimensional self-gravitating quantum field
theory in asymptotically AdS4 spacetime. We also give a definition and an explicit formula
of mass in the KR model extending the definition by Abbott and Deser for asymptotically
AdS spacetime. We obtain supporting evidence for the holography in the KR model such
as good agreements of phase structures and characteristic values between the two theories,
and find clues that the Hawking-Page transition of the four-dimensional quantum theory
in a microcanonical ensemble is holographically dual to a transition in the bulk black hole
configuration.

§1. Introduction

The AdS/CFT correspondence1) has been attracting intensive attentions these
years, and its extensions are discussed in wide settings. In this paper, we focus on
one of such an extension to the braneworld models. The Randall-Sundrum (RS)
model2) is a braneworld model that is composed of infinitely extending AdS5 bulk
and a four-dimensional positive tension brane. A remarkable feature of this model
is that four-dimensional gravity is well reproduced on the brane though the bulk
spacetime is infinitely extending. If we apply the AdS/CFT correspondence to the
AdS bulk, we obtain a duality of new type as follows.3)–6) Since the AdS boundary
is cut off by the brane in this model, we may consider the CFT resides on the brane
instead of the AdS boundary. It is believed that this CFT suffers an exotic UV
cutoff by this introduction of the brane. Adding to that, this deformed CFT couples
to four-dimensional gravity on the brane in this setting. Though this duality is not
fully established, there are many pieces of circumstantial evidence for it and still
attracting much interest.7)–17)

An interesting extension of this duality is to modify the four-dimensional ge-
ometry on the brane from asymptotically flat to AdS. This braneworld model with
an asymptotically AdS brane is called Karch-Randall (KR) model,18) and its real-
ization in the string theory is given in Ref. 19). It is known that four-dimensional
gravity is realized for length scale shorter than k2/k̃3, where k̃ and k are curvatures
of the brane and the bulk respectively, though there are no normalizable zero mode
and four-dimensional graviton is massive. This massive graviton appears also in
the four-dimensional gravity coupled to CFT due to loop correction to the graviton
propagator,20),21) so the duality seems to hold even in this extended setting. In the
KR model, boundary of the bulk is a composite of the brane and the AdS boundary
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2 N. Tanahashi and T. Tanaka

which share a common S2 boundary, as is shown in Fig. 1. Then, the duality suggests
that the bulk classical gravity corresponds to CFTs on those two boundaries. Since
the two boundaries can communicate via bulk in the five-dimensional perspective,
the CFTs on the boundaries are suggested to communicate with each other through
the common boundary.22)

AdS boundary

BraneGlue with copy

BHBH

Bulk

Fig. 1. Schematic picture of the KR model,

which is composed of Z2-symmetric AdS5

bulk regions and an AdS4 brane. We con-

sider bulk black holes in this model.

In the holography of this type,
the CFTs couple to gravity and it
is in asymptotically AdS spacetime.
Then, the Hawking-Page transition23)

may happen on the brane between ther-
mal AdS phase and quantum-corrected
black hole phase if the duality holds
even in the presence of strong gravity.
Based on this idea, it is conjectured that
the transition in the five dimensions is
realized as a configurational transition
between a black hole floating in the bulk
and the one localized on the brane.24),25)

A rough reasoning for it is as follows. When the bulk black hole is sufficiently small,
it can be trapped at the throat, at which the gravitational potential is minimized.
This floating black hole will induce a localized effective energy density on the brane,
which can be regarded as a star made of the CFT in hydrostatic equilibrium. As we
increase the bulk black hole size, it will touch the brane and become a brane-localized
black hole. An observer on the brane will regard this phenomenon as a transition
from a CFT star to a quantum-corrected black hole.24)–26) In this paper, we would
like to test this conjecture by constructing explicit solutions in the four-dimensional
and five-dimensional pictures.∗)

However, there are some problems to conduct comparison between the four-
dimensional CFT stars and five-dimensional bulk black holes. Since the CFT stars
are static objects, we should compare them with static solutions in five-dimensions,
though we do not know such a static solutions so far. Another problem is that we do
not know much about self-gravitating CFT. We cope with these difficulties by some
approximations. Firstly, we use five-dimensional time-symmetric initial data, which
is a snapshot of a momentarily static spacetime, instead of static solutions. This
initial data will share some common properties with static solutions, especially when
its mass is minimized among the available set of initial data with the same entropy.
If the initial data set is complete, that initial data with minimum mass will be a

∗) By the way, Chamblin and Karch suggested that the five-dimensional counterpart of the four-

dimensional Hawking-Page transition to be a transition between thermal AdS phase and AdS black

string phase.27) Such a transition may happen if the system belongs to a canonical ensemble for

fixed temperature, while it is impossible if the system is in a microcanonical ensemble for fixed

energy

since generation of a bulk black string requires infinite energy. In this paper, we consider phase

transition in a microcanonical ensemble, which is more relevant to physical processes in a closed

system, such as black object formation due to gravitational collapse on the brane.
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static solution. Next, we use radiation fluid approximation of the four-dimensional
self-gravitating CFT, which is valid for high enough temperature.26),28) We later
see that this condition of high temperature is always satisfied in the regime we are
interested in. Using these approximations, we construct solutions numerically in
four-dimensional and five-dimensional picture and test the conjecture of duality. As
a first step, we focus on the bulk floating black holes and the four-dimensional CFT
stars, and study the duality between them.

One problem in the analysis is that there is no known good definition of mass
so far in the KR model, which is necessary to know the thermodynamic properties
of the five-dimensional system. In this paper, we give an appropriate definition of
mass in the KR model according to Abbott and Deser’s definition of mass in an
asymptotically AdS spacetime.29) This is another feature of this work.

Organization of this paper is as follows. We firstly illustrate how to construct a
floating black hole initial data in Sec. 2. In Sec. 3, we propose a definition of mass
in the KR model and give an explicit mass formula for initial data constructed in
Sec. 2. Using these tools, we analyze the initial data and summarize their basic
properties in Sec 4. After that, we compare the five-dimensional bulk floating black
holes with four-dimensional CFT stars in Sec. 5. We briefly summarize how to
construct CFT star solutions, and then we compare them with the initial data. We
find good agreements of phase structures and characteristic values between them.
Finally, we give concluding remarks in Sec. 6.

§2. Floating black hole initial data

In this section, we illustrate the construction method of time-symmetric initial
data of floating black holes in the KR model∗). An initial data is a set of spatial
geometry and its time derivatives which solves the Hamiltonian constraint and mo-
mentum constraints in the Einstein equations. In the case that the spacetime is
time-symmetric about a t = constant surface, the momentum constraints are triv-
ially satisfied. Thus we have to solve only the Hamiltonian constraint in this case.

To obtain an initial data of the KR model, we have to solve the five-dimensional
Hamiltonian constraint in the bulk and the four-dimensional one on the brane si-
multaneously. In this work, we solve those equations by taking a well-known static
solution in the bulk and embedding the brane that satisfies the constraints.

In the bulk, we take the AdS-Schwarzschild solution:

ds2 = −Udt2 +
dr2

U
+ r2

(
dχ2 + sin2 χ dΩII

)
, U = 1 + k2r2 − µ

r2
, (2.1)

where k is the five-dimensional bulk curvature and it is related to the five-dimensional
cosmological constant as Λ5 = −6k2. µ is the mass parameter of the black hole, and
dΩII is the metric of a unit two-sphere. The black hole horizon is at rg, the largest
root of the equation U(r) = 0.

Taking this AdS-Schwarzschild black hole spacetime as a background, we deter-
mine the brane trajectory on it solving the four-dimensional Hamiltonian constraint.

∗) Our construction method is partially based on that used in Ref. 30).
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Let us introduce four-dimensional induced metric on the brane γab and unit normal
of the brane sµ that extends from the brane into the bulk. Here the Latin indices
(a, b, . . . ) run through only the four-dimensional coordinates parallel to the brane.
The extrinsic curvature of the brane is defined to be Kab = −γa

µγb
ν∇µsν .

BH

sμ
Brane

χb
rb

r0 rg r

Fig. 2. Configuration of the brane and the

black hole in an initial data in the global

coordinates.

In the KR model, the energy-
momentum tensor along the brane Tab

is given by

Tab = −σγab , σ ≡ 3
√

k2 − k̃2

4πG5
,

(2.2)
and is localized on a four-dimensional
surface in the bulk spacetime. σ is
the brane tension and k̃ is the four-
dimensional curvature that is related to
the four-dimensional cosmological con-
stant as Λ4 = −3k̃2, and G5 is the
five-dimensional gravitational constant.

Since one of k or k̃ can be absorbed by the coordinate rescaling, the KR model
is characterized by one parameter k̃/k. In the limit of k̃/k → 0, the KR model
reduce to the RS model with a flat brane. In this work, we focus on the regime
that k̃/k ¿ 1, i.e. the deformation from the RS model is small. Notice that k̃/k is
treated as a fixed parameter since it is a parameter which distinguishes not different
solutions but different models.

Using these quantities, Israel’s junction conditions at the brane are written as

Kab − Kγab =
1
2
· 8πG5Tab , (2.3)

where we used the Z2-symmetry about the brane. These equations are the five-
dimensional Einstein equations integrated across the brane, and their time-time and
time-space components are the Hamiltonian constraint and the momentum con-
straints, respectively. Let us assume here the time-symmetry about the t = constant
surface we are focusing on. Then, the momentum constraints are trivially satisfied,
and we only have to solve the Hamiltonian constraint, which can be rewritten as

Dis
i = −3

√
k2 − k̃2 , (2.4)

where D is the covariant derivative on the t = constant surface and the index i is
for the spatial coordinates on that surface,

If we assume the O(3) symmetry of the brane, its trajectory in the bulk can be
parametrized as (r, χ) = (rb(R), χb(R)), where R is the proper length along the brane
measured from the axis of the O(3) rotational symmetry. Under this parametrization
the Hamiltonian constraint (2.4) becomes a set of second order differential equations
about rb and χb, which are given by

r′′b +
3
rb

r′b
2 +

(
2χ′

b cot χb −
U ′

2U

)
r′b −

3U

rb
− 3rbχ

′
b

√(
k2 − k̃2

)
U = 0 , (2.5)
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χ′′
b + 2χ′

b
2 cot χb +

4r′bχ
′
b

rb
− 2 cot χb

r2
b

+
3r′b
rb

√
k2 − k̃2

U
= 0 , (2.6)

where f ′ ≡ df/dR. Supplying regularity conditions on the axis, these equations can
readily be integrated. Once the brane trajectory is determined, an initial data is
obtained by cutting the bulk spacetime along the brane, taking the part of the bulk
that contains the black hole, and gluing that bulk with its copy along the brane.
The resultant initial data possesses two copies of bulk regions separated by a four-
dimensional asymptotically AdS brane, and each bulk region encompasses a floating
black hole.

In the above construction procedure, we can set freely the mass parameter
µ of the background AdS-Schwarzschild spacetime and the brane’s starting point
rb(0) ≡ r0. Thus, the initial data constructed by the above method constitute a
two-parameter family. By the way, if we make the brane starting point r0 too close
to the bulk black hole, the brane trajectory directly falls into the black hole and an
asymptotically AdS brane is not realized. Examining Eq. (2.4), we find the lower
bound on r0, rmin, to realize an asymptotically AdS brane to be the largest root of
the equation U(rmin) = r2

min(k
2 − k̃2).

In some initial data, typically that with small µ and r0, an apparent horizon
appears that encloses the bulk black hole and crosses perpendicularly the brane.
Apparent horizon appearance implies the existence of an event horizon outside of it.
The black holes in such initial data are not floating in the bulk but are localized on
the brane. We neglect such initial data and focus only on those with floating black
holes in this work.

Before closing this section, let us summarize the series solution of the brane
trajectory in the asymptotic region for the later use. The brane trajectory can be
parametrized as χ = χb(r). Expanding this expression in the asymptotic region as

χb(r) =
∑
i=0

χi(kr)−i (2.7)

and substituting it into the Hamiltonian constraint (2.4), we find that χ0 is a free
parameter and χ1 is determined by k and k̃ as χ1 = {(k/k̃)2−1}1/2. The coefficients
χ2 and χ3 are functions of χ0 and χ1. The equation for χ4 is automatically satisfied,
and the remaining coefficients χi>4 are determined by χ0 and χ4. Thus, the series
solution in the asymptotic region constitutes a two-parameter family whose free
parameters are χ0 and χ4. We see later that we can freely change the parameter χ0

by the Lorentz transformation, and that χ4 is related to the mass contained in the
initial data.

§3. The Abbott-Deser mass of initial data

To analyze the thermodynamic property of black holes in the KR model, we have
to know about its mass. However, there is no known definition of mass in the KR
model so far and it is non-trivial how to define it. In this section, we show that we
can define conserved mass by generalizing the definition of mass in asymptotically
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AdS spacetime by Abbott and Deser. We also illustrate in detail how to calculate
this Abbott-Deser mass of initial data constructed in Sec. 2. The Abbott-Deser
mass we derive in Sec. 3.1 is given by a surface integral of metric perturbation in the
coordinates that are Gaussian normal (GN) near the brane. We refer to it simply as
GN coordinates. Since the initial data is constructed in the AdS global coordinates,
we have to transform the coordinates into the GN coordinates to calculate the mass.
We summarize the coordinate transformation procedure in Sec. 3.2, and study the
metric perturbation due to the bulk black hole in Sec. 3.3. Finally, we give an explicit
formula of the Abbott-Deser mass of the initial data in Sec. 3.4.

3.1. The Abbott-Deser mass in the KR model

In this section, we give a definition of mass in the KR model extending the
definition by Abbott and Deser for asymptotically AdS spacetime.29) We show that
we can define a conserved mass even in the existence of the brane, and that we can
convert it in the form of a surface integral at least if we take the GN coordinates
with respect to the brane.

The five-dimensional Einstein equations in the KR model are given by

Gµν ≡ Rµν − 1
2
Rgµν + Λ5gµν +

σδ(y − yb)√
gyy

γµν = 0 , (3.1)

where the last term is the contribution of the brane. The coordinate y in the delta
function is the one perpendicular to the brane in the GN coordinates in which the
brane is at y = constant surface at y = yb and the metric is taken to be gyµ = 0 for
ν 6= y on the brane.

Let us consider a background solution ḡµν and another solution gµν given by
gµν = ḡµν +hµν . We assume that both ḡµν and gµν solve the Einstein equations (3.1),
and that ḡµν is static and possesses a timelike Killing vector ξ̄µ. We define δGµν to
be O(h) part of Gµν . Then, this δGµν satisfies δGµν

;ν = 0, where the semicolon is
the background covariant derivative with respect to ḡµν , by virtue of the Einstein
equations for ḡµν .

Using these equations, conserved energy can be defined as follows. Firstly, δGµν

can be rewritten as

δGµν = Kµανβ
;βα +

1
2

(
R̄νρH

ρ
µ + R̄λνµ

ρHλ
ρ

)
+

1
2
hλρR̄λρgµν − 1

2
R̄hµν + Λhµν + δ

{
σδ(y − yb)√

gyy
γµν

}
, (3.2)

where the Kµανβ and Hµν are defined as

Kµανβ ≡ 1
2

(ḡµβHνα + ḡναHµβ − ḡµνHαβ − ḡαβHµν) , Hµν ≡ hµν − 1
2
hḡµν ,

(3.3)
and indices are raised by the background metric ḡµν . δ

{
σδ(y − yb)γµν/

√
gyy

}
is O(h)

part of σδ(y−yb)γµν/
√

gyy. Contracting Eq. (3.2) with ξ̄µ and using the background
Einstein equations Ḡµν = 0, we obtain

δGµν ξ̄
ν =

(
Kµανβ

;β ξ̄ν − Kµβναξ̄ν;β
);α
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+
σδ(y − yb)

2
√

ḡyy

(
−2γ̄λνhµν ξ̄λ + hγ̄µ

λξ̄λ − γ̄ρλhρλξ̄µ

)
+ δ

{
σδ(y − yb)√

gyy
γµν

}
ξ̄ν .

(3.4)

Then, we define the Abbott-Deser mass M as

M ≡ 1
8πG5

∫
Σ

d4x
√
−ḡ δGτν ξ̄ν , (3.5)

where τ is the time coordinate of the GN coordinates, and the integral is taken over
a large four-dimensional volume Σ. This M is conserved by virtue of δGµν

;ν . When
there are no brane, i.e. σ = 0, Eq. (3.4) becomes a total divergence, and it implies
that the conserved mass can be written in the form of surface integral.

We show below that the Abbott-Deser mass can be written as a surface integral
at least in the GN coordinates. In our setting, the background spacetime including
the brane is assumed to be static and the coordinates are taken to be in the GN
coordinates, i.e. ξ̄µ = 0 = γ̄0µ for µ 6= t and ḡyµ = 0 for µ 6= y. Then, the terms in
Eq. (3.4) other than the total divergence term reduce to

σδ(y − yb)
2
√

ḡyy
(−2γ̄τνhτν + h − γ̄ρσhρσ)ξ̄τ + δ

{
σδ(y − yb)√

gyy
γττ

}
ξ̄τ

=
σδ(y − yb)

2
√

ḡyy

(
−2hτ

τ + hy
y

)
ξ̄τ + δ

{
σδ(y − yb)√

gyy
γττ

}
ξ̄τ . (3.6)

Let us assume here that the perturbed metric gµν is written in the GN coordinates,
i.e. hyµ = 0 for µ 6= y. Under this condition, the second term in the right-hand side
of Eq. (3.6) becomes σδ(y− yb)(hτ

τ −hy
y/2)ξ̄τ , and it cancels the first term. In this

case, the Abbott-Deser mass (3.5) becomes a surface integral on spacelike boundary
surface ∂Σ as

M =
1

8πG5

∫
Σ

d4x
√
−ḡ

(
Kτανβ

;β ξ̄ν − Kτβναξ̄ν;β

)
;α

=
1

8πG5

∮
∂Σ

dSα
√
−ḡ

[
Kτανβ

;β ξ̄ν − Kτβναξ̄ν;β

]
, (3.7)

where dSα ≡ dx1dx2dx3δ4
α , in which (x1, x2, x3) and x4 are coordinates along and

perpendicular to ∂Σ respectively. This conversion into a surface integral is probably
possible in a general coordinate system, but we do not investigate it here.

3.2. Coordinate transformation of the background geometry

The goal of the following subsections is to calculate the Abbott-Deser mass of
the initial data we constructed. The expression of the Abbott-Deser mass we defined
is given in terms of the metric perturbation in the GN coordinates, while the initial
data is constructed in the AdS global coordinates (2.1). Thus, we have to transform
the coordinates first for the mass calculation. We consider the transformation of the
background spacetime with no bulk black hole in this subsection, and after that we
take into account the geometry deformation due to the bulk black hole in the next
subsection.
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When there is no bulk black hole, the metric of the KR model in the GN coor-
dinates is given by

ds2 = dy2 +
k̃2

k2
cosh2 (ky)

(
−Ũdτ2 +

1
Ũ

dλ2 + λ2dΩII

)
, Ũ = 1 + k̃2λ2 , (3.8)

where the brane location is determined by (k̃/k) cosh(kyb) = 1 . We can find the
coordinate transformation from the global coordinates (2.1) to these GN coordi-
nates (3.8) by comparing the metric components, which is summarized as

kr cos χ = sinh (ky) , kr sin χ = k̃λ cosh (ky) , U = Ũ cosh2 (ky) , kt = k̃τ .
(3.9)

By this transformation, the brane trajectory in the GN coordinates is mapped to
that in the global coordinates whose asymptotic behavior for r → ∞ is given by
χ0 = π/2, as we can see from the first equation of (3.9).

However, χ0 does not become π/2 for a general initial data. Hence, we first
perform a transformation in the global coordinates so that χ0 becomes π/2. Such a
transformation is given by

r′ sinχ′ = r sinχ , r′ cos χ′ = γ
(
r cos χ − v

√
r2 + k−2

)
, (3.10)

where v = cos χ0 and γ = (1 − v2)−1/2. This transformation is the Lorentz trans-
formation of the higher-dimensional embedding of AdS ∗). The metric (2.1) is kept
invariant by it, while the brane is translated by this transformation from the original
position χ = χ0 + O(r−1) to the desired position χ′ = π/2 + O(r′−1). By apply-
ing two transformations (3.10) and (3.9) successively, we can convert an initial data
with no bulk black hole into the KR model written in the GN coordinates. If we
trace back this transformation from the metric (3.8), we find that the asymptotic
trajectory of a pure AdS brane in the global coordinates is given by

χ4 = −
k2 cos χ0

{(
3 + 2 cos2 χ0

)
k2 − 4k̃2

}
8k̃4 sin3 χ0

(3.11)

for general χ0.
∗) AdS5 spacetime (2.1) can be embedded into six-dimensional pseudo-Euclidean space E4,2 by

z0 =
p

r2 + k−2 sin(kt) , z1 =
p

r2 + k−2 cos(kt) , z2 = r sin χ sin θ cos φ ,

z3 = r sin χ sin θ sin φ , z4 = r sin χ cos θ , z5 = r cos χ

as a hyperboloid −z0
2 − z1

2 +
P6

i=2 zi
2 = −k−2. The Lorentz transformation in six dimensions

given by

z′
5 = γ (z5 − vz1) , z′

1 = γ (z1 − vz5)

maps the hyperboloid into itself, and its restriction to the t = 0 surface generates the transforma-

tion (3.10). This restricted transformation is sufficient for our analysis since the explicit calculation

shows that the integrand of Eq. (3.7) does not contain neither the time-time component of the

metric perturbation nor derivatives of the other components with respect to the time coordinate.
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3.3. Perturbation by the black hole

In this subsection, we consider the case that a bulk black hole exists. In this
case, the bulk geometry and the brane trajectory are deformed and the coordinate
transformation (3.9) and (3.10) does not give a metric in the GN coordinates. To
be more precise, the brane trajectory in the asymptotic region acquires deviation of
O(r−4) due to the bulk black hole, and it results in violation of the GN coordinate
condition: hyµ = 0 for µ 6= y on the brane. To restore the GN coordinate condition,
we have to apply an additional gauge transformation. As a result, the total metric
perturbation is given by a sum of the contribution from the background metric
deformation and that from the additional gauge transformation.

Let us formulate the deviation due to the bulk black hole explicitly. When the
bulk black hole exists, a brane trajectory in the global coordinates is deformed as

χ(r) = χBG(r) +
δχ4

(kr)4
+ O

(
r−5

)
, (3.12)

where χ = χBG(r) represents a brane trajectory of a pure AdS brane. The order
of the brane trajectory deviation, r−4, is known from the form of the series solu-
tion for r → ∞ (see Eq. (2.7) and below). Applying the background coordinate
transformation (3.9) and (3.10), we obtain the following brane trajectory:

y = y0 +
δy3(
k̃λ

)3 + O
(
λ−4

)
, δy3 = − k̃4 sin3 χ0

k5
δχ4 . (3.13)

To obtain a metric that satisfies the GN condition, we have to eliminate this deviation
δy3. It is realized by an additional gauge transformation defined as

x′µ = xµ + ζµ ,
(
ζy, ζλ

)
=

(
−δy3F (y)(

k̃λ
)3 ,

G(y)(
k̃λ

)2

)
, (3.14)

where F (y) and G(y) are arbitrary functions that vanish for y → ∞ and satisfy
F (yb) = 1. To satisfy the GN coordinate condition, we require later an additional
condition on G(y).

In the resultant GN coordinates, the metric perturbation from the background
metric, Eq. (3.8), is given by hµν = hBH

µν + hζ
µν , where hBH

µν comes from the metric
perturbation due to the AdS-Schwarzschild black hole, that is hglobal

rr = U−1 − (1 +
k2r2)−1 in the global coordinates. This perturbation is transformed to that in the
GN coordinates as hBH

µν = (∂r/∂xµ)(∂r/∂xν)hglobal
rr , where µ and ν are y or λ. hζ

µν =
−2ζ(µ;ν) is the contribution from the gauge transformation ζµ. In the asymptotic
region λ → ∞, the leading term with respect to λ of the (y, λ) component of each
metric perturbation becomes

hBH
yλ =

µk
(
1 − v2

)2 sinh (ky)

k̃4λ5 cosh5 (ky)
, hζ

yλ = −3k2F (yb)δy3 + k̃G′(yb) cosh2 (yb)
k2k̃3λ4

.

(3.15)
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Then, we find that the GN coordinate condition 0 = hyλ = hBH
µν +hζ

µν is satisfied for
G′(yb) = −3k̃δy3, where we used the relation (k̃/k) cosh (kyb) = 1 and the condition
F (yb) = 1. This formula for G′(yb) is correct only in the asymptotic region λ → ∞,
but it is sufficient to calculate the Abbott-Deser mass as we see in the next subsection.

3.4. Explicit formula of mass

In this subsection, we give an explicit formula of the Abbott-Deser mass (3.7)
for floating black hole initial data using the formulae obtained in the previous sub-
sections.

y

λ=λBλ

“side”

“cap”

Brane

∂∑

y=yb, yB

Fig. 3. Integration surface.

Some analysis shows that the inte-
grand of Eq. (3.7) is a function of the
spatial components of the metric per-
turbation hµν , which is calculated in
Sec. 3.3. We normalize the timelike
Killing to be ξ̄τ = −1, in other words
we measure the mass with respect to the
time coordinate on the brane. To per-
form an explicit integration, we take the
boundary ∂Σ to be a cylinder of radius
λB that is truncated at y = yB as shown
in Fig. 3. After the integration, we take
the limit of λB and yB → ∞.

Firstly, the integration on the “side” of ∂Σ, that is the cylindrical surface λ =
λB, is given as

2 × 1
8πG5

∮
side
dydθdφ

√
−ḡ

[
Kτλνβ

;β ξ̄ν − Kτβνλξ̄ν;β

]
=

k̃4λ2
B

k4G5

∫ yB

yb

dy cosh4 (ky)
[
Kτλνβ

;βξν − Kτβνλξν;β

] ∣∣∣∣
λ=λB

. (3.16)

The factor two in the left-hand side is multiplied since the same contribution comes
from the both sides of the brane. For the perturbation due to the black hole hBH

µν ,
the integrand of Eq. (3.16) becomes O

(
λ−1

B

)
and thus the integral vanishes in the

limit λB → ∞. On the other hand, the contribution from the gauge perturbation
hζ

µν becomes

lim
λB ,yB→∞

k̃4λ2
B

k4G5

∫ yB

yb

dy cosh4 (ky)
[
Kτλνβ

;βξν − Kτβνλξν;β

]
=

−k̃3

2k4G5

[
cosh2(ky)

(
G′ cosh2(ky)

k̃
− 5k2δy3F

k̃2

)]y=∞

y=yb

=
−4δy3

k̃G5

=
4k̃3 sin3 χ0

k5G5
δχ4,

(3.17)

where we used the boundary conditions for F and G′ as well as (k̃/k) cosh (kyb) = 1.
Next, the integration on the “caps” of the cylinder, that is the surfaces y = ±yB,
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is given as

2 × 1
8πG5

∮
cap
dλdθdφ

√
−ḡ

[
Kτyνβ

;β ξ̄ν − Kτβνy ξ̄ν;β

]
=

k̃4 cosh4 (kyB)
k4G5

∫ λB

0
dλλ2

[
Kτyνβ

;β ξ̄ν − Kτβνy ξ̄ν;β

] ∣∣∣∣
y=yB

. (3.18)

hBH
µν gives a nonzero contribution to this integral as

lim
λB ,yB→∞

k̃4 cosh4 (kyB)
k4G5

∫ λB

0
dλ λ2

[
Kτyνβ

;βξν − Kτβνyξν;β

]
=

∫ ∞

0
dλ

3µk̃4
(
1 − v2

)2
λ2

2kG5

(
Ũ1/2 + v

)4 =
µk̃

4kG5 sinχ0

{
3χ0 + sinχ0 cos χ0

(
2 cos2 χ0 − 5

)}
,

(3.19)

while hζ
µν gives no contribution since ζµ vanishes for y → ∞.

After all, we obtain an expression of the Abbott-Deser mass as

M =
1

k2G5

[
4k̃3 sin3 χ0

k3
δχ4 +

µkk̃

4 sin χ0

{
3χ0 + sin χ0 cos χ0

(
2 cos2 χ0 − 5

)}]
,

(3.20)
which is totally expressed in terms of the quantities in the global coordinates. Once
we construct an initial data numerically, its mass can be calculated by reading out
χ0 and δχ4 from the brane trajectory and plugging those into the above formula.

Let us comment on the tensionless limit of the mass formula, that is the limit to
make χ0 → π/2 and k → k̃ simultaneously. In this limit, the five-dimensional system
reduces to an AdS-Schwarzschild black hole with a tensionless brane on its equator
plane, which do not contribute to the mass at all. This limit yields M = 3πµ/8G5,
which is an ordinary mass formula of a five-dimensional AdS-Schwarzschild black
hole.31)

§4. Analysis

In this and the next sections, we analyze our floating black hole initial data in
the KR model using the Abbott-Deser mass we obtained in the previous section. We
firstly summarize the properties of the initial data in this section. In Sec. 4.1, we
calculate the mass of the initial data for fixed values of entropy to study thermody-
namic stability of the system in a microcanonical ensemble, which seems to be more
relevant to black objects formed by gravitational collapse on the brane. In Sec. 4.2,
we estimate how an initial data is close to a static solution by observing additional
matter that we have to put on the brane to make it static.

4.1. Local extrema of entropy

In this subsection, we calculate the Abbott-Deser mass of the initial data and
try to find an initial data that is close to a static solution. To be more precise, we
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try to find an initial data that realizes maximum entropy keeping its mass fixed.
The logic behind this search is as follows. If we have a set of all possible time-
symmetric initial data, the all static solutions must be contained in this set since a
static solution is also time-symmetric. Since we have the area increase law of the
event horizon, a time-symmetric initial data that realizes the maximum entropy must
be a static solution. Of course we can search only a finite region of the initial data
phase space, and hence the initial data that realizes the maximum entropy in our
initial data family is not necessarily static. Nevertheless, we can expect it to reflect
some properties of a static solution since it satisfy some of the necessary conditions
of a static solution. We later compare this initial data with maximum entropy to a
four-dimensional static CFT star.

As we mentioned in Sec. 2, we focus on the regime that the five-dimensional
model is only slightly detuned from the RS model, i.e. k̃/k ¿ 1, in this paper.
In the following numerical analysis, we set k̃/k = 1/100. Every results are almost
irrelevant to this ratio if it is smaller than this value. For technical convenience,
we search initial data that minimize the mass keeping the entropy fixed instead of
searching the one that maximize the entropy for fixed mass, since the former is much
simpler to implement in our initial data construction method. This search is totally
equivalent to the search for the entropy-maximum initial data keeping the mass fixed.
Numerical integration of the differential equations and reading out of δχ4 from brane
trajectory data are done by mathematical software such as Mathematica. Precision
of the calculations is set to keep the numerical error to be a few percents at most in
every results we show below.

10 -1

(r0 – rmin) / rmin

1 10
0.0

0.5

1.0

1.5

2.0

G
5
k
k
 M

 ~

S=1.0
^

4.2

5.4
6.6

2.7

7.7

M extrema

Constant S 

Asympt. static

Excluded region 

^

Fig. 4. Plot of mass M for initial data sequences for fixed values of entropy Ŝ ≡ G5(kk̃)3/2S

for k̃/k = 1/100. The horizontal axis shows the distance between the brane position on the

rotational axis r0 and the lower bound for r0, rmin, where rmin takes different values on different

Ŝ constant sequences. A sequence for Ŝ smaller than 6.6 possesses a local maximum and a

minimum of mass. By connecting the local extrema of various sequences, we obtain the dashed

line in the plot, which have a peek at G5kk̃M = 1.4 . The dash-dotted line represents initial

data that becomes static in the asymptotic region. When the entropy is small, we see that the

initial data that realizes the mass local minimum is almost asymptotically static. In any initial

data sequence, the mass local maximum is always further than the local minimum from the

point of the asymptotically-static initial data. The initial data in the shaded region possesses

an outer apparent horizon, and this region is excluded from the analysis in this paper.
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Figure 4 shows variance of the mass M for sequences of fixed values of the
entropy S = ABHs/4G5. We can see that a mass minimum and a maximum appear
in each sequence for small entropy, while no extrema appears in a sequence for large
entropy. At G5(kk̃)3/2S = 6.6, sequences of mass maximum and of mass minimum
annihilate in pair. The disappearance of mass local minimum suggests that the
thermodynamical stability in a microcanonical ensemble would change from stable
to unstable there, and that a transition from bulk floating black hole to the brane-
localized black holes would occur near this point.

~ (G5M / k)1/3

~ k -1log( k / k )
~ ~

y

Fig. 5. Schematic picture of the effective po-

tential for a small particle in the bulk of

the KR model.

Let us further investigate the se-
quence of mass extrema. The line of
mass local minima is smoothly con-
nected with the line of mass local max-
ima, as is shown in Fig. 4. We can
interpret it in the Newtonian sense as
follows. When the floating black hole
is sufficiently small, it will be approxi-
mated by a small particle of mass Msp.
Then, there are two positions in the bulk
where this small particle can stay in a
static manner: the potential minimum, that is the throat of the AdS5 at which the
warp factor is minimized, and the near brane point at which the brane’s repulsion
force a = k is cancelled by the gravitational attraction due to its mirror image be-
hind the brane a ∼ −G5Msp/(2d)3, where d is proper distance between the small
particle and the brane. We show a schematic picture of the effective gravitational
potential for a small particle in Fig. 5. See also 24)–26) for detail about this effec-
tive potential. When the small particle sits at the latter point near the brane, the
system is in unstable equilibrium and the energy will be maximized. For example,
mass-maximum initial data in the sequence of G5(kk̃)3/2S = 2.0 × 10−3 has black
holes with G5kk̃Msp ∼ G5kk̃M/2 = 1.3 × 10−2, and then the position of the unsta-
ble equilibrium is estimated as k̃d = k̃(G5Msp/8k)1/3 = 5.4 × 10−3. This value is
roughly equal to the actual proper distance between the brane and the black hole
in our initial data, which is 4.4 × 10−3. As the floating black hole becomes large,
those two points of equilibrium get closer to each other and finally annihilate. This
annihilation corresponds to the turn over of the mass-extrema sequence in Fig. 4.

We find some initial data, especially those with small floating black hole located
very near the brane, have an outer apparent horizon that is localized on the brane
and encompasses the bulk black hole. We exclude such initial data in this paper
to focus only on the bulk floating black hole solutions. In Fig. 4, we can see that
the mass of such initial data with a brane-localized apparent horizon is apparently
bounded from above. It is due to the facts that our parameter space is limited
and also that the shape of the brane-localized apparent horizons constructed in this
way is very restricted. Full analysis of initial data with brane-localized apparent
horizons will be one of our future works. We also mention that any initial data with
maximum or minimum mass seems not to have an outer apparent horizon, at least
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for G5(kk̃)3/2S & 1.

4.2. Difference of initial data from static solutions

In our initial data construction, the brane does not become static in the GN
coordinates by itself in general. Since we would like to compare the initial data with
static CFT stars, we have to know how “far” an initial data is from a static state.
For this purpose, we try to find asymptotically-static initial data, in which the brane
becomes static in the asymptotic region.

Since the transformation (3.9) maps a static brane in the GN coordinates to a
brane with χ0 = π/2 in the AdS global coordinates and it does not mix the temporal
coordinate with the spatial coordinates, a brane with χ0 = π/2 becomes static at
λ → ∞. We denote an initial data with such a brane as an asymptotically-static
initial data. We can find such an initial data uniquely in an initial data sequence for
a fixed S. The dash-dotted line in Fig. 4 is of the sequence of such asymptotically-
static initial data. In the figure, we find that the mass-minimum initial data are
approximately asymptotically static when the entropy is small. We can also see that
the mass-maximum initial data is always more distant from the asymptotically static
one than the mass-minimum one with the same entropy.

The result that a mass-minimum initial data becomes closer to an asymptotically
static initial data for small bulk black holes is a natural one in the following sense;
When the bulk black hole is small, it will be approximated by a small particle. If we
place it at the potential minimum of the bulk gravitational field, it will stay there
in a static manner without disturbing the background geometry. Then, the whole
system including the small particle will be almost static, and it approximates the
asymptotically-static initial data well.

We can assess the staticity of an initial data in a more quantitative way as
follows. When a brane in an initial data is dynamical, we can make it static by
putting some additional matter on it. The amount of this additional matter will be
a good indicator of staticity. By comparing it with the effective energy-momentum
tensor or the cosmological constant on the brane, we can see to what extent the
initial data is close to a static solution.

The additional matter to make the brane static is estimated as follows. The
four-dimensional Einstein equations on the brane are given by

G4D
ab + Λ4g

4D
ab = −Eab , (4.1)

where Eab ≡ Cµλνργ
µ
asλγν

bs
ρ is the bulk Weyl tensor projected onto the brane and

G4D
ab is the Einstein tensor for four-dimensional metric induced on the brane.32)

Effective energy density and pressure on the brane are defined using four-dimensional
Newton constant G4 = kG5 as ρ ≡ Eτ

τ/8πG4 and Pi ≡ −E i
i/8πG4 for i = λ and

θ, respectively. To keep the brane static, we have to add an additional energy-
momentum tensor δTab, which replaces Eq. (4.1) with

G4D
ab + Λ4g

4D
ab = −Eab + 8πG4δTab . (4.2)
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Now that the brane is static, the induced metric on the brane is given by

ds2 = g4D
ab dxadxb = −Udt2 +

(
1
U

+ r2 sin2 χ

)
dr2 + r2 sin2 χ

(
dθ2 + sin2 θdφ2

)
= −

(
k̃

k

)2

Udτ2 +
1
Ũ ′

dλ2 + λ2
(
dθ2 + sin2 θdφ2

)
, (4.3)

where Ũ ′ is defined by the last equality of this equation. Using this metric, δTab is
obtained via Eq. (4.2). By comparing δTµν with −Eab/8πG4 or Λ4, we can estimate
how the brane is close to a static state. We note here that δρ ≡ −δT τ

τ automat-
ically vanishes since the Hamiltonian constraint is satisfied. Below, we investigate
properties of the nontrivial components δPi ≡ δT i

i.
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Fig. 6. Distributions of effective pressure P̃λ ≡ 8πG4Pλ and additional pressure δP̃i ≡ 8πG4Pi for

i = λ and θ. The panels (a) and (b) show the distributions for initial data with maximum and

minimum M of an initial data sequence for G5(kk̃)3/2S = 4.3 , and the panel (c) shows that for

the asymptotically-static initial data in the same sequence. The all quantities are normalized

by Λ4. δPi decays as λ−1 and is much smaller for the asymptotically-static initial data than

the others. Note that scale of the vertical axis in the panel (a) is much larger than those of the

other panels.

In Fig. 6, we plot distributions of effective matter and additional matter for
mass-maximum, mass-minimum and asymptotically-static initial data in the initial
data sequence for G5(kk̃)3/2S = 4.3 . These plots shows that additional matter
of much larger amount is necessary to make the mass-maximum initial data static
compared to the mass-minimum and asymptotically-static ones. Note that scale of
the vertical axis of Fig. 6(a) is much larger than those of Figs. 6(b) and 6(c). This
confirms that the mass-minimum initial data is closer to a static solution compared
to the mass-maximum one.

This fact about mass-maximum initial data indicates that the genuine static
solution of the floating black hole in unstable equilibrium, even if existed, is far from
the initial data we constructed. The reason for it may be as follows: the floating
black hole in the unstable equilibrium is highly deformed by the self-gravity due to
its mirror image behind the brane and the repulsion force due to the brane, and then
it cannot be well approximated by an AdS-Schwarzschild black hole we used in the
initial data construction.
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§5. Comparison with Four-dimensional CFT stars

Using the tools prepared in the previous sections, we conduct a comparison
between the five-dimensional floating black hole initial data and the four-dimensional
CFT stars.

We firstly illustrate the numerical construction method of the CFT star con-
figuration and summarize basic properties of the CFT stars in Sec. 5.1, though the
construction method is originally given by33) and a detailed analysis is done by.26) In
Secs. 5.2 and 5.3, we compare the sequence of the CFT stars with the sequence of ini-
tial data at mass extrema, which is expected to mimic a sequence of five-dimensional
static solutions. We compare the structure of the whole sequences in Sec. 5.2, and
after that we focus on some specific solutions in the sequences in Sec. 5.3.

5.1. Construction method

When the temperature is sufficiently high compared to the characteristic energy
scale on the brane∗), T À k̃, we can approximate the CFT with radiation fluid, whose
energy density is given by ρ = aT 4

loc where Tloc is the local temperature determined
from the global temperature T as Tloc = (−gττ )−1/2T . In our setting, two sets of the
CFT reside on the brane since we have two bulk regions on each side of the brane.
Then, the radiation density constant is given by a = (π2/30)×15N2×2 = π3/2k3G5,
where the factor 15 = 6+2+(7/8)× 8 is the effective spin state number of the CFT
multiplets: six real scalars, one vector and four Weyl fermions.34)

Assuming spherical symmetry and staticity, general four-dimensional metric can
be parametrized as

ds2 = −e2ψV (λ)dt2 + V (λ)−1dλ2 + λ2
(
dθ2 + sin2 θdφ2

)
(5.1)

and V = 1+k̃2λ2−2m(λ)/λ. We require that limλ→∞ ψ = 0 to realize asymptotically
AdS4 spacetime and m(λ = 0) = 0 to maintain the regularity at the center. Then,
the four-dimensional Einstein equations for energy-momentum tensor of the radiation
fluid Tµ

ν = Diag[−ρ, p, p, p] with ρ = 3p = aT 4e−4ψV −2 are given by

dm

dλ
= 4πλ2ρ ,

dρ

dλ
=

−4ρ
(
G4m + 4πG4λ

3ρ/3 + k̃2λ3
)

λ2 + k̃2λ4 − 2G4λm
. (5.2)

Assuming regularity at λ = 0 and giving central density ρ(λ = 0) ≡ ρc, we can solve
these equations to obtain one-parameter family of solutions m(ρc; λ) and ρ(ρc;λ).
Four-dimensional mass is given by M = limλ→∞ m(λ). Using the solutions m and ρ,
the global temperature and the metric function ψ can be obtained from the expression
of the energy density as T = limλ→∞(ρV 2/a)1/4 and ψ = (1/4) log(aT 4/ρV 2). The
total entropy of the system S can be obtained by integrating proper entropy density
s = (4/3)aT 3

loc . We note this S satisfies the thermodynamic first law dM = TdS.
∗) When the temperature measured on the brane, T , is higher than O

`

k̃
´

, the bulk black hole

temperature in the global coordinates is higher than O(k). It implies that the five-dimensional bulk

is in the AdS-Schwalzschild black hole phase not in the thermal AdS phase for this high-temperature

regime. We focus only on this regime in this paper.
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Since the CFT resides not only on the brane but also on the AdS boundaries, we
have to add their contributions to M and S. For convenience of the derivation, let us
consider from the five-dimensional point of view. We introduce a second AdS brane
of curvature k̃b in the bulk near the AdS boundary, and consider the CFT on it. Let
us refer to this CFT on the second brane as CFT2. In the GN coordinates (3.8),
such a brane is at y = yb such that (k̃/k) cosh(kyb) = k̃/k̃b. The induced geometry
on that second brane is given by

ds2 =
(

k̃

k̃b

)2 (
−Ũdτ2 +

dλ2

Ũ
+ λ2dΩII

)
= −Ũbdτ2

b +
dλ2

b

Ũb

+ λ2
bdΩII , (5.3)

where Ũ = 1 + k̃2λ2 and Ũb = 1 + k̃2
bλ

2
b . From this equation, we find that the

coordinates on the brane τb and rb are related to those in the GN coordinates as

τb/τ = λb/λ = k̃/k̃b . (5.4)

The CFT on the second brane have to be in thermal equilibrium with that on the first
brane. Hence, the global temperature on the second brane, which is the equilibrium
temperature measured by τb, is given by Tb = (τ/τb)T = (k̃b/k̃)T . We note here
that the radiation fluid approximation is valid also on the second brane since this
relation and the condition T À k̃ implies Tb À k̃b. Since the CFT decouples from
gravity in the limit to take the second brane to the AdS boundary, we can neglect
the back reaction of the radiation to the background geometry. Then, energy density
and entropy density are given by ρ = aT 4

loc and s = (4/3)aT 3
loc with Tloc = Ũ

−1/2
b Tb,

and total mass and entropy are given by

Mb =
∫ ∞

0
4πλ2

bρ dλb =
π2a

k̃4
k̃bT

4 , Sb =
∫ ∞

0
4πλ2

bs
√

gλbλb
dλb =

4π2a

3k̃3
T 3 .

(5.5)
Due to the rescaling of the time coordinate (5.4), an observer on the first brane
measures the mass and entropy on the second brane as MCFT2 = (k̃/k̃b)Mb and
SCFT2 = Sb. These MCFT2 and SCFT2 are independent of k̃b and of the brane
position, we can safely take the limit to send the second brane to the AdS boundary
making k̃b → 0. Note that there are two AdS boundaries in our setting, and their
contributions can be taken into account simply by setting the radiation density
constant a to π3/2k3G5 in the above calculation. Below in this paper, we always
include these MCFT2 and SCFT2 to the total mass M and entropy S.

By the way, the radiation fluid approximates a weak-coupling CFT, though the
five-dimensional gravity is expected to be dual to a strongly-coupled CFT. It is known
that this gap can be filled by reducing the CFT’s degrees of freedom N2 = π/2k2G4

to (3/4)×N2.35) Inclusion of this factor can be easily performed as follows. When we
change G4 and k, M , S, T , ρ, and G5 are rescaled as M ∝ G−1

4 , ρ ∝ G−1
4 , T ∝ k1/2,

and S ∝ G−1
4 k−1/2, respectively. Using this scaling, we find that, for example, each

quantity is rescaled as M → M , ρ → ρ, T → (3/4)−1/4T , and S → (3/4)1/4S if we
fix G4 to be constant and introduce the factor 3/4 by changing k. We always take
this factor into account in the analysis of CFT stars hereafter in this paper.
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Let us summarize features of the CFT star solution sequence. When ρc is lower
than the four-dimensional cosmological constant Λ4 = −3k̃2, the background geom-
etry does not change much from the pure AdS4, and the total mass and entropy are
proportional to ρc and ρ

3/4
c , respectively. In this regime, the CFT stars have positive

specific heat and thus they are thermodynamically stable. Increasing ρc, the total
mass and the entropy is maximized for the same critical ρc. The system becomes
thermodynamically unstable for ρc larger than this critical value if the system is in
a microcanonical ensemble.
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Fig. 7. Plots of characteristic quantities of the CFT star sequence. The panel (a) shows the behavior

of M against ρc. M is maximized at G4ρc/k̃2 = 0.22, and it shows oscillatory behavior for larger

ρc. The system becomes thermodynamically unstable for ρc larger than this critical value if the

system is in a microcanonical ensemble. The panels (b) and (c) show variance of S and T against

M , respectively. In the both panels, the curves turn around at the critical ρc and converges to

a point in the limit of infinite ρc. We note that our results differs from those of Ref. 33) since

we include contribution from CFT2, and that we obtain the same results with theirs if we do

not take it into account.

In the limit of infinite central density, the radiation fluid may gravitationally
collapse and form a small black hole. In the AdS spacetime, this black hole can
settle into thermodynamical equilibrium with its own Hawking radiation, since the
gravitational potential due to the negative cosmological constant works as an ef-
fective cavity. We call this system in thermal equilibrium as a quantum-corrected
black hole. It is shown that the CFT star sequence is smoothly connected to the
quantum-corrected black hole sequence in the limit of infinite central density.26)

This quantum-corrected black holes are conjectured to be dual to five-dimensional
brane-localized black holes, though we do not pursue this duality between them in
this paper.

5.2. Comparison of the solution sequences

In this and the next sections, we juxtapose the CFT star sequence with the
sequence of the five-dimensional floating black hole initial data at local extrema
of mass. Firstly, we compare the whole solution sequences of the four-dimensional
CFT picture and the five-dimensional KR picture. In Fig. 8, we show the relation
of M , S and T along the solution sequences. The curves for the CFT star sequence
are the same as those in Figs. 7(b) and 7(c). For initial data, the temperature T
is not well-defined since the information of the lapse function, which is crucial for
the temperature determination, is missing. We thus define T of initial data using
the thermodynamic first law T ≡ dM/dS. This T will approximate the physical
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temperature of the system if the initial data is close to a static solution.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
0

1

2

3

4

5

6

7

G5kk
�

M

G
5k

3�
2

k� 3
�2

S

4D CFT star

5D KR model

0.2 0.4 0.6 0.8 1.0 1.2 1.4
0.12

0.14

0.16

0.18

0.20

0.22

0.24

0.26

G5kk
�

M

T
�
�k

k� �
1�

2

4D CFT star

5D KR model

(a) M�S (b) M�T

Fig. 8. M−S and M−T diagram for solution sequences. The dashed line is of the five-dimensional

initial data at the mass extrema, and the solid line is of the four-dimensional CFT stars. In the

left panel for M − S relation, the curves of the two pictures have sharp edges at certain critical

values of mass, which are G5kk̃M = 0.77 for the four-dimensional CFT star sequence and 1.4

for the five-dimensional initial data sequence. We can see qualitative similarities between the

curves of the two pictures in each panel, while there are quantitative differences. The curves

of the two pictures match each other well in the range from the origin to the critical M of the

CFT star sequence. The deviation of the two curves becomes significant in the parameter region

where the initial data become far from static solutions (see Fig. 4).

In the plot, we can see some common features between the curves of the initial
data and of the CFT stars. The curves near the origin of the graph correspond to
the sequences of small floating black holes or low central density CFT stars. As we
increase the black hole size or the central density, they approach the critical points
at which M is maximized, and then they turn around. In this sense, thermodynamic
phase structures are qualitatively the same between the two pictures. Since the
Hawking-Page transition occurs in the four-dimensional picture and a transition of
the bulk black hole configuration is suggested to occur (see Sec. 4.1) at the critical
points, this result suggests that these transitions in the two pictures are holographic
dual of each other.

A quantitative difference appears in the part of the sequences after the criti-
cal point of the CFT star sequence, which is at (G5kk̃M,G5(kk̃)3/2S, T/(kk̃)1/2) =
(0.77, 4.3, 0.23) . No feature appears in the initial data sequence at the critical point
of the CFT star sequence, and the critical point in the five-dimensional initial data
sequence appears at (G5kk̃M,G5(kk̃)3/2S, T/(kk̃)1/2) = (1.4, 6.6, 0.26) . A conceiv-
able reason for this mismatch is that the initial data in that parameter region is far
from a static state. Figures 4 and 6 show that mass-maximum initial data are very
different from static solutions, and deviation of an initial data from a static solution
becomes larger as we move along the sequence toward the mass-maximum initial
data. When the staticity is largely violated, the duality between the mass-extremum
initial data and the static CFT stars will break down. In fact, the deviation of the ini-
tial data from asymptotically-static solutions becomes manifest for G5(kk̃)3/2S & 4
as is shown in Fig. 4. This naive expectation will be confirmed using five-dimensional
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static solutions, which are yet to be constructed.

5.3. Comparison of solutions

Next, we compare some specific solutions in the both pictures to investigate to
what extent the duality holds. In the CFT picture, we take a CFT star solution at
the critical point, at which M is maximized, as a representative. In the KR picture,
we choose a mass-minimum initial data which share the same M with that CFT star
solution. In other words, we pick up solutions near the point (G5kk̃M,G5(kk̃)3/2S) =
(0.77, 4.3) in Fig. 8(a) from both sequences, and compare those solutions to each
other. We compare the energy-momentum tensor of the four-dimensional CFT star
Tab with the effective energy-momentum tensor −Eab/8πG5 between such solutions.
This effective energy-momentum tensor is traceless by definition, which is a common
property with Tab of the radiation fluid. We would like to clarify other similarities
between them in this subsection. Adding to the energy-momentum, we also compare
the four-dimensional geometries between the two pictures.
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Fig. 9. Initial data at the data point (G5kk̃M, G5(kk̃)3/2S) = (0.77, 4.3) and the effective pressure

on its brane. The left panel shows the configurations of the brane and the bulk floating black

hole. The bulk region is the upper side of the brane, and the lower side of the brane is to be

cut away. The right panel shows the ratios of the effective pressure components Pi in radial and

angular directions to the effective energy density ρ on the brane. Relative difference of those

ratios from 1/3 is smaller than a percent. It shows that the effective pressure on the brane is

almost isotropic.

In Fig. 9(a), we show the configuration of the brane and the floating black
hole for the data point mentioned above. As a first check, we study properties of the
effective pressure distribution in Fig. 9(b). We find that the pressure is approximately
isotropic, i.e. Pλ ' Pθ, similarly to the radiation fluid. Since the brane’s effective
energy-momentum tensor is traceless, i.e. ρ = Pλ + 2Pθ, this result means that the
equation of state of the effective matter is quite similar to the radiation fluid.

In Fig. 10, we compare radial profiles of energy density ρ and the metric function
m(λ). Firstly, we compare ρ of the two pictures in Fig. 10(a). We can see that the
curves of the two pictures share common qualitative behaviors, such as power-law
fall-off in the asymptotic region λ → ∞. Secondary, Fig. 10(b) shows that the
intrinsic geometry of the four-dimensional spacetime in the CFT picture is quite
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In both figures, we can see that the curves of the two pictures are close for a large λ, while they

deviate near the center λ = 0.
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Fig. 11. Comparison of characteristic quantities at the data point (G5kk̃M, G5(kk̃)3/2S) =

(0.10, 0.89) , at which the initial data is almost asymptotically static as we can see in Fig. 4. In

this case, almost exact match is realized between ρ or m(λ) of the two pictures.

similar to that induced on the brane in the five-dimensional KR picture. Asymptotic
values of m(λ) in the two pictures are almost same∗), which is a non-trivial result
since we tuned the total mass M of the solutions to be common but did not tuned
the value of limλ→∞ m(λ) directly. Recall that M of a CFT star is given by a sum of
the asymptotic value of m(λ) and the mass of the CFT2 as we explained in Sec. 5.1,
and that M of an initial data is not related directly to m(λ) determined from the
induced geometry on the first brane. These similarities between the two pictures

∗) Since four-dimensional graviton is massive in the KR model, we expect that m(λ) decays to

zero in the asymptotic region for a static solution. This decaying property of m(λ) should appear

in the four-dimensional CFT picture if we take into account the screening effect of mass due to

CFT correction to the graviton,20),21) while this effect is neglected in the approximations adopted

in this work. It will be interesting to pursue this issue using five-dimensional static solutions and

four-dimensional solutions with CFT-dressed graviton.
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supports the conjectured correspondence in the KR model. However, quantitative
difference between the curves becomes big in the central region λ ' 0 as we can see
in the both plots. We expect this discrepancy to be reduced if we use static solutions
instead of initial data for comparison.

In Fig. 11, we show ρ and m(λ) for the data point (G5kk̃M,G5(kk̃)3/2S) =
(0.10, 0.89), for which the mass-minimum initial data is almost equivalent to an
asymptotically-static initial data (see Fig. 4). In this case, two pictures give almost
exactly the same ρ(λ) and m(λ). This fact supports the above naive expectation
that the coincidence will improve for five-dimensional static solutions.

§6. Summary

Using the time-symmetric initial data, we showed that the Hawking-Page transi-
tion in a microcanonical ensemble on four-dimensional spacetime is well reproduced
in the five-dimensional KR model as a transition of bulk black hole configuration. We
found good agreements between those two pictures in thermodynamical phase struc-
tures and in some characteristic values such as energy density distributions or the
intrinsic geometries. These results strongly suggest that the holographic description
initially claimed in the RS model also holds in the KR model.

As a byproduct, we obtained a definition of conserved mass in the KR model by
extending the definition of mass for asymptotically AdS spacetime by Abbott and
Deser. We also gave an explicit mass formula for the initial data we constructed.
This definition reproduces an ordinary mass formula for an AdS-Schwarzshilcd black
hole. Since this definition of mass is valid even for dynamical spacetime, it will have
a wide application to the analysis of gravitational phenomena in the KR model.

Although we used time-symmetric initial data in this study, it is definitely pre-
ferred to use static solutions to compare with static CFT stars, which will improve
the agreement between the two pictures significantly. Such five-dimensional static
solutions may be constructed only numerically. We will study this issue in our future
work. In addition to that, it was conjectured in Ref. 8) that brane-localized black
holes in the KR model are dual to four-dimensional quantum-corrected black holes,
whose properties are intensively studied in Ref. 26). Investigation of this duality us-
ing five-dimensional initial data or static solutions will clarify further the properties
of the holography in the KR model.

Another ambitious future work is to test the holography of this type in dynamical
set-up using the technique of numerical relativity in higher-dimensional spacetime,
which is now available in asymptotically flat spacetime.36),37) The initial data
studied in this paper also provide a steady step toward this project. We would like
to pursue it in the future.
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